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We obtain a Bernstein-type inequality for sums of Banach-valued random variables satisfying a weak de-
pendence assumption of general type and under certain smoothness assumptions of the underlying Banach
norm. We use this inequality in order to investigate in the asymptotical regime the error upper bounds for
the broad family of spectral regularization methods for reproducing kernel decision rules, when trained on
a sample coming from a τ -mixing process.
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1. Introduction

Let (Xk)k∈N+ be an integrable and centered stochastic process taking values in a separable Ba-
nach space (B,‖·‖). Define Sn = X1 + X2 + · · · + Xn. In this work, we are interested in the
non-asymptotic behaviour of the deviations of Sn from zero in B; more precisely, we investigate
exponential concentration inequalities for events of the type {‖Sn‖ ≥ t}, for t > 0. In the simplest
situation where (X1,X2, . . . ,Xn) are mutually independent and real-valued, the celebrated Ho-
effding’s [28] and Bernstein’s inequalities [6] are available. Vector-valued analogues (in finite or
infinite dimension) of those concentration inequalities for norms of sums of independent random
variables were first established for the case of bounded independent random variables in Hilbert
spaces by Yurinskyi [54].

The situation differs in an arbitrary Banach space. There, the distribution of ‖Sn‖ (in par-
ticular its expectation) heavily depends on the geometry of the underlying Banach space, and
moment (Bernstein-like) conditions for the individual variables Xi are generally not sufficient
for a generic control of ‖Sn‖ around zero (see [55], Example 3.0.1). Still, under assumptions
on the “smoothness” of the underlying Banach norm (reflected by boundedness of its first two
Gâteaux-derivatives), one can control the deviations of ‖Sn‖ around zero. Corresponding con-
centration inequalities have been obtained in [42] and [40].

Of interest for many applications is the case where random samples are generated from some
non-trivial stochastic process with (possibly infinite) memory. The generalization of Hoeffding’s
inequality for real-valued martingales and martingale differences together with its application
to least squares estimators in linear and smooth autoregressive models are presented in [52].
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An extension of the Hoeffding–Azuma inequalities for the weighted sum of uniformly bounded
martingale differences can be found in [45]. Generalizations of the exponential inequalities for
the case of real-valued supermartingales were obtained in [25] and recently generalized in [23],
where the authors use change of probability measure techniques, and give applications for esti-
mation in the general parametric (real-valued) autoregressive model. Extensions of [25] for the
case of supermartingales in Banach spaces were obtained in [41].

Beyond the (super)martingale setting, the need to handle more general processes which have
some “asymptotic independence” assumptions led to the concept of mixing. Definitions of
(strong) α-, φ- and ρ-mixing were introduced in [30,32,47], we refer also to [13] for a broad
survey about the properties and relations between strong mixing processes. However, there are
examples of dynamical systems [18] generated by uniformly expanding maps that are not even
α-mixing (considered the weakest form of strong mixing assumptions). Such type of processes
include mixingales [2,37], associated processes [22,24], and various more recent notions of weak
dependence [8,20,44]. In this paper, we consider the analysis of the inherent dependency of
the random sample by means of a general type of weakly dependent process. In this general
framework, many techniques used in the independent data scenario were improved and com-
bined with other methods to obtain concentration inequalities for the sum of real-valued random
variables. For example, generalizations of Bernstein’s inequality for φ-mixing random processes
were obtained combining the entropy method with the blocking technique in [48]; using a similar
blocking technique ensuring asymptotic independence, Bernstein-type inequalities for geomet-
rically α-mixing processes and moderate deviation principles were derived in [38]; deviation
inequalities for real-valued sums of variables from general α-mixing processes were obtained
in [11] through approximation by independent random sums and the blocking technique. More-
over, in [26] the blocking technique together with majorization of joint distributions by means
of the marginals and a general Chernoff’s bounding principle are used to obtain Bernstein-type
inequalities for real-valued Lipschitz functions of C-mixing processes. In [34], the martingale
difference method is used to establish general McDiarmid-type concentration inequalities for
real-valued Lipschitz functions of dependent random sequences on a countable state space. Us-
ing logarithmic Sobolev inequalities and the contractivity condition related to Dobrushin and
Shlosman’s strong mixing assumptions, general non-product measure concentration inequalities
were obtained in [35].

Most of the above mentioned inequalities characterize the deviations of sums of real-valued
random variables. Concerning Hilbert- or Banach-valued weakly dependent processes, a sig-
nificant literature exists on limit theorems of central limit or Berry–Esseen type, motivated in
particular by functional time series [12,29]; we will limit ourselves to pointing out the recent ref-
erence [31] and the substantial literature review there. In this paper, we are specifically interested
in concentration results with a non-asymptotic control of exponentially decaying deviation prob-
abilities. A few results concern the concentration of real-valued functional of weakly dependent
variables over somewhat general spaces, and can be applied to norms of sums of vector-valued
variables. This is the case for the measure concentration result in [34] for so-called η-mixing
(which is implied by φ-mixing) random variables, but a condition called �-dominance [33]
must hold (it is satisfied if the underlying variable space is countable, or is a closed subspace of
the real line). This result implies Hoeffding–Azuma type inequalities for norms of sums. Still,
to the best of our knowledge, it is unknown how these mixing assumptions are connected to
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α-, β- or 	C -mixing, or whether they can be applied to norms in arbitrary Banach spaces. The
aforementioned measure concentration results of [35] for distributions of dependent real vari-
ables with continuous density imply concentration of the norm of their sum (which is a Lipschitz
function in Euclidean distance) in an Euclidean space. However, the question becomes more
challenging when one considers concentration of the norm of random variables in a separable,
infinite-dimensional space. Finally, the recent work [19] establishes a Hoeffding-type bound un-
der assumptions close to what we consider here; we underline that we are interested in sharper
Bernstein-type rather than Hoeffding-type bounds (see also Section 3.3 for a more detailed dis-
cussion of the latter work).

This paper is organized as follows: in Section 2, we recall the setting for stochastic processes
with values in a Banach space. We recall the definition from [36] to consider a general type
of weakly dependent processes. In Section 3, we pose the main assumptions about the struc-
ture of the underlying infinite dimensional Banach space and present in a general form the new
Bernstein-type inequalities for C-mixing processes. Furthermore, here we also provide specific
corollaries for the cases of either exponentially (geometrically) or polynomially mixing decay
rates. We compare our results to the former inequalities on the concentration of real-valued C-
mixing processes. As an application, in Section 4 we investigate the (asymptotical) error bounds
for reproducing kernel learning algorithms using a general form of spectral regularization when
the sample is drawn from a process which satisfies the so-called τ -mixing assumption. All proofs
can be found in the Appendix.

2. Preliminaries and notations

Let (
,F,P) be a probability space. We recall that (B,‖·‖) is some separable Banach space
and X ⊂ B a ball of B. We use the standard notions of p-integrable and essentially bounded real
functions spaces and use the notation Lp(P) := Lp(
,F,P) and L∞ := L∞(
,F,P). Follow-
ing [36], we define mixing processes with respect to a class a of real-valued functions. Let C(·)
be a semi-norm over a closed subspace C of the Banach space of bounded real-valued functions
f : X �→ R. We define the C-norm by ‖f ‖C := ‖f ‖ + C(f ), where ‖·‖ is the supremum norm
on C, and introduce C1 = {f ∈ C,C(f ) ≤ 1}.

Define Mj = σ(Xi : 1 ≤ i ≤ j), j ∈ N to be the sigma-algebra generated by the random
variables X1, . . . ,Xj .

Definition 2.1. For k ∈N>0 we define the C-mixing coefficients as

	C(k) = sup
{
E
[
Yϕ(Xi+k)

]−E[Y ]E[ϕ(Xi+k)
]

∣∣ i ≥ 1, Y ∈ L1(
,Mi ,P),‖Y‖L1(P) ≤ 1, ϕ ∈ C1
}
.

We say that the process (Xi)i≥1 is 	C -mixing (or simply C-mixing) if limk→∞ 	C(k) = 0.
If 	C(k) ≤ c exp(−bkγ ) for some constants b, γ > 0, c ≥ 0 and all k ∈ N, then a stochastic
process (Xk)k≥1 is said to be exponentially (or geometrically) C-mixing. If 	C(k) ≤ ck−γ for
all k ∈ N and for some constants c ≥ 0, γ > 0, then the stochastic process (Xk)k≥1 is said to be
polynomially C-mixing.
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As discussed in [36], C-mixing describes many natural time-evolving systems and finds its
application for a variety of dynamical systems. The authors of [26] use a slightly different
definition of 	C -mixing coefficient, where the supremum is taken over the class of functions
{f : ‖f ‖C ≤ 1}.

Thus, dependency coefficients 	C are characterized by the control over correlations between
the past and one moment in the future of the process, for functions of bounded supremum norm
from class C1. A fundamental result ([36], Lemma 1.1.2) claims that Definition 2.1 can be equiv-
alently stated as following.

Definition 2.2 (Equivalent to Definition 2.1).

	C(k) = sup
{∥∥E[ϕ(Xi+k)

∣∣Mi

]− E
[
ϕ(Xi+k)

]∥∥∞
∣∣ ϕ ∈ C1, i ≥ 1

}
,

where ‖·‖∞ is the L∞(P) norm. In our theoretical analysis we will use Definition 2.2 for pro-
cesses which are assumed to be C-mixing. We first describe some examples of semi-norms C.

Example 2.3. Let CLip be the set of bounded Lipschitz functions over X . Consider

CLip(f ) := ‖f ‖Lip(X ) = sup

{ |f (s) − f (t)|
‖s − t‖

∣∣∣ s, t ∈X , s 
= t

}
.

It is easy to see that CLip(f ) is a semi-norm. With this choice of class C and semi-norm C(·), we
obtain the so-called τ -mixing coefficients (see [18] and [53] for the real-valued case), which will
be denoted τ(k) := 	C(k), k ≥ 1.

Examples of τ -mixing sequences. Consider a Banach-valued auto-regressive process of or-
der 1:

Xi = ρ(Xi−1) + ξi for i ∈ Z,

where (ξi)i∈Z is an i.i.d. sequence such that ‖ξ‖ ≤ 1 almost surely, and ρ : X �→ X is a linear
operator with ‖ρ‖� < 1, where ‖·‖� is the operator norm. Due to the linearity of ρ, we can write
Xt+s = Xt,s + ρs(Xt ), where Xt,s =∑s−1

l=0 ρl(ξt+s−l ). For the τ -mixing coefficients, by using
this decomposition and the independence Xt,s and Xt , we get:

τ(s) = sup
f ∈C1

{∥∥E[f (Xt+s)|Mt

]− E
[
f (Xt+s)

]∥∥∞
}

= sup
f ∈C1

{∥∥E[f (Xt,s + ρs(Xt )
)|Mt

]− E
[
f
(
Xt,s + ρs(Xt )

)]∥∥∞
}

= sup
f ∈C1

{∥∥E[f (Xt,s + ρs(Xt )
)− f (Xt,s)|Mt

]
− E

[
f
(
Xt,s + ρs(Xt )

)− f (Xt,s)
]∥∥∞

}
≤ 2
∥∥ρs(Xt )

∥∥∞ ≤ ‖ρ‖s
�‖Xt‖∞ → 0,
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when s → ∞, as Xt is almost surely bounded. From this, we observe that (Xt )t≥1 is exponen-
tially τ -mixing Banach-valued process. Repeating arguments from [1] (in the real-valued case),
one can show that this process is not always α-mixing (in particular when ξi has a discrete dis-
tribution). Similarly to the aforementioned argument, it is easy to check that a Hilbert-valued
version of the moving-average process of finite order q < ∞:

Wi = μ +
q∑

j=0

θi−jψi−j for i ∈ Z,

where (ψj )j∈Z is an independent and centered noise process and μ is some fixed element in
a Hilbert space, is an exponentially τ -mixing process. Furthermore, one can straightforwardly
check that (Wi)i∈Z is not a martingale in general.

Remark. We observe that the τ -mixing property of the process (Xt )t≥0 is preserved under a 1-
Lipschitz map. More precisely, let φ : X �→ H be a 1-Lipschitz mapping of the original process
(Xt )t≥0 to some Polish space (H,‖·‖H). Then, it is straightforward to check that the process
(φ(Xt ))t≥0 is again τ -mixing. This conservation property is due to the definition of τ -mixing.
The concentration inequality of Theorem 3.5 will allow us in Section 4 to obtain qualitative
results about the statistical properties (error bounds) of the estimators of regression function in a
reproducing kernel Hilbert space. The key idea here is that the estimators of the target function
are based on a non-linear but Lipschitz mapping of the corresponding training data sequence into
the Hilbert space.

Example 2.4. Assume X ⊂ R to be an interval on the real line, let CBV := BV(X ) be the set of
functions over X whose total variation is bounded and CBV(·) be the total variation seminorm:

CBV(f ) := ‖f ‖TV = sup
(x0,...,xn)∈�

n∑
i=1

∣∣f (xi) − f (xi−1)
∣∣,

where � = {(x0, x1, . . . , xn) ∈ X n | x0 < x1 < · · · < xn}. It is known that BV(X ) endowed with
the norm ‖f ‖BV = ‖f ‖ + CBV(f ) is a Banach space. With this choice of (C,C(·)) we obtain
the so-called φ̃-mixing processes, described in [44].

3. Main assumptions and results

3.1. Assumptions

Following [40], we introduce suitable hypotheses pertaining to the geometry of the underlying
Banach space (B,‖·‖), the distribution of the norm of coordinates ‖Xi‖, and additional condi-
tions on the considered C(·)-semi-norm.

We recall briefly the concept of Gâteaux derivative: for a real-valued function f : X → R we
say that f is Gâteaux differentiable at point x ∈ int (X ) in the direction v ∈ B, if t �→ f (x + tv)
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is differentiable in 0. We then denote

δvf (x) = d

dt

∣∣∣
t=0

f (x + tv).

We say that the function f is Gâteaux-differentiable at point x if all the directional derivatives
exist and form a bounded linear functional, that is, an element Dxf in the dual B∗ such that
∀v ∈ B:

lim
t→0

f (x + tv) − f (x)

t
= 〈Dxf,v〉.

In this case, Dxf is called Gâteaux derivative of function f at point x.

Assumption A1. The norm ‖·‖ in the Banach space B is twice Gâteaux differentiable at every
nonzero point in all directions and there exist constants A1 ≥ 1,A2 > 0 such that the following
conditions are fulfilled for all x, v ∈ B, x 
= 0:∣∣δv

(‖x‖)∣∣≤ A1‖v‖ or equivalently
∥∥(Dx‖·‖

)∥∥
�
≤ A1;∣∣δv,v

(‖x‖)∣∣≤ A2
‖v‖2

‖x‖ ,

where δv,v denotes the second Gâteaux differential in the direction v and ‖·‖� is the norm in the
dual space B�.

We recall the following examples of Banach spaces that fulfill the desired properties (see [40]):

Example 3.1. Let B = H be a separable infinite dimensional Hilbert space with scalar product
〈·, ·〉H and norm ‖·‖H. Then by the Cauchy–Schwartz inequality, it holds:

δg

(‖f ‖H
)= d

dt

(√〈f + tg, f + tg〉)|t=0 ≤ ‖g‖H,

and also

δg,g

(‖f ‖H
)= d

dt

( 〈f,g〉 + t‖g‖2
H

‖f + tg‖H
)∣∣∣

t=0
≤ ‖g‖2

H

‖f ‖H ,

hence H satisfies Assumption A1 with constants A1 = A2 = 1.

Example 3.2. Let B = Lp(
,F,P),p ≥ 2. Then for any f,g ∈ B such that f 
= 0, it holds:

δg

(‖f ‖p

)= d

dt

((∫
|f + tg|p dP

) 1
p
)∣∣∣

t=0
= ‖f ‖1−p

p

∫
|f |p−2fg dP

≤ ‖f ‖1−p
p ‖f ‖p−1

p ‖g‖p = ‖g‖p,
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because of Hölder’s inequality; similarly:

δg,g

(‖f ‖p

)= (p − 1)‖f ‖1−2p
p

(
‖f ‖p

∫
|f |p−2g2 dP−

(∫
|f |p−2fg dP

)2)
≤ (p − 1)‖f ‖1−2p

p

(
‖f ‖p

∫
|f |p−2g2 dP

)
≤ (p − 1)‖g‖2

p‖f ‖−1
p .

Thus for p ≥ 2 an Lp-space satisfies conditions of Assumption A1 with constants A1 = 1, A2 =
p − 1.

The next example belonging to random matrix theory was not present in [40] and is appar-
ently new. It can be given as a relevant application in its own right of the results of [40] (in the
independent case) as well as of the present results.

Example 3.3. Let p ≥ 2 be fixed and B be the space of real symmetric matrices of dimension

d equipped with the Schatten p-norm ‖X‖p = (Tr(|X|p))
1
p = (

∑d
i=1 |λi(X)|p)

1
p . Then it holds

that for any elements X,H ∈ B, X 
= 0:

δH

(‖X‖p

)≤ ‖H‖p,

δH,H

(‖X‖p

)≤ 3(p − 1)
‖H‖2

p

‖X‖p

,

so the conditions of Assumption A1 are satisfied with constants A1 = 1 and A2 = 3(p − 1) (for
a detailed justification, see Appendix B).

The conditions in Assumption A2 are common in the framework of Bernstein-type inequali-
ties.

Assumption A2. There exist positive real constants c, σ 2 so that for all i ∈N:

‖Xi‖ ≤ c, P-almost surely;
E
[‖Xi‖2]≤ σ 2.

Finally, throughout this work, being in the framework of the general Definition 2.2, we will
consider functional classes C with a semi-norm C(·) satisfying the following assumption.

Assumption A3. Let, as it was assumed before, C(f ) be a semi-norm defined on a subspace
(C,‖·‖C) of real bounded functions {f : X �→ R}. For each s ∈ B� define h1,s : x �→ 〈s, x〉 for
each s ∈ B� and h2 : x �→ ‖x‖2, where B� is the dual space of B. Define B(r), B�(r) to be the
closed balls of radius r centered in zero in B and B�, respectively.

It is assumed that h1,s ∈ C for all s ∈ B�;h2 ∈ C, and:

sup
s∈B�(1)

C(h1,s ) ≤ C1,
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C(h2) ≤ C2,

for some fixed constants C1,C2 ∈R+.

Example 2.3 (continued). For the Lipschitz class CLip considered in Example 2.3 we have:

sup
s∈B�(1)

CLip(h1,s) = sup
s∈B�(1)

‖h1,s‖Lip(B(c)) = sup
s∈B�(1)

x1,x2∈B(c)

{ 〈s, x1 − x2〉
‖x1 − x2‖

}
≤ 1,

and

CLip(h2) = ‖h2‖Lip(B(c)) = sup
x1,x2∈B(c)

{ |‖x1‖2 − ‖x2‖2|
‖x1 − x2‖

}
≤ 2c.

Example 2.4 (continued). For the BV functional class CBV considered in Example 2.4, and
X = [−c, c] ⊂ R we get (note that in this case B�(1) = [−1,1] and the functional h1,s is just
multiplication by s):

sup
s∈B�(1)

CBV(h1,s ) = sup
|s|≤1

‖h1,s‖BV(B(c)) = sup
|s|≤1

sup
(x0,...,xn)∈�

n∑
i=1

∣∣s(xi − xi−1)
∣∣= 2c.

CBV(h2) = ‖h2‖BV(B(c)) = sup
(x0,...,xn)∈�

n∑
i=1

∣∣x2
i − x2

i−1

∣∣= 2c2.

3.2. Main result and corollaries

Our main result is a Bernstein-type inequality for norms of sums of bounded Banach-valued
random variables which are generated by some centered 	C -mixing process. We begin with a
general bound on the deviations of the norm of

∑n
i=1 Xi .

Theorem 3.4. Let (
,F,P) be an arbitrary probability space, (B,‖·‖) a Banach space such
that Assumption A1 holds and X = B(c). Let (Xi)

n
i≥1 be an X -valued, centered, C-mixing ran-

dom process on (
,F,P) such that Assumptions A2, A3 are satisfied. Then for each pair of
positive integers (�, k), � ≥ 2, such that n = �k + r, r ∈ {0, . . . , k − 1}, and any ν > 0, it holds:

P

[∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≥ 4A1C1	C(k) + 4

√
B(σ 2 + C2	C(k))ν

�
+ 4cν

3�

]
≤ 2 exp(−ν), (3.1)

where B = A2
1 + A2 and the constants A1,A2,C1,C2 are given by the assumptions.

Since the choice of k and � in the above result is free subject to k = �n
�
�, one can optimize

the obtained deviation bound over the choice of � in order to reach the most favorable trade-
off between the first term of order 	C(�n

�
�) which is nondecreasing in �, and the following
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“Bernstein-like” terms. This trade-off is a direct consequence of the so-called blocking technique
used in the proof of the above result: the sample is divided into k blocks of size � or � + 1, such
that the distances between two neighbor points in a same block is exactly k. The Bernstein-like
deviation terms are similar to the ones found in the i.i.d. case, but with the total sample size n

replaced by the block size �. The terms involving 	C reflect the lack of independence inside a
block. This trade-off leads us to the notion of effective sample size. For a given n and constants
c, σ 2 we define the positive integer number ��:

�� := max

{
1 ≤ � ≤ n s.t. C1	C

(⌊
n

�

⌋)
≤ c

�
∨ σ√

�

}
∪ {1}. (3.2)

Observe that �� is a function of n, but we omit this dependence to simplify notation. The
following consequence of Theorem 3.4 is formulated in terms of the effective sample size:

Theorem 3.5. Assume the conditions of Theorem 3.4 are satisfied, and the effective sample size
�� is as given by (3.2). Then for any ν ≥ 1:

P

[∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≥ σ(4A1 + 6
√

B
√

ν)√
��

+ c(4A1 + M1ν)

��

]
≤ 2 exp(−ν), (3.3)

where M1 := 2 + 2
√

B(1 + 2 C2
C1c

).

Remark. Lest the reader should wonder at the apparent lack of multiplicative scaling invariance
of the last result due to the constant C2/(C1c) appearing in M1, we stress that the C-mixing
assumption is not invariant with respect to rescaling of the value space in general. However, in
the particular cases of τ - and φ̃-mixing (Examples 2.3, 2.4), the mixing assumption behaves
gracefully with respect to scaling: in both cases it can be checked that the compound quantity
C1	C(·) scales linearly with multiplicative rescaling of the space X , so that the effective sample
size �∗ given by (3.2) remains invariant, while C2/(C1c) remains constant, so that the deviation
inequality (3.3) is unchanged by multiplicative rescaling, as one would expect.

Furthermore, we can give more explicit rates by lower bounding the effective sample size in
the specific cases of exponentially or polynomially C-mixing processes.

Proposition 3.6. For an exponentially C-mixing centered process on (
,F,P) with rate
	C(k) := χ exp(−(θk)γ ) (χ > 0, θ > 0, γ > 0), the effective sample size satisfies

�� ≥
⌊

n

2
θ
(
1 ∨ log

(
c−1C1χθn

))− 1
γ

⌋
.

For a polynomially C-mixing centered process with rate 	C(k) = ρk−γ , the effective sample
size satisfies

�� ≥ max

(⌊(
σ

C1ρ

) 2
2γ+1

(
n

2

) 2γ
2γ+1

⌋
,

⌊(
c

C1ρ

) 1
γ+1
(

n

2

) γ
γ+1
⌋)

.
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In the application section, we will use the obtained concentration framework for sums of
Hilbert-space valued random variables. In this particular case, we have A1 = 1,A2 = 1 and
correspondingly B = 2. Considering the case where the underlying data generating process is
τ -mixing (see Example 2.3) we get C1 = 1 and C2 = 2c. This gives us the following conse-
quence for the concentration of the norm in the case of a process that satisfies the τ -mixing
conditions mentioned in Example 2.3.

Corollary 3.7 (Concentration result for Hilbert-valued τ -mixing processes). Under the as-
sumptions of Theorem 3.5 with a Hilbert-valued τ -mixing sample {Xi}ni=1, for any 0 ≤ η ≤ 1

2 ,
with probability at least 1 − η it holds:∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≤ log

(
2

η

)(
13σ√

��
+ 21c

��

)
, (3.4)

where the choice of �� is given by (3.2).

3.3. Discussion of results

We highlight aspects in which our results differ from previous work. We first restrict our attention
to the real-valued case (B =R). We consider the general type of 	C -mixing processes as in [26],
where the authors require the additional assumption on the semi-norm C(·) that the inequality
C(ef ) ≤ ‖f ‖∞C(f ) should hold for all f ∈ C. Instead, we only pose the assumption that the
underlying class C contains linear forms and the function x �→ ‖x‖2, plus a.s. boundedness.
The reason is that the proof of the main result essentially relies on the representation of the
norm by means of its second order Taylor expansion. This allows us to recover results analogous
to [26] (in the sense of the order of the effective sample size) for geometrically 	C -mixing
processes. In this case, a broad overview and comparison to existing literature is given in [26];
we omit reproducing this detailed discussion here and refer the reader to that work. As a further
contribution with respect to [26] we derive new results for the exponential concentration of the
sum for polynomially 	C -mixing processes.

In the general Banach-valued case, the norm can be seen as a particular case of general func-
tionals of the sample. As mentioned in the Introduction, while the literature on concentration
of general functionals in the independent case is flourishing, it is rather scarce under the set-
ting of weak dependence. In the work [34], the authors obtain general Hoeffding-type concen-
tration inequalities for functionals of the sample satisfying the bounded difference assumption
(Azuma–McDiarmid type setting) under the so-called η-mixing assumption (which is related to,
but weaker than, φ-mixing). The core proof technique in our results as well as in [34] is the
martingale difference approach.

Furthermore, in the work [19], the authors establish a Marcinkiewicz–Zygmund type inequal-
ity for dependent random Banach-valued sums under assumptions on the smoothness of the
corresponding norm which are very close to ours. In particular, from Corollary 3.2 in [19],
one can deduce that for a bounded τ -mixing process (Xi)i≥0 (see Example 2.3) with values
in L

q(
,A,P) for q ≥ 2, a Hoeffding-type exponential bound holds for sums with a deviation
rate of order 2cbn

√
log(e/δ)/n, where c is as in Assumption A2, and b2

n := 1 +∑n
i=1 τ(i).
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Comparing to this last deviation bound, an advantage of our results is that they are of
Bernstein- rather than Hoeffding-type, and valid under a weaker dependence assumption, which
includes τ -mixing as specific case. On the other hand, the deviation scaling in bn above is better
than ours (this is in particular relevant for polynomial mixing conditions), which leaves open for
future work the question of obtaining a similar scaling for Bernstein-type deviations under the
assumptions we consider.

The strongest assumption we make (besides those concerning the geometry of B and the class
C) is the a.s. boundedness of the random variable; this assumption was also made in [42] and [54]
(Bernstein-type inequalities for a Banach-valued independent process, which is included in the
present result) and in [26] (Bernstein-type inequality for weakly dependent real variables). From
a technical point of view, our current proof significantly relies on that assumption at several key
places; removing this assumption to replace it by a weaker control of moments (as in the classical
independent real-valued Bernstein inequality) is a stimulating question.

We now apply the concentration results to the particular case of random variables with values
in a separable Hilbert space, and use them for the analysis of statistical properties of kernel-based
algorithms in machine learning which are trained on a dependent sample. This analysis will be
the cornerstone of the next section.

4. Application to statistical learning

Let X be a closed ball of a Polish space and Y = R. Let as before (Zi)i≥1 be a stationary
stochastic process over some probability space (
,F,P) with values in X ×Y , and define ν as
the common marginal distribution of the Zis, and μ as its X-marginal. We will also denote ν(y|x)

a regular conditional probability distribution of Yi conditional to Xi . In the general framework
of learning from examples, the goal is to find a prediction function f : X �→ Y such that for a
new pair (X,Y ) ∼ ν, the value f (X) is a good predictor for Y . Let z := {xi, yi}ni=1 ∈ (X × Y)n

be the observed training sample from the n first coordinates of the process (Zi)i≥1, and fz be
an estimated prediction function belonging to some model class H. We will assume (Zi)i≥1
to be a τ -mixing stationary process (as in Example 2.3) on (
,F,P). We consider the least
squares regression problem where the goal is to minimize the averaged squared loss E(f ) :=
Eν[(f (X) − Y)2]. Equivalently, we want to find fz that approximates the regression function
fν(x) = E[Y |X = x] well in the sense of being close to optimal risk E(f ) over the considered
model class.

4.1. Learning and regularization using reproducing kernels

We investigate statistical learning methods based on reproducing kernel Hilbert space regular-
ization, that is, we consider as a model class a separable real reproducing kernel Hilbert space
(RKHS) H = Hk ⊂ L2(X,μ) which is induced by a measurable kernel k over X 2. In the next
pages we recall the setting and notation used in this framework and therefore reiterate in short-
ened form some of the corresponding content of [4,10]; for more details see also [15,46].

We assume the kernel to be bounded by a positive constant κ = 1, that is supx∈X
√

k(x, x) ≤ 1.
This implies that any f ∈ Hk is measurable and bounded in the supremum norm. As Hk is a
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subset of L2(X ,μ), let Sk :Hk �→ L2(X ,μ) be the inclusion operator; and S�
k : L2(X ,μ) �→ Hk

its adjoint. Using the definition of the adjoint, S�
k can be written as:

S�
kg = Eμ

[
g(X)kX

] := ∫
X

kxg(x)μ(dx),

where kx is the element k(x, ·) ∈ Hk . Similarly, for x ∈ X denote Tx = kx ⊗ k�
x , then the covari-

ance T : Hk �→ Hk has the following representation:

T := Eμ[TX] =
∫
X

〈·, kx〉Hk
kxμ(dx),

where the last integrals are understood in the Bochner sense and T ,TX both are self-adjoint and
trace-class. We use the notation HS(Hk) for the space of Hilbert–Schmidt operators over Hk , so
that the former implies that T ,TX ∈ HS(Hk).

We obtain the empirical analogues of the operators T , Sk , S�
k by replacing the measure μ with

its empirical counterpart μ̂x = 1
n

∑n
i=1 δxi

, where L2(X , μ̂x) is identified as R
n endowed with

the standard scalar product rescaled by n−1. We define the following empirical operators:

Sx : Hk �→ R
n, (Sxf )j = 〈f, kxj

〉,

S�
x :Rn �→ Hk, S�

xy = 1

n

n∑
j=1

yj kxj
,

Tx := S�
xSx : Hk �→ Hk, Txf = 1

n

n∑
j=1

kxj
〈kxj

, f 〉,

where we used the notation y = (y1, . . . , yn) ∈ R
n.

We now specify classes of distributions which correspond to a certain regularity of the learning
problem in relation to the RKHS Hk , and on which we will aim at establishing error bounds.
We start with the following assumption on the underlying distribution ν and the corresponding
regression function fν .

Assumption B1. There exist 0 < R ≤ 1,� > 0 such that the distribution ν belongs to the set
D(R,�) of distributions satisfying:

(i) |Y | ≤ R, ν-almost surely.
(ii) The regression function fν belongs to the RKHS Hk , that is, for μ-almost all x ∈ X it

holds

E[Y |X = x] :=
∫

y∈Y
y dν(y|x) = fν(x), fν ∈ Hk.

(iii) For μ-almost all x:

Var(Y |X = x) =
∫

y∈Y
(
y − fν(x)

)2
dν(y|x) ≤ �2.
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Point (i) of the assumption ensures that we can assume Y = [−R,R] without loss of generality.
The two next assumptions are: a decay rate condition for the discrete spectrum (ζi)i≥1 (ordered
in decreasing order) of the covariance operator T , and a so-called Hölder source condition (see,
e.g., [17]) that describes the smoothness of the regression function fν . Denoting P to be the set
of all probability distributions on X ; we will thus assume that the X-marginal distribution μ

belongs to

P<(b,β) := {μ ∈P : ζj ≤ βj−b,∀j ≥ 1
};

secondly, we assume that fν ∈ 
(r,D), where


(r,D) = {f ∈Hk|f = T rg,‖g‖Hk
≤ D

}
, (4.1)

which in the inverse problems literature is called the standard Hölder source condition for the
linear embedding problem. Joining all assumptions, we consider the following class of marginal
generating distributions:

M(R,�, r,D,β, b)

:= {ν(dx, dy) = ν(dy|x)μ(dx) : ν ∈D(R,�),μ ∈P<(b,β), fν ∈ 
(r,D)
}
. (4.2)

For estimation of the target regression function fν , we consider the following class of kernel
spectral regularization methods:

fz,λ = Fλ(Tx)S
�
xy, (4.3)

where Fλ : [0,1] �→ R is a family of functions. The expression Fλ(Tx) is to be understood in
the usual sense of (compact, selfadjoint) functional calculus on operators. The family (Fλ)λ∈[0,1]
defines the regularization method (which we also call regularization function), depending on the
parameter λ ∈ (0,1], and for which the following conditions hold:

(i) There exists a constant B < ∞ such that, for any 0 < λ ≤ 1:

sup
t∈(0,1]

∣∣tFλ(t)
∣∣≤ B.

(ii) There exists a constant E < ∞ such that

sup
t∈(0,1]

∣∣tFλ(t)
∣∣≤ E/λ.

(iii) There exists a constant γ0 such that the residual rλ(t) := 1−Fλ(t)t is uniformly bounded,
that is,

sup
t∈(0,1]

∣∣rλ(t)∣∣≤ γ0.

(iv) For some positive constant γq there exists a maximal q , which is called the qualification
of the regularization such that

sup
t∈(0,1]

∣∣rλ(t)tq ∣∣≤ γqλq.
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The above conditions are standard in the framework of inverse problems and in asymptotic
framework are sufficient (see [4]) in order to obtain consistent learning algorithms in case of in-
dependent examples. Many known regularization procedures (including Tikhonov regularization,
spectral cut-off, Landweber iteration) may be obtained as special cases via appropriate choice of
the regularization function Fλ and satisfy conditions (i)–(iv) for appropriate parameters. We refer
the reader to [4,21] and [46] for a variety of different examples as well as the discussion in the
context of learning from independent examples.

4.2. Learning from a τ -mixing sample

We now restrict our attention to the case of τ -mixing processes, i.e. to those which are generated
by the Lipschitz seminorm CLip(·) from Example 2.3. Obtaining probabilistic results for Hilbert-
valued estimators (analogous in spirit to those in [10]), we derive upper bounds on the estimation
error of fν by regularized kernel learning estimators fz,λ, in the case of learning from τ -mixing
samples, assuming a polynomial spectrum decay rate of the covariance operator T , and for a
certain range of norms.

A key technical tool used in previous works for the analysis of the i.i.d. case (see [4,10]) is
a quantitative statement for the concentration of the centered (and possibly suitably rescaled)
Hilbert-space valued variables (S∗

x y −Txfν) and (Tx −T ) around 0. Observe that these variables
are empirical sums (of elements kxi

(yi − fν(xi)) ∈ Hk and (kxi
⊗ k�

xi
− T ) ∈ HS(Hk), respec-

tively). Thus, a very natural way to proceed in the analysis is to use the concentration results
established in Section 3 for Hilbert spaces as replacement for their i.i.d. analogues, and for other
steps follow the proof strategy of those earlier works.

Assuming the sample z = {xi, yi}ni=1 is a realization from a τ -mixing process (Zi)j≥1, in order
to apply the concentration inequality from Section 3, we should ensure that the corresponding
Hilbert-valued quantities are forming a τ -mixing sequence themselves. As pointed out earlier, the
τ -mixing property is obviously preserved (up to constant) via a Lipschitz mapping. Lemma C.1
in Appendix 4.3 establishes this Lipschitz property for the kernel maps under mild assumptions
(uniformly bounded mixed second derivative of the kernel). Using the inequality from Corol-
lary 3.7, in Lemma 4.1 we obtain high probability inequalities for deviations of the corresponding
random elements. The proof of the lemma can be found in Appendix C. To simplify the exposi-
tion, we specify the results for the cases of either exponentially or polynomially mixing process.
Further extensions are possible using the same general proof scheme as a blueprint, described in
Appendix C, together with the result of Theorem 3.5 on the effective sample size.

Lemma 4.1. Let X , Y = [−R,R] and Hk be as defined before. Assume that the kernel k sat-
isfies supx∈X

√
k(x, x) ≤ 1 and admits a mixed partial derivative ∂1,2k : X × X �→ R which is

uniformly bounded by some positive constant K . Let (Zj = (Xj ,Yj ))j≥1 be a τ -mixing process
with rate τ(k), satisfying Assumption B1 and such that ‖fν‖ ≤ D.
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Table 1. Bounds on effective samples sizes for (4.4). Put C := 3 max(1,KR,KD) here

τ (k) = χ exp(−(θk)γ ) τ (k) = ρk−γ

�1 ⌊
nθ

2
(
1∨log

(
n

Cχθ
2R

))1/γ

⌋ ⌊(
�
Cρ

) 2
2γ+1

(
n
2

) 2γ
2γ+1

⌋
�2

⌊(�
√

λN (λ)
Cρ

) 2
2γ+1

(
n
2

) 2γ
2γ+1

⌋
�3 ⌊

nθ
2(1∨log(nKθχ))1/γ

⌋ ⌊(√λN (λ)
2Kρ

) 2
2γ+1

(
n
2

) 2γ
2γ+1

⌋
�4

⌊( 1
Kρ

) 2
2γ+1

(
n
2

) 2γ
2γ+1

⌋

For any η ∈ (0,1/2] the probability of each one of the following events is at least 1 − η:

∥∥Txfν − S�
xy
∥∥≤ 21 log

(
2η−1)( �√

�1

+ 2R

�1

)
;

∥∥(T + λ)−
1
2
(
Txfν − S�

xy
)∥∥≤ 21 log

(
2η−1)(�

√
N (λ)√
�2

+ 2R√
λ�2

)
;

∥∥(T + λ)−1/2(T − Tx)
∥∥≤ 21 log

(
2η−1)(√

N (λ)√
�3

+ 2√
λ�3

)
;

‖T − Tx‖ ≤ 42
log(2η−1)√

�4
,

(4.4)

where the quantity N (λ) := Tr((T + λ)−1T) is the so-called effective dimension; �1, �2, �3, �4
are in each case suitable bounds on the effective sample size. For exponentially and polynomially
τ -mixing rates, corresponding bounds for effective sample sizes are given in Table 1.

Remark. The first inequality will not be used in the statistical analysis to follow and is presented
here for completeness.

Armed with the above probabilistic results, we derive upper bounds for the errors of estimation
of fν by means of the general regularized kernel learning estimators (4.3). The main tool is the
following lemma, giving a high probability inequality on the deviation of the estimation error.
The gist of this result and of its proof is to follow the approach of [10], wherein the sample size
in the i.i.d. case is replaced by the effective sample size, the rest of the argument being essentially
the same.

Lemma 4.2. Consider the same assumptions as in Lemma 4.1. Assume that fν ∈ 
(r,D) (de-
fined by (4.1)) for some positive numbers r,D. Also, let fz,λ be the regularized estimator as in
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(4.3), with a regularization satisfying conditions (i)–(iv) with qualification q ≥ r + s. Fix num-
bers η ∈ (0,1] and λ ∈ (0,1] and denote:

γ := max(γ0, γq), �0 := 2500λ−1 max
(
N (λ),1

)
log2

(
8

η

)
,

where we recall that γ0, γq are the constants from conditions (iii)–(iv).
Then with probability at least 1 − η, the inequality∥∥T s(fHk

− fz,λ)
∥∥
Hk

≤ Cr,s,B,E,γ log
(
8η−1)λs

(
D

(
λr + 1√

�′

)
+
(

R

�′λ
+
√

�2N (λ)

λ�′

))
(4.5)

holds with �′ = min{�2, �3, �4}, provided that �′ ≥ �0 and all �i are as in Table 1.

We remark that the choice s = 0 corresponds to the estimation error in the space Hk , whereas
s = 1

2 corresponds to the prediction error in the space L2(X ,μ).
Finally, we establish asymptotic error bounds for the family of regularized estimators of the

type (4.3), when learning from a stationary τ -mixing sequence whose marginal distribution be-
longs to the class M(R,�, r,D,β, b), under appropriate choice of the regularization parameter
sequence λn. To simplify somewhat expressions, we will assume from now on, without loss of
generality, that D ≥ R ≥ 1 holds. We separate the analysis between the cases of exponentially
and polynomially τ -mixing processes.

For an exponentially τ -mixing process (Xi, Yi)i≥1 with mixing rate τ(k) = χ exp(−(θk)γ ),
we set:

�′
g(n) :=

⌊
nθ

2(1 ∨ log(3nKDχθR−1))
1
γ

⌋
, λn := min

((
�2

D2�′
g

) b
2br+b+1

,1

)
; (4.6)

we observe in particular (by straightforward calculation, using the fact that D ≥ R ≥ 1) that the
constraint �′

g ≤ min{�2, �3, �4} is fulfilled. We are then able to formulate the next statement:

Theorem 4.3. Assume the data distribution ν belongs to the class M(R,�, r,D,β, b), and
fz,λn is a kernel spectral regularization estimator (4.3) with qualification q ≥ r + s, where λn is
given by (4.6). Fix some η ∈ (0,1].

Then there exists n0 (depending on all the model parameters and of η) such that for n ≥ n0, it
holds with probability at least 1 − η:

∥∥T s(fν − fz,λn)
∥∥
Hk

≤ C� log
(
8η−1)D( �

D
√

�′
g

) 2b(r+s)
2br+b+1

, (4.7)

where C� := Cr,s,B,E,γ ,b,β is a factor depending on the regularization function and model pa-
rameters (other than D,R,�).
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We establish an analogous result for a polynomially τ -mixing process (Xi, Yi)i≥1 with mixing
rate τ(k) = ρk−γ , this time without precisely tracking the effects of the constants (�,D). We
also only consider the case of a two-sided controlled spectrum

P≶(b,β−, β+) := {μ ∈ P : β−j−b ≤ ζj ≤ β+j−b,∀j ≥ 1
}
,

and the model M̃(R,�, r,D,β±, b) defined as in (4.2) with P< replaced by P≶. The technical
reason for adding an assumption of lower bounded spectrum is that it implies a lower bound on
the effective dimension N (λ), and in turn a lower bound on the effective sample size, which
involves the effective dimension in the polynomial mixing case (see Table 1).

We consider the following parameter sequence:

λn := n
− b

2br+b+1+b(r+1)γ−1 . (4.8)

Similarly to the case of exponential mixing, we use Lemma 4.2 with the choice �′
p =

O
(
(λnN (λn))

2
2γ+1 n

2γ
2γ+1

)
, which depends on the regularization and on the effective dimension;

by arguments similar to Theorem 4.3 we then obtain the following.

Theorem 4.4. Assume the data distribution ν belongs to the class M̃(R,�, r,D,β±, b), and
fz,λn is a kernel spectral regularization estimator (4.3) with qualification q ≥ r + s, where λn

is given by (4.8). For any fixed η ∈ [0,1] and all n > n0 (where n0 is such that log(8η−1) ≤
C′�n

br

2br+b+1+b(r+1)γ−1

0 , we have with probability at least 1 − η:

∥∥T s(fν − fz,λn)
∥∥≤ C� log

(
8η−1)n− b(r+s)

2br+b+1+b(r+1)γ−1 , (4.9)

where C�,C′� are factors depending on the regularization and smoothness parameters of the
model (R,�,D, r, s,B,E,γ , b,β).

Let us briefly discuss the upper bounds for the risk of the general regularization methods,
described in Theorems 4.3 and 4.4. Asymptotic in nature, those results are based on the concen-
tration inequality (3.5), which allows the control of an error on the exponential scale. Comparing
the result of Theorem 4.3 to risk bounds obtained for i.i.d. scenario (e.g., in [10]), we observe that
in the case of an exponentially mixing process the upper bounds are optimal up to a logarithmic
factor, while in the case of a polynomially mixing process with exponent γ , the rate is degraded
by a term depending on γ , that vanishes as γ → ∞, as one would expect (whether this rate is
optimal in the polynomial mixing case remains unclear). In the case of exponential mixing, since
we describe the explicit dependence of the sequence λn on � and D, further analysis can be
conducted exploring other regimes in which either � or D may depend on n.

4.3. Conclusions and perspectives

The results of Theorems 4.3 and 4.4 are stated in the somewhat standard framework of regular-
ized learning schemes where the estimator takes values in a Hilbert space, which is generated by
some reproducing kernel k.
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Since the concentration results of Theorems 3.4 and 3.5 are valid in the more general case of
complete normed spaces which satisfy the smoothness Assumption A1, a natural extension is to
consider the setting of statistical learning whose estimators are prediction functions belonging
to a certain functional Banach space. A variety of such Banach-valued learning schemes (using
a corresponding Banach norm regularization) and theoretical justification of their validity have
been proposed by numerous authors over the years. Seminal works [5,58] have introduced exten-
sions of convex risk regularization principles to involve a Banach norm regularizer terms. Further
efforts have developed the mathematical foundations of such methods, in particular concerning
properties of so-called evaluation Banach spaces or reproducing kernel Banach spaces and gen-
eralizations of the representer theorem [14,27,56] as well as universal approximation properties
of such spaces [39].

Furthermore, such approaches have given rise to numerous developments in recent research,
for example extension to the vector-valued kernel setting [57] with application to multi-task
learning, the notions of orthomonotonicy, which leads to a generalization of representation theo-
rems [3], or combination of these approaches with the kernel mean embedding principle [50].

Concerning statistical properties (such as consistency, learning rates and generalization upper
bounds for the risk) of Banach valued learning algorithms, these were also investigated in [16,
27,49,51], albeit only in the case of independent training data.

Following [16,56], as a direction for future work, one can investigate the geometrical proper-
ties of the underlying Banach space norm so as to ensure the possibility of learning in the normed
space on the one hand, and to satisfy the smoothness Assumption A1 on the other. In such a situ-
ation the concentration results presented in this paper will apply and have the potential to provide
a pivotal tool in the analysis of such schemes for weakly dependent data.

Appendix A: Proofs of results in Section 3

We need the following auxiliary results to complete the proof of Theorem 3.5. We will use
repeatedly the shorthand notation π(x) := ex − x − 1.

Lemma A.1. Assume that (Xi)i≥1 is a C-mixing stochastic process with values in the closed
subset X = B(c) of the separable Banach space (B,‖·‖), such that Assumptions A1, A2, A3
hold. Let furthermore (i1, . . . , ik) be a k-tuple of non-negative integers, such that i1 < i2 < . . . <

ik , λ ≥ 0 and S̃k := Xi1 + Xi2 + · · · + Xik . Then the following holds:

E
[
exp
(
λ‖S̃k‖

)]≤ 2

(
1 + Bσ 2 π(λc)

c2

) k−1∏
j=1

(
1 + p(dj , λ)

)
,

where p(k,λ) := λÃ1	C(k) + B(C2	C(k) + σ 2)
π(λc)

c2 , dj := ij − ij−1 for all j ≥ 2, and B :=
A2

1 + A2, Ã1 = C1A1.

Lemma A.2. Assume that (Xi)
n
i=1 is a random sample from a X -valued centered 	C -mixing

process, such that Assumptions A1, A2, A3 hold. For n = �k + r , where �, k > 1 are some
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integers and r ∈ {0,1, . . . , k − 1}, and any λ ≥ 0 we have:

E

[
exp

(
λ

∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥
)]

≤ 2 exp

(
B

c2

(
(� + 1)σ 2 + C2�	C(k)

)
π

(
λc

�

)
+ λÃ1	C(k)

)
, (A.1)

where Ã1 and B are defined as in Lemma A.1.

Lemma A.3. If all the conditions of Lemma A.2 hold then the following (exponential) inequality
holds:

P

(
1

n

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥≥ t

)
≤ 2 exp

(
− �(t2 − 4m̃t)

4( tc
3 + σ̃ 2B)

)
,

where m̃ := Ã1	C(k) and σ̃ 2 := σ 2 + C2	C(k).
Alternatively, for any ν > 0 this can be written as:

P

[∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≥ 4m̃ + 4

√
Bσ̃ 2ν

�
+ 4

3

cν

�

]
≤ 2 exp(−ν).

Proof of Lemma A.1. The backbone of the proof follows the technical approach of [40]. Use
as a first step E[exp(λ‖S̃k‖)] ≤ 2E[cosh(λ‖S̃k‖)]. The next step consists in bounding iteratively,
going from S̃k to S̃k−1 by conditional expectation. To this end, we first need some (deterministic)
bounds relating cosh(λ‖s + x‖) to cosh(λ‖s‖).

Let s, x be elements of X . Introduce the following functions for t ∈ [0,1]:
f (t) := cosh

(
λh(t)

)
, h(t) := ‖s + tx‖.

For any t ∈ [0,1] such that h(t) 
= 0, it holds

f ′(t) = λ sinh
(
λh(t)

)
h′(t) = λ sinh

(
λh(t)

)〈
Ds+tx‖·‖, x

〉
. (A.2)

If for some t0, it holds h(t0) = 0, then h itself may not be differentiable in t0, however f ′(t)
exists, and is equal to 0, in this case. Namely, if x = 0 then h must be identically zero,
otherwise h(t) 
= 0 for t 
= t0, and (A.2) holds for any t 
= t0, implying by Assumption A1
|f ′(t)| ≤ A1λ‖x‖ sinh(λh(t)); this implies differentiability in t0 since the limit of the deriva-
tive exists (and is equal to 0) as t → t0, and the function f (t) is continuous. Similarly, for any
t ∈ [0,1] with h(t) 
= 0, and using Assumption A1:

f ′′(t) = λ2 cosh
(
λh(t)

)
h′(t)2 + λ sinh

(
λh(t)

)
h′′(t)

= λ2 cosh
(
λh(t)

)〈
Ds+tx‖·‖, x

〉2 + λ sinh
(
λh(t)

)
δx,x

(‖s + tx‖)
≤ A2

1λ
2‖x‖2 cosh

(
λh(t)

)+ A2λ‖x‖2 sinh(λh(t))

h(t)

≤ λ2‖x‖2B cosh
(
λh(t)

)
,
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where we have used sinh(x) ≤ x cosh(x). We conclude that f ′(t) is absolutely continuous: unless
h(t) is identically 0, there exists at most a single point t0 ∈ [0,1] where h(t0) = 0 and where f ′
may not be differentiable. We can therefore use the Taylor expansion:

f (1) = f (0) + f ′(0) +
∫ 1

0
(1 − t)f ′′(t) dt, (A.3)

and the integral rest can be bounded using the previous inequality on f ′′ together with the triangle
inequality, the elementary inequality cosh(a+b) ≤ cosh(a) exp(b) for b ≥ 0, and recalling ‖x‖ ≤
c: ∫ 1

0
(1 − t)f ′′(t) dt ≤ λ2‖x‖2B

∫ 1

0
(1 − t) cosh

(
λ
(‖s‖ + t‖x‖))dt

≤ λ2‖x‖2B cosh
(
λ‖s‖)∫ 1

0
(1 − t) exp(λtc) dt

= ‖x‖2B cosh
(
λ‖s‖)π(λc)

c2
.

Combining this with (A.3) and (A.2) we get for s 
= 0:

cosh
(
λ‖s + x‖)= f (1) ≤ cosh

(
λ‖s‖)(1 + λ

〈
Ds‖·‖, x

〉+ ‖x‖2B
π(λc)

c2

)
, (A.4)

where we have used sinha ≤ cosha in (A.2). The above inequality remains true for s = 0 if we
formally define D0‖·‖ as 0, due to f ′(0) = 0 in this case, as argued earlier.

We now go back to our initial goal of controlling E[cosh(λ‖S̃k‖)]. We use the notation
Ej−1[·] := E[·|Mij−1] where Mij−1 = σ(Xl : 1 ≤ l ≤ ij−1), l ∈ N using s := S̃k−1, x = Xik then
taking conditional expectations in (A.4), we obtain

Ek−1
[
cosh

(
λ‖S̃k‖

)]
≤ cosh

(
λ‖S̃k−1‖

)(
1 + λEk−1

[〈
D

S̃k−1
‖·‖,Xik

〉]+Ek−1
[‖Xik‖2]B π(λc)

c2

)
. (A.5)

In order to control the conditional expectation of the duality product on the right-hand side of
(A.5), we will need the additional following measure-theoretical lemma.

Lemma A.4. Assume X ,Y,T are three Polish spaces. Let F be a measurable real-valued func-
tion defined on X × T , and let (X,Y ) be a X × Y-valued random variable (X × Y being
endowed with its Borel sigma-algebra) on an underlying probability space (
,F,P). Denote
through B(t, ε) an open ball of radius ε, centered at point t ∈ T . Assume that F(X, t) is P-
integrable for all t ∈ T and that the following holds:

1. For all t ∈ T ,‖E[F(X, t)|Y ] −E[F(X, t)]‖∞ ≤ C < ∞ ;
2. The mapping t �→ F(x, t) is continuous in t for all x ∈X ;
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3. There exists ε > 0 and for all t ∈ T a measurable function Lt(x) : X → R+ such that for
all x ∈X , supt ′∈B(t,ε) |F(x, t ′)| ≤ Lt(x), and Lt(X) is P-integrable.

Then, there is is a version of the conditional expectations E[F(X, t)|Y ] such that for P-almost
all y ∈ Y , we have:

∀t ∈ T
∣∣E[F(X, t)|Y = y

]−E
[
F(X, t)

]∣∣≤ C. (A.6)

In particular, if T = Y , under the previous assumptions we conclude that∥∥E[F(X,Y )|Y ]−E
[
F(X̃,Y )|Y ]∥∥∞ ≤ C, (A.7)

where X̃ is a copy of X which is independent of Y .

(Observe that the whole point of this lemma is the inversion of quantificators “for all t , for
almost all y” between its assumption (1) and the conclusion (A.6).)

Proof of Lemma A.4. Since X is Polish, there exists a regular conditional probability
P(X ∈ ·|Y = ·), and we choose as a particular version of all conditional expectations the point-
wise integral with respect to this stochastic kernel.

By uniform local domination and continuity of F in t (Assumptions 2–3), the function t �→
E[F(X, t)] is continuous. Therefore, replacing F by F̃ (x, t) := F(x, t) − E[F(X, t)] and Lt

by 2Lt , we can assume without loss of generality that E[F(X, t)] = 0 for all t ∈ T . Since T
is assumed to be Polish, it is in particular separable; let T̃ be a countable dense subset of T .
From assumption 1, for each t̃ ∈ T̃ there exists a measurable set At̃ ⊂ Y with P(Y ∈ At̃ ) = 1,
such that | ∫X F(x, t̃) dP(x|Y = y)| ≤ C for all y ∈ At̃ . Furthermore, for any t̃ ∈ T̃ , since the
function Lt̃ (X) is P-integrable, it holds

∫
X Lt̃ (x) dP(x|Y = y) < ∞ for all y ∈ Bt̃ ⊂ Y with

P(Y ∈ Bt̃ ) = 1.
This together with countability implies that the set A :=⋂

t̃∈T̃ (At̃ ∩ Bt̃ ) is such that P(Y ∈
A) = 1 and for all (y, t̃) ∈ A × T̃ , we have | ∫X F(x, t̃) dP(x|Y = y)| ≤ C and x → Lt̃ (x) is
P(·|Y = y)-integrable.

For an arbitrary t ∈ T , let t̃n be a sequence of points in T̃ converging to t in T . We can assume
without loss of generality that for all n, d(t̃n, t) < ε/2 (where ε > 0 is from Assumption 3), so
that d(t̃n, t̃n′) ≤ ε for all n,n′, implying that supn |F(x, tn)| ≤ Lt̃1

(x) holds (by Assumption 3).
Now for all y ∈ A, using continuity (Assumption 2) we have for the conditional expectation
under the regular conditional probability P(·|Y = y), and by dominated convergence:∫

X
F(x, t) dP(x|Y = y) =

∫
X

lim
n→∞F(x, t̃n) dP(x|Y = y)

= lim
n→∞

∫
X

F(x, t̃n) dP(x|Y = y) ≤ C.

In the case T = Y , we note that (A.6) implies (A.7) by choosing t = y. �

Returning now to the proof of Lemma A.1, we use Lemma A.4 with Y = X ∗, F(x, y) =
〈y, x〉, and (X,Y ) = (Xik ,DS̃k−1

‖·‖). By linearity of scalar product and expectation, and because
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the process (Xi)i≥1 is centered, we have for fixed y ∈ X ∗: E[〈y,Xik 〉] = 0. Obviously F is
continuous in its first argument. Since by Assumption A2, Ds‖·‖ is uniformly bounded and X =
B(c), we can restrict the domain of F to X × B�(A1), and F is then bounded uniformly, so that
conditions (2) and (3) of Lemma A.4 are satisfied. Because of Assumption A3 it follows that we
have ‖F(y, ·)‖C ≤ C1‖F(y, ·)‖∞ ≤ C1A1. Finally, due to conditions on 	C -mixing coefficients,
we have that condition (1) is fulfilled with the constant C = A1C1	C(dk) := Ã1	C(dk), so from
(A.7), we conclude that: ∣∣Ek−1

[〈
D

S̃k−1
‖·‖,Xik

〉]∣∣≤ Ã1	(dk). (A.8)

We turn to the control of the second conditional expectation on the right-hand side of (A.5). Using
the 	C -mixing assumption and Assumptions A2, A3 again, we have almost surely (recalling
dk := ik − ik−1):

Ek−1
[‖Xik‖2]≤ Ek−1

[‖Xik‖2]−E
[‖Xik‖2]+E

[‖Xik‖2]
≤ C2	C(dk) + σ 2,

since by Assumption A3, the mapping x �→ ‖x‖2 is bounded in semi-norm C(f ) on B(c) by
some constant C2. Putting this bound together with (A.8) in the inequality (A.5), we get:

Ek−1
[
cosh

(
λ‖S̃k‖

)]≤ cosh
(
λ‖S̃k−1‖

)(
1 + p(dk, λ)

)
,

where we recall p(k,λ) := λÃ1	C(k) + B(C2	C(k) + σ 2)(
π(λc)

c2 ).
Iteratively repeating the aforementioned argument and considering that the bound on condi-

tional expectation Ek−1[·] holds almost surely, one obtains:

E
[
cosh

(
λ‖S̃k‖

)]= E
[
Ek−1

[
cosh

(
λ‖S̃k‖

)]]
≤ E

[
cosh

(
λ‖S̃k−1‖

)](
1 + p(dk, λ)

)
≤ E

[
cosh

(
λ‖Xi1‖

)] k∏
j=2

(
1 + p(dj , λ)

)
.

For bounding E[cosh(λ‖Xi1‖)] we use (A.4) with s = 0 and obtain:

E
[
cosh‖Xi1‖

]≤ E

[
1 + ‖Xi1‖2B

π(λc)

c2

]
≤ 1 + σ 2

c2
Bπ(λc),

which implies the claim. �

To proceed in the proof, we use the classical [11,26,53] approach to divide the sample
(X1, . . . ,Xn) into blocks, such that the distance between two neighbor elements in a given block
will be large enough to ensure small dependence. We partition the set {1,2, . . . , n} into k blocks
in the following way. Write n = �k + r,0 ≤ r ≤ k − 1 and define

Ii =
{

{i, i + k, . . . , i + �k} if 1 ≤ i ≤ r,{
i, i + k, . . . , i + (� − 1)k

}
if r + 1 ≤ i ≤ k.
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Denote through |Ii | the number of elements in the ith block; it holds |Ii | = � + 1 for 1 ≤ i ≤ r ,
|Ii | = � for r + 1 ≤ i ≤ k, and

∑k
i=1 |Ii | = n. Introduce the notation SIi

=∑j∈Ii
Xj .

Now me may use Lemma A.1 for each of the constructed blocks Ii , 1 ≤ i ≤ k to prove
Lemma A.2.

Proof of Lemma A.2. By the triangle inequality ‖Sn‖ ≤∑k
j=1‖SIj

‖, implying for any λ > 0,
via the convexity of the exponential function:

E

[
exp

(
λ

n

∥∥Sn

∥∥)]≤ E

[
exp

(
λ

k∑
j=1

rj
‖SIj

‖
|Ij |

)]
≤

k∑
j=1

rjE

[
exp

(
λ

|Ij | ‖SIj
‖
)]

, (A.9)

where rj := |Ij |
n

, with
∑k

j=1 rj = 1. Now for each summand in the last sum, we apply
Lemma A.1 for the index tuple given by the ordered elements of Ij , yielding

E

[
exp

(
λ

|Ij | ‖SIj
‖
)]

≤ 2

(
1 + B

σ 2

c2
π

(
λc

|Ij |
))(

1 + p

(
k,

λ

|Ij |
))|Ij |−1

.

Using this last bound into (A.9), we obtain:

E

[
exp

(
λ

n

∥∥Sn

∥∥)]≤ 2
k∑

j=1

rj

(
1 + B

σ 2

c2
π

(
λc

|Ij |
))(

1 + p

(
k,

λ

|Ij |
))|Ij |−1

≤ 2
k∑

j=1

rj exp

(
Bσ 2

c2
π

(
λc

�

))
exp

(
�p

(
k,

λ

�

))
,

where we twice used the inequality 1 + x ≤ exp(x), the condition � ≤ |Ij | ≤ � + 1, and the fact
that p(k, ·) is non-decreasing in function for fixed k. The last quantity is equivalent to the claim
of the lemma. �

Proof of Lemma A.3. Using Chernoff’s bound and Lemma A.2, we obtain for any λ > 0:

P

[
1

n
‖Sn‖ ≥ t

]
= P

[
exp

(
1

n
‖λSn‖

)
≥ exp(λt)

]
≤ exp(−λt)E

[
exp

(
λ

n

∥∥Sn

∥∥)]
≤ 2 exp

(
−λ(t − m̃) + σ̃ 2 (� + 1)B

c2
π

(
λc

�

))
, (A.10)

where m̃ := Ã1	C(k) and σ̃ 2 := σ 2 + C2	C(k).
First, we get an upper bound on the value of the function π(λc

l
). By using the Taylor series

decomposition, simple inequality 2 · 3k−2 ≤ k! for k ∈ N and summing the geometric series we
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obtain:

π

(
λc

�

)
≤

∞∑
j=2

(
λc

�

)j 1

2 · 3j−2
= λ2c2

2�2

1

1 − λc
3�

,

where we assume that 0 < λ < 3�
c

. Inserting this inequality into (A.10) and simplifying the terms
we get:

P

[
1

n
‖Sn‖ ≥ t

]
≤ 2 exp

(
−λ(t − m̃) + σ̃ 2λ2 3(� + 1)B

2�

1

3� − λc

)
. (A.11)

Now we put λ = t�
tc
3 +σ̃ 2B

. Clearly, by this choice of λ we have:

λ

�
= t

tc
3 + σ̃ 2B

≤ 3

c
.

Thus, the choice of λ satisfies the assumption; putting it into the exponent of the right-hand side
of (A.11) we obtain:

−λ(t − m̃) + 3

2
σ̃ 2 (� + 1)B

�
λ2 1

3� − λc

= − t�(t − m)
tc
3 + σ̃ 2B

+ 3

2
σ̃ 2 (� + 1)B

�

t2�2

( tc
3 + σ̃ 2B)2

1

3� − t�c
tc
3 +σ̃ 2B

= − t�(t − m̃)
tc
3 + σ̃ 2B

+ 1

2

(� + 1)t2

tc
3 + σ̃ 2B

= − (� − 1)t2 − 2�m̃t

2( tc
3 + σ̃ 2B)

.

Putting this into the exponent bound and upper bounding � with 2(� − 1), for � ≥ 2, we get the
claim of the lemma. �

Proof of Theorem 3.4. From the very last claim of Lemma A.3, we have:

P

[∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≥ t

]
≤ 2 exp

(
− �(t2 − 4m̃t)

4( tc
3 + σ̃ 2B)

)
.

Setting �(t2−4m̃t)

4( tc
3 +σ̃ 2B)

:= ν and solving the last equation in terms of t , we obtain:

P

[∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≥ 4Ã1	C(k) + 4

√
Bσ̃ 2ν

�
+ 4

3

cν

�

]
≤ 2 exp(−ν), (A.12)

which proves the claim of the theorem. �
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Proof of Theorem 3.5. From Theorem 3.4, assuming the effective sample size �� defined from
(3.2) is greater than 2, and putting C∗ = C2/C1, we obtain straightforwardly with probability at
least 1 − 2 exp(−ν):

∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≤ 4A1

(
c

��
∨ σ√

��

)
+ 4

√
B(σ 2 + C∗( c

�� ∨ σ√
��

))ν

��
+ 4

3

cν

��
=: L̃. (A.13)

For a, b > 0 using the obvious inequalities a ∨ b ≤ a + b and
√

ab ≤ (a + b)/2 we obtain:

L̃ ≤ 4A1

(
c

��
+ σ√

��

)
+ 4

√
Bνσ√
��

+ 4

√
BC∗cν
��

+ 4

√
BC∗σν√
��

√
��

+ 4

3

cν

��

≤ 4A1

(
c

��
+ σ√

��

)
+ 4

√
Bνσ√
��

+ 2

√
Bν(C∗ + c)

��
+ 2

√
Bν

(
C∗
��

+ σ√
��

)
+ 2cν

��

≤ σ√
��

(4A1 + 6
√

Bν) + c

��

(
2ν + 2

√
Bν + 4A1 + 4

√
Bν

C∗
c

)
.

Finally, observe that the inequality∥∥∥∥1

n

n∑
i=1

Xi

∥∥∥∥≤ σ√
��

(4A1 + 6
√

Bν) + c

��

(
2ν + 2

√
Bν + 4A1 + 4

√
Bν

C∗
c

)
,

trivially holds also for �� = 1, since A1 ≥ 1. This implies the statement of the theorem using√
ν ≤ ν, since we assumed ν ≥ 1 here. �

Now we are equipped with all technical tools in order to prove the exponential bounds for
different decay rates of the mixing coefficients.

Proof of Proposition 3.6. We choose a reasonable bound �g on the effective sample size ��

in the case of geometrical mixing. Since 	C(·) (extended to the positive real line as 	C(t) =
χ exp(−(θt)γ )) is nonincreasing and n

2�
≤ �n

�
�, it is sufficient to choose �g such that C1	C

(
n

2�g

)
is smaller than c

�g
∨ σ√

�g
. Moreover, in the case of geometrical mixing, it is sufficient to choose

�g such that C1	C
(

n
2�g

)
< c

�g
(trivially this implies that C1	C

(
n

2�g

)
< c

�g
∨ σ√

�g
). We choose

�g = ⌊ nθ

2(1∨log(nθχC1/c))
1/γ

⌋
. It is easy to check that in this case, we get

�gC1	C

(
n

2�g

)
≤ nθχC1 exp

(
−
(

1 ∨ log
χθC1n

c

))
≤ c,

which together with the result of Theorem 3.5 implies the first claim of the proposition.
For the case of polynomially mixing process, we have the coefficient decay rate 	C(k) =

ρk−γ . Similarly as above, we choose a bound �p for the effective sample size �� so that the
conditions of Theorem 3.5 are satisfied. Analogously, it is sufficient to choose �p such that
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C1	C( n
2�p

) ≤ σ√
�p

∨ c
�p

. Solving C1	C( n
2�

) ≤ σ√
�

∨ c
�

in � for given n, σ , c, ρ, C1 results

in the following choice:

�p = max

{⌊(
σ

C1ρ

) 2
2γ+1

(
n

2

) 2γ
2γ+1

⌋
,

⌊(
c

C1ρ

) 1
γ+1
(

n

2

) γ
γ+1
⌋}

, (A.14)

which matches the claim of the Proposition. �

Appendix B: Justifications for Example 3.3

We provide proof of the fact that the p-Schatten norm satisfies Assumption A1 on the smoothness
of the norm. We recall that here B is the space of real symmetric matrices of dimension d and

we use the notation ‖X‖p = Tr (|X|p)
1
p for the Schatten p-norm of a symmetric matrix X. We

compute explicitly the upper bounds on |δH (‖X‖p)| and |δH,H (‖X‖p)|.
We make use of the following additional notation, which is standard functional calculus over

symmetric matrices. For a real diagonal matrix W = diag(w1, . . . ,wd) of dimension d , write
f (W) = diag(f (w1), . . . , f (wd)), where f : I ⊂ R → R is a scalar function of class C1 on I ,
and I is a finite union of open intervals of R, containing the spectrum {w1, . . . ,wd} of W . For a
symmetric matrix X with the spectral decomposition X = U�U� =∑d

i=1 λieie
�
i we consider

the matrix-valued maps f (X) = Uf (�)U�. Denote the real-valued function g(X) = Tr(f (X)).
Applying the chain rule and using Theorem V.3.3 from [7], we compute the Fréchet (and hence
Gâteaux) derivative of the function g at point X in the direction of an arbitrary matrix H ∈ B.
Namely, by linearity of the trace as a matrix operator, and from equations (V.9) and (V.12) from
[7] (which are stated there in the case where I is an open interval, but the extension to a finite
union of open intervals is immediate), we deduce:

δH

(
g(X)

)= δH

(
Trf (X)

)= d

dt

∣∣∣
t=0

Trf (X + tH) = Tr
d

dt

∣∣∣
t=0

f (X + tH)

= Tr δH f (X) = Tr
(
f [1](�) ◦ (U�HU

))
,

where ◦ is used for the Hadamard (i.e. entry-wise) product of matrices; and f [1](�) is a matrix
whose (i, j) entry is defined as follows:

(
f [1](�)

)
ij

=
⎧⎨⎩

f (λi) − f (λj )

λi − λj

if λi 
= λj ,

f ′(λi) otherwise.

Thus, denoting H̃ = U�HU , we have:

Tr
(
f [1](�) ◦ H̃

)= Tr
(
f ′(�) ◦ H̃

)= Tr
(
f ′(�)H̃

)= Tr
(
f ′(X)H

)= 〈f ′(X),H
〉
F
,



Concentration of weakly dependent Banach-valued sums 3447

where the second to last equality follows from the definition of the matrix f ′(X) and 〈·, ·〉F is
the Frobenius product. This implies

δH

(
Trf (X)

)= d

dt

∣∣∣
t=0

Trf (X + tH) = 〈f ′(X),H
〉
F
, (B.1)

so that the Fréchet-derivative of Tr(f (X)) is f ′(X). (This formula is certainly not a novelty and
its justification included here for the sake of completeness.)

First consider the case where X has full rank, therefore has no zero eigenvalue, and apply
Equation (B.1) to the function f : t �→ |t |p which is of class C1 on I =R \ {0}, together with the
chain rule to obtain that

δH

(‖X‖p

)= d

dt

∣∣∣
t=0

‖X + tH‖p = d

dt

∣∣∣
t=0

Tr
(
f (X + tH)

) 1
p =

〈
w(X)

‖X‖p−1
p

,H

〉
F

, (B.2)

where we introduced the notation w(x) = sign(x)|x|p−1 on I . From the definition of the Fréchet
derivative, this implies that DX(‖·‖p) := w(X)

‖X‖p−1
p

is the corresponding Fréchet derivative at point

X. Furthermore, for any H 
= 0 we have by the matricial Hölder’s inequality:

δH (‖X‖p)

‖H‖p

=
〈

w(X)

‖X‖p−1
p

,
H

‖H‖p

〉
F

≤ 1,

thus, for any H ∈ B we have that |δH (‖X‖p)| ≤ A1‖H‖p with constant A1 = 1.
For the second Gâteaux differential, using linearity of the differential operator, we obtain:

δH,H

(‖·‖p

)= δH

(
δH

(‖·‖p

))= δH

(〈
DX

(‖·‖p

)
,H
〉)= 〈δH

(
DX

(‖·‖p

))
,H
〉
.

Furthermore, for δH (DX(‖·‖p)) we have by using the chain rule, (V.9) and (V.12) from [7] again,
differentiation rules for matrices and Equation (B.2):

δH

(
DX

(‖·‖p

))= d

dt

∣∣∣
t=0

DX+tH

(‖·‖p

)= d

dt

∣∣∣
t=0

w(X + tH)

‖X + tH‖p−1
p

= U(w[1](�) ◦ H̃ )U�

‖X‖p−1
p

− (p − 1)
w(X)〈w(X),H 〉

‖X‖2p−1
p

,

where the matrix w[1](X) is defined analogously to f [1](X) before. Therefore, for the second
Gâteaux differential we obtain explicitly:

δH,H

(‖X‖p

)= 〈δH

(
DX

(‖·‖p

))
,H
〉

= 1

‖X‖p−1
p

〈
w[1](�) ◦ H̃ , H̃

〉
F

− (p − 1)
〈w(X),H 〉2

‖X‖2p−1
p

. (B.3)
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For the second term, by the matricial Hölder’s inequality, we have:

(p − 1)
〈w(X),H 〉2

F

‖X‖2p−1
p

≤ (p − 1)
‖X‖2p−2

p ‖H‖2
p

‖X‖2p−1
p

= ‖H‖2
p

‖X‖p

.

For the first term, from the definition of the Hadamard product, we have〈
w[1](�) ◦ H̃ , H̃

〉
F

=
∑
i,j

w[1](�)ij H̃
2
ij .

Furthermore, taking into account that w′(x) = (p − 1)|x|p−2, by the mean value theorem on the
closed interval [λj ,λi] (assuming λi > λj ), since the maximum of w′ is attained at one of the
endpoints of the interval we have that

w[1](�)ij ≤ w(λi) − w(λj )

λi − λj

≤ (p − 1)max
{|λi |p−2, |λj |p−2}.

In the case where λi = λj , by definition w[1](�)ij = (p − 1)|λi |p−2. Proceeding from this and
using the symmetry of the matrix H̃ we get:∑

i,j

w[1](�)ij H̃
2
ij ≤

∑
i,j

(p − 1)max
{|λi |p−2, |λj |p−2}H̃ 2

ij

≤ (p − 1)
∑
i,j

(|λi |p−2 + |λj |p−2)H̃ 2
ij

= 2(p − 1)
∑
i,j

|λi |p−2H̃ 2
ij

= 2(p − 1)
∑

i

|λi |p−2
∑
j

H̃ij H̃ji

= 2(p − 1)
∑

i

|λi |p−2(H̃ 2)
ii

= 2(p − 1)Tr
(|�|p−2H̃ 2).

Finally, applying the matricial Hölder’s inequality once again for the last trace we get:

Tr
(|�|p−2H̃ 2)= 〈|X|p−2,H 2〉

F
≤ ‖X‖p−2

p ‖H‖2
p.

Gathering the above estimates, for the first term of (B.3) we obtain the following bound:

1

‖X‖p−1
p

〈
w[1](X) ◦ H̃ , H̃

〉
F

≤ 2
(p − 1)‖X‖p−2

p ‖H‖2
p

‖X‖p−1
p

= 2(p − 1)
‖H‖2

p

‖X‖p

.
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The latter implies that |δH,H (‖X‖p)| ≤ A2
‖H‖2

p

‖X‖p
with A2 = 3(p − 1) for all H ∈ B.

The inequalities required for Assumption A1 are therefore established for all X ∈ B of full
rank. To conclude the argument, it was established in [43] that X �→ ‖X‖p is of class Cp for all
nonzero X ∈ B. Since full rank matrices are dense in B, by continuity Assumption A1 is satisfied
for all nonzero X ∈ B.

Appendix C: Proof of Lemma 4.1

As mentioned in the main body of the paper, in order to make use of the concentration inequalities
for sums of random variables in HS(Hk) and in Hk , we should ensure that the functions of inter-
est of the original τ -mixing process Zi = (Xi, Yi) are again τ -mixing. This claim is established
by the Lipschitz property of the corresponding mappings in the next lemma.

Lemma C.1. Assume Hk is a RKHS over a base space X (a closed ball of a Polish space) with
reproducing kernel k satisfying supx∈X

√
k(x, x) ≤ 1. Assume further the kernel admits a mixed

partial derivative, ∂1,2k :X ×X �→R which is uniformly bounded on X by an absolute constant
K > 0. Finally, let Y = [−R,R]. Then, the mapping V : X → HS(Hk) : x �→ kx ⊗ k∗

x is 2K-
Lipschitz, and for a fixed f ∈Hk , the mapping Wf : X ×Y →Hk : (x, y) �→ ykx − kx〈kx, f 〉 is
3 max(KR,K‖f ‖,1)-Lipschitz.

Proof of Lemma C.1. As a starting point, because of the assumption of uniform boundedness
of the (mixed) partial derivative of the kernel k and Lemma 3.3 from [9], we deduce that kx is
K-Lipschitz as a map X → Hk . Then, for arbitrary x1, x2 we obtain:∥∥kx1 ⊗ k�

x1
− kx2 ⊗ k�

x2

∥∥2
HS = ∥∥kx1 ⊗ k�

x1
− kx1 ⊗ k�

x2
+ kx1 ⊗ k�

x2
− kx2 ⊗ k�

x2

∥∥2
HS

= ∥∥kx1 ⊗ (k�
x1

− k�
x2

)∥∥2
HS + ∥∥(kx1 − kx2) ⊗ k�

x2

∥∥2
HS

+ 2
〈
kx1 ⊗ (k�

x1
− k�

x2

)
, (kx1 − kx2) ⊗ kx�

2

〉
≤ ‖kx1‖2

Hk

∥∥k�
x1

− k�
x2

∥∥2
Hk

+ ‖kx1 − kx2‖2
Hk

∥∥k�
x2

∥∥2
Hk

+ 2
√

‖kx1‖2
Hk

‖kx2‖2
Hk

‖kx1 − kx2‖2
Hk

≤ 4K2‖x1 − x2‖2, (C.1)

where we used the properties of the Hilbert–Schmidt norm of tensor product operators, the
Cauchy–Schwarz inequality in the third line, and the assumptions about boundedness of the
kernel ‖kx‖2

Hk
= k(x, x) ≤ 1 and that the map kx is K-Lipschitz in the last line. Thus the map

V (x) = kx〈kx, ·〉 is 2K-Lipschitz. Furthermore, we deduce∥∥kx1〈kx1 , f 〉 − kx2〈kx2 , f 〉∥∥≤ ∥∥kx1 ⊗ k�
x1

− kx2 ⊗ k�
x2

∥∥
HS‖f ‖ ≤ 2K‖f ‖‖x1 − x2‖. (C.2)
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Quite analogously, for any (x1, y1), (x2, y2) ∈X ×Y we have:

‖y1kx1 − y2kx2‖Hk
= ‖y1kx1 − y1kx2 + y1kx2 − y2kx2‖Hk

= ∥∥y1(kx1 − kx2) + kx2(y1 − y2)
∥∥
Hk

≤ KR‖x1 − x2‖X + |y1 − y2|
≤ max(KR,1)

(‖x1 − x2‖X + |y1 − y2|
)
. (C.3)

The latter implies that the map (x, y) �→ ykx is max(KR,1)-Lipschitz. By gathering bounds
from (C.2) and (C.3), we deduce that Wf (x, y) := ykx − kx〈kx, f 〉 is Lipschitz with constant
3 max(1,KR,K‖f ‖) as a map X ×Y → Hk . �

Proof of Lemma 4.1. Consider the mapping

ξ1(x, y) := ykx − kx〈kx, fν〉,
with values in Hk . It holds 1

n

∑n
i=1 ξ(xi, yi) = S∗

xy − Txfν , as well as E[ξ1(X,Y )] = 0. By
Assumption B1, ∥∥ξ1(x, y)

∥∥= ∥∥ykx − kx〈kx, fν〉
∥∥
Hk

≤ ‖kx‖
∣∣y − fν(x)

∣∣≤ 2R.

Due to Assumption B1 and supx∈X k(x, x) ≤ 1, we obtain the following bound on the vari-
ance:

E
[∥∥ξ1(X,Y )

∥∥2]=
∫
X×Y

〈
kx

(
y − fν(x)

)
, kx

(
y − fν(x)

)〉
dν(x, y)

=
∫
X

dμ(x)k(x, x)

∫
Y

(
y − fν(x)

)2
dν(y|x) ≤ �2.

Because of Lemma C.1, and since ξ1(x, y) = Wfν (x, y) with the notation there, if (Xi, Yi)i≥1
is τ -mixing with rate τ(k), the sequence ξ1(xi, yi)i≥1is τ -mixing with rate τ(k) = 3 max(1,KR,

KD)τ (k). Using the result of Corollary 3.7 with the aforementioned bounds on the norm, the
variance and the multiplicative correction for the mixing coefficients decay rate, we obtain with
probability at least 1 − η:∥∥Sk

�y − Tfν

∥∥≤ 21 log
(
2η−1)( �√

�1
+ 2R

�1

)
,

where the bound on the effective sample size �1 is obtained by straightforward plugging-
in the bounds for the norm, the second moment and the form of mixing coefficients of
the sequence ξ1(xi, yi) in the general form given by Proposition 3.6, and is given by �1 =(

�
3 max(1,KR,KD)ρ

) 2
2γ+1 ( n

2 )
2γ

2γ+1 , for a polynomially mixing process with rate τ(k) = ρk−γ ,

and �1 =
⌊

nθ

2(1∨log(n
3 max(1,KR,KD)χθ

2R
))1/γ

⌋
for an exponentially mixing process with rate τ(k) =

χ exp(−(θk)γ ).
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The other inequalities will be derived in a similar way. We introduce the random variable:

ξ2(x, y) = (T + λ)−
1
2
(
kxy − kx〈kx, fν〉

)
,

Quite analogously, we can check that E[ξ2(X,Y )] = 0. Repeating similar steps, we get:∥∥(T + λ)−
1
2
(
kxy − kx〈kx, fν〉

)∥∥
Hk

≤ ∥∥(T + λ)−
1
2
∥∥∥∥(kxy − kx〈kx, fν〉

)∥∥
Hk

≤ 2λ− 1
2 R.

For the second moment of the norm of ξ2(X,Y ), we get:

E
[∥∥ξ2(X,Y )

∥∥2]=
∫
X×Y

〈
(T + λ)−

1
2 kx

(
y − fν(x)

)
, (T + λ)−

1
2 kx

(
y − fHk

(x)
)〉

dν(x, y)

=
∫
X

∥∥(T + λ)−
1
2 kx

∥∥2
dμ(x)

∫
Y

(
y − fν(x)

)2
dν(y|x)

≤ �2
∫
X

Tr
(
(T + λ)−

1
2 kx ⊗ k�

x

)
dμ(x)

= (�√N (λ)
)2

.

Using Lemma C.1, one can readily see that the function ξ2(x, y) = (T + λ)− 1
2 Wfν (x, y) is Lip-

schitz with constant 3λ− 1
2 max(1,KR,KD), from which we deduce that (ξ2(Xi, Yi))i≥1 is τ -

mixing with rate 3λ− 1
2 max(1,KR,KD)τ (k). Finally, by using Corollary 3.7, we obtain with

probability at least 1 − η:

∥∥(T + λ)−
1
2
(
TxfHk

− S�
xy
)∥∥≤ 21 log

(
2

η

)
κ−1

(
�

√
N (λ)√
�2

+ 2R√
λ�2

)
,

where, as before, a bound on �2 is obtained by Proposition 3.6 for either a polynomially or
exponentially mixing process, through considering bounds on the norm, the second moment and
the Lipschitz norm of the elements of the sequence ξ2(xi, yi).

We define the map ξ3 : X �→ HS(H) (here, as mentioned before, through HS(H) we denote
the space of Hilbert–Schmidt operators on Hk) by:

ξ3(x) := (T + λ)−1(Tx − T ),

where we recall the notation Tx = kx ⊗ k�
x for any x ∈X .

Taking expectation we get:

E
[
ξ3(X)

]= (T + λ)−1
∫
X

(Tx − T )dμ(x) = 0.

So that we have:

∥∥(T + λ)−1(T − Tx)
∥∥=

∥∥∥∥1

n

n∑
i=1

ξ3(xi)

∥∥∥∥.
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Verifying the conditions as before we have:∥∥ξ3(x)
∥∥

HS ≤ ∥∥(T + λ)−1
∥∥‖T − Tx‖HS(Hk) ≤ 2λ−1

and

E
[∥∥ξ3(X)

∥∥2
HS

]=
∫
X

Tr
(
(Tx − T )(T + λ)−2(Tx − T )

)
μ(dx)

=
∫
X

Tr
(
Tx(T + λ)−2Tx

)
μ(dx) − Tr

(
T(T + λ)−2T

)
≤ ‖T + λ‖−1

∫
X

‖Tx‖Tr
(
(T + λ)−1Tx

)
μ(dx)

≤ λ−1N (λ).

We can check via Lemma C.1 that ξ3 is Lipschitz with constant 2λ−1K , which implies that
(ξ3(Xi, Yi))i≥1 is τ -mixing with rate 2λ−1Kτ(k).

We use the result of Theorem 3.5, applied to the quantity ‖ 1
n

∑n
i=1 ξ3(xi)‖. With probability

at least 1 − η we have:

∥∥(T + λ)−1(T − Tx)
∥∥≤ 21 log

(
2

η

)(
λ−1/2√N (λ)√

�3
+ 2λ−1

�3

)
,

where �3 is chosen following the standard “plug-in” scheme as before.
Finally, define ξ4(x) := (kx ⊗ k�

x − T ). Again the random variables ξ4(Xi) are centered and
we have:

Tx − T = 1

n

n∑
i=1

ξ4(xi).

Repeating the scheme we get: ∥∥ξ4(x)
∥∥

HS(H)
≤ 2,

E

[∥∥ξ4(X)
∥∥2

HS(H)

]
≤ 4,

Also, Lemma C.1 implies that ξ4(Xi)i≥0 is τ -mixing with rate 2Kτ(k), so that using the
general deviation bound from Corollary 3.7 according to the same principle as before, we obtain
with probability at least 1 − η:

‖T − Tx‖ ≤ 21 log

(
2

η

)(
2√
�4

+ 2

�4

)
≤ 42 log(2η−1)√

�4
,

where �4 is chosen according to the mixing rate and bounds on the norm, variance term and
Lipschitz constants as before. �
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Appendix D: Proofs of remaining results in Section 4

We start with an auxiliary lemma, also in the same spirit as [4,10].

Lemma D.1. Assume the conditions of Lemma 4.1 are satisfied. Let η ∈ (0, 1
2 ] and λ ∈ (0,1] be

such that the following is satisfied:

√
�′λ ≥ 50 log

(
2η−1)√max

(
N (λ),1

)
,

with �′ chosen to be the minimum of �2, �3, �4 from Lemma 4.1. Then, with probability at least
1 − η, the following holds: ∥∥(Tx + λ)−1(T + λ)

∥∥≤ 2.

Proof of Lemma D.1. By means of the Neumann series decomposition we write:

(Tx + λ)−1(T + λ) = (I − �λ)
−1 =

∞∑
j=0

�
j
λ,

with �λ := (T + λ)−1(T − Tx). If ‖Tx(λ)‖ < 1, then the last series converges and the norm of
(Tx + λ)−1(T + λ) is bounded by the sum of the series of norms. From Lemma 4.1, we have:

‖�λ‖ ≤ Cη

(√N (λ)

λ�′ + 2

λ�′

)
,

where we put Cη = 21 log(2η−1) for η ∈ (0, 1
2 ]. Using the lemma’s assumption and the fact that

Cη > 28 for η ∈ (0, 1
2 ], we obtain:

√
λ�′ ≥ 2.3Cη

√
max

(
N (λ),1

)≥ 2.3Cη ≥ 60.

This implies that

1

λ�′ ≤ 1

60
√

λ�′ ≤ 1

120Cη

.

Putting these pieces together we obtain:

‖�λ‖ ≤ Cη

(
1

2.3Cη

+ 1

60Cη

)
<

1

2
.

This implies that with probability at least 1 − η:∥∥(Tx + λ)−1(T + λ)
∥∥≤ 2. �

Sketch of the proof of Lemma 4.2. The proof is analogous in form and spirit to that of Proposi-
tion 5.8 for the i.i.d. case given in [10]. The main difference is reflected in using high probability
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upper bounds from Lemmata 4.1 and D.1 instead of their i.i.d. counterparts, which in each case
involve the knowledge of bounds on the effective sample size �′. The appropriate choice of the
latter is assured by the two conditions from the theorem statement. Namely, �′ ≥ �0 implies
the claim of Lemma D.1 (which is the τ -mixing counterpart of the Lemma 5.4 from [10]). On
the other hand, the condition �′ ≤ min{�2, �3, �4} implies that all inequalities from Lemma 4.1
hold for �′. We check additionally that the assumption fν ∈ 
(r,D) implies ‖fν‖ ≤ D (since
‖T ‖ ≤ 1), which was a required condition for applying Lemma 4.1. The remaining reasoning is
the same as in Proposition (5.8) from [10]. �

Proof of Theorem 4.3. The proof of the first part of the theorem is in essence a direct extension
of the proof of Corollary 5.9 in [10] to the case of τ -mixing stationary sequence.

As the marginal distribution μ belongs to the class P<(b,β) (by assumption), from Proposi-
tion 3 in [17], for any choice of parameter λ ∈ (0,1] we obtain:

N (λ) ≤ C̃b,βλ− 1
b . (D.1)

For the choice λn and �′
g given by (4.6) as function of n (the other parameters being fixed) it

is easy to check by straightforward calculation that �′
g ≥ �0 holds, where �0 is defined as in

Lemma 4.2, provided n is larger than some n0 (depending on all the fixed parameters).
Thus, as the given quantity �′

g fulfills all the requirements of Lemma 4.2, from this result we
have with probability at least 1 − η:

∥∥T s(fν − fz,λn)
∥∥
Hk

≤ C̃ log
(
8η−1)λs

n

(
D

(
λr

n + 1√
�′
g

)
+ R

�′
gλn

+

√√√√�2λ
− b+1

b
n

�′
g

)
,

where C̃ := Cr,s,b,β,γ ,E,B,χ,γ depends potentially on all model and method parameters except
for R,D and �.

By direct computation, we check that the choice of regularization parameter sequence λn im-
plies that (�′

g)
−1/2 = on(λ

r
n). Therefore, for n and therefore �′

g large enough, we can disregard

the term (�′
g)

−1/2 in the above bound, if we multiply the front factor by 2. In the same vein,

we can check that (�′
gλn)

−1 = on

(
(�′

g)
−1/2λ

− b+1
2b

n

)
and disregard the R/(�′

gλn) term for n big
enough. Finally, the proposed choice of parameter λn balances precisely the last two terms and
leads to the conclusion. �

Proof of Theorem 4.4. In this proof C� will denote a factor depending on the model and method
parameters (but not on n or η) whose exact value can change from line to line.

Observe that estimate (D.1) still holds, and additionally due to the assumption of lower
bounded spectrum, a matching lower bound for the effective dimension holds (with a differ-
ent factor). Relegating the effects of the constants R,K in the formulas from Table 1 in a generic

factor, the choice of the bound for effective sample size �′
p = C�(λnN (λn))

2
2γ+1 n

2γ
2γ+1 ensures

that condition �′ ≤ min{�2, �3, �4} is fulfilled with �′ = �′
p (which can be checked by straightfor-

ward computation) and λn as defined by (4.8). Furthermore, for n > n0, where n0 is as specified
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in the statement of the theorem, we obtain:

logη−1 ≤ C�n
br

2br+b+1+b(r+1)γ−1 ,

which, by plugging in the value for λn and estimate for N (λn), implies that �′ ≥ �0, and we can
apply Lemma 4.2.

Thus, we get with probability at least 1 − η:∥∥T s(fν − fz,λn)
∥∥
Hk

≤ C�,ηλ
s
n

((
λr

n + λ
−( b−1

2b
) 1

2γ+1
n

n
γ

2γ+1

)
+ 1

λ
1+ 1

2γ+1 ( b−1
b

)

n n
2γ

2γ+1

+ λ
− 1

b
γ (b+1)+b

2γ+1
n n

− γ
2γ+1

)
,

where C�,η = C� log(8η−1). We observe that the choice of regularization parameter λn implies

that λ
−( b−1

2b
) 1

2γ+1
n /n

γ
2γ+1 = o(λr

n). Therefore, similarly to the case of exponentially τ -mixing pro-
cess, taking n large enough and multiplying the front factor with 2 we can disregard the term

λ
−( b−1

2b
) 1

2γ+1
n /n

γ
2γ+1 in the above bound. Similarly, one can check that:

1

λ
1+ 1

2γ+1 ( b−1
b

)

n n
2γ

2γ+1

= o
(
λ

− 1
b

γ (b+1)+b
2γ+1

n n
− γ

2γ+1

)
,

so this term can be similarly asymptotically disregarded (again, multiplying the second term
by 2). Therefore, we can concentrate the analysis on the remaining main terms which are λr

n and

λ
− 1

b
γ (b+1)+b

2γ+1
n n

− γ
2γ+1 . The choice of λn balances exactly these terms and the computations lead to

the conclusion. �
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