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We consider the problem of estimating a vector μ = (μ1, . . . ,μn) under a squared loss, based on inde-
pendent observations Yi ∼ N(μi,1), i = 1, . . . , n, and possibly extra structural assumptions. We argue that
many estimators are asymptotically equal to μ̂i = αμ̃i + (1 − α)Yi + ξi = μ̃i + (1 − α)(Yi − μ̃i ) + ξi ,
where α ∈ [0,1] and μ̃i may depend on the data, but is not a function of Yi , and

∑
ξ2
i

= op(n).
We consider the optimal estimator of the form μ̃i + g(Yi − μ̃i ) for a general, possibly random, function

g, and approximate it using nonparametric empirical Bayes ideas and techniques. We consider both the
retrospective and the sequential estimation problems. We elaborate and demonstrate our results on the case
where μ̂i are Kalman filter estimators. Simulations and a real data analysis are also provided.
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1. Introduction

Consider the problem of estimating the values of μ1, . . . ,μn based on the observations
Y1, . . . , Yn, where μi may be deterministic or random, and conditional on the μs, Y1, . . . , Yn

are independent, and Yi ∼ N(μi,1). We write Yi = μi + εi . We use bold to denote a vector
representation of sample values, e.g., μ = (μ1, . . . ,μn).

The performance of an estimator δ = δ(Y ) for μ is evaluated according to its squared error
risk: E‖δ − μ‖2. The estimator δ1 strictly asymptotically improves upon δ2 if E‖δ1 − μ‖2 ≤
cE‖δ2 − μ‖2 + o(n) for some 0 ≤ c < 1. If the last inequality holds with c = 1, we say that δ1
asymptotically improves upon δ2.

In situations where Y1, . . . , Yn are perceived as “exchangeable”, the nonparametric empirical
Bayes approach is appealing. In this paper, “exchangeable” is not meant in the usual sense in
probability, in particular, for deterministic μs, the values μ1, . . . ,μn are not assumed to be all
equal. By “perceived exchangeable” we mean that the statistician does not distinguish between
Y1, . . . , Yn a priory, that is, the index does not carry any information. Therefore, an appealing
approach is to apply the same estimating function δ(Yi), when estimating each μi, i = 1, . . . , n,
that is, confined to estimators of the type δ(Y ) = (δ(Y1), . . . , δ(Yn)). Such estimation functions
are called coordinate-wise.
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A central task in empirical Bayes theory is to approximate the optimal coordinate-wise δ in
a ‘perceived exchangeable’ setup. However, we are interested in situations where Y1, . . . , Yn

should not be treated as exchangeable, due to structural conditions, covariates, and assumptions.
For example, suppose Y1, Y2, . . . is a time series modeled by a state-space. In such situations
we strive to transform the setup into one that may be naturally treated as exchangeable and thus
classical empirical Bayes approaches may be naturally applied.

Our suggested method yields a way to improve the performance of some classical estimators,
which are described in the following through their general ‘canonical’ presentation and through
examples.

Canonical estimators μ̂. As the examples below show, many estimators of μi are built out of
two components. One is the the value of Yi itself, and the other is an estimator μ̃i based on the
rest of the observations. Typically, the final estimate is approximately a linear combination of the
two:

μ̂i = αμ̃i + (1 − α)Yi + ξi

= μ̃i + (1 − α)(Yi − μ̃i) + ξi, i = 1, . . . , n,

where the predictor μ̃i is a parametric function of the available data excluding Yi , and the ξi are
some error terms, satisfying E‖ξ‖2 = o(n), ξ = (ξ1, . . . , ξn). In vector notations:

μ̂ = μ̃ + (1 − α)(Y − μ̃) + ξ . (1)

1.1. Examples

1.1.1. Stein estimator

The Stein estimator is of special importance (see, e.g., Lehmann and Casella [15]). The standard
form of the James–Stein estimator is that of (1) with a non-random μ̃, typically μ̃i ≡ 0:

μ̂i = μ̃i +
(

1 − n − 2

‖Y − μ̃‖2

)
(Yi − μ̃i).

The above class of estimators may be viewed as shrinking towards μ̃. In the classical James–Stein
estimator, μ̃ does not depend on the data while α depends on μ̃ and the data:

α = 1

1 + ‖μ − μ̃‖2/n
= n − 2

‖Y − μ̃‖2
+ op(1).

Moreover, the smaller ‖μ − μ̃‖2 is, the smaller is the risk of the corresponding Stein estimator.
In particular, if we shrink towards the true mean, i.e., μ̃ = μ, the risk of the corresponding Stein
estimator is o(n).

Asymptotically, the James–Stein estimator converges to the best linear correction of the vector
of a priori guesses, and to the Bayes estimator if νi = μi − μ̃i , i = 1, . . . , n, are i.i.d. normal with
mean 0 (Efron and Morris [11]). This motivates shrinking towards a data dependent μ̃ which is
a good initial guess for μ, see, for example, μ̃i ≡ Ȳ .
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1.1.2. Fay–Herriot and small area estimation

Fay–Herriot [12] generalized the above line of thought to the case where there are explanatory
variables. Suppose that each Yi is accompanied by a vector Xi of explanatory variables, inde-
pendent of εi . Let β̂ be the usual least squares, β̂ = arg minb ‖Y − Xb‖2, where X is a design

matrix. Then, under mild conditions, we expect β̂
p−→ β , which is independent of ε1, . . . , εn. We

now apply the previous arguments to the estimator

μ̂ = Xβ̂ +
(

1 − n

‖Y − Xβ̂‖2

)
(Y − Xβ̂).

Letting Xβ play the role of μ̃, the last equation has the form (1).
The Fay–Herriot type estimators play a major role in small area estimation (Rao [16]). A treat-

ment of such estimators in this context, in the spirit of the current paper, is given in, Cohen et
al. [8]. More generally, estimators of the type (1) are used in small area estimation and termed
‘composite estimators’. The μ̃ term is often referred to as the ‘synthetic’ part of μ̂. The synthetic
part is based on model assumptions and information ‘borrowed’ from neighboring areas.

1.1.3. Kalman filter

Consider a state-space model, for example, μi is a Gaussian ARIMA process and Yi = μi + εi ,
εi ∼ N(0,1), εi are independent and independent of μi , i = . . . ,−1,0,1,2, . . . .

Let Di be the index set of the available observations at time i and excluding the ith observation.
In a retrospective estimation Di = (. . . , i − 2, i − 1, i + 1, i + 2, . . .) and in sequential estimation
Di = (. . . , i − 3, i − 2, i − 1).

Suppose the random . . .μ−1,μ0,μ1, . . . is a Gaussian process. Let μ̃i = E(μi |Yj , j ∈ Di ).
Then, under squared loss, the optimal Kalman-filter estimator for μi is:

μ̂i ≡ E
(
μi |Yj , j ∈Di ∪ {i})

= αiE(μi |Yj , j ∈Di ) + (1 − αi)Yi

= αiμ̃i + (1 − αi)Yi

= μ̃i + (1 − αi)(Yi − μ̃i).

In the above αi = 1/(τ 2
i + 1), where τ 2

i is the variance of μi given {Yj , j ∈ Di}. The second
equality above is obtained due to the Gaussianity of the μ-process, regardless of special state-
space structure. This is a shrinkage estimator that shrinks towards a random μ̃i . When the μ-
process is stationary αi = α + o(1). In a stationary state space μ̂ may be presented as a linear
combination of the observed Y s, see, for example, Brockwell and Davis [2], it may be seen
that (1 − αi) equals to the coefficient of Yi under the linear representation of μ̂i . When the
parameters of the stationary state space are known, the canonical representation is obvious given
the coefficients of the observed Y s and also by the above derivation; this is also true in typical
scenarios where the coefficients are consistently estimated in appropriate rates under stationarity,
see Brockwell and Davis [2].
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When the μ-process is indeed Gaussian the above estimators cannot be asymptotically im-
proved. However, consider for example a situation where the μ-process is a non-Gaussian
ARMA. We will argue in the sequel that the Kalman-filter estimator, although optimal among
linear filters, is not globally optimal and may be asymptotically strictly improved.

Summary: As demonstrated above, under a stationary state space model μ̂i has the canonical
form with an appropriate α. The estimator μ̂i is optimal when the μ process is Gaussian, it is
the best linear estimator under a general state-space model regardless of whether the μ-process
is Gaussian. The canonical form is obtained also when the parameters of the assumed model are
estimated.

When the true model is in fact different than the assumed model whose parameters are es-
timated, then, under mild conditions, the estimator μ̂i still has the canonical form if the true
model is stationary. This follows since due to stationarity the estimated parameters (under the
wrong model) converge.

1.2. The main ideas

The James–Stein estimator with μ̃i ≡ 0 and more general compound decision and empirical
Bayes analyses for estimating μ are appealing when Y1, . . . , Yn are perceived as exchangeable,
and μi are estimated in a coordinate-wise manner. This is not the situation we study. For instance,
consider the case where the μ-process is an AR(1). In a setup where Y1, Y2, . . . are not perceived
as exchangeable, we should not use such approaches directly. We strive to transform the original
problem to one that the statistician may perceive as (approximately) exchangeable.

The way to achieve exchangeability in our more general setup is by subtracting the predictor
μ̃i from Yi . Let

Z = Y − μ̃,

denote

ν = μ − μ̃.

Then Zi = νi + εi . Note, εi is independent of μi , and μ̃i is not a function of Yi , thus εi is
independent of νi . Therefore:

L(Zi |μ, νi) = N(νi,1), i = 1, . . . , n. (2)

The sequence Z1, . . . ,Zn may be considered as exchangeable, since prior to observing Zi , the
best guess of the statistician for the value of E(Zi) = νi is zero. Therefore, estimating νi in a
coordinate-wise manner by δ(Zi) with the same δ for each i, i = 1,2, . . . is natural.

Since μ̃i , i = 1, . . . , n are observed, estimating νi is equivalent to estimating μi , i = 1, . . . , n.
We can, therefore, consider the pair νi and its measurement Zi instead of the pair μi and its mea-
surement Yi . However, the situation cannot be trivially reduced to a normal compound decision
problem by conditioning on ν. The reason is that although the distribution of Zi conditional on
νi and μ is N(νi,1), the dependence of Zi on ν often implies that its distribution conditional on
ν and μ is very different from N(νi,1). This may be seen in the following trivial example.
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Example 1.1. Let Yi ∼ N(μi,1) be independent. For simplicity, the μs are non-random, and
suppose μ1 = · · · = μn = 0. Let μ̃i = Yi−1, i > 1, and let μ̃1 = 0. Then νi = −Yi−1, i > 1,
and L(Zi |μ, νi) = N(νi,1), i = 2, . . . , n. However, obviously L(Zi |μ,ν) is degenerate, i =
1, . . . , (n − 1).

In this example, the considerations and model that lead the statistician to μ̃i are not helpful.
In fact, applying a standard nonparametric empirical Bayes procedure on the initial sequence
Y1, . . . , Yn, would yield a much better estimator for μ1, . . . ,μn. The purpose of this paper is to
show a way of improving canonical estimators that are based on μ̃i and Yi , regardless of whether
the considerations/model that lead to μ̃i are ‘helpful’/‘true’. Indeed, the assumptions stated in the
next section are satisfied in this example, and our main improvement results are implied.

A key role in the following analysis is played by the distribution

G = Gμ �
n∑

i=1

1

n
L(νi |μ). (3)

It is the marginal distribution of νI given μ, for a randomly selected index I , uniformly dis-
tributed on {1, . . . , n}.

Example 1.1 (continued). In light of our example, as n → ∞ the distribution Gμ = Gn
μ of νI ,

converges to N(0,1). Here, we need n → ∞ because of the point mass at zero, which is implied
since since ν1 = 0, a.s.

Our plan is the following. We condition on μ and approximate the optimal improvement func-
tion δ̃. The latter satisfies:

δ̃ = δ̃μ � arg min
g

E
(∑(

μi − μ̃i − g(Yi − μ̃i)
)2|μ

)
= arg min

g
E

(∑
i

(
νi − g(Zi)

)2|μ
)

. (4)

By convexity, δ̃μ is unique. In Lemma 1, we prove that δ̃ has the representation:

δ = δμ = arg min
g

∫
E

(
ν − g(Z)

)2
dGμ(ν), (5)

that is, δ̃μ = δμ.
The last minimization problem is standard and the minimizer is the standard Bayes estimator:

δμ(z) = E(ν|Z = z),

where the conditional expectation is under the model where ν ∼ Gμ and L(Z|ν) = N(ν,1).
Denote:

δ = (
δμ(Z1), . . . , δμ(Zn)

)
.
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Similarly denote δ̃.
The task of approximating δμ based on Y1, . . . , Yn, without knowing G ≡ Gμ will be per-

formed along the lines of the method suggested by Brown and Greenshtein [5] – see the following
subsection. The approximation is denoted δ̂ ≡ δ̂μ and δ̂. We will show:

δ̂μ ≈ δμ.

First, consider the following improvement of μ̂:

μI = μ̃ + δ̃ = μ̃ + δ.

Obviously, μI improves upon the estimator μ̂. This follows since μ̂ is restricted to functions
that are asymptotically equivalent to αμ̃+ (1 −α)Y = μ̃+ (1 −α)Z, that is, where the term that
corrects μ̃ is restricted to be proportional to Z. However, μI is not a function of the observed data
Y1, . . . , Yn, since δ depends on the unknown μ. The proper estimator is based on the estimator δ̂,
specifically:

μ̂I = μ̃ + δ̂.

We will show that μ̂I and μI are asymptotically equivalent, whereas μ̂I asymptotically improves
upon μ̂. As will be shown, the asymptotical improvement is often strict.

More on creating exchangeability. Exchangeability is commonly lost, under a heterogenous
known variance setup, i.e., Var(Yi) = σ 2

i , such an heterogeneity may occur, for example, due
to different sample sizes in different unit groups. An immediate way to restore homogeneity
and exchangeability is to normalize through dividing Yi by its known σi and estimate μi/σi ,
or apply some other variance stabilizing transformation. This changes the target parameter, but
more importantly it might mask valuable information that could be provided by σi as a covariate.
A possible way to handle it is to split the data into subgroups with members that have similar
values of σi , and treat each subgroup as exchangeable. This may also be done when other co-
variates are present. In addition, one may apply classes of estimation functions that do not work
in a coordinate-wise manner but also depend on covariates. Choosing a member from a class of
non coordinate-wise estimation functions would not involve classical considerations of empiri-
cal Bayes. Choosing a concrete member from a class typically involves deriving good (unbiased)
estimators of their risks. See, for example, Xie et al. [22], Brown et al. [7], Weinstein et al. [21],
Banarejee et al. [1].

Our approach under heterogeneity of σi (and presence of other covariates) could add to the
above by letting μ̃i also depend on σi for reasonable functional dependence. We stress, this
functional dependence is not assumed “true” in any sense, as may be seen in the sequel. This way
we utilize the information provided by σi . After utilizing this information, normalizing through
dividing by σi might not be too harmful. The advantage of this approach is that after transforming
the problem via subtracting μ̃, we may naturally use pure empirical Bayes techniques. This
approach was used in a Fay–Herriot model with heterogeneous variances, in Cohen et al. [8].
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1.3. Essentials of normal empirical Bayes

In this subsection we recall some facts and ideas of the normal nonparametric empirical Bayes
approach. The ideas of Compound-Decision and empirical Bayes were developed by Robbins
[17–19]. Copas [9], Zhang [23], and Efron [10] provide good introductions of those ideas and
their various applications.

Suppose that ν is distributed G and (Z|ν) ∼ N(ν,1). It is desired to approximate δ – the
Bayes decision under squared risk, δ(z) = E(ν|Z = z), based on the observed Z1, . . . ,Zn, Zi ∼
N(ν1,1) when G is completely unknown. In the following, we will give a useful representation
of δ based on the unknown G.

Let

f (z) =
∫

ϕ(z − ν)dG(ν), (6)

where ϕ is the standard normal probability density function. In the case where G = Gμ, we
might want to emphasize it by writing f = fμ.

The following equation (7) is known as Tweedie’s formula, it may also be found in Brown [4],

δ(z) = z + f ′(z)
f (z)

, (7)

where f ′ is the derivative of f .
The last presentation is useful since it shows that the Bayes procedure is a function of the

hard-to-estimate G only through its corresponding easy-to-estimate f and f ′. We define our
estimator δ̂ for the Bayes decision under G, through kernel estimation of f and f ′. Consider, for
simplicity, the two kernel estimators

f̂ (z) = n−1
∑
j

Kσ (Zj − z),

f̂ ′(z) = n−1
∑
j

K ′
σ (Zj − z),

where Kσ (z) = σ−1K(z/σ), σ = σn and K ′ is the derivative of K . The specific kernel we use is
the normal kernel. We define

δ̂∗(z) = z + f̂ ′(z)
f̂ (z)

.

For technical reasons, we truncate the above as follows:

δ̂(Z) = Z + (
δ̂∗(Z) − Z

) × I
(|δ̂∗(Z) − Z

)| < Mn), (8)

where Mn → ∞. A convenient (though not essential) choice for us is Mn = (logn)0.15 (see the
Appendix). In all of our simulations and real data analyses, we took Mn ≡ 3. The smoothing
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parameter σn should converge to 0, but the convergence can be very slow. For simplicity, we
adopt the recommendation of Brown and Greenshtein [5] for

σn = (logn)−1/2.

GMLE. Consistency results in the estimation of δ, similar to those that we derive, could be
obtained by estimating the appropriate mixing distribution G via GMLE, as in Jiang and Zhang
[13] or Koenker and Mizera [14]. The advantage of one approach relative to the other in terms of
rates is beyond the scope of this paper.

1.4. The rest of the paper

Consider a pair of estimators μ̃ and μ̂, such that:

μ̂ = μ̃ + (1 − α)(Y − μ̃) + ξ , E‖ξ‖2 = o(n).

Assume further that μ̃i ∈ Fi ≡ F(Yj , j ∈ Di ), the smallest σ -algebra that is generated by Yj ,
j ∈ Di , where Di ∪ {i} is the index set of the available observations at time i.

Our main results, Theorem 3 (retrospective filtering) and Theorem 6 (sequential filtering),
show that under mild conditions and for a suitably defined random function δ̂(·), the estimator
μ̂I = μ̃+ δ̂(Y − μ̃) asymptotically improves upon μ̂. Typically it is strictly so. Theorem 2 shows
that δ̂ and δ are asymptotically equivalent.

In Section 5, we present simulation results comparing our μ̂I with a Kalman-filter μ̂, when the
μ-process is a non-Gaussian AR(1). In Section 6, we analyze a real data example where various
ARIMA models and their corresponding Kalman filters μ̂ are applied, and their performance is
compared with their improvement counterparts μ̂I .

2. Assumptions

In this section, we state all of our assumptions. No attempt was made to give the weakest possible
conditions, for example, in terms of the various assumed powers of logn. Our considerations
were mainly to ease the presentation.

It should be noted that our results do not depend on whether the various model assumptions
that lead to the μ̃i estimators, i = 1,2, . . . are indeed true. Our modest requirement is just that
those estimators will not be too crude in the sense that νi , the mean of Zi = Yi − μ̃i , will not
be too large. This is formulated in Assumption 1. That assumption implies that ν1, . . . , νn are
not too spread, which implies that the magnitude of the random variable f (Z) ≡ fμ(Z) is “large
enough” with “high” probability (see the Appendix).

Recall that G ≡ Gμ is the conditional distribution of the estimation error νi , of the initial
estimator μ̃i . Our formulation is for a triangular array, where Gμ ≡ Gn

μ, which is expected to be
tight.
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Assumption 1. Let Cn = (−Dn,Dn), where Dn = κ
√

logn. For large enough κ

Gn
μ(Cn) > 1 − 1

logn
,

uniformly in μ.

Consider Assumption 1, in the simple context where the μ-process is a random walk with
bounded steps. Consider μ̃i that satisfy μ̃i = Yi−1 +Op(

√
log(n)). Then Assumption 1 is satis-

fied, although the μ-process itself is non-stationary.
The following assumption is needed in order to control the variance of our kernel estimates f̂

and f̂ ′, when invoking the normal kernels Kσn(Z − z) with bandwidth σn = (logn)−1/2.

Assumption 2. For ψ = fμ, f ′
μ and for σn = (logn)−1/2 the following holds uniformly for μ

and z:

Var
(
ψ̂(z)|Zi = z,μ

) = O
(
(logn)−4), i = 1, . . . , n, (9)

E
(
ψ̂(z)|Zi = z,μ

) = ψ(z) +O(1/ logn). (10)

The last assumption is very mild. It implies that the conditional variances of the kernel estima-
tors approach zero in a 1/(logn)4 rate, rather than the 1/nσ 2

n rate for independent observations.
Our sequence is not of i.i.d. observations, but typically will be strongly mixing. Similarly, the
assumption about the difference between E(ψ̂(z)|Zi = z,μ) and ψ(z) is mild. The difference
is smaller than |E(ψ̂(z)|Zi = z,μ) − E(ψ̂(z)|μ)| + |E(ψ̂(z)|μ) − ψ(z)|. The second term in
the last expression is the bias of the kernel estimator with a symmetric kernel and bandwidth σn,
which is O(σ 2

n ) =O(1/ logn). The first term controls the affect of a single Zi on the conditional
expectation of ψ̂ , which is expected to be O(1/nσn) under mixing conditions.

Our last assumption is about the structure of the estimator μ̂ which we improve upon. Those
are the canonical estimators described in the Introduction, see also the examples.

Assumption 3. Suppose that there exists a fixed α ∈ [0,1], α ≡ αμ may depend on μ, so that

μ̂ = αμ̃ + (1 − α)Y + ξ , where E
(‖ξ‖2|μ) = o(n) uniformly in μ; (11)

3. Retrospective empirical Bayes estimation

In this section, we consider the retrospective estimation of μi , where the entire data set is given.
The sequential case is considered in the next section. Our goal is to approximate the ideal μI , by
an asymptotically equivalent estimator of μ which depends only on the data. The performance of
any estimator of the form μ̃+g as an estimator for μ, may be evaluated through the performance
of g as an estimator of ν, since: E‖μ̃ + g − μ‖2 = E‖g − ν‖2.

We start by proving that the two functions defined in (4) and (5) are the same.
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Lemma 1.

E‖δ − ν‖2 = E‖δ̃ − ν‖2.

Thus, δ ≡ δ̃.

Proof. Since δ̃ was defined as the minimizer of the LHS of (4), it is enough to show that condi-
tional on every μ,

E
(∑(

δ̃μ(Zi) − νi

)2∣∣μ)
≥ E

(∑(
δμ(Zi) − νi

)2∣∣μ)
.

Denote R(ν,g) = E(g(Z) − ν)2, for Z ∼ N(ν,1). Recall that the conditional distribution of Zi

conditional on νi and μ is N(νi,1) – see (2). For a random permutation π ,

E
(∑(

δ̃μ(Zi) − νi

)2∣∣μ)
= nE

(
δ̃μ(Zπ(1)) − νπ(1)

)2∣∣μ)

= nE
(
E

((
δ̃μ(Zπ(1)) − νπ(1)

)2∣∣μ, νπ(1)

)∣∣μ)
= n

∫
R(ν, δ̃μ) dGμ(ν)

≥ n

∫
R(ν, δμ) dGμ(ν)

= E
(∑(

δμ(Zi) − νi

)2∣∣μ)
. (12)

The lemma is concluded by the uniqueness of the minimizer of a strictly convex function. �

However, δ ≡ δμ is unknown since μ is unknown. The following theorem shows that it can be
well approximated using the observations.

Theorem 2. If δ̂ is defined as in (8) with Mn =O((logn)0.15), then

E‖δ̂ − ν‖2 ≤ E‖δ − ν‖2 + o(n).

The proof is given in the Appendix.
By definition, μI improves over μ̂. Lemma 1 and Theorem 2 implies that μI ≈ μ̂

I and hence
μ̂

I improves over μ̂, at least asymptotically. We aim to formulate a more general result, where in
addition, it is stated and shown when μ̂I is asymptotically strictly better than μ̂. For this purpose,
we present a few more considerations.

Only when δ is asymptotically linear, μI may be equivalent to μ̂, and consequently μ̂
I would

not strictly improve over μ̂. It follows from (7) that this happens when f ′(z)/f (z) = (logf (z))′
is approximately proportional to z. Consider a sequence μ and the corresponding Gμ. Suppose
Gμ converges weakly to G0. Since the corresponding sequence f (z) is a convolution of a Gaus-
sian kernel with the ‘prior’ Gμ, (logf (z))′ is linear only if G0 is Gaussian.
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Recall that in a normal Bayesian problem under squared loss, a prior G0 = N(0, τ 2) and
observation Z ∼ N(ν,1), the Bayes decision is ν̂ = Zτ 2/(τ 2 + 1). In particular, setting τ 2 =
(1−α)/α, the Bayes decision is (1−α)Z. Together with Lemma 1 and Theorem 2 we established
the following.

Theorem 3. If Assumptions 1–3 hold:

(i)

E
∥∥μ̂

I − μ
∥∥2 ≤ E

∥∥μI − μ
∥∥2 + o(n) ≤ E‖μ̂ − μ‖2 + o(n).

(ii) For μ ≡ μn, suppose that αn
p−→ α and Gμ � G0 �= N(0, (1 − α)/α). Then there exists

c < 1 such that for large enough n:

E
(∥∥μ̂I − μ

∥∥2)
< cE

(‖μ̂ − μ‖2).
Part (i) of Theorem 3 assures us that asymptotically the improved estimator μ̂

I , does as good
as μ̂. Part (ii) implies that typically the improved estimator is asymptotically strictly better. Ob-
viously the asymptotic improvement is not always strict since, for example, the Kalman filter is
optimal under a Gaussian state-space model.

Heuristically, the value of c is expected to get smaller as the distribution G0 ‘resembles’ a
normal distribution less. The canonical μ̂ is implicitly motivated under Normal G0. In particular
in cases of a sparse G0, which is expected in situations where μ̃i does a good job in most cases,
thus the corresponding νi ≈ 0, but in some exceptional cases (or, indices i) the considerations
leading to μ̃i are very wrong and νi = μi − μ̃i are large.

Example 1.1 (concluded). In our example, Gμ converges to N(0, τ 2), τ 2 = 1. In light of the
above μ̂I ≈ μ̂ asymptotically. By the above:

μ̂i ≈ μ̃i + τ 2

τ 2 + 1
Zi = Yi−1 + 1

2
(Yi − Yi−1) = Yi−1 + Yi

2
.

The above obviously does not converge to the optimal coordinate-wise decision function,
which is determined by δopt(Yi) ≡ 0. It only asymptotically improves upon the optimal among
canonical estimator based on μ̃i and Yi . The improvement is not strict, since μ̂I ≈ μ̂.

4. Sequential estimation

We now consider the sequential case, where Di = {1, . . . , i − 1} and μ̃i is Fi−1 = σ(Y1, . . . ,

Yi−1) measurable. The definition of the different estimators is the same as in the previous section
with the necessary adaption to the current sets Di , so μ̂i and μ̃i of this section are sequential. Our
aim is to find a sequential estimator, denoted μ̂IS, that satisfies E‖μ̂IS − μ‖2 + o(n) ≤ E‖μ̂ −
μ‖2. Here, μ̂ ≡ μ̂S is sequential, it has the form μ̂i = μ̃i + αZi where μ̃i ≡ μ̃S

i ∈ Fi−1; we

omit the superscript S. In general, by a sequential estimator μ̂IS = (μ̂IS
1 , . . . , μ̂IS

n ) we mean that
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μ̂IS
i ∈ Fi , i = 1,2, . . . . A natural approach, which indeed works, is to let μ̂IS

i = μ̃i + δ̂i , where
δ̂i is defined as in (8), but with f̂ = f̂ i restricted to the available data Z1, . . . ,Zi , i = 1, . . . , n.
Let

δ̂
S = (

δ̂1, . . . , δ̂n
)
.

Define

μ̂IS = μ̃ + δ̂
S
.

The following lemma is an abstract version of a result in Samuel [20] and is the key to the
main result of this section.

Lemma 4. Let � be some set and fj : � → R, j = 1,2, . . . , n. Let δi ∈ � satisfies∑i
j=1 fj (δi) ≤ infδ∈�

∑i
j=1 fj (δ) + ζi , i = 1, . . . , n. Then

n∑
i=1

fi(δi) ≤ inf
δ∈�

n∑
i=1

fi(δ) +
n∑

i=1

ζi .

Proof. By a trivial telescoping argument:

n∑
i=1

fi(δi) =
n∑

i=1

(
i∑

j=1

fj (δi) −
i−1∑
j=1

fj (δi)

)

=
n∑

j=1

fj (δn) −
n∑

i=2

(
i−1∑
j=1

fj (δi) −
i−1∑
j=1

fj (δi−1)

)

≤
n∑

j=1

fj (δn) −
n∑

i=2

(
i−1∑
j=1

fj (δi) − inf
δ∈�

i−1∑
j=1

fj (δ) − ζi−1

)

≤
n∑

j=1

fj (δn) +
n−1∑
i=1

ζi .
�

We consider the lemma with

fj (δ) =
∫∫ (

δ(z) − ν
)2

ϕ(z − ν) dz dGj (ν), (13)

where δ is a decision function, ϕ is the standard normal density, and Gi = L(νi |μ1, . . . ,μn).
Note that Gi = L(νi |μ1, . . . ,μi) since νi = μi − μ̃i and μ̃i is estimated sequentially.
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Corollary 5. Let δi = arg minδ

∑i
j=1

∫∫
(δ(z) − ν)2ϕ(z − ν) dz dGj (ν), i = 1, . . . , n. Then

n∑
i=1

∫ (
δi(z) − ν

)2
ϕ(z − ν) dz dGi(ν) ≤

n∑
i=1

∫ (
δn(z) − ν

)2
ϕ(z − ν) dz dGi(ν).

Let μi = μi
n = (μ1, . . . ,μi). Define other partial vectors similarly and define Gμi as in (3) to

be the distribution conditional on μi and restricted to νi . Clearly:

δi = arg min
i∑

j=1

∫∫ (
δ(z) − ν

)2
ϕ(z − ν) dz dGj (ν)

= arg minn

∫∫ (
δ(z) − ν

)2
ϕ(z − ν) dz dGμi (ν).

Consider a sequential procedure μ̂, satisfying Assumption 3, μ̂ = μ̃ + αZ + ξ , where α = αμ

and Eξ2 = o(n). Let δS = (δ1, . . . , δn), μIS = μ̃ + δS . By definitions and by Corollary 5, we
have:

E‖μ̂ − μ‖2 = E‖αZ − ν‖2 + o(n)

≥ E
∑(

δn(Zi) − νi

)2 + o(n)

≥ E
∑(

δi(Zi) − νi

)2 + o(n)

= E
∥∥μIS − ν

∥∥2 + o(n).

Moreover, as explained in the previous section, unless the μ process itself is Gaussian, δi is
asymptotically strictly better than any linear stationary estimator, in particular (1 − α)z. Finally,
as proved in the previous section for the retrospective case, for large i, E(δ̂i − δi)2 = o(1).

Thus, we can obtain our main result of this section:

Theorem 6.

(i) Under Assumptions 1–3:

E
∥∥μ̂

IS − μ
∥∥2 ≤ E‖μ̂ − μ‖2 + o(n).

(ii) For μ ≡ μn, suppose that αμn

p−→ α0 and Gμ � G0 �= N(0, (1 − α0)/α0). Then there
exists c < 1 such that for large enough n:

E
(∥∥μ̂IS − μ

∥∥2)
< cE

(‖μ̂ − μ‖2).
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5. Simulations

We now present simulation results for the following state-space model. Further numerical studies
and analysis of real data of our improvement method, in the context of Fay Herriot estimators,
may be found in Cohen et al. [8].

Yi = μi + εi

μi = φμi−1 + Ui, i = 1, . . . , n,
(14)

where ε1, . . . , εn are i.i.d. N(0,1) and independent of U1, . . . ,Un. The variables Ui , i = 1, . . . , n

are independent, Ui = XiIi where Xi ∼ N(0, v2) are independent, while I1, . . . , In are i.i.d.
Bernoulli with mean of 0.1, independent of each other and of X1, . . . ,Xn. We study the twelve
cases that are determined by φ = 0.25,0.75 and v = 0,1, . . . ,5. In each case, we investigate
both the sequential and the retrospective setups. In the case φ = 0.25 the values of (1 − α) that
correspond to v = 1,2,3,4,5, in a sequential setup are 0.096, 0.294, 0.48, 0.62, 0.72. In the
retrospect setup, the corresponding values are very slightly smaller.

If U1, . . . ,Un were i.i.d. normal, the data would follow a Gaussian state-space model, and the
corresponding Kalman filter estimator μ̂K ≡ μ̂ would be optimal. Since the Ui ’s are not normal,
the corresponding AR(1) Kalman filter estimator is not optimal (except in the degenerate case,
v = 0), though it is optimal among linear filters. This is reflected in our simulation results where
for the cases v = 0 and v = 1 our “improved” method μ̂I performs slightly worse than the
Kalman filter estimator μ̂K . It improves in all the rest. The above is stated and proved formally
in the following proposition. It could also be shown indirectly by applying part (ii) of Theorem 3.

Proposition 7. Consider the state-space model, as defined by (14). If Ui are not normally dis-
tributed then

E
∥∥μ̂I − μ

∥∥2 ≤ cE
∥∥μ̂K − μ

∥∥2
,

for a constant c ∈ (0,1) and large enough n.

Proof. We sketch the proof. Given the estimators μ̃K
i and μ̂K

i , i = 1, . . . , n, let Zi = Yi − μ̃K
i .

Then Zi = μi−1 +Ui − μ̃K
i + εi = νi + εi . The distribution G̃i of νi may be normal only if Ui is

normal, since Ui is independent of μi−1 and μ̃K
i . The distributions G̃i converge to a distribution

G as i and n − i approach infinity. As before, G is normal only if Ui are normal. Now, the
asymptotically optimal estimator for νi under squared loss given the observation Zi is ν̂i , where
ν̂i is the Bayes estimator under a prior G on νi , based on an observation Zi ∼ N(νi,1). This
Bayes estimator is linear and coincides with the KF estimator μ̂K

i , only if G is normal. �

Analogous discussion and situation are also valid in the sequential case.
In our simulations, the parameters φ and VAR(Ui) are treated as known. Alternatively, the

maximum likelihood estimation, assuming (wrongly) normal innovations Ui , yields results sim-
ilar to those reported in Table 1.

The simulation results in Table 1 are for the case n = 500. In order to speed the asymptotics,
we allowed a ‘warm up’ of 100 observations prior to the n = 500 in the sequential case, we also
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Table 1. Simulation: Mean Squared error of the two estimators

φ 0.25 0.75

v 0 1 2 3 4 5 0 1 2 3 4 5

Retrospective filter:
μ̂† 0 71 156 226 290 333 0 49 147 235 301 350
μ̂I ‡ 23 66 125 148 160 177 24 91 166 215 253 271

Sequential filter:
μ̂† 0 47 145 234 309 355 0 83 187 264 325 372
μ̂IS‡ 39 81 129 147 159 158 34 112 184 216 239 253

† Kalman filter, ‡ Improved.

allowed a ‘warm up’ of 50 in both sides of the n = 500 observations in the retrospective case.
Each entry in the table is based on 100 simulations. In each realization, we recorded ‖μ̂ − μ‖2

and ‖μ̂I − μ‖2, and each entry is based on the corresponding average. The same is true in the
sequential case with ‖μ̂IS − μ‖2.

It may be seen that when the best linear filter is optimal or nearly optimal (when v = 0 or ap-
proximately so), our improved method is slightly worse than the Kalman filter estimator, however
as v increases, the advantage of the improved method may become significant.

6. Real data example

In this section, we demonstrate the performance of our method on real data taken from the FX
(foreign exchange) dollar-shekel market in Israel. The data consists of the daily number of swaps
– purchase of one currency for another with a given value date while simultaneously selling back
of the same amount with a different value date. We consider only purchases of between 5 million
and 20 million dollars. The time period is January 2nd, 2009 to December 31st, 2013, a total
of n = 989 business days. The average number of daily purchases is 24, with the daily number
ranging from 2 to 71. In our analysis, we used the first 100 observations as a ‘warm up’, similar
to the way it was done in our simulations section.

We denote by Xi , i = 1, . . . , n, the number of purchases on day i and assume that they have a
Poisson distribution: Xi ∼ Po(λi). The data were transformed to Yi = 2

√
Xi + 0.25 as in Brown

et al. [3] and Brown, Greenshtein and Ritov [6] in order to get an (approximately) normal variable
with a variance of σ 2 = 1.

The assumed model in this section is the following state space system of equations:

Yi = μi + εi

μi ∼ ARIMA(p, d, q), i = 1, . . . , n,
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where μi = 2
√

λi and εi ∼ N(0,1) are independent of each other and of the ARIMA(p, d, q)

process. We consider the following three special cases of ARIMA(p, d, q): AR(1), AR(2), and
ARIMA(1,1,0).

Under each model there are induced Kalman filter estimators μ̃ ≡ μ̃K , and μ̂ ≡ μ̂K . Similarly,
the improved estimator μ̂I is defined. We denote the sequential and retrospective estimators
similarly with no danger of confusion.

After estimating μi , we transform the result back to get the estimator λ̂J
i for λi , λ̂J

i = 0.25μ̂J2
i ,

i = 1, . . . , n, J ∈ {‘I ’, ‘K’} where, μ̂J
i is the estimator of μi by method J . We evaluate the

performances of both estimation methods by the following non-standard cross-validation method
as described in Brown et al. [6]. It is briefly explained in the following.

Let p ∈ (0,1), p ≈ 1, and let U1, . . . ,Un be independent given X1, . . . ,Xn, where Ui ∼
B(Xi,p) are binomial variables. It is known that Ui ∼ Po(pλi), Vi = Xi − Ui ∼ Po((1 − p)λi),
and they are independent given λ1, . . . , λn. We will use the ‘main’ sub-sample U1, . . . ,Un for the
construction of both estimators (Kalman filter and Improved) while the ‘auxiliary’ sub-sample
V1, . . . , Vn is used for validation. Consider the following function,

ρ(J ;U,V) = 1

n

n∑
i=1

(
λ̂J

i

p
− Vi

(1 − p)

)2

= 1

np2

n∑
i=1

(
λ̂J

i − pλi

)2 + 1

n(1 − p)2

n∑
i=1

(
Vi − (1 − p)λi

)2

− 2

n

n∑
i=1

(
λ̂J

i

p
− λi

)(
Vi

(1 − p)
− λi

)

= 1

np2

n∑
i=1

(
λ̂J

i − pλi

)2 + An + Rn(J ), J ∈ {′
K ′,′ I ′}.

The term Rn(J ) =Op(n−1/2) and will be ignored. We estimate An by the method of moments:

Ân = 1

n(1 − p)2

n∑
i=1

Vi.

We repeat the cross-validation process 500 times and average the computed values of
ρ(J ;U,V) − Ân. When p is close to 1, the average obtained is a plausible approximation of the
average squared risk in estimating λi , i = 101, . . . ,989. By the above method we also approx-
imated the average risk of the naive estimator λ̂N

i = Xi , i = 101, . . . ,989. The approximations
for the retrospective and sequential cases are displayed in Tables 2 and A.4, respectively. The
estimated ARIMA coefficients for the various models are given in Table 3.

From Table 2, we may observe that in the retrospective case the improved method does uni-
formly better than the naive estimator and the Kalman filter. In fact, in all situations, except for
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Table 2. The retrospective case: Cross-validation estimation of the average squared risk

p = 0.95 AR(1) AR(2) ARIMA(1,1,0)

Kalman filter – λ̂K
i

27.1 19.4 20.4
Improved method – λ̂I

i
18.7 18.5 17.4

Naive method – λ̂N
i

26.4 26.4 26.4

a small deterioration under the ARIMA(1,1,0) with sequential filtering, the performance of the
improved method is quite uniform, showing its robustness against model misspecification.

It is somewhat surprising that the Kalman filter under AR(1) with retrospective estimation
does not do better than the naive filter, but does considerably better in the sequential case. The
reason is that the AR(1) model does not fit the data well. When it is enforced on the data, the
Kalman filter gives too much weight to the surrounding data, and too little to the “model free”
naive estimator. This result shows the robustness of our estimator.

In fact, we did a small simulation, where the process was AR(2), with the parameters as
estimated for the data. When an AR(1) was fitted to the data, the retrospective Kalman filter was
strictly inferior to the sequential one.

In the sequential case, Table A.4, the improved method does better than the naive method,
but contrary to the non-sequential case, it improves slightly upon the Kalman filter only in the
AR(1) and AR(2) models, while in the ARIMA(1,1,0) model the Kalman filter does slightly
better.

Appendix: Proof of Theorem 2

We assume wlog that all the decision functions g = g(Z) involved and their estimates ĝ = ĝ(Z),
are within a Mn = (logn)0.15 distance from the observed Z. This may be assumed wlog by
truncating and obtaining an asymptotically equivalent procedure g for any procedure g∗ (for
every choice Mn → ∞) as follows:

g(Z) = Z + (
g∗(Z) − Z

) × I
(|g∗(Z) − Z

)| < Mn). (15)

The specific Mn = log(n)0.15 truncation is convenient for the following, but not essential.

Table 3. The retrospective case: Parameter estimation

p = 0.95 AR(1) AR(2) ARIMA(1,1,0)

α 12.38 14.218 0.01
φ1 −0.28 −0.341 −0.6
φ2 −0.124
σ 2 3.4 3.4 4.7
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Table A.4. The sequential case: Cross-validation approximation of the average squared risk

p = 0.95 AR(1) AR(2) ARIMA(1,1,0)

Kalman filter – λ̂K
i

19.2 19.2 21.2
Improved method – λ̂I

i
19.0 19.2 22.6

Naive method – λ̂N
i

26.4 26.4 26.4

In the following all the expectations are conditional on μ, however in order to simplify nota-
tions we will completely suppress μ in the notations.

It is enough to show that E‖δ − δ̂‖2 = o(n).
Let π be a random permutation, denote π(1) ≡ I , then the random index I is distributed

uniformly on {1, . . . , n}. Denote W = Zπ(1) ≡ ZI . Then, the density of W , is:

f (w) =
∫

ϕ(w − ν)dG(ν).

Denote Z = (Z(1), . . . ,Z(n)), the order statistic of Z1, . . . ,Zn, then conditional on Z the ran-
dom function δ̂ is fixed, denoted δ̂Z . Conditional on Z , W is uniform on {Z1, . . . ,Zn}; hence,
conditional on Z , δ̂(W) is uniform on {δ̂Z (Z1), . . . , δ̂

Z (Zn)}, and E((δ̂(W) − δ(W))2|Z) =
1
n

∑
(δ̂Z (Zi) − δ(Zi))

2. Hence,

E‖δ̂ − δ‖2 = E
∑

i

(
δ̂(Zi) − δ(Zi)

)2

= E

(
E

∑
i

(
δ̂(Zi) − δ(Zi)

)2|Z
)

= EnE
(
δ̂(W) − δ(W)

)2|Z)

= nE
(
δ̂(W) − δ(W)

)2
.

Thus, we may write:

E‖δ̂ − δ‖2 = nEE
((

δ̂(W) − δ(W)
)2|W ) = n

∫
E

((
δ̂(W) − δ(W)

)2|W = w
)
f (w)dw. (16)

In the following, we bound the expected squared difference, between (the truncated versions
of) δ̂(W) and δ(W) = W + f ′(W)

f (W)
.

Let

A = {
w|f (w) > log(n)−0.9}.
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By Assumption 1, P(Ac) =O(Dn/ log(n)0.9),∫
E

((
δ̂(W) − δ(W)

)2|W = w
)
f (w)dw

=
∫

A

E
((

δ̂(W) − δ(W)
)2|W = w

)
f (w)dw +O

(
4M2

nDn

log(n)0.9

)
=

∫
A

E
((

δ̂(W) − δ(W)
)2|W = w

)
f (w)dw + o(1).

For the last equality, recall that by Assumption 1, Dn =O(
√

log(n)).
In order to show that the above integral is of order o(1), it is enough to show that for each

w ∈ A

E
((

δ̂(W) − δ(W)
)2|W = w

) = o(1).

For every w ∈ A, define the event:

Bw =
[∣∣f̂ ′(w) − f ′(w)

∣∣ <
1

log(n)
∩ ∣∣f̂ (w) − f (w)

∣∣ <
1

log(n)

]
.

By Assumption 2 and Chebyshev’s inequality, the probability of Bc
w-the complementary to the

event Bw , satisfy

P
(
Bc

w

) = o
(
M−2

n

)
uniformly in w ∈ A. Hence, it is enough to show that for w ∈ A

E
((

δ̂(w) − δ(w)
)2|W = w

)
I(Bw) = o(1), (17)

here I is an indicator of the corresponding event. Recall that, δ and δ̂ are Mn truncations of

δ(w) = w + f ′(w)
f (w)

and δ̂(w) = w + f̂ ′(w)

f̂ (w)
. It may be checked now that (17) follows.
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