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We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-
sum random fields. In this model, each copy in the aggregation is a ±1-valued random field built from two
correlated one-dimensional random walks, the law of each determined by a random persistence parameter.
A flexible joint distribution of the two parameters is introduced, and given the parameters the two corre-
lated random walks are conditionally independent. For the aggregated random field, when the persistence
parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence param-
eters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit
is more delicate, and in particular depends on the growth rates of the underlying rectangular region along
two directions: at different rates different operator-scaling Gaussian random fields appear as the region area
tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with
long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where
fractional Brownian sheets arise in the limit.

Keywords: aggregation; fractional Brownian sheet; functional central limit theorem; Gaussian random
field; long-range dependence; operator-scaling property

1. Introduction and main results

Long-range dependence phenomena are well known in various areas of applications, includ-
ing notably econometrics, finance, and network traffic modeling. It is also referred to as long
memory, particularly in time-series setup. Traditionally, a stationary stochastic process with fi-
nite second moment is considered to have long-range dependence if, roughly speaking, either
the covariance function has the power-law decay, or the spectral density has a singularity at the
origin. The two approaches are referred to in the literature as the time-domain approach and the
frequency-domain approach, respectively. Recently, interpretations of long-range dependence in
terms of limit theorems have become more and more popular: a stochastic model of interest may
be viewed to have long-range dependence if, for example, when compared to a similar model
with short-range dependence, the normalization in certain limit theorem for partial sums is of a
different order. The other model in comparison here may be the same model but with a differ-
ent choice of parameter, or a much simplified model for which the short-range dependence has
been well understood. The anomalous normalization already indicates the qualitatively different
behavior of the model. Moreover, a functional limit theorem provides a more precise description
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of the macroscopic dependence, in terms of the limit process, and new families of stochastic pro-
cesses have been discovered in this way. At the same time, limit theorems also provide insightful
explanation on how long-range dependence appears, and the limit process, due to the intrigu-
ing dependence structure inherited from the discrete model, may be of independent interest for
further investigation. Excellent references on long-range dependence in stochastic processes and
applications include for example, [2,26,31].

In the investigation of long-range dependence, two classes of models have prominent roles:
models via aggregation and models via filtration (often in the form of fractionally integrated
processes or random fields). We shall focus on aggregated models in this paper. One of the
most famous aggregated models is due to Robinson [30] and Granger [11], who showed that the
aggregation of autoregressive processes with random parameters may lead to long memory. In
particular, this model has received huge success in explaining the long memory phenomena in
many economics and financial data sets in the econometrics literature. Another area where ag-
gregated models have been extensively investigated is modeling long memory in network traffic.
See, for example, [13,22,23].

In the spatial setup, however, aggregated random fields have been much less developed than
their one-dimensional counterparts. See, for example, Lavancier [14,16] and references therein.
In particular, we are interested in aggregated spatial models of which, if scaled appropriately, the
limit random fields are operator-scaling Gaussian random fields. We say a random field {Gt }t≥0
is operator-scaling, if for some β1, β2,H > 0 we have

{Gλβ1 t1,λ
β2 t2

}t≥0
d= λH {Gt }t≥0, for all λ > 0. (1.1)

This is actually a special case of the operator-scaling property introduced by Biermé et al.
[6]. This property is an extension of the well-known self-similar property for one-dimensional
stochastic processes. Most operator-scaling random fields are anisotropic in the sense that they
have different scaling properties in different directions, a very desirable property from modeling
point of view. At the same time, this property also makes the analysis of such Gaussian random
fields very challenging, and they have attracted much research interest since its introduction.
See, for example, [18,21,35,36] for recent developments on path properties of operator-scaling
Gaussian random fields. Most operator-scaling random fields, as their one-dimensional counter-
parts, exhibit long-range dependence. Gaussian random fields with long-range dependence are
known to have applications in medical image processing [7,19] and hydrology [1,20]. Econo-
metric interpretation for aggregated models has also been discussed in the literature [17]. In
terms of limit theorems, not many models that scale to anisotropic operator-scaling Gaussian
random fields have been known, including notably [4,5,9,15,16,24,27,28,34]. Among these, only
Lavancier [16] and Puplinskaitė and Surgailis [28] considered certain aggregated random fields
(not strictly in our sense though, see Remark 1.7), while only Puplinskaitė and Surgailis [28]
considered anisotropic aggregated ones.

In this paper, we propose a new aggregated random-field model that scales to a large family of
anisotropic operator-scaling Gaussian random fields. Our model may be viewed as an extension
of the approximation of fractional Brownian motions by aggregated random walks introduced by
Enriquez [10]. In fact, Enriquez [10] proposed two different models for approximation of frac-
tional Brownian motions with Hurst index H > 1/2 and H < 1/2 respectively, and our extension
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is based on the one for H > 1/2 here. In this case, the Enriquez model can be viewed as an ag-
gregation of independent copies of correlated random walks, where the law of each correlated
random walk is completely determined by a random persistence parameter. We will investigate
in another paper the extension of the other Enriquez model (for H < 1/2), which is of a different
nature.

In particular, our model inherited a prominent feature from the one-dimensional model that,
in the aggregated model, each independent copy of the random field (or stochastic process in
one dimension) takes only ±1-values. It is appealing to restrict the values of model to ±1 from
numerical simulation point of view. It also provides better insight on the dependence structure.
Besides [10], a few recent limit theorems for ±1-valued discrete models with long-range depen-
dence include [5,8,9,12].

The extension to random fields, however, is by no means straightforward. For each random
field in the aggregation we are now searching for ±1-valued models with non-trivial anisotropic
dependence. The key idea is to consider two independent one-dimensional random walks as in the
Enriquez model, and define the random field as the product of the two sequences of ±1-valued
steps of each; the dependence of the so-obtained random field is then determined by assigning an
appropriate tail-dependence structure of the two persistence parameters (and keeping the random
walks conditionally independent). Our modeling of the tail dependence is flexible, so that a large
family of random fields arise in the limit, and also computable, so that we have explicit form of
the asymptotic covariance of the limit Gaussian field, which is in general much more complex
than in one dimension.

Below, we first review the Enriquez model in dimension one, and then introduce our general-
ization. The main results are then presented in Section 1.3.

1.1. Enriquez model in dimension one

Enriquez [10] proposed two aggregated models that scale to fractional Brownian motions, with
Hurst index H ∈ (1/2,1) and H ∈ (0,1/2) respectively. We shall focus exclusively on the first
one and its generalization to random fields, and we refer to this one as the Enriquez model in this
paper, for the sake of simplicity.

The Enriquez model consists of aggregation of a family of independent {±1}-valued stationary
sequences, with a parameter H ∈ (1/2,1). The model is as follows. First, a random variable q is
sampled from the probability distribution μH on (0,1) defined as

μH (dq) = (1 − H)23−2H (1 − q)1−2H 1{q∈(1/2,1)} dq. (1.2)

For the sake of convenience, with a slight abuse of notation we let q denote both a random
variable in general and the variable in the density formula. Then, a sequence of random variables
{εn}n∈N is sampled iteratively: ε1 is a {±1}-valued symmetric random variable, and for each
n ∈ N given the past and q , εn+1 is set to take the same value of εn with probability q , and the
opposite with probability 1 − q . The law of the so-sampled sequence {εn}n∈N is determined by,
given q and ε1,

P(εn+1 = 1 | ε1, . . . , εn, q) = q1{εn=1} + (1 − q)1{εn=−1}, n ∈ N. (1.3)
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Let Sn := ε1 + · · · + εn denote the partial sum of the stationary sequence. For each q fixed, the
sequence {Sn}n∈N can be viewed as a correlated {±1}-valued random walk, and q is referred to
as the persistence of the random walk. The partial-sum process {Sn(t)}t∈[0,1] of this sequence is
denoted by

Sn(t) :=
�nt�∑
j=1

εj , t ∈ [0,1], n ∈ N.

Next, consider i.i.d. copies of the stationary sequence ε, each copy denoted by εi ≡ {εi
n}n∈N.

Let {Si
n(t)}t∈[0,1] denote the partial-sum processes of the i-th sequence. Let {m(n)}n∈N denote

a increasing sequence of integers, and Ŝn(t) denote the aggregated partial-sum process of m(n)

i.i.d. sequences

Ŝn(t) :=
m(n)∑
i=1

Si
n(t) =

m(n)∑
i=1

�nt�∑
j=1

εi
j .

Enriquez [10], Corollary 1, proved that if limn→∞ m(n)/n2−2H = ∞, then

{
Ŝn(t)

nH

}
t∈[0,1]

⇒
√

�(3 − 2H)

H(2H − 1)

{
B

H
t

}
t∈[0,1]

in D([0,1]), where B
H is the fractional Brownian motion, a centered Gaussian process with

covariance function

Cov
(
B

H
s ,BH

t

) = 1

2

(
s2H + t2H − |s − t |2H

)
, s, t ≥ 0.

1.2. An aggregated random-field model

We consider the following generalization of the Enriquez model, consisting of independent
copies of a {±1}-valued stationary random field {Xn}n∈N2 . For each copy, a random vector
q = (q1, q2) is first sampled from a certain distribution μ on [1/2,1)2 to be described later.
Next, given q1, q2 ∈ [1/2,1), let ε(k) ≡ {ε(k)

n }n∈N, k = 1,2 be two conditionally independent
one-dimensional random walks with persistence q1 and q2, respectively as in the original En-
riquez model (each starting with P(ε

(k)
1 = ±1) = 1/2 and following the dynamics determined by

(1.3)). Then, consider the stationary random field

Xj := ε
(1)
j1

ε
(2)
j2

, j ∈ N
2.

The stationarity of X is easy to verify, regardless of the choice of μ. Let

Sn(t) :=
∑

j∈[1,n·t]
Xj
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denote the partial sum of the random field. Here and below, n · t = (n1t1, n2t2) ∈ R
2 and [a,b]

is understood as

[a,b] ≡ ([a1, b1] × [a2, b2]
) ∩Z

2, a,b ∈R
2

throughout the paper.
Next, let {Xi}i∈N be i.i.d. copies of X, and define Si

n(t) similarly as Sn(t). We then consider
the aggregated partial-sum random field {Ŝn(t)}t∈[0,1]2 given by

Ŝn(t) :=
m(n)∑
i=1

Si
n(t) ≡

m(n)∑
i=1

∑
j∈[1,n·t]

Xi
j , t ∈ [0,1]2,

with m(n) ∈N, the number of copies in the aggregation, to be chosen later.
Now we explain our choices of μ, the law of q = (q1, q2). Recall that this is a probability

measure on [1/2,1)2. We consider two cases of the model with drastically different behaviors:

(i) independent persistence, where we assume that q1 and q2 are independent and with law
μH1 and μH2 , respectively. That is, μ = μH1 ⊗ μH2 . This is the easiest case of our limit
theorems.

(ii) dependent persistence, where we assume that q1 and q2 are tail-dependent in the specific
way described below. This is the case to which most of our effort is devoted.

In the case of dependent persistence, we introduce a specific and flexible model to characterize
the tail dependence of q near (1,1) as follows, which satisfies the multivariate regular variation
assumption (see Remark 1.1 below). To start with, and for the convenience of analysis later, we
construct a random vector U ∈ (0,1]2 with law μ∗, and set μ as its induced measure on [1/2,1)2

by

q = (1,1) − U

2
.

To allow flexible and analytically tractable dependence between U1 and U2, let R be a positive
continuous random variable with probability density r−2 dr over (1,∞), and W = (W1,W2) be
a random vector taking values in

�1 := {
w ∈ (0,1)2 : w1 + w2 = 1

}
with law �. We assume that R and W are independent, and let α1, α2 be two constants in (0,2).
Then introduce

Ũk := (RWk)
−1/αk , k = 1,2, (1.4)

and set

U :=
{

(Ũ1, Ũ2) (Ũ1, Ũ2) ∈ (0,1)2

(1,1) otherwise
(1.5)

to address the practical issue that Uk by definition should be in [0,1]. In this way, our aggre-
gated random-field model with dependence parameters is completely determined by α = (α1, α2)
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and �. In the dependent persistence case, all these parameters have impact on the limit random
fields (see (1.11) below).

Remark 1.1. It is natural to work in the framework of multivariate regular variation for q , as it
is clear that for non-trivial dependence structure, only the behavior of q near (1,1) matters: as an
extension of the one-dimensional model we need each qi to have power-law density near 1, and
the new ingredient in two-dimensional modeling is to characterize the dependence of q at the tail
(1,1), a standard question in extreme value theory. However, for modeling the tail dependence,
traditionally in extreme value theory and also in our application, it is more convenient to work
with multivariate regular variation assumption at either (∞,∞) or (0,0) [29].

More precisely, for our application the tail dependence of Z = RW at (∞,∞) plays a crucial
role in the limit (see (3.10) and (3.12)), which we model in the framework of multivariate regular
variation in polar coordinate. A general assumption in this case should read as

nP

((‖Z‖
n

,
Z

‖Z‖
)

∈ ·
)

v→ dr

r2
× �(·), (1.6)

‖Z‖ := |Z1| + |Z2|, in the space of positive Radon measures on [0,∞]2 \ {0} equipped with
the vague topology, where

v→ stands for the vague convergence, and � is known as the angular
measure that characterizes the tail dependence. Our construction of RW in (1.4) is a well known
procedure that implies (1.6) [29], Section 6.5.3. The advantage of working with RW directly
instead of the weaker assumption (1.6) is to be able to obtain specific bounds quickly at various
places, as the analysis is already quite involved.

1.3. Main results

Our main results are functional limit theorems on Ŝn(t). We first begin with the model with
independent persistence.

Theorem 1.2. Consider the aggregated model with independent persistence (μ = μH1 ⊗ μH2 ,
μH as in (1.2) and H1,H2 ∈ (1/2,1)). Assume also

lim
n→∞

n
2−2H1
1 n

2−2H2
2

m(n)
= 0. (1.7)

Then,

1

n
H1
1 n

H2
2

√
m(n)

{
Ŝn(t)

}
t∈[0,1]2 ⇒ σ

{
B

H
t

}
t∈[0,1]2 ,

in D([0,1]2) as n → ∞, where B
H is a standard fractional Brownian sheet with covariance

function

Cov
(
B

H
s ,BH

t

) =
2∏

k=1

1

2

(
s

2Hk

k + t
2Hk

k − |sk − tk|2Hk
)
, s, t ≥ 0,
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and

σ :=
2∏

k=1

(
�(3 − 2Hk)

Hk(2Hk − 1)

)1/2

.

Here and below, more precisely, we actually consider a sequence of vectors {n(j)}j∈N in N
2

and the limit as j → ∞. It is always assumed that limj→∞ n1(j) = ∞ and limj→∞ n2(j) = ∞,
so that the partial sum is over a rectangular region of which the lengths of both directions tend to
infinity. For the sake of simplicity, throughout we drop the parameter j and write n → ∞ instead
of j → ∞. We will also write a(n) ∼ b(n) as n → ∞ if limn→∞ a(n)/b(n) = 1.

For the model with dependent persistence, it turns out that the scaling limit depends on the
relative growth rate of n1 and n2. We first look at partial sums over rectangles increasing at the
so-called critical speed:

n
α1
1 ∼ n

α2
2 as n → ∞. (1.8)

The following function


α,�(θ) :=
∫ ∞

0

∫
�1

2∏
k=1

2(rwk)
−1/αk

(rwk)−2/αk + θ2
k

�(dw)r−2 dr (1.9)

shows up in the harmonizable representation of the limit Gaussian random field. The finiteness
of 
α,� will be established in (3.12) below.

Theorem 1.3. Consider the aggregated model with dependent persistence and α1, α2 ∈ (0,2). If

lim
n→∞

n
α1
1

m(n)
= 0, (1.10)

then, at critical speed (1.8),

nα1/2

|n|√m(n)

{
Ŝn(t)

}
t∈[0,1]2 ⇒ {

G
α,�
t

}
t∈[0,1]2 ,

in D([0,1]2) as n → ∞, where |n| = n1n2, and G
α,� is a centered Gaussian random field with

Cov
(
G

α,�
s ,G

α,�
t

) = 1

(2π)2

∫
R2

(
2∏

k=1

(eiskθk − 1)(eitkθk − 1)

|θk|2
)


α,�(θ) dθ . (1.11)

Next, when n does not grow at the critical speed (1.8), we identify four different regimes. By
symmetry, it suffices to assume

n
α1
1 � n

α2
2 , (1.12)

by which we mean limn→∞ n
α2
2 /n

α1
1 = 0. Under this assumption, the following theorem identi-

fies two regimes of non-critical speed, and the other two regimes under the assumption n
α1
1 � n

α2
2
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can be read accordingly. In the sequel, we write

cH := B

(
H − 1

2
,

3

2
− H

)
π

H�(2H) sin(Hπ)
,

where B(a,b) = ∫ 1
0 xa−1(1 − x)b−1 dx is the Beta function.

Theorem 1.4. Consider the aggregated model with dependent persistence and α1, α2 ∈ (0,2). If

lim
n→∞

n
2−2H1
1 n

2−2H2
2

m(n)
= 0,

then at non-critical speed (1.12),

1

n
H1
1 n

H2
2

√
m(n)

{
Ŝn(t)

}
t∈[0,1]2 ⇒ σ

{
B

H
t

}
t∈[0,1]2 (1.13)

in D([0,1]2) as n → ∞, where B
H is the fractional Brownian sheet with Hurst indices H ,

for the following two cases depending on the value of α1. In each case, H and σ 2 are given
accordingly:

(i) α1 > 1:

H1 = 1

2
, H2 = 1 − α2

2

(
1 − 1

α1

)
, σ 2 = 2α2cH2

∫
�1

w
1/α1
1 w

1−1/α1
2 �(dw),

(ii) α1 < 1:

H1 = 1 − α1

2
, H2 = 1, σ 2 = α1cH1

∫
�1

w1�(dw).

In the regimes of non-critical speed, the limit Gaussian random fields are fractional Brownian
sheets that have a direction with degenerate dependence, in the sense that the Hurst index in that
direction is either 1/2 (independent increments) or 1 (complete dependence).

Remark 1.5. For the boundary case between the two regimes of non-critical speed in Theo-
rem 1.4, namely n

α1
1 � n

α2
2 and α1 = 1, we expect the following functional central limit theorem

to hold
1√

n1 logn1n2
√

m(n)

{
Ŝn(t)

}
t∈[0,1]2 ⇒ σ

{
B

H
t

}
t∈[0,1]2 , (1.14)

with H = (1/2,1) and σ 2 = 4π
∫
�1

w1�(dw). Note that when compared to the two regimes
therein, while there is the continuous transition in terms of the Hurst indices H , the normalization
is inconsistent with the one in (1.13), because of the extra logarithmic term. The analysis of this
case is the most involved. However, in view of the limit, this is also the least interesting case as
the limit random field has degenerate dependence in both directions. Therefore, we only prove the
convergence of covariance function for (1.14) in the last section of the Supplementary Material.
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All the random fields in the limit are operator-scaling. For fractional Brownian sheet, it is well
known that {

B
H
λ·t

}
t≥0

d= λ
H1
1 λ

H2
2

{
B

H
t

}
t≥0,

which is actually stronger than the operator-scaling property in (1.1). The limit random field
G

α,� in Theorem 1.3 is also operator-scaling.

Proposition 1.6. For {Gα,�
t }t≥0 in Theorem 1.3, we have{

G
α,�

λ1/α1 t1,λ
1/α2 t2

}
t≥0

d= λ1/α1+1/α2−1/2{
G

α,�
t

}
t≥0, for all λ > 0.

Proof. Since {Gα,�
t }t≥0 is a Gaussian random field, it suffices to show

Cov
(
G

α,�

λ1/α1 s1,λ
1/α2 s2

,G
α,�

λ1/α1 t1,λ
1/α2 t2

) = λ2/α1+2/α2−1 Cov
(
G

α,�
s ,G

α,�
t

)
.

Define θ ′ = (θ ′
1, θ

′
2) := (λ1/α1θ1, λ

1/α2θ2), then

2∏
k=1

(eiλ1/αk skθk − 1)(eiλ1/αk tkθk − 1)

|θk|2 = λ2/α1+2/α2

2∏
k=1

(eiskθ
′
k − 1)(eitkθ

′
k − 1)

|θ ′
k|2

.

For the function 
α,�, we have


α,�

(
θ ′) = λ1−1/α1−1/α2
α,�(θ)

by change of variable r → λr . Applying these two identities to (1.11) completes the proof. �

The proofs of our results are based on estimates of asymptotics of second and fourth mo-
ments of the partial sums of each single random field Sn. However, except for the model with
independent persistence, our estimates are by a different method from the one used in [10] in one
dimension. The method used there is essentially the time-domain approach for long-range depen-
dence, relying on the analysis of regular variation of the covariance function and the Karamata’s
theorem. This approach, however, cannot be easily adapted to two dimensions. Instead, we take
the frequency-domain approach by working with Fourier transforms of the random fields.

1.4. Discussions

We conclude the introduction with a few remarks.

Remark 1.7. There are other types of limit theorems in the investigation of aggregated models.
For ours, we can write

1

a(n)
√

m(n)
Ŝn(t) = 1

a(n)

∑
j∈[1,n·t]

1√
m(n)

m(n)∑
i=1

Xi
j . (1.15)
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Especially in econometrics literature, often the aggregated model is referred to the limit random
field {Xj }j∈N2 in the weak convergence m−1/2 ∑m

i=1 X
(i)
j ⇒ Xj , j ∈ N

2, and the investigation
of the long-range dependence of the aggregation concerns the behavior of the covariance function
of X, or equivalently its spectral density near origin. One may then scale these aggregated random
fields to obtain operator-scaling random fields indexed by t ∈ [0,1]2 via

1

a(n)

∑
j∈[1,n·t]

Xj , (1.16)

by appropriate choice of a(n). The limit theorems in the form of (1.16) is referred to as taking a
double limit, as one lets the number of copies in aggregation tend to infinity first (as m → ∞),
and then the size of the lattice tend to infinity (as n → ∞). The limit theorems in the form of
(1.15) is referred to as taking a single limit.

Enriquez [10] established actually limit theorems by taking both single limit and double limit
for the one-dimensional model. We only worked out the single limit here, which is more demand-
ing to establish. If we take the double limit for our aggregated model, we expect the limit random
fields to remain the same in all cases in aforementioned theorems, as shown in one dimension in
[10]. We are not aware of any other limit theorems for aggregated random fields for single limits.

Remark 1.8. Our aggregated random-field model can be viewed as with an infinite-dimensional
parameter � on �1 and α ∈ (0,2)2, and hence it leads to a large flexible family of operator-
scaling Gaussian random fields. There are several recent limit theorems on operator-scaling
Gaussian random fields. However, besides the fractional Brownian sheets, it is not easy to com-
pare the limits from different models. This suggests that the counterparts of fractional Brownian
motions in high dimensions are far from being unique, which is a challenge for investigation of
long-range dependence in high dimensions.

For example, Biermé et al. [5] established limit theorems for another flexible family of
operator-scaling Gaussian random fields, in the investigation of a different random-field model.
The Gaussian random fields in the limit have covariance function

σ 2
∫
R2

(
2∏

k=1

(eiskθk − 1)(eitkθk − 1)

|θk|2
)

1

(logψ(θ))2
dθ,

where ψ is the logarithm of the characteristic function of certain multivariate stable distribution.
Puplinskaitė and Surgailis [28] proposed another aggregated random-field model (in the sense
of taking a double limit as in Remark 1.7), which may lead to both Gaussian and non-Gaussian
stable limits. However, when restricted to a fixed domain of attraction, their model is essen-
tially determined by one parameter (see [28], Eq. (1.8), where β plays the similar role as q in
Enriquez’s original model), and hence is less flexible than ours and the one in [5].

It is not immediately clear to us whether it is possible to relate limit Gaussian random fields in
[5,28] to ours, and we leave this question to further investigation.

Remark 1.9. Our statements are actually more general than those in the aforementioned papers,
where the rates of the rectangular regions are essentially assumed in the form of n2 = n

γ

1 for
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different choices of γ . We expect that assumptions therein can be generalized to the slightly
more relaxed type here.

Remark 1.10. Here we observe a scaling-transition phenomenon, that is, when the underlying
rectangles of the partial-sum random fields grow at different speeds, different random fields may
arise in the limit. Such a phenomenon has been known in a few limit theorems for random fields
in the literature recently [5,27,28], while our result here is the first, to the best of our knowledge,
to investigate the boundary case between regimes of non-critical speed. The scaling-transition
phenomenon is essentially due to the fact that the covariance function of the limit Gaussian
random field, say C(s, t), does not factorize into product form C1(s1, t1)C2(s2, t2) in general,
with the only exception when the random field is a fractional Brownian sheet.

In the rest of the paper, we prove Theorems 1.2, 1.3 and 1.4 in Sections 2, 3 and 4, respectively.
Some auxiliary proofs are left to the Supplementary Material.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on three estimates, which all are based on a single random
field Sn, not the aggregated one Ŝn.

Lemma 2.1. Under the assumption of Theorem 1.2,

Cov
(
Sn(s), Sn(t)

) ∼ σ 2
1 n

2H1
1 n

2H2
2 Cov

(
B

H
s ,BH

t

)
(2.1)

as n → ∞, and there exists a constant C such that

ESn(t)2 ≤ Cn
2H1
1 n

2H2
2 t

2H1
1 t

2H2
2 for all n ∈N

2, t ∈ [0,1]2, (2.2)

and

ESn(t)4 ≤ Cn
2H1+2
1 n

2H2+2
2 for all n ∈N

2, t ∈ [0,1]2. (2.3)

Proof. Observe that

Sn(t) =
∑

j∈[1,n·t]
Xj =

�n1t1�∑
j1=1

ε
(1)
j1

�n2t2�∑
j2=1

ε
(2)
j2

= S
(1)
�n1t1�S

(2)
�n2t2�,

where S
(k)
n = ∑n

j=1 ε
(k)
j , k = 1,2 are independent. Then

Cov
(
Sn(s), Sn(t)

) =
2∏

k=1

Cov
(
S(k)

nk
(sk), S

(k)
nk

(tk)
)
,
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and ESr
n(t) = ∏2

k=1 ES
(k)
nk

(tk)
r . The corresponding estimates on S(k), k = 1,2 have been ob-

tained in [10]. More precisely, in the proof of Corollary 1 in [10], it was shown that

Cov
(
S(k)

nk
(sk), S

(k)
nk

(tk)
) ∼ �(3 − 2Hk)

Hk(2Hk − 1)
n

2Hk

k Cov
(
B

Hk
sk

,B
Hk
tk

)
and

ES(k)
nk

(tk)
r = O

(
(nktk)

r+(2Hk−2)
)
, r ∈ 2N.

Taking the products for k = 1,2 finishes the proof. �

Proof of Theorem 1.2. We first prove the convergence of finite-dimensional distributions. It
suffices to show, for all d ∈N, a1, . . . , ad ∈R, t1, . . . , td ∈R

2+,

1

n
H1
1 n

H2
2

√
m(n)

d∑
w=1

awŜn(tw) ⇒ σ1

d∑
w=1

awB
H
tw

. (2.4)

Observe that the right-hand side is a centered Gaussian random variable. At the same time, the
left-hand side can be expressed as

1√
m(n)

m(n)∑
i=1

1

n
H1
1 n

H2
2

d∑
w=1

awSi
n(tw).

By Lindeberg–Feller central limit theorem for triangular arrays of i.i.d. random variables, to
show (2.4) it suffices to show, for

Yn := 1

n
H1
1 n

H2
2

d∑
w=1

awSn(tw), (2.5)

lim
n→∞ Var(Yn) = σ 2

1 Var

(
d∑

w=1

awB
H
tw

)
, (2.6)

and

lim
n→∞E

(
Y 2

n 1{Y 2
n>m(n)η}

) = 0 for all η > 0. (2.7)

For (2.6), Write

Var(Yn) = 1

n
2H1
1 n

2H2
2

d∑
w=1

d∑
w′=1

awaw′ Cov
(
Sn(tw),Sn(tw′)

)
,

and similarly for Var(
∑d

w=1 awB
H
tw

). Then, (2.6) follows from (2.1).
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Next, we prove (2.7). Observe that by Markov inequality and (2.3),

E
(
Y 2

n 1{Y 2
n>m(n)η}

) ≤ 1

m(n)η
EY 4

n ≤ 1

m(n)η

(
1

n
H1
1 n

H2
2

d∑
w=1

|aw|(ESn(tw)4)1/4

)4

≤ C

m(n)ηn
4H1
1 n

4H2
2

d∑
w=1

|aw|n2H1+2
1 n

2H2+2
2 = C

η

n
2−2H1
1 n

2−2H2
2

m(n)
.

Therefore, (2.7) is satisfied, under the assumption (1.7).
Next, we prove the tightness. By [3], Theorem 3 and remark afterwards, it suffices to show

that there exist p ∈N, γ1, γ2 > 1, C > 0 such that

E

∣∣∣∣ Ŝn(t)

n
H1
1 n

H2
2

√
m(n)

∣∣∣∣2p

≤ Ct
γ1
1 t

γ2
2 , for all n ∈N

2, t ∈ R
2+. (2.8)

For this purpose, observe that

EŜn(t)2 = m(n)ESn(t)2 ≤ Cm(n)(n1t1)
2H1(n2t2)

2H2

because of (2.2). The tightness thus follows. �

As the above proof shows, the functional central limit theorem is essentially based on the three
estimates in Lemma 2.1. The functional central limit theorems for other models will be very sim-
ilarly based on corresponding estimates moments. For the model with independent persistence,
these estimates are almost immediate from the one-dimensional ones in [10]. However, for the
model with dependent persistence, the one-dimensional estimates can no longer be used, and we
have to take a completely different approach.

3. Proof of Theorem 1.3

Throughout, we restrict ourselves to the aggregated model with dependent persistence, with

α1, α2 ∈ (0,2),

and that

n∗ := n
α1
1 ∼ n

α2
2 as n → ∞, (3.1)

which we shall assume in this section without further mentioning. Some of our estimates are
universal and do not depend on this assumption, and in this case we will say explicitly “for all
n ∈N

2”. We write also

p(α) = 1

α1
+ 1

α2

in the sequel.
We start with the computation of the asymptotic covariance.
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Proposition 3.1. We have

lim
n→∞

Cov(Sn(s), Sn(t))

|n|2/n∗ = Cov
(
G

α,�
s ,G

α,�
t

)
,

and there exists a constant C such that

ESn(t)2 ≤ C
|n|2
n∗ (t1t2)

2−1/p(α) (3.2)

for all t ∈ [0,1]2 such that �n · t� = n · t .

The two estimates above are obtained by computing the Fourier transforms of the covariance.
For background on multidimensional Fourier transforms, see [25].

Let r denote the covariance function of the stationary random field

r(�) = Cov(X1,X1+�),

and r̂(θ) := ∑
�∈Z2 r(�) exp(i〈� · θ〉) its Fourier transform. Introduce the Fourier transform of the

sequence {aj }j∈N = {1{1≤j≤n}}j∈N

Dn(θ) :=
n∑

j=1

eijθ ,

and set

Dn,s,t (θ) :=
2∏

k=1

D�nksk�(θk)D�nktk�(θk).

Lemma 3.2. We have

Cov
(
Sn(s), Sn(t)

) = 1

(2π)2

∫
(−π,π)2

Dn,s,t (θ) r̂(θ) dθ . (3.3)

Proof. To see this, we first write

Cov
(
Sn(s), Sn(t)

) =
∑

i∈[1,n·s]

∑
j∈[1,n·t]

Cov(Xi,Xj )

=
∑
�∈Z2

r(�)
∑
j∈Z2

1{j∈[1,n·s],j+�∈[1,n·t]}. (3.4)

Introduce aj = 1{j∈[1,n·s]}, bj = 1{j∈[1,n·t]}, j ∈ Z
2, and let â(θ) and b̂(θ) denote their Fourier

transforms, respectively. Then, for each � ∈ Z
2, we have∑

j∈Z2

1{j∈[1,n·s],j+�∈[1,n·t]} =
∑
j∈Z2

ajbj+�,
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which is the �-th coefficient of â(θ )̂b(θ). We have that

â(θ) =
2∏

k=1

D�nksk�(θk) and b̂(θ) =
2∏

k=1

D�nktk�(θk).

So by Parseval’s theorem, (3.4) becomes

Cov
(
Sn(s), Sn(t)

) = 1

(2π)2

∫
(−π,π)2

â(θ )̂b(θ )̂r(θ) dθ ,

which yields (3.3). �

The next step is to apply a change of variables

θ → θ

n
:=

(
θ1

n1
,
θ2

n2

)
,

and hence to write

Cov
(
Sn(s), Sn(t)

) = 1

|n|(2π)2

∫
n·(−π,π)2

Dn,s,t (θ/n)̂r(θ/n) dθ . (3.5)

The two functions of the integrand can then be treated separately. The following results on Dn,s,t

are well known and provided here only for the sake of completeness. In the sequel, we write

R
2
o = (

R \ {0})2
.

Lemma 3.3. In the notations above,

lim
n→∞

Dn,s,t (θ/n)

|n|2 =
2∏

k=1

(eiskθk − 1)(eitkθk − 1)

|θk|2 for all θ ∈R
2
o

and ∣∣∣∣Dn,s,t (θ/n)

|n|2
∣∣∣∣ ≤ π2

2∏
k=1

min

{
sktk,

1

|θk|2
}
, for all n ∈ N

2, |θk| ≤ nkπ. (3.6)

Proof. It is easy to show that

lim
n→∞

1

n
D�nt�

(
θ

n

)
= eitθ − 1

iθ
,

and, because of | sin(x)| ≥ 2|x|/π for |x| ≤ π/2, and | sinx| ≤ min(|x|,1),∣∣∣∣1

n
D�nt�

(
θ

n

)∣∣∣∣ =
∣∣∣∣ sin(�nt�θ/(2n))

n sin(θ/(2n))

∣∣∣∣ ≤ π min

{
t,

1

|θ |
}
, n ∈ N, |θ | ≤ nπ. (3.7)

The desired results now follow. �
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Most of the effort will be devoted to the analysis of r and r̂ .

Lemma 3.4. For θ ∈ (−π,π)2 such that θ1 �= 0, θ2 �= 0,

r̂(θ) =
∫

G∗(u, θ)μ∗(du) with G∗(u, θ) :=
2∏

k=1

uk(2 − uk)

u2
k + 2(1 − uk)(1 − cos θk)

. (3.8)

Moreover,

r̂(θ/n) ∼ |n|
n∗ 
α,�(θ)

as n → ∞, and there exists a constant C such that

r̂(θ/n) ≤ C

( |n|
n∗ |θ1|1/p(α)−1 + n1

n∗ |θ1|α1−1 + n2

n∗ |θ2|α2−1 + 1

)
(3.9)

for all θ ∈R
2
o.

Proof. We have

r(�) = E(X1X1+�) = E
(
ε
(1)
1 ε

(1)
1+�1

ε
(2)
1 ε

(2)
1+�2

) = E
[
E

(
ε
(1)
1 ε

(1)
1+�1

| q1
)
E

(
ε
(2)
1 ε

(2)
1+�2

| q2
)]

= E
[
(2q1 − 1)|�1|(2q2 − 1)|�2|] =

∫
(1 − u1)

|�1|(1 − u2)
|�2|μ∗(du).

Consider

r̂(θ) =
∑
�∈Z2

r(�)ei〈�,θ〉 =
∑
�∈Z2

∫
ei〈�,θ〉(1 − u1)

|�1|(1 − u2)
|�2|μ∗(du).

Recall that ∑
�∈Z

ρ|�|ei�θ = 1 − ρ2

1 − 2ρ cos θ + ρ2
, for all ρ ∈ (−1,1).

So (3.8) follows.
Now we investigate the asymptotics of r̂ . Recall that we let μ∗ denote the measure on (0,1]2

induced by U . It turns out to be convenient to work with polar coordinates. For this purpose,
introduce

Tα(x) :=
(

1

x
α1
1

,
1

x
α2
2

)
.

So μ∗ ◦ T −1
α is the measure on [1,∞)2 induced by RW , and for any measurable function f :

R
2+ →R,∫

Tα((0,1]2)

f (x)μ∗ ◦ T −1
α (dx) =

∫ ∞

1

∫
�1

1{rw∈Tα((0,1]2)}f (rw)�(dw)r−2 dr, (3.10)
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provided the integrability of either side can be justified. We treat U = (1,1) and U ∈ (0,1)2

separately, and write

r̂(θ/n) =
∫

Tα((0,1]2)

G∗(T −1
α (u), θ/n

)
μ∗ ◦ T −1

α (du) + P
(
U = (1,1)

)
=: r̂1(θ/n) + P

(
U = (1,1)

)
.

We shall see eventually that r̂1(θ/n) is of order |n|/n
α1
1 , so r̂(θ/n) ∼ r̂1(θ/n). We focus on

r̂1(θ/n) from now on. Recall that n∗ = n
α1
1 . Note that

r̂1(θ/n) =
∫ ∞

1

∫
�1

1{rw∈Tα((0,1]2)}G∗(T −1
α (rw), θ/n

)
�(dw)r−2 dr

= 1

n∗

∫ ∞

0

∫
�1

1{n∗rw∈Tα((0,1]2)}G∗(T −1
α

(
n∗rw

)
, θ/n

)
�(dw)r−2 dr. (3.11)

In the last line above, we first applied a change of variables, and then replaced
∫ ∞

1/n∗ by
∫ ∞

0 , as

the constraint n∗rw ∈ Tα((0,1)2) implies that r ≥ (n∗wk)
−1 ≥ (n∗)−1. Introduce

hn(r,w, θ) := G∗(T −1
α

(
n∗rw

)
, θ/n

)
1{n∗rw∈Tα((0,1)2)}.

In view of integral expressions (1.9) and (3.11), to show the first part of the lemma we need to
prove, for

h(r,w, θ) :=
2∏

k=1

2(rwk)
−1/αk

(rwk)−2/αk + θ2
k

,

that

n∗

|n| r̂1(θ/n) ≡ 1

|n|
∫ ∞

0

∫
�1

hn(r,w, θ)�(dw)r−2 dr

→ 
α,�(θ) ≡
∫ ∞

0

∫
�1

h(r,w, θ)�(dw)r−2 dr ∈ (0,∞) as n → ∞.

(3.12)

For this purpose, we show, for any δ ∈ (0,1),

lim
n→∞

1

|n|
∫ ∞

0

∫
�1

hn(r,w, θ)1{n∗rw∈Tα((0,δ]2)}�(dw)r−2 dr

=
∫ ∞

0

∫
�1

h(r,w, θ)�(dw)r−2 dr, (3.13)
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and for some constant C independent of θ ,∫ ∞

0

∫
�1

hn(r,w, θ)1{n∗rw∈Tα((0,1]2\(0,δ]2)}�(dw)r−2 dr

≤ C
(
n1|θ1|α1−1 + n2|θ2|α2−1 + n∗). (3.14)

Thus the integral in (3.14) does not contribute in the limit, since |n| ∼ (n∗)p(α) as n → ∞ and
p(α) > 1.

We first show (3.13). By the definition of G∗, we have

hn,δ(r,w, θ) := hn(r,w, θ)1{n∗rw∈Tα((0,δ]2)} = G∗(T −1
α

(
n∗rw

)
, θ/n

)
1{n∗rw∈Tα((0,δ]2)}

=
2∏

k=1

g
((

n∗rwk

)−1/αk , θk/nk

)
1{n∗rw∈Tα((0,δ]2)}

with

g(u, θ) := u(2 − u)

u2 + 2(1 − u)(1 − cos θ)
.

It is clear that for every r > 0, w ∈ �1, θ ∈R
2
o,

lim
n→∞

1

|n|hn(r,w, θ) = h(r,w, θ).

So to prove (3.13), by the dominated convergence theorem it remains to find an integrable upper
bound of hn,δ/|n|. For this purpose, observe that by the trivial bound g(u, θ) ≤ 2u−1,

g
((

n∗rw
)−1/αk , θk/nk

) ≤ 2
(
n∗rwk

)1/αk , (3.15)

and that, recalling the fact 2(1 − cos θ) = 4 sin2(θ/2) ≥ 4θ2/π2 for θ ∈ (−π,π),

g
((

n∗rwk

)−1/αk , θk/nk

)
1{(n∗rwk)

−1/αk ∈(0,δ)} ≤ (n∗rwk)
−1/αk

2(1 − δ)θ2
k n−2

k /π2
= Cδnk

(rwk)1/αk θ2
k

(3.16)

for some constant Cδ depending only on δ. Here we used the fact that there exists universal
constants c1, c2 such that c1n

α2
2 ≤ n∗ ≤ c2n

α2
2 for the sequence n of our interest. Therefore,

1

|n|hn,δ(r,w, θ) ≤ Cδ

2∏
k=1

min

{
(rwk)

1/αk ,
1

(rwk)1/αk θ2
k

}
=: Cδh(r,w, θ).

We now show that
∫∫

h(r,w, θ)�(dw)r−2 dr < ∞. Introduce

d(θ ,w,α) := |θ1θ2|−1/p(α)w
−α2/(α1+α2)

1 w
−α1/(α1+α2)

2 .
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Then∫∫
h(r,w, θ)�(dw)r−2 dr ≤

∫
�1

∫ d(θ ,w,α)

0
rp(α)−2drw

1/α1
1 w

1/α2
2 �(dw)

+
∫

�1

∫ ∞

d(θ ,w,α)

r−p(α)−2drw
−1/α1
1 w

−1/α2
2

1

|θ1θ2|�(dw).

It can be easily verified that each double integral on the right-hand side above is bounded by

C|θ1θ2|1/p(α)−1
∫

�1

w
α2/(α1+α2)

1 w
α1/(α1+α2)

2 �(dw) ≤ C|θ1θ2|1/p(α)−1.

Namely, there exists a constant C depending only on �, α1, α2, such that∫
R+×�1

h(r,w, θ)�(dw)r−2 dr ≤ C|θ1θ2|1/p(α)−1.

So we have proved (3.13) and∫ ∞

0

∫
�1

hn,δ(r,w, θ)�(dw)r−2 dr ≤ C|n||θ1θ2|1/p(α)−1. (3.17)

Now we prove (3.14). We shall divide the region {n∗rw ∈ Tα((0,1]2 \ (0, δ]2)} into three pieces
and treat each corresponding integral, respectively. First, for u ∈ (δ,1], we have g(u, θ) ≤ 2/δ2,
and hence

hn(r,w, θ)1{n∗rw∈Tα((δ,1]2)} ≤ Cδ.

Thus, ∫ ∞

0

∫
�1

hn(r,w, θ)1{n∗rw∈Tα((δ,1]2)}�(dw)r−2 dr

≤ Cδ

∫
�1

∫ (n∗)−1[(w1δ
α1 )−1∧(w2δ

α2 )−1]

(n∗)−1(w−1
1 ∨w−1

2 )

r−2 dr�(dw) ≤ Cδn
∗
∫

�1

w1 ∧ w2�(dw)

≤ Cδn
∗, (3.18)

Similarly,

hn(r,w, θ)1{n∗rw∈Tα((0,δ]×(δ,1])} ≤ Cδg

((
n∗rw1

)−1/α1,
θ1

n1

)
1{n∗rw1≥δ−α1 }

≤ Cδn1 min

{
(rw1)

1/α1 ,
1

(rw1)1/α1θ2
1

}
.
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This time, taking d1(θ,w,α) := |θ |−αw−1, and writing∫
�1

∫ ∞

0
=

∫
�1

(∫ d1(θ1,w1,α1)

0
+

∫ ∞

d1(θ1,w1,α1)

)
,

we have∫ ∞

0

∫
�1

hn(r,w, θ)1{n∗rw∈Tα((0,δ]×(δ,1])}�(dw)r−2 dr ≤ Cδn1|θ1|α1−1
∫

�1

w1�(dw). (3.19)

By symmetry, a similar bound holds for the left-hand side above with the indicator function
replaced by 1{n∗rw∈Tα((δ,1]×(0,δ])}. Now (3.9) follows from combining (3.12), (3.17), (3.18) and
(3.19). �

Proof of Proposition 3.1. Recall (3.5). By Lemmas 3.3 and 3.4, the dominated convergence
theorem yields the first part of the proposition, and that the integral in (1.11) is finite (recalling
the assumption that α1, α2 ∈ (0,2)). The details are omitted. For the second part, it also follows
from Lemma 3.4, (3.5) and (3.6) that

ESn(t)2 ≤ C|n|
∫

n·(−π,π)2

2∏
k=1

min

{
t2
k ,

1

|θk|2
}

×
( |n|

n∗ |θ1θ2|1/p(α)−1 + n1

n∗ |θ1|α1−1 + n2

n∗ |θ2|α2−1 + 1

)
dθ . (3.20)

By change of variables, the above integral is bounded by

t1t2

∫
R2

2∏
k=1

min

{
1,

1

θ2
k

}( |n|
n∗

∣∣∣∣θ1θ2

t1t2

∣∣∣∣1/p(α)−1

+ n1

n∗

∣∣∣∣θ1

t1

∣∣∣∣α1−1

+ n2

n∗

∣∣∣∣θ2

t2

∣∣∣∣α2−1

+ 1

)
dθ .

Therefore, it follows that, for a constant C independent of n and t ,

ESn(t)2 ≤ C

( |n|2
n∗ (t1t2)

2−1/p(α) + n1|n|
n∗ t

2−α1
1 t2 + n2|n|

n∗ t1t
2−α2
2 + |n|t1t2

)
.

For n ∈N
2 and t ∈ [0,1]2 such that n · t = �n · t�, we have

n1|n|
n∗ t

2−α1
1 t2 = n2

1

n∗ t
2−α1
1 · n2t2 ≤ C(n1t1)

2−α1(n2t2)
2−1/p(α)

≤ C
(|n|t1t2

)2−1/p(α) ≤ C
|n|2
n∗ (t1t2)

2−1/p(α)

and

|n|t1t2 ≤ |n|2−1/p(α)(t1t2)
2−1/p(α) ≤ C

|n|2
n∗ (t1t2)

2−1/p(α),

where we used the assumption (3.1). We have thus obtained the second part of the proposition. �
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The second estimate that we need is on the fourth moment.

Proposition 3.5. There exists a constant C such that

ESn(t)4 ≤ C
|n|4
n∗ (t1t2)

4−1/p(α)

for all n ∈ N
2, t ∈ [0,1]2, such that �n · t� = n · t .

Proof. Writing Eq(·) = E(· | q), we have

ESn(t)4 = E

( ∑
i∈[1,n·t]

Xi

)4

= E

[
2∏

k=1

Eqk

(�nktk�∑
ik=1

ε
(k)
ik

)4]
.

Note that, for {εn}n∈N from the one-dimensional Enriquez model with random parameter q ,
EqS4

n ≤ C
∑

1≤i1≤···≤i4≤n Eq(εi1 · · · εi4), and

∑
1≤i1≤···≤i4≤n

Eq(εi1 · · · εi4) =
∑

j1,j2≥0,k1,k2≥0
j1+j2+k1+k2≤n−1

(2q − 1)j1+j2

=
n−1∑
�=0

(2q − 1)�
∑

j1,j2≥0
j1+j2=�

∑
k1,k2≥0

k1+k2≤n−1−�

1

=
n−1∑
�=0

(2q − 1)�
(

� + 1
1

)(
n + 1 − �

2

)
.

So, for some constant C,

∑
1≤i1≤···≤i4≤n

Eq(εi1 · · · εi4) ≤ C

n∑
�=−n

(2q − 1)|�||�|(n − |�|)2
.

Thus,

ESn(t)4 ≤ C

∫ 2∏
k=1

�nktk�∑
�k=−�nktk�

[|�k|
(�nktk� − |�k|

)2
(2qk − 1)|�k |]μ(dq)

= C

∫ ∑
�∈[−n·t,n·t]

2∏
k=1

[|�k|
(�nktk� − |�k|

)2
(2qk − 1)|�k |]μ(dq).



Operator-scaling Gaussian random fields via aggregation 521

Introduce

J ∗
n (θ) :=

∑
�∈[−n,n]

2∏
k=1

[|�k|
(
nk − |�k|

)2]
ei〈�,θ〉 =

2∏
k=1

Jnk
(θk), n ∈ N

2,

with

Jn(θ) :=
n∑

�=−n

|�|(n − |�|)2
ei�θ .

In summary,

ESn(t)4 ≤ C
∑

�∈[−n·t,n·t]

2∏
k=1

[|�k|
(�nktk� − |�k|

)2]∫ 2∏
k=1

(1 − uk)
|�k |μ∗(du)

= C

(2π)2

∫
(−π,π)2

J ∗�n·t�(θ )̂r(θ) dθ

= C

|n|(2π)2

∫
n·(−π,π)2

J ∗�n·t�(θ/n)̂r(θ/n) dθ . (3.21)

Now we establish the following bound: for some constant C,∣∣∣∣J�nt�
(

θ

n

)∣∣∣∣ ≤ Cn4t2 min

{
t2,

1

|θ |2
}

for all n ∈N, t ∈ [0,1], θ ∈ (−nπ,nπ). (3.22)

Observe that this bound and Lemma 3.4 yield the desired result.
To show (3.22), write

Jn(θ) = 2 Re
(
Wn(θ)

)
with Wn(θ) :=

n∑
�=1

(n − �)2�ei�θ .

So

Wn(θ) − eiθWn(θ) =
n∑

�=1

[
(n − �)2� − (n − � + 1)2(� − 1)

]
ei�θ

=
n∑

�=1

2∑
p1=0

2−p1∑
p2=0

cp1,p2n
p1�p2ei�θ ,

for some constants cp1,p2 independent of n and θ . Write m = �nt� ≤ n. Then,

∣∣∣∣Jm

(
θ

n

)∣∣∣∣ ≤ 2

|1 − eiθ/n|

∣∣∣∣∣
m∑

�=1

2∑
p1=0

2−p1∑
p2=0

cp1,p2m
p1�p2ei�θ/n

∣∣∣∣∣
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≤ C
n

|θ |
2∑

p1=0

mp1

2−p1∑
p2=0

∣∣∣∣∣
m∑

�=1

�p2ei�θ/n

∣∣∣∣∣ = C
n

|θ |
2∑

p1=0

mp1

2−p1∑
p2=0

∣∣∣∣Vm,p2+1

(
θ

n

)∣∣∣∣ (3.23)

with

Vn,k(θ) :=
n∑

�=1

�k−1ei�θ .

Similarly as above, we have

Vn,k+1(θ) = 1

1 − eiθ

(
n∑

�=1

k−1∑
j=0

cj,k�
j ei�θ − nkei(n+1)θ

)

for some constants cj,k . So

∣∣∣∣Vm,k+1

(
θ

n

)∣∣∣∣ ≤ Cn

|θ |

(
k−1∑
j=0

∣∣∣∣∣
m∑

�=1

�j ei�θ/n

∣∣∣∣∣ + mk

)
= Cn

|θ |

(
k∑

j=1

∣∣∣∣Vm,j

(
θ

n

)∣∣∣∣ + mk

)
.

At the same time, |Vm,k+1(θ/n)| ≤ mk+1. We have seen in (3.7) that, for m = �nt� ≤ n,∣∣∣∣Vm,1

(
θ

n

)∣∣∣∣ ≤ nπ min

{
m

n
,

1

|θ |
}
.

So by induction, we arrive at∣∣∣∣Vm,k+1

(
θ

n

)∣∣∣∣ ≤ Cknmk min

{
m

n
,

1

|θ |
}
, k ∈N,

where Ck are constants depending on k. Hence by taking the maximum among (Ck)k=0,1,2, we
have ∣∣∣∣Vm,k+1

(
θ

n

)∣∣∣∣ ≤ Cnmk min

{
m

n
,

1

|θ |
}
, k = 0,1,2.

Applying this to (3.23) leads to

∣∣∣∣Jm

(
θ

n

)∣∣∣∣ ≤ C
n

|θ |
2∑

p1=0

mp1

2−p1∑
p2=0

(
nmp2

)
min

{
m

n
,

1

|θ |
}

≤ C
n2m2

|θ | min

{
m

n
,

1

|θ |
}
. (3.24)

Note also that |Wm(θ)| ≤ m4. We have thus proved (3.22). Then,

J ∗�n·t�(θ/n) ≤ C|n|4(t1t2)2
2∏

k=1

min

{
t2
k ,

1

|θk|2
}
.
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Applying this and (3.9) to (3.21), one has

ESn(t)4 ≤ C|n|3(t1t2)2
∫ 2∏

k=1

min

{
t2
k ,

1

|θk|2
}

×
( |n|

n∗ |θ1θ2|1/p(α)−1 + n1

n∗ |θ1|α1−1 + n2

n∗ |θ2|α2−1 + 1

)
dθ

≤ C|n|2(t1t2)2 · |n|2
n∗ |t1t2|2−1/p(α),

where the upper bound for the integral has been treated as in (3.20). The desired result now
follows. �

Proof of Theorem 1.3. The proof follows the same line of the proof of Theorem 1.2. First we
establish the finite-dimensional convergence by applying Lindeberg–Feller central limit theo-
rem. The asymptotic covariance of the aggregated random field is the same as the asymptotic
covariance of a single random field, up to appropriate normalization, since

Cov
(
Ŝn(s), Ŝn(t)

) = m(n)Cov
(
Sn(s), Sn(t)

)
.

The latter is established in Proposition 3.1. It remains to verify the counterpart here of the
Lindeberg–Feller condition (2.7), which requires the fourth moment on ESn(t)4 established in
Proposition 3.5. In this case we have, for

Yn := 1

|n|(n∗)−1/2

d∑
w=1

awSn(tw),

E
(
Y 2

n 1{Y 2
n>m(n)η}

) ≤ EY 4
n

m(n)η
≤ 1

m(n)η

(
(n∗)1/2

|n|
d∑

w=1

|aw|(ESn(tw)4)1/4

)4

≤ C(n∗)2

m(n)η|n|4
d∑

w=1

|aw| |n|4
n∗ = C

η

n∗

m(n)
,

which converges to 0 as n → ∞ for all η > 0 under condition (1.10).
The tightness follows from (3.2), which implies the condition (2.8) introduced by Bickel and

Wichura [3]. �

4. Proof of Theorem 1.4

We start by explaining how to identify the limits of each regime of non-critical speed, and the
corresponding orders of the normalizations. Taken such information for granted, one could prove
Theorem 1.4 directly by starting from the first section of the Supplementary Material. However,
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the identification of the four regimes (essentially two due to symmetry) are at the core of the
problem, and we explain this step first. We also discuss the boundary case in the last section of
the Supplementary Material.

Again we start with computing the asymptotic covariance, which shall indicate the normal-
ization order and the limit Gaussian random field in each regime. We still apply the Fourier
transform, and Lemma 3.2 still holds:

Cov
(
Sn(s), Sn(t)

) = 1

(2π)2

∫
(−π,π)2

Dn,s,t (θ) r̂(θ) dθ .

The evaluation of the asymptotics of the covariance in general depends on two changes of vari-
ables. First, introduce change of variables

θ → θ

n′ :=
(

θ1

n′
1
,
θ2

n′
2

)
with n′ = (

n′
1, n

′
2

)
.

We have taken n′ = n in the regime of critical speed. Here, however, we may need to pick n′
differently. So our starting point of analysis is the following expression of the covariance function
of the random field:

Cov
(
Sn(s), Sn(t)

) = |n′|−1

(2π)2

∫
n′·(−π,π)2

Dn,s,t

(
θ/n′) r̂

(
θ/n′)dθ . (4.1)

Next, we take a closer look at r̂(θ/n′). Recall

g(u, θ) = u(2 − u)

u2 + 2(1 − u)(1 − cos θ)
.

Then, we have, for θ ∈ n′ · (−π,π)2,

r̂
(
θ/n′) =

∫
�1

∫ ∞

0

2∏
k=1

g
(
(rwk)

−1/αk , θk/n′
k

)
1{rw∈Tα((0,1]2)}

dr

r2
�(dw)

= 1

n∗

∫
�1

∫ ∞

0

2∏
k=1

g
((

n∗rwk

)−1/αk , θk/n
′
k

)
1{n∗rw∈Tα((0,1]2)}

dr

r2
�(dw), (4.2)

where n∗ is a scalar factor satisfying n∗ → ∞ as n → ∞ (the rate to be discussed later), and the
last step follows by the change of variables

r → n∗r.
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So we can write the integral in (4.1) as a multiple integral over R2 × R+ × �1 with respect to
the measure dθr−2 dr�(dw), with the integrand

(
n∗)−1

2∏
k=1

D�nksk�
(

θk

n′
k

)
D�nktk�

(
θk

n′
k

)

×
2∏

k=1

g

((
n∗rwk

)−1/αk ,
θk

n′
k

)
1{n∗rw∈Tα((0,1]2)}1{θ∈n′·(−π,π)2}.

As before, pointwise asymptotics of D and g are straightforward. We have

lim
n→∞(nk)

−2D�nksk�
(

θk

n′
k

)
D�nktk�

(
θk

n′
k

)

=Dsk,tk (θk) :=

⎧⎪⎨⎪⎩
(eiskθk − 1)(eitkθk − 1)

|θk|2 n′
k ∼ nk

sktk n′
k � nk,

(4.3)

and

lim
n→∞

g((n∗r)−1/αk , θk/n
′
k)

(n∗)1/αk
= g

(
r−1/αk , θk

) :=

⎧⎪⎨⎪⎩
2r−1/αk

r−2/αk + θ2
k

(
n∗)1/αk ∼ n′

k

2r1/αk
(
n∗)1/αk � n′

k.

(4.4)

We shall choose n′
1, n′

2 and n∗ as functions of n1 or n2. In this way, combining (4.1), (4.2), (4.3)
and (4.4), we have, formally,

lim
n→∞

|n′|Cov(Sn(s), Sn(t))

|n|2(n∗)p(α)−1

= 1

(2π)2

∫
�1

∫ ∞

0

∫
R2

2∏
k=1

Dsk,tk (θk)g
(
(rwk)

−1/αk , θk

)
dθ

dr

r2
�(dw), (4.5)

where the functions D and g depend on the choice of n′ and n∗, and we only computed the
pointwise convergence of the multiple integral.

However, a careful examination shall tell quickly that not all choices of n′ and n∗ will make
(4.5) a legitimate statement, as the multiple integral is not always well defined: so we need those
such that the multiple integral in (4.5) is well defined, finite and strictly non-zero. The first natural
case to be considered is when both D and g are not degenerate, corresponding to the regime of
critical speed already addressed in Theorem 1.3, with

n′ = n, n∗ ∼ n
α1
1 ∼ n

α2
2 .
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Then, it is not hard to see that the only other legitimate integrands are

2∏
k=1

(eiskθk − 1)(eitkθk − 1)

θ2
k

2(rw1)
−1/α1

(rw1)−2/α1 + θ2
1

2(rw2)
1/α2 ,

2∏
k=1

(eiskθk − 1)(eitkθk − 1)

θ2
k

2(rw1)
1/α1

2(rw2)
−1/α2

(rw2)−2/α2 + θ2
2

, (4.6)

(eis1θ1 − 1)(eit1θ1 − 1)

θ2
1

s2t2

2∏
k=1

2(rwk)
−1/αk

(rwk)−2/αk + θ2
k

, (4.7)

s1t1
(eis2θ2 − 1)(eit2θ2 − 1)

θ2
2

2∏
k=1

2(rwk)
−1/αk

(rwk)−2/αk + θ2
k

,

and they correspond to the following four conditions on n′ and n∗, respectively,

n′ = n, n∗ ∼ n
α1
1 , n

α1
1 � n

α2
2 ,

n′ = n, n∗ ∼ n
α2
2 , n

α1
1 � n

α2
2 ,

n′ ∼ ((
n∗)1/α1,

(
n∗)1/α2

)
, n∗ ∼ n

α1
1 , n

α1
1 � n

α2
2 ,

n′ ∼ ((
n∗)1/α1,

(
n∗)1/α2

)
, n∗ ∼ n

α2
2 , n

α1
1 � n

α2
2 .

(4.8)

We shall also see later that, for each integrand above to be integrable, an extra assumption on α

is needed.
By symmetry, it suffices to focus on the case

n
α1
1 � n

α2
2 ,

which from now on we assume. Two identities are needed in these regimes with non-critical
speed. The first identity is on the covariance function of fractional Brownian motion (e.g., [32],
Proposition 7.2.8)

∫
R

(eisθ − 1)(eitθ − 1)

|θ |1+2H
dθ = 2πCH Cov

(
B

H
s ,BH

t

)
, s, t > 0,H ∈ (0,1) (4.9)

with

CH = π

H�(2H) sin(Hπ)
.
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The second is the following∫ ∞

0

r−γ

(rw)−2/α + θ2
dr = α

2
B

(
H − 1

2
,

3

2
− H

)
wγ−1

|θ |2H−1

if H := 3 − α(γ − 1)

2
∈ (1/2,3/2), (4.10)

and otherwise the integral is infinite. Here B(a,b) = ∫ 1
0 xa−1(1 − x)b−1 dx is the beta function.

Indeed, by change of variables, we have∫ ∞

0

r−γ

(rw)−2/α + θ2
dr = wγ−1|θ |α(γ−1)−2

∫ ∞

0

r−γ

r−2/α + 1
dr

= wγ−1

|θ |2−α(γ−1)

α

2

∫ ∞

0

r−(1+(1−γ )α/2)

r + 1
dr.

Recall also that
∫ ∞

0 (1 + u)−1u−β du = B(β,1 − β) = π/ sin(πβ) for all β ∈ (0,1), and other-
wise the integral is infinite. Combining the above yields (4.10).

We begin with the case (4.8), by formally integrating (4.6) with respect to dθr−2 dr�(dw).
First, by (4.9), ∫

R

(eis1θ1 − 1)(eit1θ1 − 1)

|θ1|2 dθ1 = 2π Cov
(
B

1/2
s1 ,B

1/2
t1

)
.

Next, by (4.10),

∫ ∞

0

(rw1)
1/α1(rw2)

−1/α2

(rw2)−2/α2 + θ2
2

dr

r2
= α2

2
B

(
H2 − 1

2
,

3

2
− H2

)
w

1/α1
1 w

1−1/α1
2

|θ2|2H2−1
, (4.11)

with

H2 = 1 − α2

2

(
1 − 1

α1

)
provided

α2

2

(
1 − 1

α1

)
∈ (0,1/2). (4.12)

So the above formal calculation yields an extra necessary assumption α1 > 1 for the case (4.8),
and in this case integrating (4.6) with respect to dθr−2 dr�(dw) yields, with H1 = 1/2 and H2

as in (4.12),

(2π)2
∫

�1

w
1/α1
1 w

1−1/α1
2 �(dw)2α2B

(
H2 − 1

2
,

3

2
− H2

)
CH2 Cov

(
B

H
s ,BH

t

)
= (2π)22α2cH2

∫
�1

w
1/α1
1 w

1−1/α1
2 �(dw)Cov

(
B

H
s ,BH

t

) = (2π)2σ 2 Cov
(
B

H
s ,BH

t

)
,

with σ as in regime (i) in Theorem 1.4.
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Now we identify the regime (ii). This time, the multiple integral on the right-hand side of (4.5)
becomes (by integrating (4.7))∫

�1

∫ ∞

0

∫
R2

(eis1θ1 − 1)(eit1θ1 − 1)

|θ1|2 s2t2

2∏
k=1

2(rwk)
−1/αk

(rwk)−2/αk + θ2
k

dr

r2
dθ�(dw)

= 2π(s2t2)

∫
R

(eis1θ1 − 1)(eit1θ1 − 1)

|θ1|2
∫

�1

∫
R

2(rw1)
−1/α1

(rw1)−2/α1 + θ2
1

dr

r2
�(dw) dθ1.

Again by (4.10), for

H1 = 1 − α1

2
, H2 = 1 provided α1 ∈ (0,1),

the above becomes

2π(s2t2)α1B

(
H1 − 1

2
,

3

2
− H1

)∫
�1

w1�(dw)

∫
R

(eis1θ1 − 1)(eit1θ1 − 1)

|θ1|1+2H1
dθ1

= (2π)2α1cH1

∫
�1

w1�(dw)Cov
(
B

H
s ,BH

t

)
.

This is the regime (ii).
To complete the computation of asymptotic covariance (4.5), it remains to provide an inte-

grable bound to apply the dominated convergence theorem. To establish the limit theorem, we
need to also bound the fourth-moment. These are left to the first two sections in the Supplemen-
tary Material.
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