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Regularly varying space-time processes have proved useful to study extremal dependence in space-time
data. We propose a semiparametric estimation procedure based on a closed form expression of the ex-
tremogram to estimate parametric models of extremal dependence functions. We establish the asymptotic
properties of the resulting parameter estimates and propose subsampling procedures to obtain asymptoti-
cally correct confidence intervals. A simulation study shows that the proposed procedure works well for
moderate sample sizes and is robust to small departures from the underlying model. Finally, we apply this
estimation procedure to fitting a max-stable process to radar rainfall measurements in a region in Florida.
Complementary results and some proofs of key results are presented together with the simulation study in
the supplement [Buhl et al. (2018)].

Keywords: Brown–Resnick process; extremogram; max-stable process; mixing; regular variation;
semiparametric estimation; space-time process; subsampling

1. Introduction

Regularly varying processes provide a useful framework for modeling extremal dependence in
continuous time or space. They have been investigated in Hult and Lindskog [19,20]. A promi-
nent class of examples consists of max-stable processes. A key example in this paper is the
max-stable Brown–Resnick process which was introduced in a time series framework in Brown
and Resnick [2], in a spatial setting in Kabluchko et al. [22], and extended to a space-time setting
in Davis et al. [9].

In the literature, various dependence models and estimation procedures have been proposed
for extremal data. For the Brown–Resnick process with parametrized dependence structure, in-
ference has been based on composite likelihood methods. In particular, pairwise likelihood esti-
mation has been found useful to estimate parameters in a max-stable process. A description of
this method can be found in Padoan et al. [24] for the spatial setting, and Huser and Davison [21]
in a space-time setting. Asymptotic results for pairwise likelihood estimates and detailed analy-
ses in the space-time setting for the model analysed in this paper are given in Davis et al. [10].
Unfortunately, parameter estimation using composite likelihood methods can be laborious, since
the computation and subsequent optimization of the objective function is time-consuming. Also
the choice of good initial values for the optimization of the composite likelihood is essential.
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In this paper, we introduce a new semiparametric estimation procedure for regularly varying
processes which is based on the extremogram as a natural extremal analog of the correlation func-
tion for stationary processes. The extremogram was introduced in Davis and Mikosch [11] for
time series (also in Fasen et al. [16]), and they show consistency and asymptotic normality of an
empirical extremogram estimate under weak mixing conditions. The empirical extremogram and
its asymptotic properties in a spatial setting have been investigated in Buhl and Klüppelberg [7]
and Cho et al. [8]. It can serve as a useful graphical tool for assessing extremal dependence struc-
tures in spatial and space-time processes that provides clues about potential parametric models,
a critical step in the model building paradigm. For example, compatibility with various assump-
tions such as isotropy and stationarity (see Buhl and Klüppelberg [5] and Davis et al. [10] for
some examples), can be assessed by examining invariance of the empirical extremogram when
computed over specially chosen subsets of the data. Ultimately, a number of families of proposed
parametric models are often fitted before deciding on a particular class of models. Therefore it
is of interest to be able to not only have a procedure that can compute estimates rapidly, but
also to serve as a check on the efficacy of model choice. Additionally, the new estimation proce-
dure allows one to provide parameter estimates that can be used as initial values in more refined
procedures, such as composite likelihood.

Our semiparametric estimation method assumes a spatially isotropic and additively separa-
ble dependence structure for regularly varying space-time processes. We first estimate the ex-
tremogram nonparametrically by its empirical version, where we can hence separate space and
time. Weighted linear regression is then applied in order to produce parameter estimates. Asymp-
totic normality of these semiparametric estimates requires asymptotic normality of the empirical
extremogram, and we apply the CLT with mixing conditions as provided in [7]. The rate of
convergence can be improved by a bias correction term, a fact which we explain in detail. The
proofs of the asymptotic properties of semiparametric spatial and temporal parameter estimates
are analogous, and we present the details on the spatial parameters only, referring to Buhl [3],
Chapter 3, for details about the asymptotic properties of the semiparametric temporal parameter.

In a second step, we establish asymptotic normality of the weighted least squares parameter
estimates. When the dependence parameters have bounded support, as for the Brown–Resnick
process in Section 4, constrained optimization has to be applied. Then also the limit law differs
depending whether the true parameters lie on the boundary or not. Since the asymptotic covari-
ance matrix in the normal limit is difficult to access, we apply subsampling procedures to obtain
pointwise confidence intervals for the parameters.

The semiparametric estimates converge at a slower rate than the square root rate of a fully para-
metric procedure such as pairwise likelihood estimation. However, it is known that likelihood-
based estimates may be inefficient and even not consistent if the model is slightly misspecified.
The semiparametric estimates, however, are often unaffected by slight deviations in the model.
This is proved in Section 9 and illustrated in Section 10 of the supplement [4], where data are
generated from a Brown–Resnick process, but with observational noise. The semiparametric es-
timates clearly outperform pairwise likelihood estimates in this case. On the other hand, the
semiparametric estimates perform admirably well relative to the pairwise likelihood estimates
when the underlying process is in fact a Brown–Resnick process.

Our paper is organized as follows. Section 2 defines regularly varying processes in space and
time and their extremogram. Based on gridded data, the nonparametric extremogram estimation
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is derived and used for parametric model fitting. Asymptotic normality of the parameter estimates
is established in Section 3. Section 3.1 is dedicated to the asymptotic normality of the empirical
extremogram; and Section 3.2 deals with the asymptotic properties of the parameter estimates.
The subsampling procedure – as well as results and proofs for our setting – is given in Section 7
of the supplement [4]. In Section 4 we apply the semiparametric method to the Brown–Resnick
process and verify the required conditions. Here we also calculate the bias corrected estimator.
We test our new semiparametric estimation procedure in a simulation study presented in the
supplement [4] and compare it to pairwise likelihood estimation, both when applied to data gen-
erated by a Brown–Resnick process and when the data are affected by observational noise. In the
latter, our procedure produces estimates with less bias than those based on pairwise likelihood
(see Section 10 of the supplement [4]). The paper concludes with an analysis of daily rainfall
maxima in a region in Florida in Section 5, where we also compare the semiparametric estimates
with previously obtained pairwise likelihood estimates. The supplement [4] contains four sec-
tions, on subsampling, on α-mixing of the Brown–Resnick process, a robustness result for the
bias corrected estimator, and a simulation study.

2. Model description and semiparametric estimates

In this paper we consider strictly stationary regularly varying processes in space and time
{η(s, t) : s ∈ R

d−1, t ∈ [0,∞)} for d ∈ N, where all finite-dimensional distributions are regu-
larly varying (cf. Hult and Lindskog [20] for definitions and results in a general framework and
Resnick [25] for details about multivariate regular variation). Throughout, f (n) ∼ g(n) means
that limn→∞ f (n)

g(n)
= 1. As a prerequisite, we define for every finite set I ⊂ R

d−1 × [0,∞) with
cardinality |I| the vector

ηI := (η(s, t) : (s, t) ∈ I
)ᵀ.

Let furthermore ‖ · ‖ be the Euclidean norm on R
d−1.

Definition 2.1 (Regularly varying stochastic process). A strictly stationary stochastic space-
time process {η(s, t) : (s, t) ∈ R

d−1 × [0,∞)} is called regularly varying, if there exists some
normalizing sequence 0 < an → ∞ such that P(|η(0,0)| > an) ∼ n−d as n → ∞, and if for
every finite set I ⊂R

d−1 × [0,∞),

nd
P

(
ηI
an

∈ ·
)

v→ μI(·), n → ∞, (2.1)

for some non-null Radon measure μI on the Borel sets in R
|I|\{0}. In that case,

μI(xC) = x−βμI(C), x > 0,

for every Borel set C in R
|I|\{0}. The notation

v→ stands for vague convergence, and β > 0 is
called the index of regular variation.
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For every (s, t) ∈ R
d−1 × [0,∞) and I = {(s, t)} we set μ{(s,t)}(·) = μ{(0,0)}(·) =: μ(·),

which is justified by stationarity. Throughout, we furthermore consider the space-time process
{η(s, t) : (s, t) ∈R

d−1 × [0,∞)} to be spatially isotropic. Together with the assumption of strict
stationarity, this means that extremal dependence between two space-time points (s1, t1) and
(s2, t2) is only driven by the spatial and temporal lags v := ‖s1 − s2‖ and u := |t1 − t2|, respec-
tively, and we can define the extremogram only as a function of v and u. The extremogram was
introduced for spatial and space-time processes by Buhl and Klüppelberg [7] and Cho et al. [8],
based on Steinkohl [27], and can be regarded as a correlogram for extreme events.

Definition 2.2 (The extremogram). For a regularly varying strictly stationary isotropic space-
time process {η(s, t) : (s, t) ∈ Rd−1 × [0,∞)}, we define the space-time extremogram for two
μ-continuous Borel sets A and B in R\{0} (i.e., μ(∂A) = μ(∂B) = 0) such that μ(A) > 0 by

ρAB(v,u) = lim
n→∞

P(η(s1, t1)/an ∈ A,η(s2, t2)/an ∈ B)

P(η(s1, t1)/an ∈ A)
, (2.2)

where v = ‖s1 − s2‖ and u = |t1 − t2|. Setting A = B = (1,∞), this reduces to the tail depen-
dence coefficient χ(v,u) = ρ(1,∞)(1,∞)(v, u).

In what follows, we propose a two-step semiparametric estimation procedure of a parametric
model of the extremogram. In particular, we assume that the model is additively separable such
that setting either the temporal lag u or the spatial lag v equal to 0, it can be linearly parametrized
as

T1
(
χ(v,0)

)= T1
(
χ(v,0;C1, α1)

)= C1 + α1v, (C1, α1) ∈ �S , v ≥ 0, (2.3)

and

T2
(
χ(0, u)

)= T2
(
χ(0, u;C2, α2)

)= C2 + α2u, (C2, α2) ∈ �T u ≥ 0, (2.4)

where T1 and T2 are known suitable strictly monotonous continuously differentiable transforma-
tions and the parameters (C1, α1) and (C2, α2) lie in appropriate parameter spaces �S and �T .
We refer to (C1, α1) as the spatial parameter and to (C2, α2) as the temporal parameter. Equa-
tions (2.3) and (2.4) are the basis for parameter estimates. We replace the extremogram on the
left-hand side in both of these equations by nonparametric estimates sampled at different lags.
Then we use constrained weighted least squares estimation in a linear regression framework to
obtain parameter estimates.

For better understanding, we stick to the 2-dimensional spatial case d − 1 = 2; however, the
method can directly be generalized and applied to higher dimensions. The estimation procedure
is based on the following observation scheme for the space-time data.

Condition 2.3. (1) The locations lie on a regular grid

Sn = {(i1, i2) : i1, i2 ∈ {1, . . . , n}}= {si : i = 1, . . . , n2}.
(2) The time points are equidistant, given by the set {t1, . . . , tT }.
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Remark 2.1. The assumption of a regular grid can be relaxed in various ways. A simple, but no-
tationally more involved extension is the generalization to rectangular grids, cf. Buhl and Klüp-
pelberg [7], Section 3. Furthermore, it is possible to assume that the observation area consists
of random locations given by points of a Poisson process, see, for instance, Cho et al. [8], Sec-
tion 2.3, or Steinkohl [27], Section 4.5.2. Also deterministic, but irregularly spaced locations,
could be considered as treated in [27] in Section 4.5.1 in the context of pairwise likelihood esti-
mation. In order to make our method transparent, we focus on observations on a regular grid.

The following scheme provides the semiparametric estimation procedure in detail.
Denote by V and U finite sets of spatial and temporal lags, on which the estimation is based.

Concerning their choice, we generally include those lags which show clear extremal dependence
between locations or time points. Larger lags should not be considered, since they may introduce
a bias in the least squares estimates, similarly as in pairwise likelihood estimation; cf. Buhl and
Klüppelberg [5], Section 5.3. One way to determine the range of clear extremal dependence are
permutation tests, which we describe at the end of Section 5.

(1) Nonparametric estimates for the extremogram:
Summarize all pairs of Sn which give rise to the same spatial lag v ∈ V into

N(v) = {(i, j) ∈ {1, . . . , n2}2 : ‖si − sj‖ = v
}
.

For all t ∈ {t1, . . . , tT } estimate the spatial extremogram by

χ̂ (t)(v,0) =
1

|N(v)|
∑n2

i=1
∑n2

j=1
‖si−sj ‖=v

1{η(si ,t)>q,η(sj ,t)>q}

1
n2

∑n2

i=1 1{η(si ,t)>q}
, v ∈ V, (2.5)

where q is a large quantile (to be specified) of the standard unit Frechét distribution.
For all s ∈ Sn estimate the temporal extremogram by

χ̂ (s)(0, u) =
1

T −u

∑T −u
k=1 1{η(s,tk)>q,η(s,tk+u)>q}
1
T

∑T
k=1 1{η(s,tk)>q}

, u ∈ U , (2.6)

where again q is a large (possibly different) quantile of the standard unit Frechét distribution.
(2) The overall “spatial” and “temporal” extremogram estimates are defined as averages over

the temporal and spatial locations, respectively; that is,

χ̂ (v,0) = 1

T

T∑
k=1

χ̂ (tk)(v,0), v ∈ V, (2.7)

χ̂ (0, u) = 1

n2

n2∑
i=1

χ̂ (si )(0, u), u ∈ U . (2.8)
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(3) Parameter estimates for C1, α1,C2 and α2 are found by using weighted least squares esti-
mation: (

Ĉ1
α̂1

)
= arg min

(C1,α1)∈�S

∑
v∈V

wv

(
T1
(
χ̂ (v,0)

)− (C1 + α1v)
)2

, (2.9)

(
Ĉ2
α̂2

)
= arg min

(C2,α2)∈�T

∑
u∈U

wu

(
T2
(
χ̂ (0, u)

)− (C2 + α2u)
)2

, (2.10)

with weights wu > 0 and wv > 0.
We call the estimates (Ĉ1, α̂1) and (Ĉ2, α̂2) weighted least squares estimates (WLSE). This

approach bears similarity with that proposed by Einmahl et al. [14], who suggest semiparamet-
ric weighted least squares estimation of the parameters of parametric models of the stable tail
dependence function based on i.i.d. random vector observations.

3. Asymptotic properties of the WLSE

In this section, we investigate aymptotic properties of the WLSE (Ĉ1, α̂1) and (Ĉ2, α̂2). Recall
from (2.9) and (2.10) that they are functions of the averaged empirical extremogram χ̂ (·, ·).
Its definition is given in (2.7) and (2.8) and implies that we first need CLTs of the pointwise
empirical extremograms χ̂ (t) and χ̂ (s) for a fixed time point t and a fixed location s, respectively.
Sections 3.1 and 3.2 focus on the spatial parameters. The corresponding results for the temporal
case can be derived similarly by replacing n with

√
T and can be found with full details in

Buhl [3], Chapter 3 for the Brown–Resnick space-time process. We use several results for the
extremogram provided in Section 8 of the supplement [4] and in Buhl and Klüppelberg [7].

3.1. Asymptotics of the empirical spatial extremogram

We show a CLT for the empirical spatial extremogram of regularly varying space-time processes,
which is defined in (2.1) and based on a finite set of observed spatial lags

V = {v1, . . . , vp},
which show clear extremal dependence as explained in Section 2. First, we state conditions un-
der which the empirical extremogram centred by the pre-asymptotic version is asymptotically
normal.

Theorem 3.1. For a fixed time point t ∈ {t1, . . . , tT }, consider a regularly varying spatial process
{η(s, t) : s ∈ R

2} as defined in Definition 2.1. Let an be a sequence as in (2.1). Assume that there
exists γ > 0 that satisfies max{v1, . . . , vp} ≤ γ , such that the following conditions are satisfied:

(M1) {η(s, t) : s ∈ R
2} is α-mixing with α-mixing coefficients αk,
(·).

There exist sequences m = mn, r = rn → ∞ with mn/n → 0 and rn/mn → 0 as n → ∞ such
that the following hold:
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(M2) m2
nr

2
n/n → 0.

(M3) For all ε > 0:

lim
k→∞ lim sup

n→∞

∑
h∈Z2:k<‖h‖≤rn

m2
n

× P

(
max

s∈B(0,γ )

∣∣η(s, t)
∣∣> εam, max

s′∈B(h,γ )

∣∣η(s′, t
)∣∣> εam

)
= 0,

where B(h, γ ) := {s ∈ Z
2 : ‖s − h‖ ≤ γ } for h ∈R

2.
(M4) (i) limn→∞ m2

n

∑
h∈Z2:‖h‖>rn

α1,1(‖h‖) = 0,
(ii)

∑
h∈Z2 αp,q(‖h‖) < ∞ for 2 ≤ p + q ≤ 4,

(iii) limn→∞ mnnα1,n2(rn) = 0.

Then the empirical spatial extremogram χ̂ (t)(v,0) defined in (2.5) with the quantile q = am

satisfies

n

mn

(
χ̂ (t)(v,0) − χn(v,0)

)
v∈V

d→N
(
0,�

(iso)
1

)
, n → ∞, (3.1)

where the covariance matrix �
(iso)
1 is specified in equation (3.6) below, and χn is the pre-

asymptotic spatial extremogram,

χn(v,0) = P(η(0,0) > am,η(h,0) > am)

P(η(0,0) > am)
, v = ‖h‖ ∈ V . (3.2)

Proof. Theorem 3.1 is a direct application of Theorem 4.2 of Buhl and Klüppelberg [7] to the
process {η(s, t) : s ∈ R

2} for d = 2 and A = B = (1,∞). For the specification of the asymptotic
covariance matrix, we need to adapt that theorem to the isotropic case, where each spatial lag vi

arises from a set of different vectors h, all with same Euclidean norm vi . For i ∈ {1, . . . , p} such
that vi ∈ V , we summarize these into

L(vi) := {h ∈ Z
2 : ‖h‖ = vi

}= {h(i)
1 , . . . ,h

(i)

i

}
,

where 
i := |L(vi)|. We conclude that

n

mn

(
χ̂ (t)

(
h

(i)
1 ,0

)− χn

(
h

(i)
1 ,0

)
, . . . , χ̂ (t)

(
h

(i)

i

,0
)− χn

(
h

(i)

i

,0
))ᵀ

i=1,...,p

d→N
(
0,�

(space)
1

)
,

where �
(space)
1 is specified in equation (4.3)–(4.6) of [7]. Note the slight misuse of notation

committed here for the sake of simplicity: by χ̂ (t)(h,0) (instead of χ̂ (t)(v,0)) we denote the
empirical extremogram for each single vector h ∈ L(vi) specified above; that is,

χ̂ (t)(h,0) =
1

|N(h)|
∑n2

i=1
∑n2

j=1
si−sj =h

1{η(si ,t)>q,η(sj ,t)>q}

1
n2

∑n2

i=1 1{η(si ,t)>q}
,
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where N(h) := {(i, j) ∈ {1, . . . , n2} : si − sj = h} (instead of N(v)). Analogously we define the
pre-asymptotic extremogram χn(h,0) w.r.t. a vector h.

It holds that |N(vi)| =∑h∈L(vi )
|N(h)|. Isotropy implies furthermore for the pre-asymptotic

extremogram that χn(vi,0) = χn(h,0) for all h ∈ L(vi), such that

χn(vi,0) =
∑

h∈L(vi )

|N(h)|
|N(vi)|χn(vi,0) =

∑
h∈L(vi)

|N(h)|
|N(vi)|χn(h,0) (3.3)

as well as, by the definition of the estimator in (2.5),

χ̂ (t)(vi,0) =
∑

h∈L(vi)

|N(h)|
|N(vi)| χ̂

(t)(vi,0) =
∑

h∈L(vi)

|N(h)|
|N(vi)| χ̂

(t)(h,0). (3.4)

We conclude by (3.3) and (3.4) that

χ̂ (t)(vi,0) − χn(vi,0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

(
χ̂ (t)(h,0) − χn(h,0)

)
.

To obtain a concise representation of the asymptotic normal law for the isotropic extremogram,
we define row vectors (|N(h)|/|N(vi)| : h ∈ L(vi)) for i = 1, . . . , p. Set L := ∑p

i=1 
i and
define the p × L-matrix

N :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( |N(h)|
|N(v1)| : h ∈ L(v1)

)
0 0 0

0
( |N(h)|

|N(v2)| : h ∈ L(v2)

)
0 0

...
...

. . . 0

0 0 0
( |N(h)|

|N(vp)| : h ∈ L(vp)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.5)

Then we find

n

mn

(
χ̂ (t)(vi,0) − χn(vi,0)

)ᵀ
i=1,...,p

= n

mn

N
(
χ̂ (t)

(
h

(i)
1 ,0

)− χn

(
h

(i)
1 ,0

)
, . . . , χ̂ (t)

(
h

(i)

i

,0
)− χn

(
h

(i)

i

,0
))ᵀ

i=1,...,p

d→ N
(
0,N�

(space)
1 Nᵀ), n → ∞,

such that

�
(iso)
1 := N�

(space)
1 Nᵀ. (3.6)

�
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Corollary 3.2. Under the conditions of Theorem 3.1 the averaged spatial extremogram in (2.7)
satisfies (with covariance matrix �

(iso)
2 specified in (3.11) below)

n

mn

(
1

T

T∑
k=1

χ̂ (tk)(v,0) − χn(v,0)

)
v∈V

d→ N
(
0,�

(iso)
2

)
, n → ∞. (3.7)

Proof. For the first part of the proof, we neglect spatial isotropy. This part is similar to the proof
of Theorem 4.2 in Buhl and Klüppelberg [7] and Corollary 3.4 of Davis and Mikosch [11]. We
use the notation of the proof of Theorem 3.1. Enumerate the set of spatial lag vectors inherent in
the estimation of the extremogram as {h(i)

1 , . . . ,h
(i)

i

: i = 1, . . . , p} and let γ ≥ max{v1, . . . , vp}.
Define the vector process{

Y (s) : s ∈R
2}= {(η(s + h, tk) : h ∈ B(0, γ )

)ᵀ
k=1,...,T : s ∈R

2}.
Let A = B = (1,∞). Consider i = 1, . . . , p, j = 1, . . . , 
i , and k = 1, . . . , T . Define sets D

(i)
j,k

by {
Y (s) ∈ D

(i)
j,k

}= {η(s, tk) ∈ A,η
(
s′, tk

) ∈ B : s − s′ = h
(i)
j

}
,

and the sets Dk by {
Y (s) ∈ Dk

}= {η(s, tk) ∈ A
}
.

For h ∈R
2 let BT (h, γ ) := B(h, γ ) × {t1, . . . , tT }. For μBT (0,γ )-continuous Borel sets C and D

in R
T |B(0,γ )|\{0}, regular variation yields the existence of the limit measures

μBT (0,γ )(C) := lim
n→∞m2

nP

(
Y (0)

m2
n

∈ C

)
,

τBT (0,γ )×BT (h,γ )(C × D) := lim
n→∞m2

nP

(
Y (0)

m2
n

∈ C,
Y (h)

m2
n

∈ D

)
.

By time stationarity, we have μBT (0,γ )(Dk) = μ(A),

χ̂ (tk)
(
h

(i)
j ,0

)∼ R̂mn

(
D

(i)
j,k,Dk

) := μ̂BT (0,γ ),mn

(
D

(i)
j,k

)
/μ̂BT (0,γ ),mn

(Dk), n → ∞, (3.8)

where the μ̂BT (0,γ ),mn
(·) are empirical estimators of μBT (0,γ )(·) defined as

μ̂BT (0,γ ),mn
(·) :=

(
mn

n

)2 ∑
s∈Sn

1{ Y (s)

m2
n

∈·}. (3.9)

Likewise we have for the pre-asymptotic quantities

χn

(
h

(i)
j ,0

)= Rmn

(
D

(i)
j,k,Dk

) := P(Y (0)/m2
n ∈ D

(i)
j,k)

P(Y (0)/m2
n ∈ Dk)

=: μBT (0,γ ),mn
(D

(i)
j,k)

μBT (0,γ ),mn
(Dk)

, (3.10)
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which are independent of time tk by stationarity. For notational ease, we abbreviate in the fol-
lowing

μBT (0,γ )(·) = μγ (·), μBT (0,γ ),mn
(·) = μγ,mn(·), and μ̂BT (0,γ ),mn

(·) = μ̂γ,mn(·).

For each k ∈ {1, . . . , T }, we now define the matrices

F (k) = [F1,F
(k)
2

]
with F1 ∈R

L×L and F
(k)
2 ∈R

L given by

F1 = diag
(
μ(A)

)
and

F
(k)
2 := (−μγ

(
D

(1)
1,k

)
, . . . ,−μγ

(
D

(1)

1,k

)
, . . . ,−μγ

(
D

(p)

p,k

))�
.

Although F
(k)
2 is constant over k ∈ {1, . . . , T } by time stationarity, we keep the index to clarify

the notation. Define the T L × T (L + 1)-matrix F and the column vector χ̂ − χn with T L

components as

F :=

⎛⎜⎜⎜⎝
F (1) 0 0 0

0 F (2) 0 0
...

...
. . . 0

0 0 0 F(T )

⎞⎟⎟⎟⎠ and χ̂ − χn :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ̂ (t1)
(
h

(1)
1 ,0

)− χn

(
h

(1)
1 ,0

)
...

χ̂ (t1)
(
h

(1)

1

,0
)− χn

(
h

(1)

1

,0
)

...

χ̂ (t1)
(
h

(p)


p
,0
)− χn

(
h

(p)


p
,0
)

...

χ̂ (tT )
(
h

(p)

p

,0
)− χn

(
h

(p)

p

,0
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Define the vector (̂Rmn − Rmn) with the quantities from (3.8) and the corresponding pre-
asymptotic quantities from (3.10) exactly in the same way. Furthermore, define for k = 1, . . . , T

the vectors in R
L+1

μ(k)
γ,mn

= (μγ,mn

(
D

(1)
1,k

)
, . . . ,μγ,mn

(
D

(1)

1,k

)
, . . . . . . ,μγ,mn

(
D

(p)

1,k

)
, . . . ,μγ,mn

(
D

(p)

p,k

)
,μγ,mn(Dk)

)ᵀ,

which we stack one on top of the other giving a vector μγ,mn
∈R

T (L+1), and μ̂γ,mn
analogously.

Then we obtain

χ̂ − χn = (1 + o(1)
)
(̂Rmn − Rmn) = 1 + op(1)

μ(A)2
F (μ̂γ,mn

− μγ,mn
), n → ∞,
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where the last step follows as in the proof of Theorem 4.2 of [7] and involves Slutzky’s theorem.
Using ideas of the proof of their Lemma 5.1, we observe that as n → ∞,

Cov
[
μ̂BT (0,γ ),mn

(C), μ̂BT (0,γ ),mn
(D)

]
∼
(

mn

n

)2(
μBT (0,γ )(C ∩ D) +

∑
0�=h∈Z2

τBT (0,γ )×BT (h,γ )(C × D)

)
=:
(

mn

n

)2

cC,D.

With � ∈R
T (L+1)×T (L+1) defined as

� =

⎛⎜⎜⎝
c
D

(1)
1,1,D

(1)
1,1

· · · c
D

(1)
1,1,D1

· · · c
D

(1)
1,1,D

(p)
1,T

· · · c
D

(1)
1,1,DT

...
. . .

...
. . .

...
. . .

...

c
DT ,D

(1)
1,1

· · · cDT ,D1 · · · c
DT ,D

(p)
1,T

· · · cDT ,DT

⎞⎟⎟⎠ ,

we thus conclude that

n

mn

⎛⎜⎜⎝
χ̂ (t1)

(
h

(1)
1 ,0

)− χn

(
h

(1)
1 ,0

)
...

χ̂ (tT )
(
h

(p)


p
,0
)− χn

(
h

(p)


p
,0
)
⎞⎟⎟⎠ d→ N

(
0,μ(A)−4F�(F )�

)
.

To obtain the asymptotic covariance matrix in the spatially isotropic case, we proceed as in the
proof of Theorem 3.1. We define the Tp × T L-matrix

N :=

⎛⎜⎜⎜⎝
N 0 0 0
0 N 0 0
...

...
. . . 0

0 0 0 N

⎞⎟⎟⎟⎠
with N given in equation (3.5). Then we have

n

mn

⎛⎜⎝ χ̂ (t1)(v1,0) − χn(v1,0)
...

χ̂ (tT )(vp,0) − χn(vp,0)

⎞⎟⎠

= n

mn

N

⎛⎜⎜⎝
χ̂ (t1)

(
h

(1)
1 ,0

)− χn

(
h

(1)
1 ,0

)
...

χ̂ (tT )
(
h

(p)

p

,0
)− χn

(
h

(p)

p

,0
)
⎞⎟⎟⎠

d→ N
(
0,μ(A)−4NF�(NF )�

)
, n → ∞,
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and we conclude that for the averaged spatial extremogram the statement holds with

�
(iso)
2 = μ(A)−4T −2

⎛⎜⎜⎜⎝
1 0 · · ·0 1 0 · · ·0 · · · 1 0 · · ·0
0 1 · · ·0 0 1 · · ·0 · · · 0 1 · · ·0

. . .

0 0 · · ·1 0 0 · · ·1 · · · 0 0 · · ·1

⎞⎟⎟⎟⎠NF�(NF )�

(3.11)

×

⎛⎜⎜⎜⎝
1 0 · · ·0 1 0 · · ·0 · · · 1 0 · · ·0
0 1 · · ·0 0 1 · · ·0 · · · 0 1 · · ·0

. . .

0 0 · · ·1 0 0 · · ·1 · · · 0 0 · · ·1

⎞⎟⎟⎟⎠
�

.

�

Condition 3.3. In the CLTs (3.1) and (3.7), the pre-asymptotic extremogram (3.2) can be re-
placed by the theoretical one (eq. (2.2) with A = B = (1,∞)), provided that

n

mn

(
χn(v,0) − χ(v,0)

)→ 0, n → ∞, (3.12)

is satisfied for all spatial lags v ∈ V . In particular, we then obtain

n

mn

(
χ̂(v,0) − χ(v,0)

)
v∈V

d→N
(
0,�

(iso)
2

)
, n → ∞. (3.13)

This bias condition turns out to be central in order to obtain a CLT for the WLSE (Ĉ1, α̂1)

in Section 3.2 below. However, even if it is not satisfied, the empirical extremogram keeps its
important asymptotic interpretation as a conditional probability of extremal events. Furthermore
there are cases where we can resort to a bias correction, ensuring again a CLT for (Ĉ1, α̂1). For
example we refer to Section 4 below.

3.2. Asymptotic properties of spatial parameter estimates

In this section, we state conditions that yield asymptotic normality of the WLSE (Ĉ1, α̂1) of
Section 2. Recall the weighted least squares optimization problem (2.9); that is,(

Ĉ1
α̂1

)
= arg min

(C1,α1)∈�S

∑
v∈V

wv

(
T1
(
χ̂(v,0)

)− (C1 + α1v)
)2

.

To show asymptotic normality of the WLSE, we define the design matrix X and weight matrix
W as

X = [1, (v : v ∈ V)ᵀ
] ∈ R

p×2 and W = diag{wv : v ∈ V} ∈ R
p×p,
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respectively, where 1 = (1, . . . ,1)ᵀ ∈ R
p . If neither C1 nor α1 have bounded support, then the

WLSE; that is, the solution to (2.9), is given by

ψ̂1 :=
(

Ĉ1
α̂1

)
= (XᵀWX)−1XᵀW

(
T1
(
χ̂ (v,0)

))ᵀ
v∈V .

If one of the parameters C1 or α1 does have bounded support, we need to constrain ψ̂1 prop-
erly, obtaining a CLT that might differ considerably from that given in Theorem 3.4 below. An
important example of this is treated in Section 4.

Theorem 3.4. For a fixed time point t ∈ {t1, . . . , tT }, consider a regularly varying spatial pro-
cess {η(s, t) : s ∈ R

2} as defined in Definition 2.1. Assume that it satisfies the conditions of Theo-
rem 3.1. Let ̂ψ1 = (Ĉ1, α̂1)

ᵀ denote the WLSE resulting from the minimization problem (2.9) and
ψ∗

1 = (C∗
1 , α∗

1)ᵀ ∈ �S the true parameter vector. Assume that the CLT (3.13) holds, possibly
after a bias correction of the empirical extremogram (χ̂v : v ∈ V). Then for a suitably chosen
scaling sequence mn, we obtain, as n → ∞,

n

mn

(
̂ψ1 − ψ∗

1

) d→N
(
0,Q(w)

x G�
(iso)
2 GQ(w)

x
ᵀ). (3.14)

Here �
(iso)
2 is the covariance matrix given in (3.11),

Q(w)
x = (XᵀWX)−1XᵀW and G = diag

{
T ′

1

(
χ(v,0)

) : v ∈ V
}
, (3.15)

where T ′
1(x) denotes the derivative of T1(x) with respect to x for 0 < x < 1.

Proof. Using the multivariate delta method together with the CLT (3.13) it directly follows that

n

mn

(
T1
(
χ̂ (v,0)

)− T1
(
χ(v,0)

))
v∈V

d→ N
(
0,G�

(iso)
2 G

)
, n → ∞,

where G is defined in (3.15). Since

min
(C1,α1)∈�S

∑
v∈V

wv

(
T1
(
χ(v,0)

)− (C1 + α1v)
)2 =

∑
v∈V

wv

(
T1
(
χ(v,0)

)− (C∗
1 + α∗

1v
))2

,

we find the well-known property of unbiasedness of the WLSE,

Q(w)
x

(
T1
(
χ(v,0)

))ᵀ
v∈V = arg min

(C1,α1)∈�S

∑
v∈V

wv

(
T1
(
χ(v,0)

)− (log(θ1) + α1xv

))2 = ψ∗
1.

It follows that, as n → ∞,

n

mn

(
̂ψ1 − ψ∗

1

)= n

mn

Q(w)
x

(
T1
(
χ̂(v,0)

)− T1
(
χ(v,0)

))
v∈V

d→N
(
0,Q(w)

x G�
(iso)
2 GQ(w)

x
ᵀ).

�
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4. Example: The Brown–Resnick process

We illustrate the results of the previous sections by applying them to a max-stable strictly sta-
tionary and isotropic Brown–Resnick space-time process with representation

η(s, t) =
∞∨

j=1

{
ξj e

Wj (s,t)−δ(‖s‖,t)}, (s, t) ∈ R
2 × [0,∞), (4.1)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2 dξ and the
dependence function δ is nonnegative and conditionally negative definite; that is, for every m ∈ N

and every (s(1), t (1)), . . . , (s(m), t (m)) ∈ R
2 × [0,∞), it holds that

m∑
i=1

m∑
j=1

aiaj δ
(∥∥s(i) − s(j)

∥∥, ∣∣t (i) − t (j)
∣∣)≤ 0

for all a1, . . . , am ∈ R summing up to 0. The processes {Wj(s, t) : s ∈ R
2, t ∈ [0,∞)} are in-

dependent replicates of a Gaussian process {W(s, t) : s ∈ R
2, t ∈ [0,∞)} with stationary incre-

ments, W(0,0) = 0, E[W(s, t)] = 0 and covariance function

Cov
[
W
(
s(1), t (1)

)
,W
(
s(2), t (2)

)]
= δ
(∥∥s(1)

∥∥, t (1)
)+ δ

(∥∥s(2)
∥∥, t (2)

)− δ
(∥∥s(1) − s(2)

∥∥, ∣∣t (1) − t (2)
∣∣).

Representation (4.1) goes back to de Haan [12], Giné et al. [18] and Kabluchko et al. [22].
All finite-dimensional distributions are multivariate extreme value distributions with standard
unit Fréchet margins, hence they are in particular multivariate regularly varying. Furthermore,
they are characterized by the dependence function δ, which is termed the semivariogram of the
process {W(s, t)} in geostatistics: For (s(1), t (1)), (s(2), t (2)) ∈R

2 × [0,∞), it is given by

Var
[
W
(
s(1), t (1)

)− W
(
s(2), t (2)

)]= 2δ
(∥∥s(1) − s(2)

∥∥, ∣∣t (1) − t (2)
∣∣).

Since we assume δ to depend only on the norm of s(1) − s(2), the associated process is (spatially)
isotropic.

We assume the dependence function δ to be given for v,u ≥ 0 by

δ(v,u) = 2θ1v
α1 + 2θ2u

α2 , (4.2)

where 0 < α1, α2 ≤ 2 and θ1, θ2 > 0. This is the fractional class frequently used for dependence
modelling, and here defined with respect to space and time.

The bivariate distribution function of (η(0,0), η(h, u)) is given for x1, x2 > 0 by

F(x1, x2) = exp

{
− 1

x1
�

(
log(x2/x1)√
2δ(‖h‖, |u|) +

√
δ(‖h‖, |u|)

2

)
(4.3)

− 1

x2
�

(
log(x1/x2)√
2δ(‖h‖, |u|) +

√
δ(‖h‖, |u|)

2

)}
,

where � denotes the standard normal distribution function (cf. Davis et al. [9]).
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The parameters of interest are contained in the dependence function δ. We refer to (θ1, α1) as
the spatial parameter and to (θ2, α2) as the temporal parameter. From the bivariate distribution
function in (4.3), the pairwise density can be derived and pairwise likelihood methods can be
used to estimate the parameters; cf. Davis et al. [10], Huser and Davison [21] and Padoan et al.
[24]. Full likelihood inference is virtually intractable in a general multidimensional setting, as
the number of terms occurring in the likelihood explode. More recently, however, parametric in-
ference methods based on higher-dimensional margins have been proposed that work in specific
scenarios, see, for instance, Genton et al. [17], who use triplewise instead of pairwise likelihood,
Engelke et al. [15], who propose a threshold-based approach, or Thibaud and Opitz [28] and
Wadsworth and Tawn [29], who use a censoring scheme for bias reduction.

In the following, we apply the estimation method introduced in Section 2 based on the ex-
tremogram of more general regularly varying processes to the special case of the Brown–Resnick
process (4.1). We make use of the fact that its extremogram possesses a closed-form expression
which is characterized by the dependence function δ.

Lemma 4.1 (Davis et al. [9], equation (3.1)). Let {η(s, t) : (s, t) ∈ R
2 × [0,∞)} be the strictly

stationary isotropic Brown–Resnick process in R
2 × [0,∞) as defined in (4.1) with dependence

function given in (4.2). Then the extremogram of η is given by

χ(v,u) = 2

(
1 − �

(√
1

2
δ(v,u)

))
= 2

(
1 − �

(√
θ1vα1 + θ2uα2

))
, v, u ≥ 0. (4.4)

Solving equation (4.4) for δ(v,u) leads to

δ(v,u)

2
= θ1v

α1 + θ2u
α2 =

(
�−1

(
1 − 1

2
χ(v,u)

))2

. (4.5)

For temporal lag 0 and taking the logarithm on both sides, we have

2 log

(
�−1

(
1 − 1

2
χ(v,0)

))
= log(θ1) + α1 logv =: log(θ1) + α1xv.

In the same way, we obtain

2 log

(
�−1

(
1 − 1

2
χ(0, u)

))
=: log(θ2) + α2xu.

To put this in the context of equations (2.3) and (2.4), first note that in the weighted linear regres-
sion, instead of working with the “original” lags v and u, we consider their log transformations
xv = log(v) and xu = log(u); hence in particular, we need to exclude the lags v = 0 and u = 0.
The observation scheme described in Condition 2.3 then yields that u,v ≥ 1 and thus xv, xu ≥ 0.
We furthermore set C1 = log(θ1), C2 = log(θ2) and choose the transformations T1 and T2 de-
fined by T1(χ(v,0)) = 2 log(�−1(1 − 1

2χ(v,0))) and T2(χ(0, u)) = 2 log(�−1(1 − 1
2χ(0, u))).

The parameter spaces are given by �S = �T =R× (0,2].
In the following, we work out necessary and sufficient conditions for the Brown–Resnick pro-

cess (4.1) with dependence function (4.2) to satisfy the conditions of Theorem 3.4, focusing again
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on the spatial case; that is, on the processes {η(s, t) : s ∈ R
2} for fixed observed t ∈ {t1, . . . , tT }.

Furthermore, we show how the fact that the model parameter α1 ∈ (0,2] has bounded support
influences the asymptotics of the WLSE (θ̂1, α̂1).

4.1. Asymptotics of the empirical spatial extremogram of the
Brown–Resnick process

For a start, we need a sufficiently precise estimate for the extremogram (4.4) of the Brown–
Resnick process, which we give now.

Lemma 4.2. Let s,h ∈ R
2. For every sequence an → ∞ we have for fixed t ∈ [0,∞),

P(η(s, t) > an, η(s + h, t) > an)

P(η(s, t) > an)

= χ
(‖h‖,0

)+ [ 1

2an

(
χ
(‖h‖,0

)− 2
)(

χ
(‖h‖,0

)− 1
)](

1 + o(1)
)
.

Lemma 4.2 is a direct application of Lemma A.1(b) of Buhl and Klüppelberg [7] for A =
B = (1,∞) and their equation (A.4). This applies since {η(s, t) : s ∈ R

2} has finite-dimensional
standard unit Fréchet marginal distributions. We can choose in the following an = n2 in order to
satisfy the condition P(|η(0,0)| > an) ∼ n−2 as n → ∞ from Definition 2.1. Recall furthermore
that we have to choose a finite set V = {v1, . . . , vp} of observed lags, which show clear extremal
dependence as explained in Section 2.

Theorem 4.3. Consider the spatial Brown–Resnick process {η(s, t) : s ∈ R
2} as defined in (4.1)

with dependence function given in (4.2). Set mn = nβ1 for β1 ∈ (0,1/2). Then the empirical
spatial extremogram χ̂ (t)(v,0) defined in (2.5) with the quantile q = amn = m2

n satisfies

n

mn

(
χ̂ (t)(v,0) − χn(v,0)

)
v∈V

d→ N
(
0,�

(iso)
1

)
, n → ∞, (4.6)

where the covariance matrix �
(iso)
1 is specified in equation (3.6), and χn is the pre-asymptotic

spatial extremogram as in (3.2).
Furthermore, for the averaged empirical extremogram χ̃ (v,0) = T −1∑T

k=1 χ̃ (tk)(v,0) de-

fined in (2.7), we obtain (with covariance matrix �
(iso)
2 given in equation (3.11))

n

mn

(
χ̂ (v,0) − χn(v,0)

)
v∈V

d→ N
(
0,�

(iso)
2

)
, n → ∞. (4.7)

Proof. We need to verify the conditions of Corollary 3.2; that is, conditions (M1)–(M4) of The-
orem 3.1 for amn = m2

n, and apply results of Section 8 of the supplement [4].
Condition (M1) is satisfied by equation (8.2).
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To show conditions (M2)–(M4), we choose sequences mn = nβ1 and rn = nβ2 for 0 < β1 <

1/2 and 0 < β2 < β1. For this choice of mn and rn, we have mn = o(n) and rn = o(mn) as
required.

Condition (M2); i.e., m2
nr

2
n/n = n2(β1+β2)−1 → 0 holds if and only if β2 ∈ (0,min{β1, (1/2 −

β1)}).
We now show condition (M3). Choose γ > 0, such that all lags in V lie in B(0, γ ) = {s ∈ Z

2 :
‖s‖ ≤ γ }. For ε > 0, like in Example 4.6 of Buhl and Klüppelberg [7], we have for s, s′ ∈ R

2 by
a Taylor expansion,

P
(
η(s, t) > εm2

n, η
(
s′, t

)
> εm2

n

)
= 1 − 2P

(
η(0,0) ≤ εm2

n

)+ P
(
η(s, t) ≤ εm2

n, η
(
s′, t

)≤ εm2
n

)
= 1 − 2 exp

{
− 1

x

}
+ exp

{
−2 − χ(‖s − s′‖,0)

εm2
n

}
= 1

εm2
n

χ
(∥∥s − s′∥∥,0

)+O
(

1

m4
n

)
, n → ∞.

Therefore, for ‖h‖ ≥ 2γ ,

P

(
max

s∈B(0,γ )
η(s, t) > εm2

n, max
s′∈B(h,γ )

η
(
s′, t

)
> εm2

n

)
≤

∑
s∈B(0,γ )

∑
s′∈B(h,γ )

P
(
η(s, t) > εm2

n, η
(
s′, t

)
> εm2

n

)
(4.8)

=
∑

s∈B(0,γ )

∑
s′∈B(h,γ )

{
1

εm2
n

χ
(∥∥s − s′∥∥,0

)+O
(

1

m4
n

)}

≤ 2|B(0, γ )|2
εm2

n

(1 − �
(√

θ1
(‖h‖ − 2γ

)α1
)+O

(
1

m4
n

)
,

as n → ∞, where we have used (4.4). Summarize V := {v = ‖h‖ : h ∈ Z
2} and note that |{h ∈

Z
2 : ‖h‖ = v}| =O(v). Therefore, for k ≥ 2γ ,

Lmn := lim sup
n→∞

m2
n

∑
h∈Z2

k<‖h‖≤rn

P

(
max

s∈B(0,γ )
η(s, t) > εm2

n, max
s′∈B(h,γ )

η
(
s′, t

)
> εm2

n

)

≤ 2
∣∣B(0, γ )

∣∣2 lim sup
n→∞

{ ∑
h∈Z2

k<‖h‖≤rn

{
1

ε

(
1 − �

(√
θ1
(‖h‖ − 2γ

)α1
))}+O

((
rn

mn

)2)}

≤ K1 lim sup
n→∞

∑
v∈V :

k<v≤rn

{
v

ε
2
(
1 − �

(√
θ1(v − 2γ )α1

))}
,
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for some constant K1 > 0. For the term O((rn/mn)
2) we use that rn/mn → 0. From Lemma 8.3

and the fact that 1 − �(x) ≤ exp{−x2/2} for x > 0, we find for K2 > 0,

Lmn ≤K2k
2 exp

{
−1

2
θ1(k − 2γ )α1

}
.

Since α1 > 0, the right-hand side converges to 0 as k → ∞ ensuring condition (M3).
Now we turn to the mixing conditions (M4).
We start with (M4)(i). With V as before, and with equation (8.2), we estimate, recalling from

above that the number of lags ‖h‖ = v is of order O(v),

m2
n

∑
h∈Z2:‖h‖>rn

α1,1
(‖h‖)≤ K1m

2
n

∑
v∈V :v>rn

vα1,1(v) ≤ 4K1m
2
n

∑
v∈V :v>rn

ve−θ1v
α1/2.

By Lemma 8.3, we find

m2
n

∑
v∈V :v>rn

ve−θ1v
α1/2 ≤ cm2

nr
2
ne−θ1r

α1
n /2 = cm2

nr
2
ne−θ1n

α1β2/2 → 0, n → ∞.

By the same arguments condition (M4)(ii) is satisfied.
Condition (M4)(iii) holds by equation (8.2), since

mnnα1,n2(rn) ≤ 4n3mne
−θ1r

α1
n /2 → 0, n → ∞. �

Remark 4.1. We want to examine for which choices of β1, introduced with the sequence mn =
nβ1 in Theorem 4.3, we can replace the pre-asymptotic extremogram by the theoretical one in
the CLTs (4.6) and (4.7); that is, the bias condition (3.12),

n

mn

(
χn(v,0) − χ(v,0)

)→ 0, n → ∞,

is satisfied for all spatial lags v ∈ V . For the Brown–Resnick process (4.1), we obtain from
Lemma 4.2,

n

mn

(
χn(v,0) − χ(v,0)

)
= n

mn

(
P(η(s, t) > m2

n, η(s + h, t) > m2
n)

P(η(s, t) > m2
n)

− χ(v,0)

)
∼ n

2m3
n

(
χ(v,0) − 2

)(
χ(v,0) − 1

)
= n1−3β1

1

2

(
χ(v,0) − 2

)(
χ(v,0) − 1

)→ 0 if and only if β1 > 1/3;

cf. Theorem 4.4 of Buhl and Klüppelberg [7]. Thus, we have to distinguish two cases:
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(I) For β1 ≤ 1/3 we cannot replace the pre-asymptotic extremogram by the theoretical ver-
sion, but can resort to a bias correction, which is described in (4.12) below.

(II) For 1/3 < β1 < 1/2, we obtain indeed

n1−β1
(
χ̂ (t)(v,0) − χ(v,0)

)
v∈V

d→ N
(
0,�

(iso)
1

)
, n → ∞, (4.9)

and likewise for the averaged empirical extremogram,

n1−β1
(
χ̂(v,0) − χ(v,0)

)
v∈V

d→N
(
0,�

(iso)
2

)
, n → ∞. (4.10)

We now turn to the bias correction needed in case (I). By Lemma 4.2, the pre-asymptotic
extremogram has representation

χn(v,0) = χ(v,0) +
[

1

2m2
n

(
χ(v,0) − 2

)(
χ(v,0) − 1

)](
1 + o(1)

)
= χ(v,0) + 1

2m2
n

ν(v,0)
(
1 + o(1)

)
, n → ∞, (4.11)

where ν(v,0) := (χ(v,0) − 2)(χ(v,0) − 1). Consequently, we propose for fixed t ∈ {t1, . . . , tT }
and all v ∈ V the bias corrected empirical spatial extremogram

χ̂ (t)(v,0) − 1

2m2
n

(
χ̂ (t)(v,0) − 2

)(
χ̂ (t)(v,0) − 1

)=: χ̂ (t)(v,0) − 1

2m2
n

ν̂(t)(v,0),

and set

χ̃ (t)(v,0) :=

⎧⎪⎪⎨⎪⎪⎩
χ̂ (t)(v,0) − 1

2m2
n

ν̂(t)(v,0) if mn = nβ1 with β1 ∈
(

1

5
,

1

3

]
,

χ̂ (t)(v,0) if mn = nβ1 with β1 ∈
(

1

3
,

1

2

)
.

(4.12)

Theorem 4.4 below shows asymptotic normality of the bias corrected extremogram centred by
the true one and, in particular, why β1 has to be larger than 1/5.

Theorem 4.4. For a fixed time point t ∈ {t1, . . . , tT } consider the spatial Brown–Resnick process
{η(s, t), s ∈ R2} defined in (4.1) with dependence function given in (4.2). Set mn = nβ1 for β1 ∈
( 1

5 , 1
3 ]. Then the bias corrected empirical spatial extremogram (4.12) satisfies

n

mn

(
χ̃ (t)(v,0) − χ(v,0)

)
v∈V

d→ N
(
0,�

(iso)
1

)
, n → ∞, (4.13)

where �
(iso)
1 is the covariance matrix as given in equation (3.6). Furthermore, the corresponding

bias corrected averaged version χ̃ (v,0) = T −1∑T
k=1 χ̃ (tk)(v,0) satisfies

n

mn

(
χ̃(v,0) − χ(v,0)

)
v∈V

d→N
(
0,�

(iso)
2

)
, n → ∞,

with covariance matrix �
(iso)
2 specified in (3.11).
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Proof. For simplicity, we suppress the time point t in the notation. By (4.11) and (4.12) we have
as n → ∞,

n

mn

(
χ̃ (v,0) − χ(v,0)

)∼ n

mn

(
χ̂(v,0) − χn(v,0)

)− n

2m3
n

(̂
ν(v,0) − ν(v,0)

)
.

By Theorem 4.3 it suffices to show that (n/(2m3
n))(̂ν(v,0) − ν(v,0))

P→ 0. Setting νn(v,0) :=
(χn(v,0) − 2)(χn(v,0) − 1) we have

n

2m3
n

(̂
ν(v,0) − ν(v,0)

)= n

2m3
n

(̂
ν(v,0) − νn(v,0)

)+ n

2m3
n

(
νn(v,0) − ν(v,0)

)=: A1 + A2.

We calculate
n

mn(2χ(v,0) − 3)

(̂
ν(v,0) − νn(v,0)

)
= n

mn(2χ(v,0) − 3)

(
χ̂2(v,0) − 3χ̂ (v,0) − (χ2

n(v,0) − 3χn(v,0)
))

= n

mn(2χ(v,0) − 3)

((
χ̂ (v,0) − χn(v,0)

)(
χ̂ (v,0) + χn(v,0)

)− 3
(
χ̂(v,0) − χn(v,0)

))
= n

mn

(
χ̂ (v,0) − χn(v,0)

) χ̂ (v,0) + χn(v,0) − 3

2χ(v,0) − 3
.

The first term converges by Theorem 4.3 weakly to a normal distribution, and the second term,

together with the fact that χ̂ (v,0)
P→ χ(v,0) and χn(v,0)

P→ χ(v,0), converges to 1 in proba-

bility. Hence, it follows from Slutzky’s theorem that A1
P→ 0. Now we turn to A2 and calculate

νn(v,0) = χ2
n(v,0) − 3χn(v,0) + 2

∼
(

χ(v,0) + 1

2m2
n

ν(v,0)

)2

− 3

(
χ(v,0) + 1

2m2
n

ν(v,0)

)
+ 2

= χ2(v,0) − 3χ(v,0) + 2 + 1

m2
n

χ(v,0)ν(v,0) + 1

4m4
n

ν(v,0)2 − 3

2m2
n

ν(v,0)

= (χ(v,0) − 2
)(

χ(v,0) − 1
)+ 1

m2
n

χ(v,0)ν(v,0) + 1

4m4
n

ν(v,0)2 − 3

2m2
n

ν(v,0)

= ν(v,0) + ν(v,0)

m2
n

(
χ(v,0) + 1

4m2
n

ν(v,0) − 3

2

)
,

where we have used (4.11). Therefore, A2 converges to 0, if n/m5
n → 0 as n → ∞. With mn =

nβ1 it follows that β1 > 1
5 . Finally, the last statement follows as Corollary 3.2. �

Remark 4.2. Note that in (4.9) and (4.10) the rate of convergence is of the order na for a ∈
(1/2,2/3). On the other hand, after bias correction in (4.13) we obtain convergence of the order
na for a ∈ [2/3,4/5); that is, a better rate.
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Figure 1. Empirical spatial extremogram (left) and its bias corrected version (right) for 100 simulated
max-stable random fields in (4.1) with δ(v,0) = 2 · 0.4v1.5. The dashed line represents the theoretical
spatial extremogram and the solid line is the mean over all 100 replicates.

Example 4.5. We generate 100 realizations of the Brown–Resnick process in (4.1) using the
R-package RandomFields [26] and the exact method via extremal functions proposed in
Dombry et al. [13], Section 2. We then compare the empirical estimates of the spatial ex-
tremogram χ̂ (v,0) in (2.5) and the bias corrected ones χ̃ (v,0) in (4.12) with the true theoretical
extremogram χ(v,0) for lags v ∈ {1,

√
2,2,

√
5,

√
8,3,

√
10,

√
13,4,

√
17}. We choose the pa-

rameters θ1 = 0.4 and α1 = 1.5. The grid size and the number of time points are given by n = 70
and T = 10. The results are summarized in Figure 1. We see that the bias corrected extremogram
is closer to the true one.

4.2. Asymptotic properties of spatial parameter estimates of the
Brown–Resnick process

In this section, we prove asymptotic normality of the WLSE (θ̂1, α̂1). We proceed as in the
more general setting in Section 3.2. Recall that in the more specific situation here we have C1 =
log(θ1) and choose the transformation T1(χ(v,0)) = 2 log(�−1(1 − 1

2χ(v,0))), where the log
transformed version of the spatial lag satisfies xv = log(v) ≥ 0 for v ∈ V . We set χ̃ (v,0) =
1
T

∑T
k=1 χ̃ (tk)(v,0) as in (2.7), possibly after a bias correction, which depends on the two cases

described in Remark 4.1. The analogue of the weighted least squares optimization problem (2.9)
then reads as (

θ̂1
α̂1

)
= arg min

θ1,α1>0
α1∈(0,2]

∑
v∈V

wv

(
T1
(
χ̃ (v,0)

)− (log(θ1) + α1xv

))2
. (4.14)

Note in particular that α1 has bounded support; this has to be treated as a special case in what
follows. To show asymptotic normality of the WLSE in (4.14), we define as before design and
weight matrices X and W as

X = [1, (xv)
ᵀ
v∈V

] ∈R
p×2 and W = diag{wv : v ∈ V} ∈R

p×p,
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respectively, where 1 = (1, . . . ,1)ᵀ ∈ R
p . Let ψ1 = (log(θ1), α1)

ᵀ be the parameter vector with
parameter space �S =R× (0,2]. Then the WLSE; that is, the solution to (4.14) is given by

ψ̂1 =
(

log(θ̂1)

α̂1

)
= (XᵀWX)−1XᵀW

(
T1
(
χ̃(v,0)

))ᵀ
v∈V . (4.15)

Without any constraints ψ̂1 may produce estimates of α1 outside its parameter space (0,2]. In
such cases, we set the parameter estimate equal to 2, and we denote the resulting estimate by
̂ψ

c

1 = (log(θ̂ c
1 ), α̂c

1)
ᵀ.

Theorem 4.6. Let ̂ψ
c

1 = (log(θ̂ c
1 ), α̂c

1)
ᵀ denote the WLSE resulting from the constrained mini-

mization problem (4.14) and ψ∗
1 = (log(θ∗

1 ), α∗
1)ᵀ ∈ �S the true parameter vector. Set mn = nβ1

for β1 ∈ (1/5,1/2). Then as n → ∞,

n

mn

(
̂ψ

c

1 − ψ∗
1

) d→
{

Z1 if α∗
1 < 2,

Z2 if α∗
1 = 2,

(4.16)

where Z1 ∼N (0,�
(iso)
3 ), and the distribution of Z2 is given by

P(Z2 ∈ B) =
∫

B∩{(b1,b2)∈R2:b2<0}
ϕ0,�

(iso)
3

(z1, z2) dz1 dz2

(4.17)

+
∫ ∞

0

∫
{b1∈R:(b1,0)∈B}

ϕ0,�
(iso)
3

(
z1 − 1∑

v∈V wv

∑
v∈V

(wvxv)z2, z2

)
dz1 dz2

for every Borel set B in R
2, and ϕ0,� denotes the bivariate normal density with mean vector 0 and

covariance matrix �. In particular, the joint distribution function of Z2 is given for (p1,p2)
ᵀ ∈

R
2 by

P
(
Z2 ≤ (p1,p2)

ᵀ)
=
∫ min{0,p2}

−∞

∫ p1

−∞
ϕ0,�

(iso)
3

(z1, z2) dz1 dz2 (4.18)

+ 1{p2≥0}
∫ ∞

0

∫ p1

−∞
ϕ0,�

(iso)
3

(
z1 − 1∑

v∈V wv

∑
v∈V

(wvxv)z2, z2

)
dz1 dz2.

The covariance matrix of Z1 has representation

�
(iso)
3 = Q(w)

x G�
(iso)
2 GQ(w)

x
ᵀ, (4.19)

where �
(iso)
2 is the covariance matrix given in (3.11),

Q(w)
x = (XᵀWX)−1XᵀW and G = diag

{√
2π

θ∗
1 vα∗

1
exp

{
1

2
θ∗

1 vα∗
1

}
: v ∈ V

}
.
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Proof. For the first part of the proof, we neglect the constraints on α1. Then we can directly use
Theorem 3.4, observing that the derivative of T1 is given by

T ′
1(x) = −

(
�−1

(
1 − x

2

)
ϕ

(
�−1

(
1 − x

2

)))−1

, 0 < x < 1,

where ϕ is the univariate standard normal density. Thus,

T ′
1

(
χ(v,0)

)= −
(√

θ∗
1 vα∗

1 ϕ
(√

θ∗
1 vα∗

1

))−1 = −
√

2π

θ∗
1 vα∗

1
exp

{
1

2
θ∗

1 vα∗
1

}
.

Hence, as n → ∞,

n

mn

(
̂ψ1 − ψ∗

1

)= n

mn

Q(w)
x

(
T1
(
χ̃(v,0)

)− T1
(
χ(v,0)

))
v∈V

d→N
(
0,Q(w)

x G�
(iso)
2 GQ(w)

x
ᵀ).

Note that we can define the diagonal matrix G unsigned, since signs cancel out. We now turn
to the constraints on α1. Since the objective function is quadratic, if the unconstrained estimate
exceeds two, the constraint α1 ∈ (0,2] results in an estimate α̂c

1 = 2. We consider separately the
cases α∗

1 < 2 and α∗
1 = 2; that is, the true parameter lies either in the interior or on the boundary

of the parameter space. The constrained estimator ̂ψ
c

1 can be written as

̂ψ
c

1 = ̂ψ11{̂α1≤2} + (θ̂1,2)ᵀ1{̂α1>2}.

We calculate the asymptotic probabilities for the events {̂α1 ≤ 2} and {̂α1 > 2},

P(̂α1 ≤ 2) = P

(
n

mn

(̂
α1 − α∗

1

)≤ n

mn

(
2 − α∗

1

))
.

Since for α∗
1 < 2 as n → ∞

n

mn

(̂
α1 − α∗

1

) d→N
(
0, (0,1)�

(iso)
3 (0,1)ᵀ

)
and

n

mn

(
2 − α∗

1

)→ ∞,

it follows that

P(̂α1 ≤ 2) → 1 and P(̂α1 > 2) → 0, n → ∞. (4.20)

Therefore, for α∗
1 < 2,

n

mn

(
̂ψ

c

1 − ψ∗
1

) d→N
(
0,�

(iso)
3

)
, n → ∞.

We now consider the case α∗
1 = 2 and α̂1 > 2 (the unconstrained estimate exceeds 2). In this

case, (4.14) leads to the constrained optimization problem

min
ψ1

{[
W 1/2((T1

(
χ̃ (v,0)

))ᵀ
v∈V − Xψ1

)]ᵀ[W 1/2(
(
T1
(
χ̃ (v,0)

))ᵀ
v∈V − Xψ1

]}
,

s.t. (0,1)ψ1 = 2.
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To obtain asymptotic results for ̂ψ
c

1 − ψ∗
1, the vector ̂ψ1 − ψ∗

1 is projected onto the line � =
{ψ ∈ R

2, (0,1)ψ = 0}, i.e., denoting by I2 the 2 × 2-identity matrix, the projection matrix with
respect to the induced norm ψ �→ (ψᵀXᵀWXψ)1/2 is given by (cf. Andrews [1], page 1365)

P� = I2 − (XᵀWX
)−1

(0,1)ᵀ
(
(0,1)

(
XᵀWX

)−1
(0,1)ᵀ

)−1
(0,1).

For simplicity, we use the abbreviation pwx =∑v∈V wvxv/
∑

v∈V wv . We calculate(
̂ψ

c

1 − ψ∗
1

)
1{̂α1>2}

= P�

(
̂ψ1 − ψ∗

1

)
1{̂α1>2}

= (̂ψ1 − ψ∗
1

)
1{̂α1>2} − (XᵀWX

)−1
(0,1)ᵀ

(
(0,1)

(
XᵀWX

)−1
(0,1)ᵀ

)−1
(̂α1 − 2)1{̂α1>2}

= (̂ψ1 − ψ∗
1

)
1{̂α1>2} +

(
pwx

−1

)
(̂α1 − 2)1{̂α1>2}.

For the joint constrained estimator ψc
1 we obtain

̂ψ
c

1 − ψ∗
1 = (̂ψc

1 − ψ∗
1

)
1{̂α1≤2} + (̂ψc

1 − ψ∗
1

)
1{̂α1>2}

= (̂ψ1 − ψ∗
1

)
1{̂α1≤2} + (̂ψ1 − ψ∗

1

)
1{̂α1>2} +

(
pwx

−1

)
(̂α1 − 2)1{̂α1>2}

= (̂ψ1 − ψ∗
1

)+(pwx

−1

)
(̂α1 − 2)1{̂α1>2}.

This implies

n

mn

(
̂ψ

c

1 − ψ∗
1

)= n

mn

((
log(θ̂1) − log

(
θ∗

1

))+ pwx(̂α1 − 2)1{̂α1>2}
(̂α1 − 2) − (̂α1 − 2)1{̂α1>2}

)
.

Let f (x1, x2) = (x1 +pwxx21{x2>0}, x2 −x21{x2>0})ᵀ and observe that f (c(x1, x2)) = cf (x1, x2)

for c ≥ 0. For the asymptotic distribution we calculate, denoting by f −1 the inverse image of f ,

P

(
n

mn

(
̂ψ

c

1 − ψ∗
1

) ∈ B

)
= P

(
n

mn

f
(
̂ψ1 − ψ∗

1

) ∈ B

)
= P

(
f

(
n

mn

(
̂ψ1 − ψ∗

1

)) ∈ B

)
= P

(
n

mn

(
̂ψ1 − ψ∗

1

) ∈ f −1(B ∩ {(b1, b2) ∈R
2 : b2 < 0

})∪ f −1(B ∩ {(b1,0) : b1 ∈R
}))

= P

(
n

mn

(
̂ψ1 − ψ∗

1

) ∈ [B ∩ {(b1, b2) ∈ R
2 : b2 < 0

}]
∪ [{(b1 − pwxb2, b2), b2 ≥ 0, (b1,0) ∈ B

}])
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→
∫

B∩{(b1,b2)∈R2,b2<0}
ϕ0,�

(iso)
3

(z1, z2) dz1 dz2

+
∫ ∞

0

∫
{b1∈R,(b1,0)∈B}

ϕ0,�
(iso)
3

(z1 − pwxz2, z2) dz1 dz2, n → ∞.

Plugging in B = (−∞,p1] × (−∞,p2] and using the Fubini–Tonelli theorem yields (4.18). �

Remark 4.3. The asymptotic properties for the constrained estimate are derived as a special
case of Corollary 1 in Andrews [1], who shows asymptotic properties of parameter estimates in
a very general setting, when the true parameter is on the boundary of the parameter space. The
asymptotic distribution of the estimates for α∗

1 = 2 results from the fact that approximately half
of the estimates lie above the true value and are therefore equal to two.

5. Analysis of radar rainfall measurements

Finally, we apply the Brown–Resnick space-time process in (4.1) and the WLSE to radar rainfall
data provided by the Southwest Florida Water Management District (SWFWMD).1 Our objective
is to quantify their extremal behaviour by using spatial and temporal block maxima and fitting a
Brown–Resnick space-time process to the block maxima.

The data base consists of radar values in inches measured on a 120×120 km region containing
3600 grid locations. We calculate the spatial and temporal maxima over subregions of size 10 ×
10 km and over 24 subsequent measurements of the corresponding hourly accumulated time
series in the wet season (June to September) from the years 1999–2004. In this way we obtain
12×12 locations on 732 days of space-time block maxima of rainfall observations. Taking block
maxima yields a process consistent with the assumption of a max-stable process, or at least to lie
in the domain of attraction of a max-stable process. Taking daily data, we can furthermore ignore
diurnal patterns.

We denote the set of locations by S = {(i1, i2), i1, i2 ∈ {1, . . . ,12}} and the space-time obser-
vations by {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}}. This setup is also considered in Buhl and Klüppel-
berg [5], Section 5, and Steinkohl [27], Chapter 7. To make the results obtained there comparable
to ours, we use the the same preprocessing steps; for a precise description cf. [5], Section 5.1.

The data do not fail the max-stability check described in Section 5.2 of [5], such that we as-
sume that {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}} are realizations of a max-stable space-time process
with standard unit Fréchet margins. Nevertheless, the assumption that the data are in fact an exact
realization from a max-stable process is only approximate. Hence there is no guarantee that com-
posite likelihood estimation applied to these transformed data outperforms the semiparametric
estimation introduced in Section 2; cf. the results obtained in Section 10 of the supplement [4]
when data have observational noise. Here we use this data example to illustrate our new semi-
parametric methodology.

1http://www.swfwmd.state.fl.us/.

http://www.swfwmd.state.fl.us/
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We fit the Brown–Resnick process (4.1) by estimating (4.2) as follows:

(1) We estimate the parameters θ1, α1, θ2 and α2 by WLSE as described in Section 2 based on
the sets V = {1,

√
2,2,

√
5,

√
8,3,

√
10,

√
13,4,

√
17} and U = {1, . . . ,10}. Permutation tests

as described below and visualized in Figure 4 indicate that these lags are sufficient to cover
the relevant extremal dependence structure. We choose as weights for the different spatial and
temporal lags v ∈ V and u ∈ U the corresponding estimated averaged extremogram values; that

is, wv = T −1∑T
k=1 χ̃ (tk)(v,0) and wu = n−2∑n2

i=1 χ̃ (si )(0, u), respectively. Since the so defined
weights are random, what follows is conditional on the realizations of these weights.

As the number of spatial points in the analysis is rather small, we cannot choose a very high
empirical quantile q , since this would in turn result in a too small number of exceedances to get a
reliable estimate of the extremogram. Hence, we choose q as the empirical 60%-quantile, relying
on the fact that the block maxima generate at least approximately a max-stable process and on
the robustness of the estimates derived in Section 9 of the supplement [4].

For the temporal estimation, we choose the empirical 90%-quantile for q .
(2) We perform subsampling by constructing subsets of the observations and estimating on

the subsets (see Section 7 of the supplement [4]) to construct 95%-confidence intervals for each
parameter estimate. As subsample block sizes we choose bs = 12 (due to the small number
of spatial locations) for the spatial dimensions and bt = 300 for the temporal one. As overlap
parameters, we take es = et = 1, which corresponds to the maximum degree of overlap.

The results are shown in Figures 3, 4 and Table 1. Figure 2 visualizes the daily rainfall maxima
for the two grid locations (1,1) and (5,6). The semiparametric estimates together with subsam-
pling confidence intervals are given in Table 1.

For comparison we present the parameter estimates from the pairwise likelihood estimation
(for details see Davis et al. [9] and [27], Chapter 7), where we obtained θ̃1 = 0.3485, α̃1 =
0.8858, θ̃2 = 2.4190 and α̃2 = 0.1973. From Table 1, we recognize that these estimates are close
to the semiparametric estimates and even lie in most cases in the 95%-subsampling confidence
intervals.

Figure 3 shows the temporal and spatial mean of empirical temporal (left) and spatial (right)
extremograms as described in (2.7) and (2.8) together with 95% subsampling confidence in-
tervals. We perform a permutation test to test the presence of extremal independence. To this
end, we randomly permute the space-time data and calculate empirical extremograms as before.
More precisely, we compute the empirical temporal extremogram as before and repeat the proce-
dure 1000 times. From the resulting temporal extremogram sample, we determine nonparametric

Table 1. Semiparametric estimates for the spatial parameters θ1 and α1 and the temporal parameters θ2
and α2 of the Brown–Resnick process in (4.1) together with 95% subsampling confidence intervals

Estimate θ̂1 0.3611 α̂1 0.9876
Subsampling-CI [0.3472, 0.3755] [0.9482, 1.0267]

Estimate θ̂2 2.3650 α̂2 0.0818
Subsampling-CI [1.9110, 2.7381] [0.0000, 0.2680]
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Figure 2. Daily rainfall maxima over hourly accumulated measurements from 1999–2004 in inches for
two grid locations.

Figure 3. Empirical spatial (left) and temporal (right) extremogram based on spatial and temporal means
for the space-time observations as given in (2.7) and (2.8) together with 95%-subsampling confidence in-
tervals.

Figure 4. Permutation test for extremal independence: The gray lines show the 97.5%- and 2.5%-quantiles
of the extremogram estimates for 1000 random space-time permutations for the empirical spatial (left) and
the temporal (right) extremogram estimates.
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97.5% and 2.5% empirical quantiles, which gives a 95%-confidence region for temporal extremal
independence. The analogue procedure is performed for the spatial extremogram.

The results are shown in Figure 4 together with the extremogram fit based on the WLSE. The
plots indicate that for time lags larger than 3 there is no temporal extremal dependence, and for
spatial lags larger than 4 no spatial extremal dependence.

6. Conclusions and outlook

For isotropic strictly stationary regularly-varying space-time processes with additively separable
dependence structure, we have suggested a new semiparametric estimation method. The method
works remarkably well and produces reliable estimates that are much faster to compute than com-
posite likelihood estimates. These estimates can also be useful as initial values for a composite
likelihood optimization.

Meanwhile, we have generalized the semiparametric method based on extremogram estima-
tion. The paper Buhl and Klüppelberg [6] is dedicated to the three topics:

1. Generalize the dependence function (4.2) to anisotropic and appropriate mixed models and
get rid of the assumption of separability.

2. Generalize the sampling scheme to a fixed (small) number of spatial observations and limit
results for the number of temporal observations to tend to infinity.

3. Generalize the least squares estimation to estimate spatial and temporal parameters simul-
taneously, also in the situation described in 2.

Another question concerns the optimal choice of the weight matrix W , such that the asymptotic
variance of the WLSE is minimal. Some ideas can be found in the geostatistics literature in the
context of LSE of the variogram parameters; for example, in Lahiri et al. [23], Section 4. Here the
optimal choice of the weight matrix is given by the inverse of the asymptotic covariance matrix
of the nonparametric estimates; that is, of (T −1∑T

k=1 χ̃ (tk)(v,0))
ᵀ
v∈V in the spatial case and of

(n−2∑n2

i=1 χ̃ (si )(0, u)−χ(0, u))
ᵀ
u∈U in the temporal case. In our case, however, this involves the

matrices �
(iso)
2 and �

(time)
2 (given in equations (4.3)–(4.6) of Buhl and Klüppelberg [7]), whose

components are infinite sums.
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Supplementary Material

Supplement to “Semiparametric estimation for isotropic max-stable space-time processes”
(DOI: 10.3150/18-BEJ1061SUPP; .pdf). We provide additional results on α-mixing, subsam-
pling for confidence regions, and a simulation study supporting the theoretical results. Our
method is extended to max-stable data with observational noise and applied to both exact realiza-
tions of the Brown–Resnick process and to realizations with observational noise, thus verifying
the robustness of our approach.
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