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We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally
stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical
quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time
series is illustrated by means of PLS linear processes and PLS ARCH processes.
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1. Introduction

Non-stationary time series analysis has attracted much attention in the statistics community over
the last two decades. Among others, see Dahlhaus [8] for a seminal work which proposed a class
of locally stationary time series from a time-varying spectral representation point of view. Nason
et al. [19] investigated locally stationary time series via the time-varying wavelet spectrum. Zhou
and Wu [30] formulated locally stationary time series from a time-varying physical system per-
spective. In Zhou [28], the framework in Zhou and Wu [30] was extended to a class of piece-wise
locally stationary models which allows both smooth and abrupt changes in the physical system.
Recently Dahlhaus et al. [10] studied a general class of locally stationary time series using both
stationary approximations and the physical system representation. We also refer to Dahlhaus [9]
for a more comprehensive review and additional references.

The purpose of this paper is to provide a systematic asymptotic theory for the local empirical
processes of a wide class of piece-wise locally stationary (PLS) time series in the sense of [28].
As empirical processes are fundamental tools for many statistical problems, the results of this
paper serve as a unified theoretical basis for a wide range of nonparametric statistical problems
in non-stationary time series analysis.

To define our time series model, we fix a finite partition 0 = p0 < p1 < · · · < p� < p�+1 = 1
of the unit interval [0,1]. For every j = 0, . . . , �, we let Gj : (pj ,pj+1] × R

N → R be any
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(B((pj ,pj+1]) ⊗B(R)⊗N,B(R))-measurable map. For every n ∈N, we define by

Gn

(
i, (xk)k∈N

) := �∑
j=0

Gj

(
i/n, (xk)k∈N

)
1(pj ,pj+1](i/n) (1)

a time dependent filter Gn : {1, . . . , n}×R
N →R. Then, given a two-sided sequence ε = (εk)k∈Z

of i.i.d. real-valued random variables on some probability space (�,F,P), we can define a non-
stationary time series (Xn,i)

n
i=1 on (�,F,P) by

Xn,i := Gn(i, εi ) =
�∑

j=0

Gj(i/n, εi )1(pj ,pj+1](i/n), i = 1, . . . , n, (2)

where εi := (εi, εi−1, εi−2, . . .). For every j = 1, . . . , �, this time series is subject to a structural
break at the smallest time point i with i > npj . Note that the number of observations between
any two adjacent structural break points increases linearly in n.

Time series of the form (2) were introduced first in [28]. Under suitable assumptions on
G0, . . . ,G� and Pε0 such time series are approximatively stationary in every small (relative to
n) time range in between adjacent structural break points. Meanwhile the series can experience
abrupt changes in its data generating mechanism at break points p1, . . . , p�. Hence, the above
PLS framework allows for a very flexible modeling of complexly time-varying temporal dynam-
ics with both smooth and abrupt changes. We refer to [25,28] for more discussions and examples
of the PLS time series models.

Suppose that we are interested in (a characteristic derived from) the distribution of Xn,ip,n

for ip,n := �pn� for some fixed p ∈ (0,1). For our mathematical results, we will assume that
p /∈ {p1, . . . , p�}. Let us use Fp,n to denote the distribution function of Xn,ip,n . Under some
assumptions Fp,n stabilizes as n → ∞. Indeed, if Fp denotes the distribution function of
ξp :=∑�

j=0 Gj(p, ε0)1(pj ,pj+1](p), we obtain under some assumptions that Fp,n → Fp in some
(nonuniform) sup-norm; for details and the rate of convergence see Lemma 3.1 below. Thus, un-
der suitable conditions it can be reasonable to use

F̂p,n := cn

n∑
i=1

κ

(
i/n − ip,n/n

bn

)
1[Xn,i ,∞) = cn

n∑
i=1

κ

(
i − ip,n

nbn

)
1[Xn,i ,∞) (3)

as an estimator for Fp,n, where κ : R → R+ is a suitable (kernel) function, bn ∈ R++ is a band-
width, and cn := 1/

∑n
i=1 κ((i/n − ip,n/n)/bn) is a normalizing constant.

Our main result (Theorem 2.4 in conjunction with Remark 2.5) shows that under suitable
assumptions

Ep,n(·) :=√nbn

(
F̂p,n(·) − Fp,n(·)

)
�∗ Bp (4)

(with respect to a nonuniform sup-norm) for a non-degenerate Gaussian process Bp , where �∗
means convergence in distribution in the Hoffmann-Jørgensen sense [17] (see Remark 2.5 for the
definition). In fact, we will show that under suitable assumptions

Ẽp,n(·) :=√nbn

(
F̂p,n(·) −E

[
F̂p,n(·)

])
�∗ Bp, (5)
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and we will discuss additional assumptions under which
√

nbn(Fp,n(·) −E[F̂p,n(·)]) → 0 (with
respect to a nonuniform sup-norm). The convergence in (5) can be seen as the analogue of Theo-
rem 1 in [27] where Wu proved a similar result for stationary time series (and with F̂p,n replaced
by the classical empirical distribution function). For convergence in distribution of the finite-
dimensional distributions, Wu employed Hannan’s [16] central limit theorem for stationary time
series. In our setting, where the underlying time series is non-stationary, we have to argue differ-
ently; see Section 4.1.

On the one hand, (4) yields consistency and the rate of convergence of the function-valued
estimator F̂p,n(·) for the distribution function Fp,n(·). On the other hand, in view of tools as the
(extended) continuous mapping theorem and the functional delta-method, it can also be seen as a
building stone for deriving the asymptotic distribution of the empirical plug-in estimator T (F̂p,n)

for some characteristic T (Fp,n) derived from Fp,n. Two specific examples will be discussed in
Section 3.

The rest of the article is organized as follows. In Section 2, we present our main result, Theo-
rem 2.4. At first glance, the imposed assumptions might look somewhat cumbersome. However,
they are in line with the assumptions imposed by Wu [27] in the stationary case, and we will
demonstrate that they are satisfied by two relevant PLS time series models, namely PLS linear
processes and PLS ARCH processes. In Section 3, the functional weak limit theorem of Theo-
rem 2.4 is applied to derive the asymptotic distribution of point estimators for quantiles and von
Mises-characteristics of Fp,n. The proof of Theorem 2.4 is carried out in Section 4 (and Sec-
tion 1 of the supplemental article [18]). All the others results will be proven in Section 2 of the
supplemental article [18].

2. Main result

2.1. Physical dependence measure revisited

Before presenting our main result, we recall the definition of the physical dependence measure
introduced by Wu [26] and extended by Zhou and Wu [30]. The dependence measure (more
precisely the objects introduced in (6) and (7) below) will appear in assumptions (A5) and (A8)
in Section 2.2. Let ε∗ be a real-valued random variable on (�,F,P) with Pε0 = Pε∗ and being
independent of ε = (εk)k∈Z. If necessary, consider an enlargement of (�,F,P). For every i ∈ Z

and r ∈N, let

ε∗
i,i−r := (εi, εi−1, . . . , εi−r+1, ε

∗, εi−r−1, . . .
)
.

Note that ε∗
i,i−r is a coupled version of εi with εi−r replaced by the i.i.d. copy ε∗. Let I ⊆ R

be an interval, and H : I × R
N → R be any (B(I ) ⊗ B(R)⊗N,B(R))-measurable map. For any

r ∈ N, q > 0, and t ∈ I , the physical dependence measure (associated with H(t, ·) and ε) is
defined by

δε,r;q(H ; t) := ∥∥H(t, ε0) − H
(
t, ε∗

0,−r

)∥∥
q
, (6)
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where ‖ · ‖q := E[| · |q ]1/q . Moreover, for any r ∈N and q > 0, the physical dependence measure
(associated with H and ε) is defined by

δε,r;q(H) := sup
t∈I

δε,r;q(H ; t). (7)

Note that δε,r;q(H ; t) and δε,r;q(H) will not change if in (6) ε0 and ε∗
0,−r are replaced by εk and

ε∗
k,k−r , respectively, for any k ∈ Z \ {0}. The following Example 2.1 was already discussed on

page 6 in [28].

Example 2.1. In the setting of Section 1, assume that specifically Gj(π, (xk)k∈N) :=∑∞
s=0 aj,s(π)xi+s for some arbitrary functions aj,s : (pj ,pj+1] → R, s ∈ N0. Then

δε,r;q(Gj ) = sup
π∈(pj ,pj+1]

∥∥aj,r (π)
(
ε∗−r − ε−r

)∥∥
q

≤ 2max{1,1/q}‖ε0‖q sup
π∈(pj ,pj+1]

∣∣aj,r (π)
∣∣

for every r ∈N and q > 0.

2.2. Assumptions and main result

As already mentioned in Section 1, our main result (Theorem 2.4 below) is a variant of Theorem 1
in [27]. In the latter theorem, Wu studied the case of stationary time series (i.e. � = 0 and G0
independent of the first argument), where the role of F̂p,n was played by the classical empirical
distribution function. For our result, we will impose nine assumptions, (A1)–(A9). Assumptions
(A7) and (A8) are the analogues of Wu’s assumptions (6) and (7), respectively. Assumption
(A3) is the analogue of a moment condition on the marginal distribution of the time series in
[27], and the analogue of (A6) was tacitly assumed in [27]. The additional assumptions (A1),
(A2), (A4), and (A9) are due to the non-stationarity of our underlying time series model, and
the additional assumption (A5) is a short range dependence condition which we need for the
proof of convergence in distribution of the finite-dimensional distributions in (5) (recall that we
will argue differently than Wu at this point). The assumption of exponential decaying physical
dependence measures in (A5) can be relaxed to a sufficiently fast polynomial rate. However,
such relaxation will require a much more tedious writing and it does not reflect the essence and
main contributions of the article. Hence, we will assume exponentially decaying dependence
throughout this paper.

In Theorem 2.4 below, we will assume that the following conditions (A3), (A7), and (A8)
hold for a common λ ≥ 0. Thus let λ ≥ 0 be arbitrary but fixed. We will frequently use the
function φs : R → [1,∞) defined by φs(x) := (1 + |x|)s for different s ∈ R. We will also use
the corresponding nonuniform sup-norm ‖ · ‖(s) defined by ‖v‖(s) := ‖vφs‖∞ with ‖v‖∞ :=
supx∈R |v(x)|. Please do not confuse the nonuniform sup-norm ‖ · ‖(s) for real-valued functions
on R with the Lq -norm ‖ · ‖q := E[| · |q ]1/q for random variables on (�,F,P).

Regarding the kernel and the bandwidth we make the following assumptions.

(A1) The kernel function κ is twice continuously differentiable on R with support [−1,1] and
(without loss of generality)

∫
R

κ(u)du = 1.
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(A2) limn→∞ nbn = ∞ and limn→∞ bn = 0.

Let jp be the unique index j with p ∈ (pj ,pj+1). Then we have for n sufficiently large
(depending only on pjp and pjp+1) that ip,n/n ∈ (pjp ,pjp+1). For every n ∈ N we use In;p to
denote the set of all i ∈ {1, . . . , n} with i/n ∈ (pjp ,pjp+1). We make the following assumptions,
where the constant q ′ in (A4) might differ from the constant q ′ in (A5).

(A3) The distribution of Xn,i has a Lebesgue density fn,i for any i = 1, . . . , n and n ∈ N, and
supn∈N max1≤i≤n ‖fn,i‖(γ ) < ∞ for some γ ∈ (2λ + 1,∞).

(A4) ‖Gjp(π, ε0)−Gjp(π ′, ε0)‖q ′ ≤ Cp,q ′ |π −π ′| for all π,π ′ ∈ (pjp ,pjp+1], and for some
constants q ′ ∈ (0,1] and Cp,q ′ > 0.

(A5) δε,r;q ′(Gjp ) =O(ar ) in r ∈N, for some constants a ∈ [0,1) and q ′ ∈ (0,1].
Here δε,r;q ′ refers to the physical dependence measure as defined in (7). Thus assertion (A5)
means that δε,r;q ′(Gjp ;π) decays exponentially in r uniformly in π ∈ (pjp ,pjp+1].

Now, denote by PXn,i‖εi−1 a factorized regular version of the conditional distribution of
Xn,i (w.r.t. P) given εi−1, that is, a probability kernel satisfying PXn,i‖εi−1(x,B) = P[Xn,i ∈
B‖εi−1 = x] for Pεi−1 -a.e. x ∈R

N, for all B ∈ B(R). Define a map Fn,i :R×R
N →R by

Fn,i(x,x) := PXn,i‖εi−1

(
x, (−∞, x]) (= E

[
1(−∞,x](Xn,i) ‖ εi−1 = x

])
,

which we refer to as factorized conditional distribution function of Xn,i given εi−1. If x �→
Fn,i(x,x) is twice differentiable for Pεi−1 -a.e. x ∈ R

N, then we may define maps fn,i : R×R
N →

R and f′n,i : R×R
N → R by

fn,i(x,x) :=
⎧⎨⎩

∂

∂x
Fn,i(x,x), x /∈ Ni−1,

0, x ∈ Ni−1

and f′n,i(x,x) := ∂

∂x
fn,i(x,x),

respectively, where Ni−1 ∈ B(R)⊗N is the respective Pεi−1 -null set. In this case, we refer to fn,i

as factorized conditional density of Xn,i given εi−1, and to f′n,i as its derivative. We make the
following assumptions, where δε,r;2 is defined as in (6).

(A6) For any n ∈ N and i ∈ In;p , the factorized conditional distribution function x �→
Fn,i(x,x) is twice continuously differentiable for Pεi−1 -a.e. x ∈R

N.
(A7) For some q ∈ (2,∞) we have limw→∞ Mq(R \ (−w,w)) = 0 and Mq(R) < ∞, where

Mq(J ) := sup
n∈N

∫
J

max
i∈In;p

∥∥fn,i(x, εi−1)
∥∥q/2

q/2φqλ−1+q/2(x) dx.

(A8) For some α ∈ [0,1] and β ∈ (0,∞) we have limw→∞ Mi,α(R \ (−w,w)) = 0 and
Mi,α(R) < ∞ for i = 1,2 as well as Mβ(R) < ∞, where

M1,α(J ) := sup
n∈N

∞∑
r=1

{
max
i∈In;p

∫
J

δ2
ε,r−1;2(Fn,i;x)φ2λ−α(x) dx

}1/2

,
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M2,α(J ) := sup
n∈N

∞∑
r=1

{
max
i∈In;p

∫
J

δ2
ε,r−1;2(fn,i;x)φ2λ+α(x) dx

}1/2

,

Mβ(R) := sup
n∈N

∞∑
r=1

{
max
i∈In;p

∫
R

δ2
ε,r−1;2

(
f′n,i;x
)
φ−β(x) dx

}1/2

.

(A9) The distribution of ξp := Gjp(p, ε0) has a bounded Lebesgue density fp .

Before stating our main result (Theorem 2.4), we present two lemmas which are needed for
(the statement of) the main result.

Lemma 2.2. Let κ2 := ∫ κ(x)2 dx and assume that (A1)–(A5) and (A9) hold. Then

γp(x, y) := κ2

∞∑
k=−∞

Cov
(
1(−∞,x]

(
Gjp(p, εk)

)
,1(−∞,y]

(
Gjp(p, ε0)

))
(8)

is well-defined for any x, y ∈ R, and the mapping (x, y) �→ γp(x, y) is symmetric and positive
semi-definite. Moreover we have limn→∞ E[Ẽp,n(x)Ẽp,n(y)] = γp(x, y) for any x, y ∈ R.

As a consequence of Lemma 2.2 there exists a centered Gaussian process with covariance
function γp . This Gaussian process (respectively a suitable modification of it) will play the role
of the limiting process in Theorem 2.4 below.

For any λ ∈ R+, let D(λ) be the set of all bounded càdlàg functions v : R → R with
limx→±∞ v(x) = 0 and ‖v‖(λ) (= supx∈R |v(x)|φλ(x)) < ∞. We equip D(λ) with the nonuni-
form sup-norm ‖·‖(λ) and with the σ -algebra D(λ) generated by the open balls w.r.t. ‖·‖(λ), often
referred to as open-ball σ -algebra. Convergence in distribution will take place in (D(λ),‖ · ‖(λ)).
Empirical processes are known not to be Borel measurable w.r.t. sup-norms but only measur-
able w.r.t. the open-ball σ -algebra. In our setting the Borel σ -algebra is indeed strictly larger
than the open-ball σ -algebra D(λ) (which is possible due to the non-separability of càdlàg
spaces w.r.t. sup-norms), and the D(λ)-measurability of (empirical) processes is a simple con-
sequence of Lemma 4.1 in [4] (which states that D(λ) coincides with the σ -algebra gener-
ated by the one-dimensional coordinate projections). Since continuous functions f : D(λ) → R

can be non-measurable w.r.t. D(λ), we will say that a sequence (�n)n∈N of D(λ)-measurable
maps �n : � → D(λ) converges in distribution w.r.t. the open-ball σ -algebra to some separable
(D(λ),D(λ))-valued random variable � (in symbols �n �◦ �) if

∫
f dP ◦ �−1

n → ∫ f d law(�)

for all bounded, ‖ · ‖(λ)-continuous and D(λ)-measurable functions f : D(λ) → R. This type of
convergence was used in [20,21]; see also [6], Section 1.6, and the Appendices of [4,5] for fur-
ther details. When the limiting process � is continuous, �n �◦ � is equivalent to convergence
in distribution of �n to � in the Hoffmann-Jørgensen sense [17]; see Remark 2.5 below.

Lemma 2.3. Assume that assumptions (A1)–(A5) and (A9) hold and let γp be defined as in (8).
Then any centered Gaussian process with covariance function γp possesses a modification whose
paths all lie in the set C(λ) of all continuous elements of D(λ).
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Lemma 2.3 ensures that we may and do assume that the Gaussian limiting process in the fol-
lowing theorem takes values only in a separable and measurable subset of D(λ). This is crucial for
the claim of the theorem. The processes Ep,n and Ẽp,n were defined in (4) and (5), respectively.

Theorem 2.4. If conditions (A1)–(A9) hold true for some common λ ≥ 0, then

Ẽp,n(·) �◦ Bp in
(
D(λ),D(λ),‖ · ‖(λ)

)
(9)

for a continuous centered Gaussian process Bp with covariance function γp as defined in (8). In
particular, if we assume in addition

√
nbn‖Fp,n(·) −E[F̂p,n(·)]‖(λ) → 0,

Ep,n(·) �◦ Bp in
(
D(λ),D(λ),‖ · ‖(λ)

)
. (10)

Remark 2.5. As the limiting process Bp in (9) and (10) is continuous, we may replace in either
case �◦ by convergence in distribution in the Hoffmann-Jørgensen sense [17] (usually denoted
by �∗). This is ensured by part (i) of Theorem 1.7.2 in [24].

Recall that by definition a sequence (�n)n∈N of maps �n : � → D(λ) (possibly not being
Borel-measurable w.r.t. ‖ · ‖(λ)) is said to converge in distribution in the Hoffmann-Jørgensen
sense to some Borel-measurable (D(λ),‖ · ‖(λ))-valued random variable � if

∫ ∗
f dP ◦ �−1

n →∫
f d law(�) for all bounded and ‖ · ‖(λ)-continuous functions f : D(λ) → R. Here

∫ ∗ refers to
the outer integral (as introduced in, e.g., Section 1.2 in [24]).

The following Lemma 2.6 provides sufficient conditions for the additional condition in the
second part of Theorem 2.4 to hold. It involves the following two conditions.

(B2) limn→∞ nb
(3q+1)/(q+1)
n = 0.

(B4) ‖Gjp(π, ε0) − Gjp(π ′, ε0)‖q ≤ Cp,q |π − π ′| for all π,π ′ ∈ (pjp ,pjp+1].
Note that conditions (A2) and (B2) on the bandwidth bn are simultaneously fulfilled if, for in-
stance, bn = n−β for some β ∈ (

q+1
3q+1 ,1).

Lemma 2.6. If (B2), (A3), (B4) hold true for some λ ∈ [0,∞), q ∈ [λ,∞) ∩ (0,∞), Cp,q ∈
[0,∞), then limn→∞

√
nbn‖E[F̂p,n] − Fp,n‖(λ) = 0.

The proofs of Theorem 2.4 and Lemmas 2.2, 2.3, 2.6 will be carried out in Section 4 and in
Sections 1–2 of the supplemental article [18]. There we will frequently use that under (A1) and
(A2)

cn =O
(
(nbn)

−1) (in particular cn

√
nbn =O

(
(nbn)

−1/2)), (11)

which follows from
∑n

i=1 κ(
i−ip,n

nbn
) = nbn

∫ +1
−1 κ(u)du +O(1) under (A1) and (A2).

2.3. Some comments

It is worth mentioning that the structural change points p1, . . . , p� in the time series model (2)
do not have any impact on the mathematical result of Theorem 2.4. On the one hand, the number
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of observations Xn,i that the estimator F̂p,n effectively employs is proportional to nbn, or more
specifically the time index i of any effectively employed observation satisfies |i− ip,n| ≤ nbn. On
the other hand, ip,n lies in the interval (npjp , npjp+1) (for sufficiently large n) and the number
of observations with time index i in between npjp and ip,n and the number of observations
with time index i in between ip,n and npjp+1 are proportional to n. Since nbn increases at
a lower rate than n (recall assumption (A2)), it follows that for sufficiently large n the time
indices i of the observations Xn,i that are effectively used by the estimator F̂p,n all lie in the
(same) interval (npjp , npjp+1) or, equivalently, the corresponding relative indices i/n all lie in
the (same) interval (pjp ,pjp+1). So we could have basically restricted ourselves to the case � = 0
(no break point).

On the other hand, several real world dynamics are subject to structural break points and can
be considered locally stationary only piecewise. See for instance the discussions and examples in
[12,28]. To make explicitly clear that our approach is applicable in such “real world” examples,
we decided to present the model in its full generality (� ≥ 1). In this context, it should also be
mentioned that the specific choice of the bandwidth bn for finite sample size n is an important
issue in practical applications. The bandwidth bn should obviously be chosen in such a way
that all of the observations effectively used by F̂p,n lie in between the same two adjacent break
points. That means that bn cannot be chosen independently of the break points. But this means
at the same time that the estimation of the break points is a crucial issue to be addressed in future
research.

Finally, we would like to point out that if our time series (2) is stationary in between any two
adjacent break points (i.e., if the functions Gj are independent of the first argument) and if the
bandwidth bn satisfies condition (A2), then, in view of the first paragraph of this Section, Theo-
rem 1 in [27] (with sample size “n := nbn”) provides basically the same result as Theorem 2.4
(with K = 1

21[−1,1], respectively a smooth approximation of it).

2.4. Illustrating examples

2.4.1. PLS linear processes

As in Example 2.1, let for any j = 0, . . . , � specifically Gj(π, (xk)k∈N) :=∑∞
s=0 aj,s(π)xi+s for

some functions aj,s : (pj ,pj+1] → R, s ∈ N0. In this case the corresponding process (Xn,i)
n
i=1

can be seen as a PLS linear process. Without loss of generality, we assume aj,0 ≡ 1.

Corollary 2.7. Let assumptions (A1) and (A2) be fulfilled. Assume that ajp,s is continuously
differentiable on (pjp ,pjp+1] for any s ∈ N, and that the distribution of ε0 has a Lebesgue
density fε that is twice continuously differentiable. Moreover, assume that for some given λ ∈
[0,∞) the following assertions hold.

(a)
∑∞

s=1 supπ∈(pj ,pj+1] |aj,s(π)| < ∞, j = 0, . . . , �, and supπ∈(pjp ,pjp+1] |ajp,s(π)| = O(as)

for some a ∈ [0,1).
(b)
∑∞

s=1 supπ∈(pjp ,pjp+1 ] |a′
jp,s(π)|q ′

< ∞ for some q ′ ∈ (0,1].
(c) ‖ε0‖γ < ∞ for some γ ∈ (2λ + 3,∞).
(d) ‖f ′

ε‖(α) < ∞ and ‖f ′′
ε ‖(β) < ∞ for some α ∈ (λ + 1/2,∞) and β ∈ (1/2 − λ,∞).
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Then (9) holds true. Moreover, if in addition (b) is satisfied for q ′ := 1 and condition (B2) is
satisfied for q := 2λ + 4, then also (10) holds true.

In the proof of Corollary 2.7 in Section 2.5 of the supplemental article [18], we will show that
the assumptions of the corollary imply (A3)–(A9) and (B4).

2.4.2. PLS ARCH processes

Recall that the filters Gn, n ∈ N, introduced in (1) are generated by G0, . . . ,G�, and that ε =
(εk)k∈Z is a two-sided sequence of i.i.d. real-valued random variables on some probability space
(�,F,P). Assume that εk , k ∈ Z, are nonnegative and that

Gj(π,xi ) =
(

aj,0(π) +
P∑

s=1

aj,s(π)Gj (π,xi−s)

)
xi

for any π ∈ (pj ,pj+1], Pε-a.e. x ∈ R
Z (12)

for any j = 0, . . . , � and i ∈ N. Here, P ∈ N is fixed, aj,s : [pj ,pj+1] → R+, s = 0, . . . ,P ,
are any functions, and x := (xk)k∈Z as well as xi := (xi, xi−1, xi−2, . . .). The existence of such
functions G0, . . . ,G� under certain restrictions on aj,s and ε0 will be provided in Lemma 2.8
below. In this case, we have in particular

Gj(i/n, εi ) = ρn,i,j εi P-a.s.,where ρn,i,j := aj,0(i/n) +
P∑

s=1

aj,s(i/n)Gj (i/n, εi−s) (13)

for any j = 0, . . . , �, n ∈ N, and i = 1, . . . , n with i/n ∈ (pj ,pj+1]. If no structural break is
possible (i.e., � = 0), then (13) can be seen as a variant of the time-varying ARCH (tvARCH)
model introduced by Dahlhaus and Subba Rao [11] (and developed further by Fryzlewicz et
al. [13], Fryzlewicz and Subba Rao [14], and others). In the latter references the roles of ρn,i,0
and G0(i/n, εi−s) are played by σ 2

i and X2
i−s respectively (similarly as in [15], page 4, in the

stationary case). However, we do not only allow for smooth but also for abrupt changes of the
coefficients (i.e., � ≥ 1).

As before let Xn,i be defined by (2) (with G0, . . . ,G� defined by (14) below). In view of (13)
and the preceding comments, we refer to the process (Xn,i)

n
i=1 as PLS ARCH(P) process. With

regard to applications one might think of Xn,i for instance, as the absolute value or squared value
of an asset return.

Let us give a criterion for (12) to be valid (see Lemma 2.8 below). To this end let v(1) refer to
the first entry of a vector v ∈R

P and set

bj (π, x) :=

⎡⎢⎢⎢⎢⎢⎣
aj,0(π)x

0
0
...

0

⎤⎥⎥⎥⎥⎥⎦ ,
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Aj(π,x) :=

⎡⎢⎢⎢⎢⎢⎣
aj,1(π)x aj,2(π)x . . . aj,P−1(π)x aj,P (π)x

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
for any π ∈ [0,1] and x ∈ R. Under the validity of assertion (i) of Lemma 2.8 below we may
define a function Gj : [pj ,pj+1] ×R

N → R by

Gj

(
π, (xk)k∈N

)
:=

⎧⎪⎪⎨⎪⎪⎩
bj (π, x1)(1) +

( ∞∑
r=0

{
r∏

t=0

Aj(π,xt+1)

}
bj (π, xr+2)

)
(1)

, (xk)k∈N /∈ N,

0, (xk)k∈N ∈ N

(14)

for some suitable Pε -null set N . In this case, we have

Gj(π, εi ) = bj (π, εi)(1) +
∞∑

r=0

{[
r∏

s=0

Aj(π, εi−s)

]
bj (π, εi−r−1)

}
(1)

for any π ∈ (pj ,pj+1], P-a.s. (15)

for any j = 0, . . . , � and i ∈ N. Note that (15) is in line with the vector representation of ARCH
and GARCH processes considered in [1,7,14,22] and others.

In the following lemma, we mean by solution to (12) a measurable map Gj : [pj ,pj+1] ×
R
N → R for which (12) holds for any i ∈ N. We say that two solutions Gj and Hj generate

the same samples almost surely if Gj(i/n, εi ) = Hj(i/n, εi ) for all j = 0, . . . , �, n ∈ N and
i = 1, . . . , n with i/n ∈ [pj ,pj+1] P-a.s. The proof of the lemma can be found in Section 2.6 of
the supplemental article [18].

Lemma 2.8. Assume that ‖ε0‖q maxj=0,...,�

∑P
s=0 supπ∈[pj ,pj+1] aj,s(π) < 1 for some q ∈

[1,∞). Then for any j = 0, . . . , � the following assertions hold true.

(i) For any fixed t ∈ N, ‖ supπ∈[pj ,pj+1]
∑∞

r=0{[
∏r

s=0 Aj(π, εt−s)]bj (π, εt−r−1)}(1)‖q < ∞
and, in particular, P-a.s. the series

∑∞
r=0{[
∏r

s=0 Aj(π, εt−s)]bj (π, εt−r−1)}(1) con-
verges for any π ∈ [pj ,pj+1].

(ii) The function Gj defined by (14) is a solution of (12).
(iii) If another solution Hj of (12) satisfies ‖Hj(i/n, ε0)‖q < ∞ for all n ∈ N and i =

1, . . . , n with i/n ∈ [pj ,pj+1], then Hj and Gj generate the same samples almost surely.

Corollary 2.9. Let assumptions (A1) and (A2) be fulfilled. Assume that ajp,s is continuously
differentiable on [pjp ,pjp+1] for any s = 0, . . . ,P , and that the distribution of ε0 has a Lebesgue
density fε that is twice continuously differentiable. Moreover, assume that for some given λ ∈
[0,∞) the following assertions hold.
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(a) minj=0,...,� infπ∈(pjp ,pjp+1] aj,0(π) > 0, and

‖ε0‖q max
j=0,...,�

P∑
s=0

sup
π∈(pj ,pj+1]

aj,s(π) < 1 for some q ∈ (4λ + 2,∞).

(b) ‖fε‖(γ ) + ‖f ′
ε‖(γ ) < ∞ for some γ ∈ (2λ + 1,∞).

(c) ‖f ′′
ε ‖(0) < ∞.

Then (9) holds true. Moreover, if in addition condition (B2) is satisfied for q from assumption
(a), then also (10) holds true.

In the proof of Corollary 2.9 in Section 2.7 of the supplemental article [18], we will show that
the assumptions of the corollary imply (A3)–(A9) and (B4).

3. Applications

3.1. A preliminary result

Theorem 2.4 and Lemma 2.6 show that the convergence in (10) holds true if conditions (A1)–
(A9) as well as (B2) and (B4) are satisfied. By the following Lemma 3.1 (and Slutsky’s theorem
in the form of Corollary A.2 in [5]) we can immediately conclude that under the same assump-
tions √

nbn

(
F̂p,n(·) − Fp(·))�◦ Bp in

(
D(λ),D(λ),‖ · ‖(λ)

)
, (16)

because Lemma 3.1 ensures √
nbn‖Fp,n − Fp‖(λ) → 0. (17)

Here Fp refers to the distribution function of ξp introduced a few lines before (3). Lemma 3.1
involves the following condition.

(C2) limn→∞ n(1−q)/(1+q)bn = 0.

Note that (B2) implies (C2), and that (A2) implies (C2) if q ≥ 1.

Lemma 3.1. If (C2), (A3), (B4) hold true for some λ ∈ [0,∞), q ∈ [λ,∞) ∩ (0,∞), Cp,q ∈
[0,∞), then (17) holds.

In the proof of Lemma 3.1 (see Section 2.8 of the supplemental article [18]), we will show that
(A3) and (B4) imply ‖Fp,n − Fp‖(λ) = O(n−q/(q+1)); together with (C2) this ensures the claim
of the lemma. Let us summarize our findings.

Corollary 3.2. Assume that (A1)–(A9) hold for some common λ ∈ [0,∞). Moreover, assume
that (B2) and (B4) hold for some q ∈ [λ,∞) ∩ (0,∞) with the same λ. Then (16) and (17) hold.
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3.2. Weighted empirical quantiles

The (lower) α-quantile functional associated with some given level α ∈ (0,1) is defined by

Qα(F ) := inf
{
x ∈R : F(x) ≥ α

}
on the set of all distribution functions F on the real line. Given the time series Xn,1, . . . ,Xn,n,
it can be reasonable to use Qα(F̂p,n) as an estimator for Qα(Fp,n). Note that Qα(F̂p,n) can
be seen as a weighted α-quantile. The estimator F̂p,n is indeed supported by the finite set
{Xn,1, . . . ,Xn,n}, but the mass assigned to the individual points of this set is not uniform. More
precisely, denoting by Xn,1(n), . . . ,Xn,n(n) the order statistics of Xn,1, . . . ,Xn,n, that is, using
i(n) to denote the time index of the i-th largest element of Xn,1, . . . ,Xn,n (where the specific
ranking of elements with the same value is not relevant), we have

Qα(F̂p,n) = Xn,k(n) for the smallest k ∈ {1, . . . , n} with
k∑

i=1

wn

(
i(n)
)≥ α,

where wn(i(n)) := cnκ(
i(n)−ip,n

nbn
) refers to the mass assigned to Xn,i(n).

Given (16) and (17), we can use the functional delta-method to obtain√
nbn

(
Qα(F̂p,n) −Qα(Fp,n)

)
� Zα (18)

for some centered normally distributed random variable Zα with variance

Var[Zα] = γp(F−1
p (α),F−1

p (α))

F ′
p(F−1

p (α))2
(19)

under some assumption on Fp , where γp is the covariance function defined by (8). In fact, we
even get a process version of (18) for the corresponding quantile process, namely(√

nbn

(
Qα(F̂p,n) −Qα(Fp,n)

))
α∈[α1,α2] �∗ (Zα)α∈[α1,α2] in �∞([α1, α2]

)
(20)

for a continuous centered Gaussian process (Zα)α∈[α1,α2] with covariance function

Cov(Zα,Zβ) = γp(F−1
p (α),F−1

p (β))

F ′
p(F−1

p (α))F ′
p(F−1

p (β))
, (21)

where 0 < α2 < α2 < 1 are arbitrary but fixed.

Theorem 3.3. Assume that (16) and (17) hold for λ = 0. If Fp is continuously differen-
tiable on a closed interval [a1, a2] ⊆ (0,1) with strictly positive derivative, and a1 < F−1

p (α1),

F−1
p (α2) < a2, then (20) holds. In particular, if Fp is continuously differentiable in a neighbor-

hood of F−1
p (α) with strictly positive derivative at F−1

p (α), then (18) holds.
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Proof. In view of (16) and Remark 2.5, we obtain by Lemma 21.4 and Theorem 20.8 in
[23] that (

√
nbn(Qα(F̂p,n) − Qα(Fp)))α∈[α1,α2] �∗ (Zα)α∈[α1,α2] in �∞([α1, α2]), noting that

(Zα)α∈[α1,α2] defined by Zα := −Bp(F−1
p (α))/F ′

p(F−1
p (α)) is a continuous centered Gaussian

process with covariance function as in (21). Moreover, in view of (17), we obtain by another
application of Lemma 21.4 and Theorem 20.8 in [23] (to purely deterministic processes) that
(
√

nbn(Qα(Fp,n) −Qα(Fp)))α∈[α1,α2] → 0. Along with Slutsky’s theorem (in the form of The-
orems 18.10(v) and 18.11(i) in [23]) this gives (20). This proves the first assertion. The second
assertion is implied by the first one. �

3.3. Weighted V-statistics

The V-functional (von Mises functional) of degree two associated with some given measurable
function g :R2 → R (often referred to as kernel) is defined by

Vg(F ) :=
∫∫

g(x1, x2) dF (x1) dF (x2) (22)

on the set Fg of all distribution functions F on the real line for which the double integral in (22)
exists. Given the time series Xn,1, . . . ,Xn,n, it can be reasonable to use Vg(F̂p,n) as an estimator
for Vg(Fp,n). Note that Vg(F̂p,n) can be seen as a weighted V-statistic. It indeed admits the
representation

Vg(F̂p,n) =
n∑

i=1

n∑
j=1

wn(i, j)g(Xn,i ,Xn,j )

with wn(i, j) := c2
nκ(

i−ip,n

nbn
)κ(

j−ip,n

nbn
).

Given (16) and (17), we can follow the continuous mapping approach by Beutner and Zähle
[3] to show that under some assumptions (see Theorem 3.4 below)√

nbn

(
Vg(F̂p,n) − Vg(Fp,n)

)
� Z (23)

for some centered normally distributed random variable Z with variance

Var[Z] =
∫∫

γp(x1, x2) dgFp(x1) dgFp(x2), (24)

where γp is the covariance function defined by (8), and gFp := g1,Fp + g2,Fp with g1,Fp (·) :=∫
g(·, x2) dFp(x2) and g2,Fp (·) := ∫ g(x1, ·) dFp(x1).
Let us collect the assumptions we need for (23). Assume Fp ∈ Fg and Fp,n ∈ Fg as well

as
∫∫ |g(x1, x2)|dFp,n(x1) dFp(x2) < ∞ and

∫∫ |g(x1, x2)|dFp(x1) dFp,n(x2) < ∞ for any
n ∈ N. Assume that g1,Fp and g2,Fp are right-continuous and locally of bounded variation, that
g is upper right-continuous and locally of bounded bivariation, and that gx1(·) := g(x1, ·) and
gx2(·) := g(·, x2) are locally of bounded variation for every fixed real x1 and x2, respectively.
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Under some weak additional assumptions (see, e.g., Remark 3.5) making the tail behavior of gFp

and Fp and of g and Fp compatible, one can derive from (22) the decomposition

Vg(F̂p,n) − Vg(Fp) = −
∫

(F̂p,n − Fp)(x−) dgFp(x)

+
∫∫

(F̂p,n − Fp)(x1−)(F̂p,n − Fp)(x2−) dg(x1, x2) (25)

and its analogue with F̂p,n replaced by Fp,n. Then, under (16) and (17), the continuous mapping
theorem (in the form of Theorem 6.4 of [6]) and Slutsky’s theorem (in the form of Corollary A.2
in [5]) imply the following theorem, where one should note that Z := − ∫ Bp(x−) dgFp(x) is
normally distributed with variance as in (24).

Theorem 3.4. Assume that (16) and (17) hold for some λ ∈ [0,∞) and that Fp is continuous.
Moreover, assume that (25) and its analogue with F̂p,n replaced by Fp,n hold for any n ∈N, and
that
∫

φ−λ(x)|dgFp |(x) < ∞ and
∫∫

φ−λ(x1)φ−λ(x2)|dg|(x1, x2) < ∞. Then (23) holds.

Remark 3.5. The conditions in Lemmas 3.4 and 3.6 in [3] (with F̂n, F replaced by F̂p,n, Fp)
provide simple (but lengthy) conditions for (25). The analogous assumptions with F̂p,n replaced
by Fp,n ensure (25) with F̂p,n replaced by Fp,n.

In some situations the function gFp introduced subsequent to (24) is constant so that the first
summand on the right-hand side of (25) vanishes. In this case, the weighted V-statistic is said
to be degenerate w.r.t. Fp . For degenerate (weighted) V-statistics the variance in (24) is ob-
viously equal to 0. Nevertheless for many degenerate (weighted) V-statistics one can derive a
non-degenerate limiting distribution. Replacing the normalizing factor

√
nbn by nbn, one can

derive the following variant of (23):

nbn

(
Vg(F̂p,n) − Vg(Fp,n)

)
� Y (26)

with Y := ∫∫ Bp(x1−)Bp(x2−) dg(x1, x2). Indeed, in view of (25) an application of the contin-
uous mapping theorem (in the form of Theorem 6.4 of [6]) along with Slutsky’s theorem (in the
form of Corollary A.2 in [5]) yields the following result.

Theorem 3.6. Assume that the assumptions of Theorem 3.4 hold and that the weighted V-statistic
is degenerate w.r.t. Fp . Then (26) holds.

As elaborated in Section 3.2 of [3], the set of kernels g that satisfy the conditions mentioned
in Remark 3.5 (and thus admit the representation (25)) include the kernels corresponding to
the variance, to Gini’s mean difference, to the Cramér–von Mises goodness-of-fit test statistic,
and to the Arcones–Giné test statistic for symmetry. The latter two kernels lead to degenerate
(weighted) V-statistics; see Examples 3.13 and 3.14 in [3]. Let us detail out two of the four
mentioned examples.
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Example 3.7 (Gini’s mean difference). Let specifically g(x1, x2) := |x1 − x2|. If F is a distri-
bution function on the real line that has a finite first absolute moment, then Vg(F ) equals Gini’s
mean difference E[|X1 − X2|] of two i.i.d. random variables X1 and X2 distributed according
to F . Assume that (16) and (17) hold for some λ ∈ (1,∞) and that Fp is continuous and satisfies
‖Fp −1[0,∞)‖(λ) < ∞. It can be easily seen from the elaborations in Example 3.10 of [3] that the
assumptions of Theorem 3.4 hold true for this choice of λ and Fp . Thus, Theorem 3.4 implies
(23) where dg1,Fp (x) = dg2,Fp (x) = (2Fp(x) − 1) dx (see Example 3.1 of [2]) for the specific
choice of g.

Example 3.8 (Cramér–von Mises test statistic). Assume that Fp,n approximates Fp as n → ∞
in a suitable sense (below we will specifically require (17) with λ = 0). Let F 0

p be a distribution
function on the real line. For large n, the Cramér–von Mises test statistic

T̂ 0
n :=
∫ (

F̂p,n(x) − F 0
p(x)
)2

dF 0
p(x)

based on the estimator F̂p,n is a candidate for testing the null hypothesis Fp = F 0
p (or, a little

more informally, Fp,n ∼ F 0
p ). It can be expressed as V-statistic Vg(F̂p,n) with kernel

g(x1, x2) :=
∫ (

1[x1,∞)(x) − F 0
p(x)
)(

1[x2,∞)(x) − F 0
p(x)
)
dF 0

p(x). (27)

Under the null Fp = F 0
p we have g1,Fp ≡ g2,Fp ≡ 0 (i.e. Vg(F̂p,n) is degenerate w.r.t. Fp). This

implies that under the null the expression in (24) is equal to zero, and therefore Theorem 3.4 is
not profitable in the present case. Though we can employ Theorem 3.6.

Assume that (16) and (17) hold for λ = 0 and that Fp is continuous and Fp = F 0
p . It can be

easily seen from the elaborations in Example 3.13 of [3] that the assumptions of Theorem 3.4
hold true for λ = 0. Thus, Theorem 3.6 implies (26) where dg(x1, x2) = H1

F 0
p
(d(x1, x2)) with

H1
F 0

p
(A) := ∫ δ(x,x)(A)dF

p

0 (x), A ∈ B(R2), for the specific choice of g in (27).

In Corollary 1 and Example 2 in [29], Zhou presents the analogue of (23) with Vg(Fp,n)

replaced by Vg(E[F̂p,n]). More precisely, he proves that the standardized V-statistic (Vg(F̂p,n)−
E[Vg(F̂p,n)])/Var[Vg(F̂p,n)]1/2 is asymptotically standard normal under similar assumptions.
In Theorem 3 and Corollary 4 in [29], he also presents an analogue of Theorem 3.6, where he
establishes that a class of degenerated weighted V-statistics will converge to a mixture of i.i.d.
centered χ2(1) random variables.

4. Proof of Theorem 2.4

In the following, we will only show that (9) holds true, because (10) is a trivial consequence of
(9) and Slutsky’s theorem (in the form of Corollary A.2 in [5]). For (9) it suffices to show

φλẼp,n �◦ φλBp in
(
D(0),D(0),‖ · ‖(0)

)
(28)
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(note that ‖ ·‖(0) = ‖·‖∞). Indeed, the continuous mapping theorem (in the form of Theorem 6.4
of [6]) and the continuity of the mapping v �→ v/φλ from (D(0),‖·‖(0)) to (D(λ),‖·‖(λ)) together
ensure that (28) implies (9). To show (28) we will verify in Sections 4.1 and 4.2 that conditions
(a) and (b) of the following Theorem 4.1 are satisfied, if φλẼp,n and φλBp play the roles of ξn and
ξ , respectively. Thus, (28) is a consequence of Theorem 4.1. Theorem 4.1 is a straightforward
generalization of Theorem V.1.3 in [20]; we omit its proof.

Theorem 4.1. Let ξn be a (D(0),D(0))-valued random variable on some probability space
(�n,Fn,Pn) for every n ∈ N. Let C(0) ∈ D(0) be separable, and ξ be a (D(0),D(0))-valued
random variable on some probability space (�,F,P) such that ξ ∈ C(0) P-a.s. Assume that the
following two conditions hold.

(a) The finite-dimensional distributions of ξn converge in distribution to those of ξ .
(b) For every ε > 0 and δ > 0 there exist k ∈ N and a partition −∞ = x0 < x1 < · · · < xk <

xk+1 = ∞ such that

lim sup
n→∞

Pn

[
max

i=0,...,k
sup

x∈[xi ,xi+1)

∣∣ξn(x) − ξn(xi)
∣∣≥ δ
]

≤ ε.

Then ξn �◦ ξ in (D(0),D(0),‖ · ‖(0)).

Note that φλẼp,n and φλBp take values in D(0) and C(0), respectively. This is ensured by
Lemma 1.1 in the supplemental article [18] and Lemma 2.3, respectively.

4.1. Verification of condition (a) of Theorem 4.1

Let x = (x1, . . . , xd) ∈ R
d be arbitrary but fixed, and assume that x1 < · · · < xd . Here we show

that (under assumptions (A1)–(A5) and (A9)) we have(
φλ(x1)Ẽp,n(x1), . . . , φλ(xd)Ẽp,n(xd)

)′ � (φλ(x1)Bp(x1), . . . , φλ(xd)Bp(xd)
)′
.

By the continuous mapping theorem (in the form of Theorem 6.4 of [6]) it suffices to show that(
Ẽp,n(x1), . . . , Ẽp,n(xd)

)′ � (Bp(x1), . . . ,Bp(xd)
)′
.

Due to the Cramér–Wold theorem it even suffices to show that

d∑
k=1

λk Ẽp,n(xk) �
d∑

k=1

λkBp(xk) (29)

for every λ = (λ1, . . . , λd) ∈ R
d . For the proof of (29), we borrow arguments from the proof of

Theorem 1 in [29]. Setting

Yn,i(x,λ) :=
d∑

k=1

λkκ

(
i − ip,n

nbn

)(
1[Xn,i ,∞)(xk) −E

[
1[Xn,i ,∞)(xk)

])
,

Y
{mn}
n,i (x,λ) := E

[
Yn,i(x,λ)

∣∣εi:i−mn

]
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with εi:i−mn := (εi, εi−1, . . . , εi−mn+1) and mn := �log(n)�, the left-hand side of (29) can be
written as

d∑
k=1

λkẼp,n(xk)

= cn

√
nbn

n∑
i=1

Yn,i(x,λ)

= cn

√
nbn

(
n∑

i=1

Yn,i(x,λ) −
n∑

i=1

Y
{mn}
n,i (x,λ)

)
+ cn

√
nbn

n∑
i=1

Y
{mn}
n,i (x,λ)

=: Sn,1(x,λ) + Sn,2(x,λ). (30)

The summand Sn,1(x,λ) converges in probability to 0 by Lemma 1.4 in the supplemental article
[18] and (11). We will now prove that the summand Sn,2(x,λ) converges in distribution to the
right-hand side in (29), which is a centered normally distributed random variable with variance

Var

[
d∑

k=1

λkBp(xk)

]
=

d∑
k=1

d∑
l=1

λkλlE
[
Bp(xk)Bp(xl)

]= d∑
k=1

d∑
l=1

λkλlγp(xk, xl). (31)

Along with Slutsky’s theorem, this gives (29).
If the expression in (31) vanishes, then

∑d
k=1 λkBp(xk) = 0 P-a.s. and limn→∞ Var[∑d

k=1

λkẼp,n(xk)] = 0 by Lemma 2.2. The latter convergence implies limn→∞ ‖∑d
k=1 λkẼp,n(xk)‖2 =

0, i.e. limn→∞ ‖∑d
k=1 λkẼp,n(xk) −∑d

k=1 λkBp(xk)‖2 = 0. Thus
∑d

k=1 λk Ẽp,n(xk) converges
in distribution to

∑d
k=1 λkBp(xk), i.e. (29) holds.

Now assume that the expression in (31) is strictly greater than 0. Then it suffices to show that

Sn,2(x,λ)√
Var[∑d

k=1 λkBp(xk)]
� Z

for a standard normally distributed random variable Z. By Slutsky’s theorem and Lemma 1.7(iv)
in the supplemental article [18] this is equivalent to

Sn,2(x,λ)√
Var[Sn,2(x,λ)] � Z. (32)

To verify (32), we split Sn,2(x,λ) into sums

Sn,2(x,λ) = cn

√
nbn

�n/sn�∑
j=1

Rn,j (x,λ) + cn

√
nbn

�n/sn�∑
j=1

rn,j (x,λ) (33)
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of �n/sn� many big blocks

Rn,j (x,λ) :=
ln∑

i=1

Y
{mn}
n,(j−1)sn+i (x,λ), j = 1,2, . . . , �n/sn�, (34)

and �n/sn� many small blocks

rn,j (x,λ) :=
sn∑

i=ln+1

Y
{mn}
n,(j−1)sn+i (x,λ), j = 1,2, . . . , �n/sn�, (35)

where ln := �√nbn� and sn := ln + �(logn)2�. Recall mn = �log(n)�, and note that the big
blocks are independent since sn − ln > mn − 2, and that the small blocks are independent since
mn < ln + 2.

Now, cn

√
nbn

∑�n/sn�
j=1 rn,j (x,λ) converges in probability to 0 by (23) in the supplemental

article [18] and (11). Moreover, limn→∞ Var[Sn,2(x,λ)]/Var[cn

√
nbn

∑�n/sn�
j=1 Rn,j (x,λ)] = 1

by Lemma 1.7(ii) in the supplemental article [18] and (11). Thus, in view of (33) and Slutsky’s
theorem, for (32) it suffices to show

cn

√
nbn

∑�n/sn�
j=1 Rn,j (x,λ)

(Var[cn

√
nbn

∑�n/sn�
j=1 Rn,j (x,λ)])1/2

=
∑�n/sn�

j=1 Rn,j (x,λ)

(Var[∑�n/sn�
j=1 Rn,j (x,λ)])1/2

� Z. (36)

The big blocks, that is, the random variables in (34), are independent and centered. Thus, in view
of Lyapunov’s central limit theorem, for (36) it suffices to verify that the Lyapunov condition
holds for

∑�n/sn�
j=1 Rn,j (x,λ). For q ∈ (2,∞) as in (A5) and sufficiently large n we have∑�n/sn�

j=1 ‖Rn,j (x,λ)‖q
q

(Var[∑j Rn,j (x,λ)])q/2
≤ 1

c
q/2
λ

∑�n/sn�
j=1 ‖Rn,j (x,λ)‖q

q

(nbn)q/2

≤ 1

c
q/2
λ

C
q/2
λ,q

(
2nbn − √

nbn√
nbn + log2(n)

)
(‖κ‖2∞

√
nbn +O(1))q/2

(nbn)q/2
,

where we used Lemma 1.8 in the supplemental article [18] for the first step and Lemma 1.5(ii) in
the supplemental article [18] for the second step. The latter bound converges to 0 by (A2) (and
q > 2). This shows that the Lyapunov condition indeed holds.

4.2. Verification of condition (b) of Theorem 4.1

In this section, we will show that (under assumptions (A1)–(A3) and (A6)–(A8)) there exist for
every ε > 0 and δ > 0 some k ∈ N and a partition −∞ = x0 < x1 < · · · < xk < xk+1 = ∞ such
that

lim sup
n→∞

P

[
max

i=0,...,k
sup

x∈[xi ,xi+1)

∣∣Ẽp,n(x)φλ(x) − Ẽp,n(xi)φλ(xi)
∣∣≥ 2δ
]

≤ 2ε.
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For the proof, we use the same idea as in [27]. Since we can write

Ẽp,n(x) = cn

√
nbn

n∑
i=1

κ

(
i − ip,n

nbn

)(
1[Xn,i ,∞)(x) −E

[
1[Xn,i ,∞)(x)

])
as Ẽp,n(x) = Hp,n(x) + Qp,n(x) with

Hp,n(x) := cn

√
nbn

n∑
i=1

κ

(
i − ip,n

nbn

)(
1[Xn,i ,∞)(x) −E

[
1[Xn,i ,∞)(x)|εi−1

])
= cn

√
nbn

n∑
i=1

κ

(
i − ip,n

nbn

)(
1[Xn,i ,∞)(x) − Fn,i(x, εi−1)

)
,

Qp,n(x) := cn

√
nbn

n∑
i=1

κ

(
i − ip,n

nbn

)(
E
[
1[Xn,i ,∞)(x)|εi−1

]−E
[
1[Xn,i ,∞)(x)

])
= cn

√
nbn

n∑
i=1

κ

(
i − ip,n

nbn

)(
Fn,i(x, εi−1) −E

[
1[Xn,i ,∞)(x)

])
,

it suffices to prove that for every ε > 0 and δ > 0 there exist k1, k2 ∈ N and partitions −∞ =
x0 < x1 < · · · < xk1 < xk1+1 = ∞ and −∞ = x0 < x1 < · · · < xk2 < xk2+1 = ∞ with

lim sup
n→∞

P

[
max

i=0,...,k1
sup

x∈[xi ,xi+1)

∣∣Hp,n(x)φλ(x) − Hp,n(xi)φλ(xi)
∣∣≥ δ
]

≤ ε (37)

and

lim sup
n→∞

P

[
max

i=0,...,k2
sup

x∈[xi ,xi+1)

∣∣Qp,n(x)φλ(x) − Qp,n(xi)φλ(xi)
∣∣≥ δ
]

≤ ε. (38)

Let ε > 0 and δ > 0 be arbitrary but fixed. By Lemma 1.12(ii) of the supplemental article [18]
and Lemma 1.14(ii) of the supplemental article [18], we can find w1,ε ≥ 0 and w2,ε ≥ 0 such that

sup
n∈N

P

[
sup

|x|≥w1,ε

∣∣Hp,n(x)
∣∣φλ(x) ≥ δ

]
≤ ε, sup

n∈N
P

[
sup

|x|≥w2,ε

∣∣Qp,n(x)
∣∣φλ(x) ≥ δ

]
≤ ε.

Then (37) and (38) follow directly from Lemma 1.12(iii) of the supplemental article [18] and
Lemma 1.14(iii) of the supplemental article [18].
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Supplementary Material

Supplement to “Functional weak limit theorem for a local empirical process of non-
stationary time series and its application” (DOI: 10.3150/19-BEJ1174SUPP; .pdf). The sup-
plement [18] contains the technical details of the proof of Theorem 2.4 as well as the proofs of
all the other results.
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