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Analyzing the sub-level sets of the distance to a compact submanifold of Rd is a common method in topo-
logical data analysis, to understand its topology. Therefore, topological inference procedures usually rely
on a distance estimate based on n sample points (Discrete Comput. Geom. 33 (2005) 249–274). In the case
where sample points are corrupted by noise, the distance-to-measure function (DTM, Found. Comput. Math.
11 (2011) 733–751) is a surrogate for the distance-to-compact-set function. In practice, approximating the
homology of its sub-level sets requires to compute the homology of unions of n balls (Discrete Comput.
Geom. 49 (2013) 22–45; In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (2015) 168–180 SIAM), that might become intractable whenever n is large. To simultaneously
face the two problems of a large number of points and noise, we introduce the k-power-distance-to-measure
function (k-PDTM). This new surrogate for the distance-to-compact is a k-points-based approximation of
the DTM. These k points are minimizers of a robustified version of the classical k-means criterion (In Proc.
Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) (1967) 281–297 Univ.
California Press). The sublevel sets of the k-PDTM consist in unions of k balls, and this distance is also
proved robust to noise. We assess the quality of this approximation for k possibly drastically smaller than
n, and provide an algorithm to compute this k-PDTM from a sample. Numerical experiments illustrate the
good behavior of this k-points approximation in a noisy topological inference framework.
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1. Introduction

Geometric and topological inference consist in recovering geometric and topological features of
a compact set (e.g., a compact submanifold in R

d ) such as its intrinsic dimension, its curvature
or its homology (number of connected components, loops, voids etc.), from a set of n points
sampled nearby. In statistics, such information is relevant, both to identify structures in datasets
and to post process the data, be it in shape matching, classification or reconstruction etc. Methods
of topological data analysis apply to numerous domains such as biology [30] or materials science
[21], to name a few.

The information supplied by the homology is varied. The number of connected components
is strongly related to the number of clusters in which the sample could be split. Other homolog-
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ical features may help determining the true number of parameters required to describe the data.
In particular, a widespread objective in topological inference consists in the construction, from
a dataset, of approximations of the (possibly fictive) underlying compact set, with the correct
homology. In line with current questions in statistics, in the domain of signal compression for
instance, with wavelet compression, image segmentation etc., more interest should be payed to
approximations that have a low storage cost. This paper provides results in this direction, in a
noisy framework, via distance functions.

Let M ⊂ R
d be a compact set whose geometry and topology are to be inferred from an n-

sample Xn = {X1,X2, . . . ,Xn} drawn on M . The pioneering work [39] has paved the way of
topological inference, showing that the Devroye-Wise estimator

⋃n
i=1 B(Xi, r), the union of

closed Euclidean balls of radius r centered at sampled points, has the same homology as M ,
provided that M is a compact submanifold and r is well-chosen according to n. This result
can be thought of as a particular instance of topological inference based on distance estimation:
if dM denotes the distance to M , then dM is inferred via dXn

, the distance to sample points.
The method exposed in [39] then boils down inferring the homology of the 0-sublevel set of
dM , d−1

M ((−∞,0]) from the homology of the r-sublevel set of dXn
. A general framework for

geometric inference based on distance function estimation can be found in [16]. In a nutshell,
[16], Proposition 4.3, states that if d̂ is an estimator for dM and M is smooth enough, then, for
some r > 0, the r-sublevel set of d̂ has the same homology as M provided that ‖dM − d̂‖∞ is
small enough.

This distance estimation problem has been thoroughly investigated through the lens of Haus-
dorff set estimation: indeed, if M̂ is a set estimator, d̂ = d

M̂
, and dH denotes the Hausdorff

distance, then dH (M̂,M) = ‖d̂ − dM‖∞. Optimal rates of convergence for ‖d̂ − dM‖∞, in terms
of sample size n have been derived under various types of regularity assumptions on M and noise
conditions. In the noise-free case, optimal rates for ‖d̂ − dM‖∞ are given in [41] whenever M

satisfies some convexity-type assumptions, whereas [1,2,28,31] provide optimal rates when M

is a smooth compact manifold. Note that, in the smooth manifold case with noisy observations,
additional results on optimal rates for Hausdorff estimation can be found in [28]. All of these
bounds can be combined with the aforementioned result [16], Proposition 4.3, to assess that the
homology of M may be retrieved from the sublevel sets of d̂, provided that n is large enough.

However, when the sample size n is large, computing the homology from an n-points-based
distance estimator d̂ may be computationally intractable. For instance, in the simplest case where
d̂ = dXn

, a standard way to compute the homology of a sublevel set of dXn
is to build a Rips

complex based on Xn whose homology can be efficiently computed [43]. The construction of
such a simplicial complex requires the computation of pairwise distances, that is n2 distances.
To reduce this computational cost, a practical solution is to extract a coreset Xk ⊂ Xn such that
‖dXk

−dM‖∞ is small enough to ensure topological correctness, then to compute a Rips complex
based on Xk . In the noise-free case, extracting such a coreset boils down to find an ε-covering of
Xn, where ε is the desired sup-norm precision. Using a uniform grid shows that an ε-covering

with k(ε) � ε− 1
d points at most exists, and can be found in practice using farthest point sampling

algorithm for instance [24]. Such a coreset may also be used to compute more involved estimates
for dM , as in [36].

In noisy settings, with observations of the type Xi = Yi + Ni , Yi on M and Ni denoting Gaus-
sian noise, using a covering of sample points as base points for a coreset can lead to arbitrarily
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poor estimation of dM . The goal of this paper is to nonetheless provide a coreset in such noisy
situations, that is to build an approximation of dM , based on the computation of a distance to k

points, that may be proved close enough to dM to allow further geometric inference.
To be more precise, we will build our k-points distance approximation as an approximation of

the distance-to-measure [16], that may be thought of as a robust surrogate for dM . Namely, for a
Borel probability measure P on R

d , a mass parameter h ∈ [0,1] and x ∈R
d , the distance of x to

the measure P (DTM), dP,h(x) is defined by

d2
P,h(x) = Px,h‖x − ·‖2,

where Px,h is the probability distribution defined as the restriction of the distribution P to the
ball centered at x, with P -mass h, and with the notation Qf for the expectation of the function
f with respect to the distribution Q. When P is uniform enough on M and M is regular enough,
this distance is proved to approximate well the distance to M ([16], Proposition 4.9) and is robust
to noise ([16], Theorem 3.5).

The distance-to-measure is usually inferred from Xn via its empirical counterpart, called em-
pirical DTM, replacing P by the empirical distribution Pn = 1

n

∑n
i=1 δXi

, where δx is the Dirac
mass on x. As noted in [29], the sublevel sets of empirical DTM are unions of around

(
n
q

)
balls,

with q = hn, which makes their computation intractable in practice. To bypass this issue, ap-
proximations of the empirical DTM have been proposed in [29] (q-witnessed distance) and [13]
(power distance). Up to our knowledge, these are the only available approximations of the em-
pirical DTM. The sublevel sets of these two approximations are union of n balls. Thus, it makes
the computation of topological invariants more tractable for small data sets, from alpha-shapes
for instance (see, e.g., [22]). Nonetheless, when n is large, there is still a need for an optimal set
of points allowing to efficiently compute an approximation of the DTM, as pointed out in [40].
Up to our knowledge, the only results on such a reduction are on the negative side, exposing a
lower bound on the number of points k(ε) that are needed to build an ε-approximation of the
empirical DTM [38].

The main contribution of this paper is the construction (Section 2.3), for a distribution P and
a mass parameter h, of a k-power distance dP,h,k of the form

dP,h,k(x) =
√

min
i∈[[1,k]] ‖x − τi‖2 + ω2

P,h(τi),

that we call k-power-distance-to-measure, k-PDTM for short. We will prove that this k-points
power distance is robust to noise (Proposition 17), and is a provably good approximation of the
distance-to-measure (Proposition 14). This will allow us to give bounds on ‖dP,h,k − dM‖∞
(Proposition 18) that can be used for further topological inference based on the sublevel sets of
dP,h,k . We then prove that its empirical counterpart dPn,h,k is an optimal approximation of dP,h,k

from an n-sample (Theorem 19 and Proposition 21). At last we provide a Lloyd’s type algorithm
[34] to compute in practice such a k-power distance based on n sample points (Section 3.3), and
numerically illustrate its good performance in a framework of topological inference (Section 4).

The paper is organized as follows. Section 2 introduces definitions, notations and base results
that are required for the construction of the k-PDTM. A proper definition of dP,h,k is given in
Section 2.3, along with some basic properties. Section 3 exposes the main theoretical results of
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the paper, that consist in guarantees for the k-PDTM in a topological inference framework (Sec-
tion 3.1), optimality of the sample approximation of the k-PDTM (Section 3.2), and an algorithm
to compute it (Section 3.3). Numerical illustrations are given in Section 4, and Sections 5 and
6 gather the derivations of the main results. Proof of technical intermediate results as well as
additional figures are deferred to the Appendix.

2. Notations, definitions and first results

2.1. Notations for the distance-to-measure

Throughout the paper, observations will be elements of the Euclidean space (Rd ,‖ · ‖). The
ball centered at c with radius r is denoted by B(c, r) = {x ∈ R

d | ‖x − c‖ < r} and its closure
by B(c, r). The sphere is denoted by S(c, r) = {x ∈ R

d | ‖x − c‖ = r}. As well, if A ⊂ R
d , A

denotes the closure of A, A◦ its interior, ∂A = A \ A◦ its boundary and Ac =R
d \ A its comple-

mentary set in R
d . For any positive integer k, [[1, k]] = {1,2, . . . , k}. For any set A, A(k) stands

for equivalence classes of {t = (t1, t2, . . . , tk) | ∀i ∈ [[1, k]], ti ∈ A}, where two elements are iden-
tified whenever they are equal up to a permutation of the coordinates. Following the quantization
terminology, elements of (Rd)(k) are called codebooks and their k elements codepoints. For any
distribution P and any integrable function f , the integral of f with respect to P is denoted by
Pf or

∫
f (u)P (du). We also denote supx |f (x)| by ‖f ‖∞. For a, b ∈ R the maximum and

minimum of a and b will be denoted by a ∨ b and a ∧ b.
We consider probability distributions P with support Supp(P ) ⊂ R

d . The family of these
distributions is denoted by P(Rd). The subset of distributions P in P(Rd) with finite moment of
order 2 (P‖ · ‖2 < ∞) is denoted by P(2)(R

d). The distribution whose support is to be inferred is
an element of PK(Rd) = {P ∈ P(Rd) | Supp(P ) ⊂ B(0,K)} for K > 0. To infer Supp(P ), we
use a modified version Q of P . This measure Q is assumed to be sub-Gaussian with variance
V 2 > 0. That is, Q is a distribution in P(Rd) such that

Q
(
B(0, t)c

) ≤ exp

(
− t2

2V 2

)

for all t > V . The set of such measures is denoted by P(V )(Rd). Given Xn = {X1,X2, . . . ,Xn}
an n-sample from P , we denote by Pn = 1

n

∑n
i=1 δXi

the corresponding empirical distribution.
For P ∈ P(2)(R

d) and h ∈ (0,1], we use the notation Ph(P ) for the set of distributions
Ph = 1

h
μ with μ a submeasure of P (i.e., such that μ(B) ≤ P(B) for every Borel set B ⊂ R

d )
satisfying μ(Rd) = h. The set of all of their expectations is defined by

M̃h(P ) = {
m(Ph) | Ph ∈Ph(P )

}
,

with the notation m(Ph) = ∫
uPh(du) for the mean of Ph, v(Ph) = ∫ ‖u − m(Ph)‖2Ph(du) for

its variance and M(Ph) = ‖m(Ph)‖2 + v(Ph) for its order 2 moment.
Some distributions in Ph(P ) will be of special interest. Denote by

δP,h(x) = inf
{
r > 0 | P (

B(x, r)
)
> h

}
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the smallest radius of a ball centered at x ∈ R
d of P -mass h. Then, local distributions are defined

as restrictions of P to these balls.

Definition 1. Let P ∈ P(Rd). The set of local distributions at a point x with mass parameter
h ∈ (0,1], denoted by Px,h(P ) is the set of distributions Px,h defined by Px,h = 1

h
μ, where μ

satisfies:

1. μ is a submeasure of P with P -mass h: 1
h
μ ∈Ph(P ).

2. μ coincides with P on B(x, δP,h(x)).
3. Supp(μ) ⊂ B(x, δP,h(x)).

Note that when P(∂B(x, δP,h(x))) = 0, the set of distributions Px,h(P ) is reduced to a single-
ton {Px,h} with Px,h(B) = 1

h
P (B ∩ B(x, δP,h(x))), for any Borel set B . Accordingly, we may

define a local mean as the expectation of a local distribution, m(Px,h) = ∫
uPx,h(du) associated

to some x ∈ R
d and h ∈ (0,1]. The set of local means of P with parameter h ∈ (0,1] is defined

by

Mh(P ) = {
m(Px,h) | x ∈R

d ,Px,h ∈Px,h(P )
}
.

Example 2 (Uniform distribution on a circle). Let P = US(0,1), the uniform distribution on
the unit sphere S(0,1) ⊂ R

2. Then, for every x �= 0, Px,h(P ) is the singleton {Px,h}, Px,h be-
ing the uniform distribution on the arc centered at x

‖x‖ subtending an angle 2πh. For x = 0,
P0,h(P ) coincides with Ph(P ). As a consequence, for x �= 0, m(Px,h) = sinc(hπ) x

‖x‖ and

v(Px,h) = 1 − sinc(hπ)2 where sinc : x → sin(x)
x

is the sinus cardinal function. For x = 0, the set
{m(P0,h) | P0,h ∈ P0,h(P )} coincides with the ball B(0, sinc(hπ)) and v(P0,h) ≥ 1 − sinc(hπ)2

with equality if and only if P0,h = Px,h for some x �= 0. Note that for such an example, M̃h(P )

coincides with the set of local means Mh(P ).

These notions of local distributions and local means are required to define the notion of
distance-to-measure.

2.2. Definition of the distance-to-measure (DTM)

In the framework of geometric inference, to face the non-robustness to noise of the function
distance to a compact set, the notion of distance-to-measure (DTM) has been introduced in [16].
The DTM dP,h is a function defined on R

d , associated with a probability distribution P and
depending on a mass parameter h ∈ [0,1]. Two equivalent definitions of the DTM in terms of
submeasures are given in [16], Proposition 3.3. For every x ∈ R

d , h ∈ (0,1] and Px,h ∈ Px,h(P ),

d2
P,h(x) = inf

Ph∈Ph(P )
Ph‖x − ·‖2 = Px,h‖x − ·‖2. (1)

Note that Px,h‖x − ·‖2 does not depend on the choice of Px,h ∈ Px,h(P ). Indeed, if P1, P2
are in Px,h(P ), then they coincide on B(x, δP,h(x)), and the function ‖x − ·‖2 is constant on
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∂B(x, δP,h(x)). Whenever h is small, the DTM provably approximates well the distance to the
support of P [16], Corollary 4.8 and Proposition 4.9, when P is a uniform distribution on a
submanifold for instance.

If a small h allows to approximate the distance to the support of P , larger values for h make
the DTM robust to small variations of the distribution P , in terms of the Wasserstein metric.
Indeed, according to [16], if P and Q are two probability distributions on the space (Rd,‖ · ‖)
with finite second moment, then

‖dP,h − dQ,h‖∞ ≤ 1√
h

W2(P,Q). (2)

Let us recall that the Wasserstein metric Wp is defined, for p ≥ 1, by

W
p
p (P,Q) = inf

π∈�(P,Q)
E(X,Y )∼π

[‖X − Y‖p
]
, (3)

where �(P,Q) denotes the set of distributions on R
d ×R

d of random vectors (X,Y ) such that
X ∼ P (i.e., X is a random variable with distribution P ) and Y ∼ Q.

According to (1) and the bias-variance decomposition Ph‖x − ·‖2 = ‖x − m(Ph)‖2 + v(Ph),
for Ph ∈ Ph(P ), the distance-to-measure can be expressed as a power distance in the following
Equation (4), that is as the square root of a function fτ,ω : x → infi∈I ‖x − τi‖2 + ωi

2 for some
set I , a family of centers τ = (τi)i∈I and weights ω = (ωi)i∈I . Namely, for every P ∈ P(2)(R

d)

and x ∈R
d , we have

d2
P,h(x) = inf

Ph∈Ph(P )

∥∥x − m(Ph)
∥∥2 + v(Ph), (4)

where the minimum is attained at any measure Ph = Px,h in Px,h(P ). In this case, the centers
m(Ph) are elements of M̃h(P ). Note that according to the second equality of Equation (1),
Ph(P ) can be replaced by

⋃
x∈Rd Px,h(P ) in (4), so that the centers are actually elements of

Mh(P ).
Special instances of power distances that will be of particular interest in the following are

k-power distances, indexed on a finite set of cardinality |I | = k. The following example gives
some intuition on why the distance-to-measure can be a convenient tool for geometric inference
in noisy settings, compared to classical quantization-based approaches.

Example 3 (Uniform distribution on a circle with noise). Let Qβ = βUS(0,1) + (1 −β)UB(0,1)

be a noisy version of P = US(0,1), the uniform distribution on the circle, for some β ∈ (0,1).
According to [16], Theorem 3.5, Corollary 4.8, since W2(Qβ,P ) ≤ √

1 − β , we have ‖dQβ,h −
dS(0,1)‖∞ ≤ Ch+

√
1−β

h
for some C > 0. Thus, for h > 81(1−β) and 1−β small enough, [16],

Theorem 4.6, ensures that the r-sublevel sets of dQβ,h are homotopy equivalent to S(0,1), for a
range of r’s.

Now let τ ∗ be a minimizer of the k-means criterion Qβ minj∈[[1,k]] ‖ · −τj‖2, in other words,
an optimal k-points codebook for Qβ . The following lemma shed some light on the approxima-
tion properties of the distance to τ ∗ function.
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Lemma 4. Consider the setup in Example 3. Let dτ∗ denote the distance to τ ∗ function. Then,
for k large enough,

sup
x∈S(0,1)

∣∣dτ∗(x) − dS(0,1)(x)
∣∣ ≤ C

(
1

k2
+ (1 − β)

) 1
3

,

for some constant C > 0. On the other hand, for every ρ > 0, there exists kρ,β such that, for all
k ≥ kρ,β , τ ∗ has at least one codepoint in B(0, ρ).

A direct consequence of Lemma 4 is

sup
k≥0

‖dS(0,1) − dτ∗‖∞ ≥ sup
k≥0

∣∣dS(0,1)(0) − dτ∗(0)
∣∣ = 1.

A proof of Lemma 4 is given in Section A.1 of the Appendix. The intuition behind Lemma 4
is that though optimal codebooks designed via classical quantization can yield provably good
covering of topological structures such as manifolds, they are also likely to have codepoints far
from the structure in some noisy cases. In this case, geometric inference based on the sublevel
sets of dτ∗ might lead to poor results.

2.3. Definition of the k-PDTM

As illustrated above, in Example 3, the distance-to-measure may be thought of as a robustified
version of the distance-to-compact-set, designed for geometric inference in noisy settings. Ac-
cording to (4), its sub-level sets are unions of balls centered at elements of M̃h(P ). As noted in
[29], in general, for empirical distributions based on n points {X1, . . . ,Xn}, this amount of balls
is finite but may be large (of order

(
n
nh

)
, where h is the mass parameter of the DTM). Approxi-

mations of the DTM consisting in reducing this number of balls to the sample size n are exposed
in [13,29]. In this paper, we propose to reduce this number of balls to some k ∈ N

∗ possibly
much smaller than the sample size, resulting in an approximation of the distance-to-measure
that we prove accurate enough for further topological inference. This section is devoted to the
introduction of such an approximation, namely the k-PDTM.

The k-PDTM is an approximation of the DTM obtained after reducing the set of submeasures
Ph(P ) (or equivalently, the set of centers M̃h(P )) to a set of k well-chosen submeasures (or
k centers) in the definition of the DTM (4). As an answer to [40], such a set of k centers may
be considered as a coreset for the DTM. These k submeasures are obtained by minimizing the
following criterion R.

Definition 5. For P ∈ P(2)(R
d) and P = (Pi)i∈[[1,k]] ∈ Ph(P )(k), we define R(P) by

R(P) = P min
i∈[[1,k]]

∥∥· − m(Pi)
∥∥2 + v(Pi).

The following Proposition 6 ensures that there exist optimal submeasures with respect to the
risk R.



3024 C. Brécheteau and C. Levrard

Proposition 6. If P ∈ P(2)(R
d), then the minimum of R is attained in Ph(P )(k). We denote by

P∗ any such minimizer.

The proof of Proposition 6 is to be found in Section 5.1. These optimal submeasures allow us
to define the k-PDTM as follows.

Definition 7. The k-PDTM is any function dP,h,k : Rd → R defined by

d2
P,h,k(x) = min

i∈[[1,k]]
∥∥x − m

(
P ∗

i

)∥∥2 + v
(
P ∗

i

)
,

for some P∗ = (P ∗
1 , . . . ,P ∗

k ) ∈ arg minP∈Ph(P )(k) R(P).

The k-PDTM is a k-power distance whose graph lies above the graph of the DTM. It is not
necessarily uniquely defined, since several minimizers of R may exist. Its sublevel sets are unions
of k balls. Besides, the k centers of the k-PDTM yield a decomposition of the space R

d into k

cells, and consequently, a decomposition of P into k weighted Voronoi measures.

Definition 8. A set of weighted Voronoi measures associated to a distribution P ∈ P(2)(R
d), k

submeasures (Pi)i∈[[1,k]] ∈Ph(P )(k) and h ∈ (0,1] is a collection {P̃1,h, P̃2,h, . . . P̃k,h} of k ∈N
∗

non-negative submeasures of P such that
∑k

i=1 P̃i,h = P and

∀x ∈ Supp(P̃i,h),
∥∥x − m(Pi)

∥∥2 + v(Pi) ≤ ∥∥x − m(Pj )
∥∥2 + v(Pj ), ∀j ∈ [[1, k]].

Note that a set of weighted Voronoi measures can always be assigned to any P ∈ P(2)(R
d)

and (Pi)i∈[[1,k]] ∈ Ph(P )(k). Indeed, Rd may be split into weighted Voronoi cells associated to
the centers (m(Pi))i∈[[1,k]] and weights (v(Pi))i∈[[1,k]] ([9], Section 4.4.2), with ties arbitrarily
broken. The following key property of weighted Voronoi measures implies that minimizers P∗
of the criterion R are actually elements of (

⋃
t∈Rd Pt,h(P ))(k).

Proposition 9. Let P ∈ P(2)(R
d), and (Pi)i∈[[1,k]] ∈ Ph(P )(k). Let Q1, . . . ,Qk be such that Qi ∈

P
m(P̃i,h),h

(P ), for i = 1, . . . , k. Then

R(Q1, . . . ,Qk) ≤ R(P1, . . . ,Pk),

with equality only if, for all i ∈ [[1, k]] such that P̃i,h(R
d) �= 0, we have Pi ∈P

m(P̃i,h),h
(P ).

The proof of Proposition 9 is deferred to Section 5.2. Now assume that, for any t ∈ R
d , a

choice of Pt,h ∈ Pt,h is given by f (t). For t ∈ (Rd)k , set f (t) = (f (t1), . . . , f (tk)). We may
then define a risk Rf (t) via the quantity

Rf (t) = R
(
f (t)

)
. (5)

Proposition 9 shows that minimizing R over the set of k submeasures boils down to minimize
t → Rf (t) over (Rd)(k). It also provides a natural and tractable procedure for computing local



A robust k-points-based distance 3025

optima of the criterion Rf , cf. Algorithm 1 in Section 3.3. An alternative definition of the k-
PDTM in terms of local distributions may be stated accordingly.

Corollary 10. Let t ∈ (Rd)(k). The k-PDTM is any function dP,h,k : Rd → R defined by

d2
P,h,k(x) = min

i∈[[1,k]]
∥∥x − m

(
f

(
t∗i

))∥∥2 + v
(
f

(
t∗i

))
,

for some t∗ = (t∗1 , . . . , t∗k ) ∈ arg mint∈(Rd )(k) Rf (t).

A proof of Corollary 10 is given in Section 5.3. An interesting consequence of Corollary 10
is that whatever the choice of f (choice of Pt,h ∈ Pt,h), minimizers t∗ of Rf always provide
minimizers of R via f (t∗). Thus, in what follows, we assume that such a f is given, denote
by Pt,h the corresponding choice f (t), and, with a slight abuse of notation, denote by R(t) the
corresponding risk Rf (t).

The above definition of the k-PDTM in terms of local means and variances is very convenient
for the purpose of its computation, but the more general definition of the k-PDTM in terms
of submeasures (Definition 7) is also crucial. Indeed, from Definition 7 we may also state an
alternative parametrization of the k-PDTM by elements τ = m(Ph) of M̃h(P ) that will allow for
a geometric interpretation of the k-PDTM. The corresponding variances v(Ph) will be obtained
as images ωP,h(τ ) of the function ωP,h defined for every τ in R

d by

ω2
P,h(τ ) = sup

x∈Rd

d2
P,h(x) − ‖x − τ‖2.

Lemma 11. If P ∈ P(2)(R
d), then ωP,h(τ ) < +∞ if and only if τ ∈ M̃h(P ). Moreover, if

τ ∈ M̃h(P ), then there exists Ph ∈ Ph(P ) such that τ = m(Ph) and ω2
P,h(τ ) = v(Ph). More

precisely, ω2
P,h(τ ) = minPh∈Ph(P ),m(Ph)=τ v(Ph).

The proof of Lemma 11 is deferred to Section 5.4. The natural reparametrization of the crite-
rion R with the set of centers follows.

Theorem 12. Let P ∈ P(2)(R
d). Then t∗ ∈ arg mint∈(Rd )(k) R(t) if and only if

(
m(Pt∗1 ,h), . . . ,m(Pt∗k ,h)

) ∈ arg min
τ∈(Rd )(k)

P min
i∈[[1,k]] ‖ · −τi‖2 + ω2

P,h(τi).

The proof of Theorem 12 is to be found in Section 5.5. Theorem 12 states that the k-PDTM
is a solution of a weighted k-means-type criterion. According to Lemma 11, the regularization
terms ωP,h(τi) force the optimal codebooks τ ∗ to be in M̃h(P )(k). Intuitively, elements τ such
that ωP,h(τ ) is small will be favoured. Such τ ’s gather a proportion h of the mass of P on their
neighborhood. On the contrary, for elements τ such that ωP,h(τ ) is large, the corresponding
weighted Voronoi measures will not be massive, and the ball associated to such τ ’s will appear
in the r-sublevel set of the function x → ‖x − τ‖2 + ω2

P,h(τ ) for large r’s only. A direct con-
sequence of Theorem 12 is that the squared k-PDTM may be interpreted as the closest squared
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k-power distance to the squared DTM from above, in terms of L1(P ) norm. This interpretation
comes from the straightforward inequality ‖x − τ‖2 +ω2

P,h(τ ) ≥ d2
P,h(x). The resulting inequal-

ity d2
P,h,k ≥ d2

P,h allows for further comparison with k-means approximation of the distance-to-
compact-set in noisy settings.

Example 13 (Noisy distribution on the circle). For the distribution Qβ = βUS(0,1) + (1 −
β)UB(0,1). If h > 1 − β , since d2

Qβ,h,k(0) ≥ d2
Qβ,h(0), we have d2

Qβ,h,k(0) ≥ 1 − 1−β
h

. As a con-

sequence, infk≥0 d2
Qβ,h,k(0) ≥ 1 − 1−β

h
, whereas infk≥0 d2

τ∗(0) = 0, where τ ∗ denotes an optimal
k-points codebook.

The above example shows that we can expect the k-PDTM to approximate well the distance-to-
compact-set in remote areas, contrary to the distance based on k-means, dτ∗ . To check whether
the k-PDTM provides also an efficient covering of the targeted structure is investigated in the
following section.

3. Theoretical results for the k-PDTM

3.1. Geometric inference with the k-PDTM

Let M be a compact subset of Rd , and P a distribution with support M . Here we show that the
k-PDTM approximates the DTM, provided that the covering number of M with respect to the
Euclidean norm and the continuity modulus ζP,h of the map x → m(Px,h) are not too large.

For a subset F of a Banach space B endowed with the norm ‖ · ‖B , the ε-covering number
of F , N ′‖·‖B (ε,F) is defined as the minimum number of balls with radius ε that are needed
to cover F . In what follows, we adopt the shortcut fM(ε) to denote N ′‖·‖(ε,M), that is the ε-

covering number of M considered as a subset of Rd endowed with the Euclidean norm ‖ · ‖. For
every ε > 0, the continuity modulus ζP,h(ε) is defined by

ζP,h(ε) = sup
x,y∈M,‖x−y‖≤ε

sup
Px,h∈Px,h(P ),Py,h∈Py,h(P )

{∣∣m(Px,h) − m(Py,h)
∣∣}.

In what follows, Cl1,...,ls and cl1,...,ls denote quantities depending on l1, . . . , ls only.

Proposition 14. Let K > 0, P ∈ PK(Rd) (a distribution whose support is included in B(0,K)),
and let M ⊂ B(0,K) be such that P(M) = 1. Let fM(ε) denote the ε-covering number of M .
Then we have

0 ≤ P
(
d2
P,h,k − d2

P,h

) ≤ 2f −1
M (k)ζP,h

(
f −1

M (k)
)
, with f −1

M (k) = inf
{
ε > 0 | fM(ε) ≤ k

}
.

A proof of Proposition 14 is given in Section 6.2. Whenever P is roughly uniform on its
support, the quantities f −1

M (k) and ζP,h mostly depend on the dimension and radius of M . We
illustrate this point with two instances of particular interest for geometric inference. First, the
case where the distribution P has an ambient-dimensional support is investigated.



A robust k-points-based distance 3027

Corollary 15. Assume that P has a density f satisfying 0 < fmin ≤ f ≤ fmax on its support.
Then

0 ≤ P
(
d2
P,h,k − d2

P,h

) ≤ Cfmax,K,d,hk
−2/d .

The proof of Corollary 15 is given in Section 6.3. Note that no assumptions on the geomet-
ric regularity of M are required for Corollary 15 to hold. In the case where M has a lower-
dimensional structure, more regularity is required, as for instance, in the following corollary.

Corollary 16. Suppose that P is supported on N ⊂ B(0,K), a compact d ′-dimensional C2-
submanifold. Assume that P has a density 0 < fmin ≤ f ≤ fmax with respect to the volume
measure on N . Moreover, suppose that P satisfies, for all x ∈ N and positive r ,

P
(
B(x, r)

) ≥ cfminr
d ′ ∧ 1. (6)

Then, for k ≥ cN,fmin and h ≤ CN,fmin , we have

0 ≤ P
(
d2
P,h,k − d2

P,h

) ≤ CN,fmin,fmaxk
−2/d ′

.

Note that (6), also known as (cfmin, d
′)-standard assumption, is a usual assumption in the

set estimation framework (see, e.g., [17]). In the submanifold case, it may be thought of as a
condition preventing the boundary from being arbitrarily narrow. This assumption is satisfied for
instance in the case where ∂N is empty or is a C2 (d ′ − 1)-dimensional submanifold (see, e.g.,
[3], Corollary 1). An important feature of Corollary 16 is that this approximation bound does not
depend on the ambient dimension. The proof of Corollary 16 may be found in Section 6.4. Next
we assess that our k-PDTM shares with the DTM the key property of robustness to noise.

Proposition 17. Let P ∈ PK(Rd) for some K > 0 and Q ∈ P(2)(R
d). Let d2

Q,h,k denote a k-
PDTM for Q. Then,

P
(
d2
Q,h,k − d2

P,h,k

) ≤ 4W1(P,Q) sup
s∈Rd

∥∥m(Ps,h)
∥∥ + ∥∥d2

Q,h − d2
P,h

∥∥∞,B(0,K)
.

Further, we have P |d2
Q,h,k − d2

P,h| ≤ BP,Q,h,k , where

BP,Q,h,k = 3
∥∥d2

Q,h − d2
P,h

∥∥∞,B(0,K)
+ P

(
d2
P,h,k − d2

P,h

) + 4W1(P,Q) sup
s∈Rd

∥∥m(Ps,h)
∥∥.

The proof of Proposition 17 can be found in Section 6.5. Note that Lemma 23 provides a
bound on ‖m(Ps,h)‖ whenever P is sub-Gaussian. Moreover, [16], Theorem 3.5, ensures that
‖d2

Q,h − d2
P,h‖∞,B(0,K) can be bounded in terms of W2(P,Q), up to a constant dependent on K .

Combining these results can assess the stability of the k-PDTM, via a bound on P(d2
Q,h,k −

d2
P,h,k). Note at last that bounds on P(d2

P,h,k − d2
P,h) may be derived using Proposition 14,

leading to the global bound BP,Q,h,k .
It is worth mentioning that bounds on P |d2

Q,h,k − d2
P,h| involving Q(d2

Q,h,k − d2
Q,h) may be

stated as well. However, if the support of Q is not compact, then Proposition 14 cannot be used.
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Also, if the support of Q is compact but has a dimension larger than the support of P (in the case
of bounded additive noise for instance), Corollary 16 illustrates that Q(d2

Q,h,k − d2
Q,h) is likely

to decrease slower than P(d2
P,h,k − d2

P,h) with respect to k. Therefore, whenever Q is thought of

as a perturbation of P , bounds on P |d2
Q,h,k − d2

P,h| in terms of P(d2
P,h,k − d2

P,h) lead to better
dependencies in k.

Proposition 17 can provide guarantees on P d2
Q,h,k . In turn, provided that M is regular enough,

these bounds can be turned into L∞ bounds between dQ,h,k and dM . Following [16], Section 4,
these L∞ bounds can guarantee that the sublevels sets of the k-PDTM are homotopy equivalent
to M , under suitable assumptions.

Proposition 18. Let M be a compact set in B(0,K) such that P(M) = 1. Moreover, assume that
there exists d ′ such that, for every p ∈ M and r ≥ 0,

P
(
B(p, r)

) ≥ C(P )rd ′ ∧ 1. (7)

Let Q be a Borel probability measure (thought of as a perturbation of P ), and let 2
P denote

P d2
Q,h,k . Then, we have

‖dQ,h,k − dM‖∞ ≤ max
{
C(P )

− 1
d′+2 

2
d′+2
P ,2P ,W2(P,Q)h− 1

2
}
,

where W2 denotes the Wasserstein distance.

The proof of Proposition 18 can be found in Section 6.6. According to [16], Corollary 4.8, if
P satisfies (7), then

‖dQ,h − dM‖∞ ≤
(

h

C(P )

) 1
d′

+ W2(P,Q)h− 1
2 .

Hence, Proposition 18 ensures that the k-PDTM achieves roughly the same performance as the
distance-to-measure provided that d2

Q,h,k is small enough on the support M to be inferred. As
will be shown in the following section, this will be the case if Q is an empirical measure drawn
close to the targeted support.

3.2. Approximation of the k-PDTM from point clouds

In this section, P ∈ PK(Rd) is a distribution supported on a compact set M to be inferred. We
have at our disposal an n-sample Xn = {X1,X2, . . . ,Xn} from a modification Q ∈ P(2)(R

d)

of P . An approximation of the k-PDTM dQ,h,k , is given by the empirical k-PDTM dQn,h,k ,
where Qn = ∑n

i=1
1
n
δXi

is the empirical measure from Xn.
An approximation of the distance to empirical measure, dQn,h, is given by the so-called q-

witnessed distance, introduced in [29]. Namely, if Qn,i ∈ PXi,
q
n
(Qn), i = 1, . . . , n, are n dis-

tributions that are uniform on sets of q-nearest neighbors of the points in Xn, the (squared)
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q-witnessed distance is defined as follows:

(
dW
Qn,q

)2 : x → min
i∈[[1,n]]Qn,i‖x − ·‖2.

Note that when k = n, any q-witnessed distance dW
Qn,q , for q = nh, is an empirical k-PDTM

dQn,h,n. Indeed, the criterion of Definition 5 is minimal for any such family of n distributions
(Qn,i)i∈[[1,n]]. For any point x whose set of q nearest neighbors in Xn is not a set of q-nearest
neighbors of elements in Xn, the q-witnessed distance may differ from the distance to the em-
pirical measure. Our empirical k-PDTM may be thought of as a slight generalization of the
q-witnessed distance. This is a k-power distance, for an arbitrary k.

We investigate the quality of approximation of the DTM dP,h with the empirical k-PDTM
dQn,h,k , when Q is defined as the convolution of P with a sub-Gaussian distribution with variance
σ 2. Within this context, according to Lemma 24, Q is sub-Gaussian with variance V 2 = (K +
σ)2.

Theorem 19. Let P be supported on M ⊂ B(0,K). Assume that we observe X1, . . . ,Xn such
that Xi = Yi + Zi , where the Yi ’s and Zi ’s are all independent, Yi is sampled from P and Zi is
sub-Gaussian with variance σ 2, with σ ≤ K . Let Qn denote the empirical distribution associated
with the Xi ’s. Then, for any p > 0, with probability larger than 1 − 10n−p , we have

∣∣P (
d2
Qn,h,k − d2

Q,h,k

)∣∣ ≤ C
√

k log(k)d
K2((p + 1) log(n))

3
2

h
√

n
+ C

Kσ√
h

.

A proof of Theorem 19 is given in Section 6.7. The
√

kd/
√

n term is in line with the rate
of convergence for the k-means method (see, e.g., [8]), as well as with the rate of convergence
for ‖dPn,h − dP,h‖∞ exposed in [18]. The Kσ term is due to the expectation with respect to P

(instead of Q). Theorem 19, combined with Proposition 17, allows us to choose k in order to
minimize |P(d2

Qn,h,k − d2
P,h)|. Indeed, in the framework of Corollaries 15 and 16 where the sup-

port has intrinsic dimension d ′, such a minimization boils down to optimizing a quantity of the

form
C
√

k log(k)dK2((p+1) log(n))
3
2

h
√

n
+ CP,hk

− 2
d′ . Choosing k ∼ n

d′
d′+4 achieves the desired tradeoff

between bias and variance. From the point of view of geometric inference, this leads to comput-
ing the distance to nd ′/(d ′+4) points rather than n, which might save some time. Note that when
d ′ is large, smaller choices of k, though suboptimal for our bounds, would nonetheless give the
right topology for large n. In some sense, Theorem 19 advocates only an upper bound on k, above
which no increase of precision can be expected. Combining Theorem 19 and Proposition 14 leads
to the following result.

Proposition 20. With the same setting as Theorem 19, if M is a submanifold with intrinsic
dimension d ′ ≥ 1, then:

∣∣P (
d2
Qn,h,k − d2

P,h

)∣∣ ≤ C
√

k log(k)d
K2((p + 1) log(n))

3
2

h
√

n
+ C

Kσ√
h

+ CP,hk
− 2

d′ .
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Thus, choosing k ∼ n
d′

d′+4 leads to

∣∣P (
d2
Qn,h,k − d2

P,h

)∣∣ ≤ CP,h

√
dn

− 2
d′+4

K2((p + 1) log(n))
3
2

h
+ C

Kσ√
h

.

The proof of Proposition 20 is to be found in Section 6.8. Noting that P d2
P,h ≤ CP h

1
d′ in this

case (see, e.g., [16], Proposition 4.9), Proposition 20 can be combined with Proposition 18 to
yield a bound on ‖dQn,h,k − dM‖∞.

To assess optimality of Theorem 19 in terms of sample size dependency, a lower bound on the
best k-points approximation of the DTM that is achievable on the set of distributions supported
in B(0,K) may be derived from [7], Theorem 1, or [33], Proposition 3.1.

Proposition 21. For t ∈ (Rd)(k) and P a probability measure, denote

d2
P,h,t : x → min

j∈[[1,k]]
[∥∥x − m(Ptj ,h)

∥∥2 + v(Ptj ,h)
]
,

where, for j = 1, . . . , k, Ptj ,h ∈ Ptj ,h. For k ≥ 3, n ≥ 3k
2 and h ≤ 1

2k
, we have

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP
(
d2
P,h,t̂

− d2
P,h,k

) ≥ c0
K2k

1
2 − 2

d√
n

, (8)

where c0 is a constant and t̂ denotes an empirically designed vector (t̂1, . . . , t̂k) in (Rd)(k). More-
over, if n ≥ 14k, then

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP
(
d2
Pn,h,t̂

− d2
P,h,k

) ≥ c0
K2k

1
2 − 2

d√
n

− 32K2ke
− n

72k2 . (9)

Thus, Proposition 21 confirms that the sample size dependency of Theorem 19 is optimal in
the noise-free case, up to log(n) factors. A proof is given in Section 6.9.

3.3. Algorithm

In this section, we expose a Lloyd-type algorithm to compute a local minimizer for the cost
function associated with the empirical k-PDTM. For an n-sample Xn with empirical distri-
bution Qn, Proposition 9 suggests a procedure to minimize the empirical risk t → Rn(t) =
Qn mini∈[[1,k]] ‖ · −m(Qnti ,h)‖2 + v(Qnti ,h). Indeed, given some codebook t, replacing t with
the means of the weighted Voronoi measures (Q̃nti ,h)i∈[[1,k]] can only decrease the empirical risk
Rn. For a sample Xn, this boils down to compute the weighted Voronoi cells (C(ti ))i∈[[1,k]] (i.e.
the support of the measures (Q̃nti ,h)i∈[[1,k]]), and to replace ti with the mean of the points of Xn

in C(ti). We use the notation |C(t)| for the cardinality number of C(t), m(t) for m(Qnt,h) and
v(t) for v(Qnt,h). The procedure is described in Algorithm 1.
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Algorithm 1: Local minimum algorithm

Input :Xn an n-sample from Q, h and k ;
# Initialization
Sample t1, t2, . . . , tk from Xn without replacement ;
whi le Rn(t) d e c r e a s e s make t h e f o l l o w i n g two s t e p s :
# Decomposition into weighted Voronoi cells.
f o r j in 1 . . n :

Add Xj to the C(ti) (for i as small as possible) satisfying
‖Xj − m(ti)‖2 + v(ti) ≤ ‖Xj − m(tl)‖2 + v(tl) ∀l �= i ;

# Computation of the new centers.
f o r i in 1 . . k :

ti = 1
|C(ti )|

∑
X∈C(ti )

X ;
Output : (t1, t2, . . . , tk)

Proposition 22. Algorithm 1 converges to a local minimum of

Rn : t → Qn min
i∈[[1,k]]

∥∥· − m(Qnti ,h)
∥∥2 + v(Qnti ,h).

This result is a direct consequence of Proposition 9. Therefore, Algorithm 1 provides an ap-
proximation of the k-PDTM. Since the algorithm does not converge to the optimal centers, we
suggest running the algorithm several times and storing the best solution in terms of the empirical
cost Rn, as for k-means.

As mentioned above, Algorithm 1 may be thought of as a special instance of Lloyd’s algo-
rithm [34]. This algorithm consists in repeatedly decomposing the space R

d into cells associated
to the ti ’s, and then replacing the ti ’s by the means of P restricted to the cells. This kind of
algorithm provably outputs local minimizers of risks of the form Rd : τ → P mini∈[[1,k]] d(·, τi),
for any Bregman divergence d (see, e.g., [6]). We recall that a Bregman divergence is defined by
d(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉, for some convex function φ. Actually, Lloyd’s algo-
rithm only works for Bregman divergences [5], since they are the only functionals d such that
c → P d(·, c) attains its minimum at c = P ·, the expectation of P . This suggests that our criterion
R may be expressed in terms of some Bregman divergence.

For P ∈P(2)(R
d), according to [16], Proposition 3.6, the function ψP,h : x → ‖x‖2 − d2

P,h(x)

is convex, and its set of subgradients at x is given by x,h = {2m(Px,h) | Px,h ∈ Px,h(P )}. A
simple computation based on (1) shows that the Bregman divergence associated with ψP,h is
defined for every x, t ∈ R

d by

dψP,h
(x, t) = ∥∥x − m(Pt,h)

∥∥2 + v(Pt,h) − d2
P,h(x). (10)

Since d2
P,h(x) does not depend on t , our criterion R has the same minimizers as Rd for the

Bregman divergence d = dψP,h
. Thus, Proposition 9 is a consequence of the fact that ψP,h is a

Bregman divergence.
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4. Numerical illustrations

4.1. Topological inference from noisy pointclouds

Let M be a compact subset of Rd . Geometric and topological information about M can be recov-
ered from some r-sublevel sets of the function distance to M , dM (see, e.g., [16], Proposition 4.3).
To tackle the tough question of the selection of r , or simply to track multiscale information, the
concept of persistent homology has been introduced in [23]. It consists in describing the evo-
lution of the homology (number of connected components, holes, etc.) of the sublevel sets of
dM . Persistent homology can be encoded via persistence diagrams. A persistence diagram is a
multiset of points (b, d). Each point (b, d) is associated to one topological feature (a connected
component, a hole, a void, etc.) that appears when r = b (its birth time) and disappears when
r = d (its death time). As well, if ‖d̂ − dM‖∞ is small enough, then the persistence diagrams
associated with d̂ and dM will be provably close [19], that is the set of pairs (b, d) build from
the sublevel sets of dM and d̂ will be roughly similar. In particular, the lifetimes d − b of the
topological features will be close. To assess the relevancy of our approach in a noisy topolog-
ical inference setting, we will compute the persistence diagrams associated with the empirical
k-PDTM and its trimmed and truncated versions, and compare them with the outputs of other
methods.

Following [29], we choose for M the infinity symbol embedded in R
2. The persistence di-

agram associated to dM is depicted in Figure 3. This diagram contains one red point (0,∞),
that corresponds to the connected component (0-dimensional topological feature), and two green
points that correspond to the two holes (1-dimensional topological features).

We generated a sample of 200 points, uniformly on the infinity symbol, with an additional ad-
ditive Gaussian noise, with standard deviation σ = 0.02. This sample is corrupted by 80 outliers
– 40 points generated according to the uniform distribution on the rectangle [−2,5] × [−2,2]
and 40 points on the rectangle [−4,7] × [−4,4]. This results in a corrupted sample Xn of 280
points. The persistence diagram associated with the sublevel sets of the empirical DTM function
is represented in Figure 1 (left). Approximations of the persistence diagrams of the DTM for the
uniform distribution P on M and the sampling distribution Q, from samples of size 5000 are
also represented in Figure 1. The diagrams are computed with the function gridDiag of the R
package TDA [25].

Figure 1. Persistence diagrams for the DTM and empirical DTM functions.
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We compare several methods to recover relevant features of M from Xn. Each method
boils down to building an approximation f of dM . These functions are of the type f : x →√

mini∈I ‖x − τi‖2 + ω2
i , for some finite set I , centers τi ∈ R

d and weights ωi ≥ 0. The first
function we consider is derived from the k-means algorithm [37] (|I | = k, centers τi are given
by the optima of the k-means criterion and ωi = 0), the second is the q-witnessed distance [29]
(|I | = n = 280, it coincides with the k-PDTM for k = n, with mass parameter h = q/n), the
third one is the k-PDTM (|I | = k, with mass parameter h = q/n). We also compare with the
power distance [13], that chooses |I | = n = 280, τi as the i-th point of the sample Xn, and ω2

i

as the squared DTM at τi to the empirical distribution on Xn, with mass parameter h = q/n.
At last, we include in our comparative study the distance function to the decluttered sample X̃,
that is {τi}i∈I = X̃, ωi = 0. This decluttered sample X̃ is issued from the denoising procedure
exposed in [14], with parameters 5.4 and 7.95, so that on average 200 points are considered as
signal points by the procedure (i.e., |I | ≈ 200 on average).

Most of these methods depend on two parameters q and k. Providing a method to calibrate q

and k in general is beyond the scope of the paper. Here, we choose q = 10 and k = 50. Roughly, q
is chosen small enough so that the distance to the q-th nearest neighbor remains small compared
to the curvature of M but large enough to deal with noise, and k is chosen large enough so that a
uniform grid with k points has grid size small compared to the curvature of M . More details on
this heuristic can be found in the Appendix.

We implemented these methods with the R software. To be more specific, we used the
function kmeans, the FNN library to compute nearest neighbors and the function dtm from
the TDA package to compute the DTM. In Figure 2, we plotted the points of Xn. Points
are represented with the same color when they lie in the same weighted Voronoi cell (for
the centers τi and weights ω2

i ). Centers τi are represented by triangles and colored in func-
tion of the weights ω2

i (black centers correspond to ω2
i = 0). The second row of Fig-

Figure 2. Comparison of the basic methods.
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ure 2 depicts the corresponding persistence diagrams. They were obtained using the function
weighted_alpha_complex_3d_persistence in the Gudhi C++ library, based on
alpha-shapes [22]. We observe on Figure 2 that the three main features of the symbol infinity
(one connected component, two holes) are recovered for the k-PDTM and the q-witnessed dis-
tance, but not for k-means. As exposed in Lemma 4, this is due to the “void-filling” drawback
of k-means. The persistence diagrams built from the power distance [13] and the distance to
decluttered sample [14] are also quite similar to the k-PDTM and q-witnessed ones, succeeding
in recovering the topological features of the infinity symbol. The corresponding illustrations can
be found in Section D.1 of the Appendix.

4.2. Outliers detection

Another possible interest of the proposed method is outlier detection, based on the following
principle: if an observation Xi is such that dM(Xi) is large, then it can be considered as an
outlier. Our denoising scheme consists in replacing dM with an approximation d̂, then to remove
points Xi such that d̂(Xi) is large.

Such a procedure needs as an input a level α, that is the proportion of points that will be
considered as signal points. Note that there exist heuristics to empirically design such an α (see,
e.g., [11]). A level α being given, a straightforward approach consists in removing the n(1 − α)

points that corresponds to the largest values of d̂, for an estimate d̂ of dM . In the following, we
refer to this method as truncation, resulting in truncated k-means, truncated power distance,
truncated q-witnessed distance and truncated k-PDTM.

However, it is possible to combine compression and denoising, by looking simultaneously
for a subset of nα points (trimming set) and a set of k points that approximates the best the
trimming set. For a non-negative function d, this corresponds to the minimization of the crite-
rion τ → infPα∈Pα(P ) Pα mini∈[[1,k]] d(·, τi). Whenever d is a Bregman divergence, minimizers of
such a criterion may be obtained via a Lloyd-type algorithm (see, e.g., [11]). Fortunately, since
the k-means distance and the k-PDTM may be expressed via Bregman divergences, namely the
squared Euclidean norm and (10), the procedure exposed in [11] applies. The outputs of the
aforementioned procedure will be called trimmed k-means [20] and trimmed k-PDTM.

We experiment each of these methods for the dataset of the previous section (200 signal points
around the infinity symbol, 80 ambient noise points). We choose α = 200, q = 10 and k = 50.
Figure 3 depicts, for the trimmed versions of the algorithms, the resulting partition signal/outliers
along with the k centers and weights (shade of triangles) in the first row. The second row exposes
the corresponding persistence diagrams. Similar illustrations for the truncated algorithms may
be found in the Appendix.

The trimmed k-PDTM globally succeeds in identifying noise points and providing a relevant
geometric approximation of the signal. To be more precise on the topological performances of
the aforementioned methods, we repeated the experiment 100 times. At each time, we computed
the lifetimes of the topological features and sorted them in decreasing order. Figure 4 below
exposes the means of these lifetimes.

Methods based on the k-PDTM, the q-witnessed and the power distance, as well as the de-
cluttering method of [14] are close to the ground truth. This is not the case for k-means-based
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Figure 3. Comparison of the trimmed versions of the methods.

methods that add spurious holes (corresponding to the three last 1-dimensional features), and add
many spurious connected components. In this case, spurious connected components are caused
by centers located far from the support, whereas spurious holes are caused by centers located
inside loops, breaking large loops into smaller loops. This phenomenon does not occur for k-
PDTM-based methods since potentially damaging centers have a large weight. Consequently,
such centers are either removed by truncation or appear lately in the sublevel set of the function.
Thus, their impact on lifetimes of relevant features is weak. The first 0-dimensional feature, cor-
responding to the infinite connected component, has been removed in Figure 4. On the whole,
our method compares well with the q-witnessed and the power-distance-based methods.

Figure 4. Features lifetimes.
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Figure 5. False positive number.

The diagram on Figure 5 depicts the mean amount of False positive over the 100 repetitions,
that is the number of signal points that are labeled as outliers by the different algorithms. We
also include comparison with other trimming approaches for outlier detection, such as tclust
[27] (tclust function in trimcluster R library) and the truncated version of k-median
[15] (kGmedian function of the Gmedian R library). Again, our method compares well with
q-witnessed and power-distance-based denoising, contrary to the other methods.

5. Proofs for Section 2

5.1. Proof of Proposition 6

It suffices to prove that Ph(P ) is a compact set (for the weak convergence metric) and that R is
continuous (i.e., that Ph → m(Ph) and Ph → M(Ph) are continuous on Ph(P )).

The set hPh(P ) is tight. Prokhorov’s theorem entails that, for any sequence (μn/h)n∈N in
Ph(P ), up to a subsequence, there exists μ a Borel positive measure on R

d such that μn con-
verges weakly to μ. The dominated convergence lemma applied to the functions 1Rd and 1O ,
for an open set O , ensures that μ(Rd) = h and μ(O) ≤ P(O), proving that μ ∈ hPh(P ). Then,
[4], page 438, yields that μ and P are regular measures. Thus, μ is a submeasure of P of mass
h, and Ph(P ) is compact.

We will now prove that the maps Ph → m(Ph) and Ph → M(Ph) are continuous on Ph(P ).
For M > 0 and u ∈R

d , denote by u∧M the vector (u1 ∧M, . . . , ud ∧M), where ui ∧M denotes
min(ui,M). Consider (Ph,n)n∈N a sequence in Ph(P ) converging to some distribution Ph. Then
there exists Mε > 0 such that for every P ′

h ∈ Ph(P ),

∥∥P ′
h(· ∧ Mε) − P ′

h·
∥∥ ≤ P(‖ · ‖1‖·‖∞>Mε)

h
≤ ε.

On the other hand, since · → · ∧ Mε is bounded and continuous, ‖Ph,n(· ∧ Mε) − Ph(· ∧ Mε)‖
converges to 0. This proves the continuity of Ph → m(Ph). We also have that Ph,n‖ · ‖2 ∧ M →
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Ph‖ · ‖2 ∧ M . Since for every P ′
h ∈Ph(P ),

∣∣P ′
h

(‖ · ‖2 ∧ M − ‖ · ‖2)∣∣ ≤ P‖ · ‖21‖·‖2>M

h

and P has a finite second order moment, we deduce as well that M(Ph,n) → M(Ph).

5.2. Proof of Proposition 9

For short, we use the notation mi = m(P̃i,h), vi = v(P̃i,h) and Q(du)f (u) for the expectation of
f with respect to the Borel measure Q. Then, a bias-variance decomposition yields

R(P1, . . . ,Pk) = P(du) min
i∈[[1,k]]Pi(dz)‖u − z‖2 =

k∑
i=1

P̃i,h(du)Pi(dz)‖u − z‖2

=
k∑

i=1

P̃i,h

(
R

d
)
Pi(dz)

(‖z − mi‖2 + vi

) ≥
k∑

i=1

P̃i,h

(
R

d
)
Qi(dz)

(‖z − mi‖2 + vi

)

=
k∑

i=1

P̃i,h(du)Qi(dz)‖z − u‖2,

where Qi ∈ Pmi,h(P ), and equality holds if and only if Pi ∈ Pmi,h(P ) or P̃i,h(R
d) = 0. Thus,

denoting by (P̃mi,h)i∈[[1,k]] the set of weighted Voronoi measures associated to the measures
(Qi)i∈[[1,k]], we have

R(P1, . . . ,Pk) ≥
k∑

i=1

P̃mi,h(du)Qi(dz)‖z − u‖2 = R(Q1, . . . ,Qk).

5.3. Proof of Corollary 10

Let (P ∗
1 , . . . ,P ∗

k ) be a minimizer of R, and P̃1,h, . . . , P̃k,h be the associated weighted Voronoi
measures provided by Definition 8. Then, according to Proposition 9, f (m(P̃1,h), . . . ,m(P̃k,h))

is also an R-minimizer.

5.4. Proof of Lemma 11

Let g(x,Ph) = M(Ph) − ‖τ‖2 + 2〈x, τ − m(Ph)〉. Then (4) entails that

ω2
P,h(τ ) = sup

x∈Rd

inf
Ph∈Ph(P )

g(x,Ph).



3038 C. Brécheteau and C. Levrard

According to Section 5.1, Ph(P ) is a compact set, and Ph → m(Ph) as well as Ph → M(Ph) are
continuous. Note also that Ph → m(Ph) and Ph → M(Ph) are linear functions on the space of
positive measures. So, for every x ∈ R

d , g(x, ·) is continuous and linear. On the other hand, for
every Ph in Ph(P ), g(·,Ph) is linear and continuous. Sion’s theorem [32] yields that

ω2
P,h(τ ) = min

Ph∈Ph(P )
sup
x∈Rd

M(Ph) − ‖τ‖2 + 2
〈
x, τ − m(Ph)

〉
. (11)

Therefore, ω2
P,h(τ ) < ∞ is equivalent to τ ∈ M̃h(P ). Now let τ be in M̃h(P ). According to

(11), we have

ω2
P,h(τ ) = inf

Ph∈Ph(P ),m(Ph)=τ
M(Ph) − ‖τ‖2 = inf

Ph∈Ph(P ),m(Ph)=τ
v(Ph).

Since Ph → v(Ph) is continuous on Ph(P ) and Ph(P ) ∩ m−1({τ }) is compact, there exists Ph

such that m(Ph) = τ and ω2
P,h(τ ) = v(Ph).

5.5. Proof of Theorem 12

Let R̃ denote τ → P minj∈[[1,k]] ‖ · −τj‖2 + ω2
P,h(τj ), for τ ∈ (Rd)(k). Lemma 11 ensures that

minPh(P )k R(P1, . . . ,Pk) = min(Rd )(k) R̃(τ ).

Assume that t is such that (m(Pt1,h), . . . ,m(Ptk,h)) ∈ arg minτ R̃(τ ), and, for short, denote by
ω2

i = ω2
P,h(m(Pti ,h)). For a fixed i, if ω2

i < v(Pti ,h), then Lemma 11 provides P ′
i ∈ Ph(P ) such

that m(P ′
i ) = m(Pti ,h) and v(P ′

i ) = ω2
i < v(Pti ,h). Thus

P ′
i (du)‖u − ti‖2 = ∥∥ti − m(Pti ,h)

∥∥2 + ω2
i < Pti ,h(du)‖u − ti‖2,

hence the contradiction. Thus, ω2
i = v(Pti ,h), R̃(m(Pt1,h), . . . ,m(Ptk,h)) = R(Pt1,h, . . . ,Ptk,h),

and (Pt1,h, . . . ,Ptk,h) minimizes R.
Conversely, assume that (Pt1,h, . . . ,Ptk,h) minimizes R. Then R̃(m(Pt1,h), . . . ,m(Ptk,h)) ≤

R(Pt1,h, . . . ,Ptk,h) = min(Rd )(k) R̃(τ ), according to Lemma 11. Thus, (m(Pt1,h), . . . ,m(Ptk,h))

minimizes R̃.

6. Proofs for Section 3

6.1. Intermediate results

The proofs of the Section 3 results will make intensive use of the following lemmas, whose proofs
are postponed to the Appendix. We first mention some well-known results about sub-Gaussian
distributions.
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Lemma 23. Let Q ∈ P(V )(Rd), a sub-Gaussian measure with variance V 2 > 0, and Qh ∈
Ph(Q). Then we have

Qh‖ · ‖2 ≤ 3V 2

h
.

The proof of Lemma 23 is given in Section A.2 of the Appendix. Next, Lemma 24 below
ensures that the distributions involved in Theorem 19 are sub-Gaussian.

Lemma 24. If Y is a random variable sampled from a distribution P in PK(Rd) and Z is
independent from Y and sampled from a distribution Q′ in P(σ )(Rd) for some σ > 0. Then, the
distribution Q of the random variable X = Y +Z is sub-Gaussian with variance V 2 = (K +σ)2,
that is in P(K+σ)(Rd).

Moreover,

W1(P,Q) ≤ 3σ and W2(P,Q) ≤ √
3σ.

A proof of Lemma 24 can be found in Section A.3, Appendix. In what follows, we let γ and
γ̂ denote the functions

γ (t, x) = min
i∈[[1,k]]−2〈x,m(Qti ,h)〉 + ∥∥m(Qti ,h)

∥∥2 + v(Qti ,h),

γ̂ (t, x) = min
i∈[[1,k]]−2〈x,m(Qnti ,h)〉 + ∥∥m(Qnti ,h)

∥∥2 + v(Qnti ,h),

(12)

for (t, x) ∈ (Rd)(k) ×R
d with t = (t1, t2, . . . , tk). We will use two deviation bounds, stated below.

Lemma 25. If Q is sub-Gaussian with variance V 2, then, for every p > 0, with probability
larger than 1 − n−p , we have

sup
t∈(Rd )(k)

∣∣(Q − Qn)γ (t, ·)∣∣ ≤ C
V 2

√
k log(k)d(1 + p)

3
2 log(n)

3
2

h
√

n
,

for some absolute positive constant C.

The proof of Lemma 25 is deferred to Section B.5 of the Appendix.

Lemma 26. Assume that Q is sub-Gaussian with variance V 2, then, for every p > 0, with prob-
ability larger than 1 − 9n−p , we have

sup
t∈Rd

∥∥m(Qt,h) − m(Qnt,h)
∥∥ ≤ CV

√
d(p + 1) log(n)

h
√

n
,

sup
t∈(Rd )(k)

∣∣Qn(γ − γ̂ )(t, ·)∣∣ ≤ CV 2

√
d(p + 1)

3
2 log(n)

3
2

h
√

n
.

As well, the proof of Lemma 26 is deferred to Section B.4 in the Appendix.
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6.2. Proof of Proposition 14

The first inequality comes from (4). We now focus on the second bound. By definition of dP,h,k ,
for all t = (t1, t2, . . . , tk) ∈ (Rd)(k) we have P d2

P,h,k ≤ P mini∈[[1,k]] ‖ · −m(Pti ,h)‖2 + v(Pti ,h).
Thus,

P
(
d2
P,h,k − d2

P,h

) ≤ P
(

min
i∈[[1,k]]

∥∥· − m(Pti ,h)
∥∥2 + v(Pti ,h) − d2

P,h

)

= P
(

min
i∈[[1,k]]

(
d2
P,h(ti) − ‖ti‖2) − (

d2
P,h − ‖ · ‖2) + 〈· − ti ,−2m(Pti ,h)

〉)
,

according to (1). Now [16], Corollary 3.7, ensures that, for x, y in R
d ,

‖y‖2 − d2
P,h(y) − (‖x‖2 − d2

P,h(x)
) ≥ 2

〈
m(Px,h), y − x

〉
. (13)

We deduce that

P
(
d2
P,h,k − d2

P,h

) ≤ P min
i∈[[1,k]] 2

〈· − ti ,m(P·,h) − m(Pti ,h)
〉

≤ 2P min
i∈[[1,k]] ‖ · −ti‖

∥∥m(P·,h) − m(Pti ,h)
∥∥.

Now choose t1, . . . , tk such that M ⊂ ⋃
i∈[[1,k]] B(ti , f

−1
M (k)). The result follows.

6.3. Proof of Corollary 15

The proof of Corollary 15 is based on the following bounds, in the case where P is absolutely
continuous with respect to the Lebesgue measure, with density f satisfying 0 < fmin ≤ f ≤
fmax.

f −1
M (k) ≤ 2K

√
dk−1/d , (14)

ζP,h

(
f −1

M (k)
) ≤ Cfmax,K,d,hk

−1/d . (15)

First, note that since M ⊂ B(0,K), for any ε > 0, fM(ε) ≤ fB(0,K)(ε) ≤ ( 2K
√

d
ε

)d , hence (14).
To prove the second inequality, we have to give a bound on the modulus of continuity ζP,h. Let
x, y be in M , and denote by δ = ‖x − y‖. Since P has a density,

P∂B
(
x, δP,h(x)

) = P∂B
(
y, δP,h(y)

) = 0.

We deduce that Px,h = 1
h
P|B(x,δP,h(x)) and Py,h = 1

h
P|B(y,δP,h(y)). Without loss of generality,

assume that δP,h(x) ≥ δP,h(y). Then

B
(
y, δP,h(y)

) ⊂ B
(
x, δP,h(x) + δ

)
.
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We may bound ‖m(Px,h) − m(Py,h)‖ by

1

h

∥∥P · (1B(x,δP,h(x)) − 1B(y,δP,h(y)))
∥∥ ≤ K

h
P |1B(x,δP,h(x)) − 1B(y,δP,h(y))|

= 2
K

h
P

(
B

(
y, δP,h(y)

) \ (
B

(
x, δP,h(x)

) ∩ B
(
y, δP,h(y)

)))
≤ 2

K

h
P

(
B

(
x, δP,h(x) + δ

) ∩ B
(
x, δP,h(x)

)c)

= 2
K

h
ωd

[(
δP,h(x) + δ

)d − δP,h(x)d
] ≤ 2

Kd+1ωd

h

[(
1 + δ

δP,h(x)

)d

− 1

]
,

where ωd denotes the Lebesgue volume of the ball B(0,1) in R
d . Since (1 + v)d ≤ 1 + d(1 +

v)d−1v, for v ≥ 0, and δP,h(x) ≥ ( h
fmaxωd

)1/d , we have ζP,h(δ) ≤ Cfmax,K,d,hδ, hence (15). The
result of Corollary 15 follows.

6.4. Proof of Corollary 16

Since N is a C2-submanifold, its reach ρ (as defined in [26], Definition 4.1) is positive. Without
loss of generality we assume that N is connected. Since P has a density with respect to the
volume measure on N , we have P(N◦) = 1. Thus, we take M = N◦, that is the set of interior
points. Since P satisfies a (cfmin, d

′)-standard assumption, we have

fM(ε) ≤ 2d ′
/
(
cfminr

−d ′)
,

according to [17], Lemma 10. Hence,

f −1
M (k) ≤ Cfmin,Nk−1/d ′

.

It remains to bound the continuity modulus of x → m(Px,h). For any x in M , since P(∂N) = 0
and P has a density with respect to the volume measure on N , we have Px,h = P|B(x,δP,h(x)).

Besides, since for all r > 0, P(B(x, r)) ≥ cfminr
d ′

, we may write δP,h(x) ≤ cN,fminh
1/d ′ ≤ ρ/12,

for h small enough. Now let x and y be in M so that ‖x − y‖ = δ ≤ ρ/12, and without loss of
generality assume that δP,h(x) ≥ δP,h(y). Then, proceeding as in the proof of (15), it comes

∥∥m(Px,h) − m(Py,h)
∥∥ ≤ 2K

h
P

(
B

(
x, δP,h(x) + δ

) ∩ B
(
x, δP,h(x)

)c)
.

Since δP,h(x)+ δ ≤ ρ/6, for any u in B(x, δP,h(x)+ δ)∩M we may write u = expx(rv), where
v ∈ TxM with ‖v‖ = 1 and r = dN(u, x) is the geodesic distance between u and x (see, e.g.,
[26], Theorem 4.18 or [1], Proposition 25). Note that, according to [1], Proposition 26, for any
u1 and u2 such that ‖u1 − u2‖ ≤ ρ/4,

‖u1 − u2‖ ≤ dN(u1, u2) ≤ 2‖u1 − u2‖. (16)
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Now let p1, . . . , pm be a δ-covering of the sphere S(x, δP,h(x)) = B(x, δP,h(x))\B(x, δP,h(x)).
According to (16), we may choose m ≤ cd ′δP,h(x)d

′−1δ−(d ′−1).
Now, for any u such that u ∈ M and δP,h(x) ≤ ‖x − u‖ ≤ δP,h(x) + δ, there exists t ∈

S(x, δP,h(x)) such that ‖t − u‖ ≤ 2δ. Hence,

P
(
B

(
x, δP,h(x) + δ

) ∩ B
(
x, δP,h(x)

)c) ≤
m∑

j=1

P
(
B(pj ,2δ)

)
.

For any j , since 2δ ≤ ρ/6, in local polar coordinates around pj we may write,

P
(
B(pj ,2δ)

) ≤
∫

{r,v| exppj
(rv)∈M,r≤4δ}

f (r, v)J (r, v) dr dv ≤ fmax

∫
{r,v|r≤4δ}

J (r, v) dr dv,

using (16), where J (r, v) denotes the Jacobian of the volume form. According to [1], Proposi-
tion 27, we have J (r, v) ≤ Cd ′rd ′

, hence P(B(pj ,2δ)) ≤ Cd ′fmaxδ
d ′

. Thus,

∥∥m(Px,h) − m(Py,h)
∥∥ ≤ 2K

h
mCd ′fmaxδ

d ′ ≤ CN,fmax,fminδ.

Choosing k large enough so that f −1
M (k) ≤ Cfmin,Nk−1/d ′ ≤ ρ/12 gives the result.

6.5. Proof of Proposition 17

For all x ∈ Supp(P ),

d2
Q,h,k(x) − d2

P,h(x) = d2
Q,h,k(x) − d2

Q,h(x) + d2
Q,h(x) − d2

P,h(x)

≥ −∥∥d2
P,h − d2

Q,h

∥∥∞,Supp(P )
.

Thus, (d2
Q,h,k − d2

P,h)− ≤ ‖d2
P,h − d2

Q,h‖∞,Supp(P ) on Supp(P ), where f− : x → f (x)1f (x)≤0

denotes the negative part of any function f on R
d . Then,

P
∣∣d2

Q,h,k − d2
P,h

∣∣ = P
(
d2
Q,h,k − d2

P,h

) + 2
(
d2
Q,h,k − d2

P,h

)
−

≤ P + P
(
d2
P,h,k − d2

P,h

) + 2
∥∥d2

P,h − d2
Q,h

∥∥∞,Supp(P )
,

with  = d2
Q,h,k − d2

P,h,k . To bound P from above, let s ∈ (B(0,K))(k) be a k-points mini-

mizer of R for P , such that when P̃si ,h(R
d) �= 0, si = m(P̃si ,h). Such an s exists according to

Proposition 9 and Lemma 11. Set fQ,t (x) = −2〈x,m(Qt,h)〉 + M(Qt,h) for t ∈R
d , and let t be

a k-points minimizer of R for Q.

P = P
(

min
i∈[[1,k]]fQ,ti − min

i∈[[1,k]]fP,si

)

≤ (P − Q) min
i∈[[1,k]]fQ,ti + (Q − P) min

i∈[[1,k]]fQ,si + P
(

min
i∈[[1,k]]fQ,si − min

i∈[[1,k]]fP,si

)
.
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For a transport plan π between P and Q, (P − Q)mini∈[[1,k]] fQ,ti is bounded by

E(X,Y )∼π

[
min

i∈[[1,k]]−2
〈
X,m(Qti ,h)

〉 + M(Qti,h) − min
i∈[[1,k]]−2

〈
Y,m(Qti ,h)

〉 + M(Qti ,h)
]

≤ 2E(X,Y )∼π

[
sup
t∈Rd

〈
Y − X,m(Qt,h)

〉]
.

Thus, (P − Q)mini∈[[1,k]] fQ,ti ≤ 2W1(P,Q) supt∈Rd ‖m(Qt,h)‖, choosing for π the optimal
transport plan for the W1 distance between P and Q in (3). Also note that P(mini∈[[1,k]] fQ,si −
mini∈[[1,k]] fP,si ) is bounded from above by

k∑
i=1

P̃si ,h

(−2
〈·,m(Qsi ,h)

〉 + M(Qsi,h) + 2
〈·,m(Psi ,h)

〉 − M(Psi,h)
)

=
k∑

i=1

P̃si ,h2
〈· − si ,m(Psi ,h) − m(Qsi,h)

〉 + d2
Q,h(si) − d2

P,h(si)

≤ ∥∥d2
P,h − d2

Q,h

∥∥∞,B(0,K)
+ 2

k∑
i=1

P̃si ,h

(
R

d
)〈
m(P̃si ,h) − si ,m(Psi ,h) − m(Qsi,h)

〉
.

Since si = m(P̃si ,h), the result follows.

6.6. Proof of Proposition 18

Let ∞,K denote supx∈M dQ,h,k(x), and let x ∈ M achieving the maximum distance. Since

dQ,h,k is 1-Lipschitz, we deduce that B(x,
∞,K

2 ) ⊂ {y | dQ,k,h(y) ≥ ∞,K

2 }. Since P(B(x,
∞,K

2 )) ≥ C(P )(
∞,K

2 )d
′ ∧ 1, Markov inequality yields that

2
P ≥ C(P )

(
∞,K

2

)d ′+2

∧ 2∞,K

4
.

Thus we have supx∈M(dQ,h,k − dM)(x) = ∞,K ≤ C(P )
− 1

d′+2 
2

d′+2
P ∨ 2P . Now, for x ∈ R

d ,
we let p ∈ M such that ‖x − p‖ = dM(x). Denote by r = ‖x − p‖, and let tj be such that

dQ,h,k(p) =
√

‖p − m(Qtj ,h)‖2 + v(Qtj ,h). Then

dQ,h,k(x) ≤
√∥∥x − m(Qtj ,h)

∥∥2 + v(Qtj ,h)

≤
√

d2
Q,h,k(p) + r2 + 2r

∥∥p − m(Qtj ,h)
∥∥

≤
√

d2
Q,h,k(p) + r2 + 2rdQ,h,k(p)

= dM(x) + (
dQ,h,k(p) − dM(p)

)
.
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Hence, supx∈Rd (dQ,h,k − dM)(x) = supx∈M(dQ,h,k − dM)(x) = ∞,K . On the other hand, we

have dQ,h,k ≥ dQ,h, along with ‖dQ,h − dP,h‖∞ ≤ h− 1
2 W2(P,Q) (see, e.g., [16], Theorem 3.5)

as well as dP,h ≥ dM . Hence dQ,h,k ≥ dM − h− 1
2 W2(P,Q).

6.7. Proof of Theorem 19

We recall that γ and γ̂ are defined in (12). According to Lemma 24, Q ∈ P(V )(Rd) with V =
σ + K . Let

s = arg min
{
Qγ (t, ·) | t = (t1, t2, . . . , tk) ∈ (Rd)(k)

}
,

ŝ = arg min
{
Qnγ̂ (t, ·) | t = (t1, t2, . . . , tk) ∈ (Rd)(k)

}
,

s̃ = arg min
{
Qnγ (t, ·) | t = (t1, t2, . . . , tk) ∈ (Rd)(k)

}
.

With these notations, for all x ∈R
d ,

d2
Q,h,k(x) = ‖x‖2 + γ (s, x) and d2

Qn,h,k(x) = ‖x‖2 + γ̂ (ŝ, x).

We intend to bound l(s, ŝ) = Q(d2
Qn,h,k − d2

Q,h,k) = Q(γ (ŝ, ·) − γ (s, ·)).
l(s, ŝ) = Qγ (ŝ, ·) − Qnγ (ŝ, ·) + Qnγ (ŝ, ·) − Qnγ (s̃, ·) + Qnγ (s̃, ·) − Qγ (s, ·)

≤ sup
t∈(Rd )(k)

(Q − Qn)γ (t, ·) + Qn(γ − γ̂ )(ŝ, ·)

+ Qn

(
γ̂ (ŝ, ·) − γ̂ (s̃, ·)) + Qn(γ̂ − γ )(s̃, ·) + sup

t∈(Rd )(k)

(Qn − Q)γ (t, ·),

where we used Qnγ (s̃, ·) ≤ Qnγ (s, ·). Now, since Qn(γ̂ (ŝ, ·) − γ̂ (s̃, ·)) ≤ 0, we get

l(s, ŝ) ≤ sup
t∈(Rd )(k)

(Q − Qn)γ (t, ·) + sup
t∈(Rd )(k)

(Qn − Q)γ (t, ·)

+ sup
t∈(Rd )(k)

Qn(γ − γ̂ )(t, ·) + sup
t∈Rd(k)

Qn(γ̂ − γ )(t, ·).

Combining Lemma 25 and Lemma 26 entails, with probability larger than 1 − 10n−p ,

l(s, ŝ) ≤ CV 2
√

k log(k)d
(p + 1)

3
2 log(n)

3
2

h
√

n
.

It remains to bound |P d2
Qn,h,k − Qd2

Qn,h,k| as well as |P d2
Q,h,k − Qd2

Q,h,k|. To this aim we

recall that X = Y + Z, Z being sub-Gaussian with variance σ 2. Thus, denoting by sj (x) =
arg minj∈[[1,k]] ‖x − m(Qsj ,h)‖2 + v(Qsj ,h),

P d2
Q,h,k − Qd2

Q,h,k ≤ E(Y,Z)

[∥∥Y − m(Qsj (Y+Z),h)
∥∥2 + v(Qsj (Y+Z),h)

− (∥∥Y + Z − m(Qsj (Y+Z),h)
∥∥2 + v(Qsj (Y+Z),h)

)]
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≤ EZ‖Z‖2 + 2E(Y,Z) max
j∈[[1,k]]

∣∣〈Z,m(Qsj ,h) − Y
〉∣∣

≤ 3σ 2 + 2
√

3σ
(

max
j∈[[1,k]]

∥∥m(Qsj ,h)
∥∥ + K

)
≤ CσK√

h
,

using Cauchy–Schwarz inequality, Lemma 23 and σ ≤ K .
The converse bound on Qd2

Q,h,k − P d2
Q,h,k may be proved the same way. Similarly, we may

write

P d2
Qn,h,k − Qd2

Qn,h,k

≤ 3σ 2 + 2
√

3σ
(

max
j∈[[1,k]]

∥∥m(Qnsj ,h)
∥∥ + K

)

≤ 3σ 2 + 2
√

3σ
(

max
j∈[[1,k]]

∥∥m(Qsj ,h)
∥∥ + sup

t∈Rd

∥∥m(Qt,h) − m(Qnt,h)
∥∥ + K

)

≤ 3σ 2 + 2
√

3σ

(
max

j∈[[1,k]]
∥∥m(Qsj ,h)

∥∥ + C(K + σ)
√

d
(p + 1) log(n)

h
√

n
+ K

)

≤ CσK√
h

+ CσK
√

d(p + 1) log(n)

h
√

n
,

according to Lemma 23 and Lemma 26. The bound on Qd2
Qn,h,k − P d2

Qn,h,k derives from the
same argument. Collecting all pieces, we get, using σ ≤ K ,

∣∣P (
d2
Qn,h,k − d2

Q,h,k

)∣∣ ≤ ∣∣Q(
d2
Qn,h,k − d2

Q,h,k

)∣∣ + CσK
√

d(p + 1) log(n)

h
√

n
+ CσK√

h

≤ CσK
√

d(p + 1) log(n)

h
√

n
+ CkK2

√
dk log(k)((p + 1) log(n))

3
2

h
√

n

+ CσK√
h

.

6.8. Proof of Proposition 20

Combining bounds obtained in Theorem 19 and Proposition 17 yields

∣∣P (
d2
Qn,h,k − d2

P,h

)∣∣ ≤ C
√

k log(k)d
K2((p + 1) log(n))

3
2

h
√

n
+ C

Kσ√
h

+ 3
∥∥d2

Q,h − d2
P,h

∥∥∞,B(0,K)
+ P

(
d2
P,h,k − d2

P,h

)
+ 4W1(P,Q) sup

s∈Rd

∥∥m(Ps,h)
∥∥.
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Using Corollary 16 and Lemma 23 entails

∣∣P (
d2
Qn,h,k − d2

P,h

)∣∣ ≤ C
√

k log(k)d
K2((p + 1) log(n))

3
2

h
√

n
+ C

Kσ√
h

+ 3
∥∥d2

Q,h − d2
P,h

∥∥∞,B(0,K)
+ CP k

− 2
d′ .

At last, using (2), Lemmas 23 and 24 leads to

∥∥d2
Q,h − d2

P,h

∥∥∞,B(0,K)
≤ ‖dQ,h − dP,h‖∞,B(0,K)

(‖dQ,h‖∞,B(0,K) + ‖dP,h‖∞,B(0,K)

)
≤ W2(P,Q)√

h

(
sup

x∈B(0,K)

√∥∥x − m(Qx,h)
∥∥2 + v(Qx,h) + 2K

)

≤
√

3σ√
h

(√
K2 + 2K

√
3
σ + K√

h
+ 3

(σ + K)2

h
+ 2K

)

≤
√

3σ(3K + √
3(K + σ))

h
.

6.9. Proof of Proposition 21

As in the proof of [7], Theorem 1, for the sake of simplicity we assume that k is divisible by

3, set m = (2k)/3, and let z1, . . . , zm be a 6-net in B(0,K), with  = K/(6m
1
d ), so that such

a net exists. We let as well w1, . . . ,wm be in R
d such that ‖wi‖ =  and zi + wi ∈ B(0,K).

For σ ∈ {−1,+1}m such that
∑m

i=1 σi = 0 we denote by Pσ the distribution that satisfies, for
i ∈ [[1,m]],

Pσ

({zi}
) = Pσ

({zi + wi}
) = (1 + σiδ)

2m
,

with δ ≤ 1
3 . For τ ∈ {−1,1}m

2 , σ(τ) is defined by σ(τ)j = τj and σ(τ)m
2 +j = −τj , for j ∈

[[1,m/2]]. We define now a p-points quantizer F as a map from R
d such that |F(Rd)| = p, and

define Fσ as the k-points quantizer satisfying

Fσ (zi) = zi, Fσ (zi + wi) = zi + wi if σi = +1,

Fσ (zi) = Fσ (zi + wi) = zi if σi = −1.

At last, for a quantizer F with images q1, . . . , qp and sets of preimages V1, . . . , Vp , we denote
by R(F,Pσ ) the quantity

R(F,Pσ ) =
p∑

i=1

Pσ

[∥∥· − m(Pqi,h)
∥∥2 + v(Pqi ,h)

]
1Vi

,



A robust k-points-based distance 3047

where for i ∈ [[1,p]], Pqi,h ∈ Pqi ,h(Pσ ). With a slight abuse we call nearest-neighbor quan-
tizer a quantizer whose sets of preimages are the set of Voronoi cells associated with
(m(Pqi ,h), v(Pqi ,h)), with ties arbitrarily broken.

The proof of Proposition 21 follows from the same arguments as [33], Proposition 3.1. We
first use the following lemma.

Lemma 27. Assume that δ ≤ 1
3 and h ≤ 1

3m
. Let σ and σ ′ be such that

∑m
i=1 σi = ∑m

i=1 σ ′
i = 0,

and let ρ(σ,σ ′) denote the distance
∑m

i=1 |σi − σ ′
i |. Then

R
(
Fσ ,P ′

σ

) = R(Fσ ,Pσ ) + δ2

2m
ρ
(
σ,σ ′).

Moreover, for every k-points nearest neighbor quantizer F there exists σ and τ such that

∀Pσ(τ ′)R(F,Pσ(τ ′)) ≥ R(Fσ ,Pσ(τ ′)) ≥ 1

2
R(Fσ(τ),Pσ(τ ′)).

The proof of Lemma 27 is a slight modification of that of [33], Proposition 4.2. For the sake
of completeness it is given in Section C.1 of the Appendix. Let t̂ be an empirically designed
vector in (Rd)(k), and recall that P d2

P,h,t is defined as P
∑k

j=1[‖ · −m(Pti ,h)‖2 + v(Pti ,h)]1Vi
.

According to Lemma 27, we may write

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP
(
d2
P,h,t̂

− d2
P,h,k

) ≥ inf
t̂

sup
Pσ(τ ′)

ER(t̂) − R(Fσ(τ ′),Pσ(τ ′))

≥ 1

2
inf
τ̂

sup
Pσ(τ ′)

ER(Fσ(τ̂ ),Pσ(τ ′)) − R(Fσ(τ ′),Pσ(τ ′))

≥ δ2

2m
inf
τ̂

sup
Pσ(τ ′)

Eρ
(
τ̂ , τ ′), (17)

where τ̂ denotes an empirically designed element of {−1,+1}m
2 . Let μ denote the measure∑m

i=1(δzi
+ δzi+wi

). For any distribution P and Q having densities with respect to μ we de-
note by H 2(P,Q) their Hellinger distance.

Lemma 28. Let τ and τ ′ in {−1,1}m
2 such that ρ(τ, τ ′) = 2. Then

H 2(P ⊗n
σ(τ),P

⊗n
σ(τ ′)

) ≤ 4nδ2

m
:= α.

The proof of Lemma 28 is a slight modification of the proof of [33], Lemma 4.5, and is
given in Section C.2 in the Appendix. A direct application of Assouad’s Lemma (see, e.g., [42],
Theorem 2.12) entails that, for α ≤ 2,

inf
τ̂

sup
τ∈{−1,1} m

2

Eρ(τ̂ , τ ) ≥ m

4

(
1 − √

α(1 − α/4)
)
.
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For δ =
√

m

2
√

n
, (17) yields

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP
(
d2
P,h,t̂

− d2
P,h,k

) ≥ c0
K2k

1
2 − 2

d√
n

.

This proves (8).
Now denote by A the event

⋃m
i=1{Pn({zi}) ≤ h} ∪ {Pn({zi + wi}) ≤ h}. If δ ≤ 1

9 and h ≤ 1
2k

,

using (1−δ)
2m

−h ≥ 1
6k

and a union of bounded difference inequalities (see, e.g., [10], Theorem 6.2)

leads to Pσ (A) ≤ 2me
− n

72k2 . Next, on the event Ac , we have, for any σ , t ∈ R
d and Pnt,h ∈

Ph,t (Pn), Pnt,h ∈ Pt,h(P ). Thus, for t ∈ (Rd)(k), d2
Pn,h,t1Ac = (minj=1,...,k ‖. − m(Ptj ,h)‖2 +

v(Ptj ,h))1Ac , where Ptj ,h ∈ Ptj ,h. Therefore, since for every σ , Supp(Pσ ) ⊂ B(0,K), we may
write

inf
t̂

sup
σ

Eσ P
(
d2
Pn,h,t̂

− d2
P,h,k

)
≥ inf

t̂
sup
σ

Eσ P
(
d2
Pn,h,t̂

− d2
P,h,k

)
1Ac − 16K2me

− n

72k2

≥ inf
t̂

sup
σ

Eσ P
(

min
j=1,...,k

‖. − m(Pt̂j ,h)‖2 + v(Pt̂j ,h) − d2
P,h,k

)
1Ac − 16K2me

− n

72k2

≥ inf
t̂

sup
σ

Eσ P
(

min
j=1,...,k

‖. − m(Pt̂j ,h)‖2 + v(Pt̂j ,h) − d2
P,h,k

)
− 32K2me

− n

72k2

≥ inf
t̂

sup
σ

Eσ P
(
d2
P,h,t̂

− d2
P,h,k

) − 32K2me
− n

72k2 .

Since n ≥ 14k, δ =
√

m

2
√

n
≤ 1

9 and (17) leads to the result again.
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Supplementary Material

Appendix: Additional figures and proofs of technical results (DOI: 10.3150/20-BEJ1214
SUPP; .pdf). Due to space constraints, we relegate technical details as well as additional fig-
ures pertaining to Section 4 to the supplement [12].

https://doi.org/10.3150/20-BEJ1214SUPP
https://doi.org/10.3150/20-BEJ1214SUPP


A robust k-points-based distance 3049

References

[1] Aamari, E. and Levrard, C. (2018). Stability and minimax optimality of tangential Delau-
nay complexes for manifold reconstruction. Discrete Comput. Geom. 59 923–971. MR3802310
https://doi.org/10.1007/s00454-017-9962-z

[2] Aamari, E. and Levrard, C. (2019). Nonasymptotic rates for manifold, tangent space and curvature
estimation. Ann. Statist. 47 177–204. MR3909931 https://doi.org/10.1214/18-AOS1685

[3] Aaron, C. and Cholaquidis, A. (2019). On boundary detection. arXiv E-prints.
[4] Aliprantis, C.D. and Border, K.C. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd

ed. Berlin: Springer. MR2378491
[5] Banerjee, A., Guo, X. and Wang, H. (2005). On the optimality of conditional expectation as a Breg-

man predictor. IEEE Trans. Inf. Theory 51 2664–2669. MR2246384 https://doi.org/10.1109/TIT.2005.
850145

[6] Banerjee, A., Merugu, S., Dhillon, I.S. and Ghosh, J. (2005). Clustering with Bregman divergences.
J. Mach. Learn. Res. 6 1705–1749. MR2249870

[7] Bartlett, P.L., Linder, T. and Lugosi, G. (1998). The minimax distortion redundancy in empirical quan-
tizer design. IEEE Trans. Inf. Theory 44 1802–1813. MR1664098 https://doi.org/10.1109/18.705560

[8] Biau, G., Devroye, L. and Lugosi, G. (2008). On the performance of clustering in Hilbert spaces. IEEE
Trans. Inf. Theory 54 781–790. MR2444554 https://doi.org/10.1109/TIT.2007.913516

[9] Boissonnat, J.-D., Chazal, F. and Yvinec, M. (2018). Geometric and Topological Inference.
Cambridge Texts in Applied Mathematics. Cambridge: Cambridge Univ. Press. MR3837127
https://doi.org/10.1017/9781108297806

[10] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford: Oxford Univ. Press. MR3185193 https://doi.org/10.1093/acprof:
oso/9780199535255.001.0001

[11] Brécheteau, C., Fischer, A. and Levrard, C. (2018). Robust Bregman clustering. arXiv E-prints.
[12] Brécheteau, C. and Levrard, C. (2020). Supplement to “A k-points-based distance for robust geometric

inference.” https://doi.org/10.3150/20-BEJ1214SUPP
[13] Buchet, M., Chazal, F., Oudot, S.Y. and Sheehy, D.R. (2015). Efficient and robust persistent homology

for measures. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms 168–180. Philadelphia, PA: SIAM. MR3451037 https://doi.org/10.1137/1.9781611973730.13

[14] Buchet, M., Dey, T.K., Wang, J. and Wang, Y. (2018). Declutter and resample: Towards parameter
free denoising. J. Comput. Geom. 9 21–46. MR3866406

[15] Cardot, H., Cénac, P. and Zitt, P.-A. (2013). Efficient and fast estimation of the geometric median
in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli 19 18–43. MR3019484
https://doi.org/10.3150/11-BEJ390

[16] Chazal, F., Cohen-Steiner, D. and Mérigot, Q. (2011). Geometric inference for probability measures.
Found. Comput. Math. 11 733–751. MR2859954 https://doi.org/10.1007/s10208-011-9098-0

[17] Chazal, F., Glisse, M., Labruère, C. and Michel, B. (2015). Convergence rates for persistence diagram
estimation in topological data analysis. J. Mach. Learn. Res. 16 3603–3635. MR3450548

[18] Chazal, F., Massart, P. and Michel, B. (2016). Rates of convergence for robust geometric inference.
Electron. J. Stat. 10 2243–2286. MR3541971 https://doi.org/10.1214/16-EJS1161

[19] Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. (2007). Stability of persistence diagrams. Discrete
Comput. Geom. 37 103–120. MR2279866 https://doi.org/10.1007/s00454-006-1276-5

[20] Cuesta-Albertos, J.A., Gordaliza, A. and Matrán, C. (1997). Trimmed k-means: An attempt to robus-
tify quantizers. Ann. Statist. 25 553–576. MR1439314 https://doi.org/10.1214/aos/1031833664

[21] Dijksman, J.A., Kovalcinova, L., Ren, J., Behringer, R.P., Kramar, M., Mischaikow, K. and Kondic, L.
(2018). Characterizing granular networks using topological metrics. Phys. Rev. E 97 042903.

http://www.ams.org/mathscinet-getitem?mr=3802310
https://doi.org/10.1007/s00454-017-9962-z
http://www.ams.org/mathscinet-getitem?mr=3909931
https://doi.org/10.1214/18-AOS1685
http://www.ams.org/mathscinet-getitem?mr=2378491
http://www.ams.org/mathscinet-getitem?mr=2246384
https://doi.org/10.1109/TIT.2005.850145
http://www.ams.org/mathscinet-getitem?mr=2249870
http://www.ams.org/mathscinet-getitem?mr=1664098
https://doi.org/10.1109/18.705560
http://www.ams.org/mathscinet-getitem?mr=2444554
https://doi.org/10.1109/TIT.2007.913516
http://www.ams.org/mathscinet-getitem?mr=3837127
https://doi.org/10.1017/9781108297806
http://www.ams.org/mathscinet-getitem?mr=3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.3150/20-BEJ1214SUPP
http://www.ams.org/mathscinet-getitem?mr=3451037
https://doi.org/10.1137/1.9781611973730.13
http://www.ams.org/mathscinet-getitem?mr=3866406
http://www.ams.org/mathscinet-getitem?mr=3019484
https://doi.org/10.3150/11-BEJ390
http://www.ams.org/mathscinet-getitem?mr=2859954
https://doi.org/10.1007/s10208-011-9098-0
http://www.ams.org/mathscinet-getitem?mr=3450548
http://www.ams.org/mathscinet-getitem?mr=3541971
https://doi.org/10.1214/16-EJS1161
http://www.ams.org/mathscinet-getitem?mr=2279866
https://doi.org/10.1007/s00454-006-1276-5
http://www.ams.org/mathscinet-getitem?mr=1439314
https://doi.org/10.1214/aos/1031833664
https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001


3050 C. Brécheteau and C. Levrard

[22] Edelsbrunner, H. (1992). Weighted alpha shapes. Technical report, Champaign, IL, USA.
[23] Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002). Topological persistence and simplification

28 511–533. MR1949898 https://doi.org/10.1007/s00454-002-2885-2
[24] Eldar, Y., Lindenbaum, M., Porat, M. and Zeevi, Y.Y. (1997). The farthest point strategy for progres-

sive image sampling. IEEE Trans. Image Process. 6 1305–1315. https://doi.org/10.1109/83.623193
[25] Fasy, B.T., Kim, J., Lecci, F. and Maria, C. (2014). Introduction to the R package TDA.
[26] Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418–491. MR0110078

https://doi.org/10.2307/1993504
[27] Fritz, H., Garcia-Escudero, L.A. and Mayo-Iscar, A. (2012). tclust: An R package for a trimming

approach to cluster analysis. J. Stat. Softw. 47 1–26.
[28] Genovese, C.R., Perone-Pacifico, M., Verdinelli, I. and Wasserman, L. (2012). Manifold esti-

mation and singular deconvolution under Hausdorff loss. Ann. Statist. 40 941–963. MR2985939
https://doi.org/10.1214/12-AOS994

[29] Guibas, L., Morozov, D. and Mérigot, Q. (2013). Witnessed k-distance. Discrete Comput. Geom. 49
22–45. MR3010216 https://doi.org/10.1007/s00454-012-9465-x

[30] Kanari, L., Dłotko, P., Scolamiero, M., Levi, R., Shillcock, J., Hess, K. and Markram, H. (2018).
A topological representation of branching neuronal morphologies. Neuroinformatics 16 3–13.

[31] Kim, A.K.H. and Zhou, H.H. (2015). Tight minimax rates for manifold estimation under Hausdorff
loss. Electron. J. Stat. 9 1562–1582. MR3376117 https://doi.org/10.1214/15-EJS1039

[32] Komiya, H. (1988). Elementary proof for Sion’s minimax theorem. Kodai Math. J. 11 5–7.
MR0930413 https://doi.org/10.2996/kmj/1138038812

[33] Levrard, C. (2015). Nonasymptotic bounds for vector quantization in Hilbert spaces. Ann. Statist. 43
592–619. MR3316191 https://doi.org/10.1214/14-AOS1293

[34] Lloyd, S.P. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 129–137.
MR0651807 https://doi.org/10.1109/TIT.1982.1056489

[35] MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In
Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) 281–297.
Berkeley, CA: Univ. California Press. MR0214227

[36] Maggioni, M., Minsker, S. and Strawn, N. (2016). Multiscale dictionary learning: Non-asymptotic
bounds and robustness. J. Mach. Learn. Res. 17 Paper No. 2, 51. MR3482922

[37] McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statis-
tics: Applied Probability and Statistics. New York: Wiley Interscience. MR1789474 https://doi.org/10.
1002/0471721182

[38] Mérigot, Q. (2013). Lower bounds for k-distance approximation. In Computational Geometry
(SoCG’13) 435–440. New York: ACM. MR3208242 https://doi.org/10.1145/2462356.2462367

[39] Niyogi, P., Smale, S. and Weinberger, S. (2008). Finding the homology of submanifolds with high con-
fidence from random samples. Discrete Comput. Geom. 39 419–441. MR2383768 https://doi.org/10.
1007/s00454-008-9053-2

[40] Phillips, J.M., Wang, B. and Zheng, Y. (2015). Geometric inference on kernel density estimates. In
31st International Symposium on Computational Geometry. LIPIcs. Leibniz Int. Proc. Inform. 34 857–
871. Wadern: Schloss Dagstuhl. Leibniz-Zent. Inform. MR3392827

[41] Rodríguez Casal, A. (2007). Set estimation under convexity type assumptions. Ann. Inst. Henri
Poincaré Probab. Stat. 43 763–774. MR3252430 https://doi.org/10.1016/j.anihpb.2006.11.001

[42] Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. New
York: Springer. MR2724359 https://doi.org/10.1007/b13794

[43] Zomorodian, A. and Carlsson, G. (2005). Computing persistent homology. Discrete Comput. Geom.
33 249–274. MR2121296 https://doi.org/10.1007/s00454-004-1146-y

Received August 2019 and revised March 2020

http://www.ams.org/mathscinet-getitem?mr=1949898
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1109/83.623193
http://www.ams.org/mathscinet-getitem?mr=0110078
https://doi.org/10.2307/1993504
http://www.ams.org/mathscinet-getitem?mr=2985939
https://doi.org/10.1214/12-AOS994
http://www.ams.org/mathscinet-getitem?mr=3010216
https://doi.org/10.1007/s00454-012-9465-x
http://www.ams.org/mathscinet-getitem?mr=3376117
https://doi.org/10.1214/15-EJS1039
http://www.ams.org/mathscinet-getitem?mr=0930413
https://doi.org/10.2996/kmj/1138038812
http://www.ams.org/mathscinet-getitem?mr=3316191
https://doi.org/10.1214/14-AOS1293
http://www.ams.org/mathscinet-getitem?mr=0651807
https://doi.org/10.1109/TIT.1982.1056489
http://www.ams.org/mathscinet-getitem?mr=0214227
http://www.ams.org/mathscinet-getitem?mr=3482922
http://www.ams.org/mathscinet-getitem?mr=1789474
https://doi.org/10.1002/0471721182
http://www.ams.org/mathscinet-getitem?mr=3208242
https://doi.org/10.1145/2462356.2462367
http://www.ams.org/mathscinet-getitem?mr=2383768
https://doi.org/10.1007/s00454-008-9053-2
http://www.ams.org/mathscinet-getitem?mr=3392827
http://www.ams.org/mathscinet-getitem?mr=3252430
https://doi.org/10.1016/j.anihpb.2006.11.001
http://www.ams.org/mathscinet-getitem?mr=2724359
https://doi.org/10.1007/b13794
http://www.ams.org/mathscinet-getitem?mr=2121296
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1002/0471721182
https://doi.org/10.1007/s00454-008-9053-2

	Introduction
	Notations, deﬁnitions and ﬁrst results
	Notations for the distance-to-measure
	Deﬁnition of the distance-to-measure (DTM)
	Deﬁnition of the k-PDTM

	Theoretical results for the k-PDTM
	Geometric inference with the k-PDTM
	Approximation of the k-PDTM from point clouds
	Algorithm

	Numerical illustrations
	Topological inference from noisy pointclouds
	Outliers detection

	Proofs for Section 2
	Proof of Proposition 6
	Proof of Proposition 9
	Proof of Corollary 10
	Proof of Lemma 11
	Proof of Theorem 12

	Proofs for Section 3
	Intermediate results
	Proof of Proposition 14
	Proof of Corollary 15
	Proof of Corollary 16
	Proof of Proposition 17
	Proof of Proposition 18
	Proof of Theorem 19
	Proof of Proposition 20
	Proof of Proposition 21

	Acknowledgements
	Supplementary Material
	References

