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Superpositions of Ornstein—Uhlenbeck type (supOU) processes form a rich class of stationary processes
with a flexible dependence structure. The asymptotic behavior of the integrated and partial sum supOU
processes can be, however, unusual. Their cumulants and moments turn out to have an unexpected rate of
growth. We identify the property of fast growth of moments or cumulants as intermittency. Many proofs are
given in a supplemental article (Grahovac, Leonenko, Sikorskii and Taqqu (2018)).
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1. Introduction

Lévy driven Ornstein—Uhlenbeck (OU) processes form a rich class of stationary processes with
mixing properties. They can have any selfdecomposable distribution as their marginal distribu-
tion. Superpositions of OU type (supOU) processes were introduced by Barndorff-Nielsen in [2]
and [3] using a construction that was later generalized to obtain Lévy mixing processes (see [7]).
The supOU processes are stationary processes with a flexible dependence structure. A square in-
tegrable stationary process X (¢), ¢ > 0, is said to have short-range dependence if its correlation
function is integrable and long-range dependence if it is not integrable. It is possible for supOU
processes to display not only short-range dependence but also long-range dependence. SupOU
processes have found many applications, especially in finance where positive supOU processes
are used in models for stochastic volatility; see [9,11,12,23,32,36,37].

In this paper, we discuss the asymptotic properties of two variants of aggregated supOU pro-
cess: the integrated process obtained from a continuously observed supOU process and the par-
tial sum process obtained from a discretely sampled supOU process. These are of particular in-
terest in finance where the integrated process represents the integrated volatility (see, e.g., [11]).
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When there are only finitely many OU type processes in the superposition, the mixing property
remains valid and implies the convergence of the aggregated process to Brownian motion (see
[22]). Problems arise when one considers an infinite superposition of OU type processes. This
paper provides a closer analysis to the corresponding behavior of moments and cumulants. Sev-
eral attempts have been made to associate that behavior to rates in limit theorems but to no avail,
see for example [4,28].

Intermittency, which will be defined below, refers to this unusual behavior of moments and
cumulants. Note that our definition of intermittency will be different from the one used in [6,8,
34], where intermittency is associated with stochastic volatility. Here, as in the physics literature,
intermittency is associated with the behavior of moments [14,41].

In order to study the asymptotic behavior of the aggregated processes, we investigate how
the cumulants and moments evolve in time. The classical limiting scheme for some type of
aggregated process Y = {Y (¢), t > 0} has the form

Y (nt)
{ A }i [z}, (1)

with convergence in the sense of convergence of all finite dimensional distributions as n — oo.
By Lamperti’s theorem (see, for example, [17], Theorem 2.1.1), the normalizing sequence is
always of the form A, = L(n)n’! for some H > 0 and L slowly varying at infinity. Moreover,
the limiting process Z is H -self-similar, that is, for any ¢ > 0,

[Zen) L zm)),

where {-} 4 {-} denotes the equality of finite dimensional distributions. For self-similar process,
the moments evolve as a power function of time E| Z(¢)| = E|Z(1)|9¢"4. Hence, for the process
Y satisfying a limit theorem in the form (1), one expects that

E|Y (nt)|4

-7 —E|z®|', Vvt=0. )

Therefore, E|Y (1)|9 grows roughly as /79 when t — oo. Indeed, ignoring the slowly-varying
function L and multiplicative constants, we have

E|Y ()| ~ n™E|Z(1)|! ~ nf "B Z(1)|? ~ (n1) "4,
and hence
E|Y (1)|? ~ 174 ast — 0o 3)

(see Theorem 1 below for the precise statement).

We study aggregated processes Y (¢) arising from supOU processes with a regularly varying
correlation function and a marginal distribution having exponentially decaying tails, so that, in
particular, all moments are finite. We show that these aggregated processes have a specific growth
of moments: for a certain range of g, namely

ElY®)|"~117*  ast— oo. 4)
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Relation (4) contradicts (3). Here « is the parameter related to the dependence structure of the
underlying supOU process (see Theorems 4 and 6 below).

We show that in our context the growth of the cumulants and moments is such that the relation
between (1) and (2) falls apart. We refer to this property as intermittency. The term is usually used
to describe models exhibiting a high degree of variability and appears in different contexts across
the literature; see, for example, [14,15,19,20,27,41]. Inspired by these approaches, we define
intermittency as a property arising from a particular growth of moments. A precise definition is
given in Section 2. In that section, we show that for intermittent processes a limit theorem as in
(1) and convergence of moments (2) do not work together (see Theorem 1 below).

Section 3 provides an overview of facts relevant for the definition and properties of supOU
processes. The expressions for cumulants are established for aggregated processes. In Section 4,
the growth of cumulants is analyzed and we show in Theorems 4 and 6 respectively that the
integrated process and the partial sum of supOU processes can be intermittent.

2. Intermittency

Intermittency is a property used to describe models exhibiting sharp fluctuations in time and a
high degree of variability. Terms such as multifractality, separation of scales, dynamo effect are
often used together with intermittency. The term has a precise definition in the theory of stochas-
tic partial differential equations (SPDE), where it is characterized by the Lyapunov exponents
(see, e.g., [14,15,27,41]). The kth moment Lyapunov exponent of a non-negative random field
{¥(t,x),t >0, x € R} stationary in x is defined by

log E(yr (¢, x))¥
y () = tim VD) 5)
t—00 t
assuming the limit exists and is finite. A random field {y/ (¢, x)} is then said to be intermittent if
the sequence y (k)/k, k € N is strictly increasing, that is

y(2) y (k)

y() <=

This property can be shown to imply under some assumptions that the random field has large
peaks at different values of the space coordinate (see [27,31] for details).

We define intermittency as a property which indicates that the moments of the stochastic pro-
cess do not have a typical limiting behavior. Our focus will be on the behavior of the moments
of the process in time as characterized by the scaling function defined below. The Lyapunov
exponents are suitable for measuring the growth rate of random fields that have moments that
grow exponentially in time. On the other hand, the scaling function is tailored for cumulative
processes, for example, partial sum process, whose limiting behavior is investigated.

For a process Y = {Y (¢),t > 0}, let (0, g(Y)) denote the range of finite moments, that is

q(Y) =sup{q >0:E|Y(t)|q < oth}.



2032 Grahovac, Leonenko, Sikorskii and Taqqu

Definition 1. The scaling function at point g € (0, g(Y)) of the process Y is

logE|Y (¢)|?
ry(q) = lim EHYON ©)
t—00 logt?

assuming the limit exists and is finite.

Note the difference between (5) and (6). In our context, it is the scaling function (6) which
is relevant. It can be shown that ty is always convex and g — ty(q)/q is non-decreasing [22].
Using the scaling function we characterize intermittency as a strict increase in the mapping g +—

v(q)/q-

Definition 2. A stochastic process Y = {Y (¢), t > 0} is intermittent if there exist p,r € (0,¢(Y))
such that

vy (p) - Ty ()

p r

(7

If Y is a H-self-similar process, then ty(q) = Hq, and ty(q)/q is constant, therefore the
process is not intermittent. The following theorem shows that when the process Y is not self-
similar but has a typical limit behavior as described in the theorem (in particular, convergence to
a self-similar process after suitable normalization) and if the corresponding moments converge,
then its scaling function 7y turns out to be the same as for the self-similar process, namely
ty(q) = Hq for some H > 0.

Theorem 1. Let Y = {Y(¢t),t > 0} and Z = {Z(t),t > 0} be two processes such that Z(t) is
nondegenerate for every t > 0 and suppose that for a sequence (A), Ap > 0, lim, o A, = 00,
one has

Y
{ X") } <1z}, )

n

with convergence in (8) in the sense of convergence of all finite dimensional distributions as
n — 00. Then there exists a constant H > 0 such that for every q > 0 satisfying

E|Y (nt)|9

Aj

—E|z®)|?,  vt=0, )
the scaling function (6) of Y at q is
ty(q) = Hgq. (10)

Proof. By Lamperti’s theorem (see, for example, [17], Theorem 2.1.1), (8) implies the process
Z is H-self-similar with H > 0 and A,, is of the form

A, =nL(n)
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for some function L slowly varying at infinity. It follows from (9) that

E|Y (nt)|?
og T = logE|Y(nt) |q — log(nHL(n))q
logE|Y (nt)|? lognt  log(n L(n))
= logn -
lognt logn logn
— logE|Z ()| as n — oo.

Thus, the factor in the parentheses that multiplies logn in the above equation must tend to zero
as n — oo. Since lognt/logn — 1 as n — oo, by [13], Proposition 1.3.6(i),

_ logE|Y (nt))4 . log(n"L(n)) . logL(n)
lim ———— = lim g———=Hg + lim =
n—00 lognt n— 00 logn n—00 logn
Hence, ty(q) = Hq. O

Remark 1. Assumption (8) is the typical form in which limit theorems appear with Y being a
partial sum process or an integrated process. The limiting process is always self-similar, and the
normalizing sequence is regularly varying. If in addition to (8) convergence of moments holds,
then Y has a linear scaling function (10) and is not intermittent. Therefore, in the intermittent
case either (8) or (9) or both must fail to hold.

Remark 2. Notice that the scaling function involves only the one-dimensional marginal distribu-
tions of the process. Moreover, the conclusion of Theorem 1 holds if we assume that convergence
in (8) holds only for one-dimensional marginals. Indeed, from the proof of Lamperti’s theorem
[17], Theorem 2.1.1, this is enough to imply that A, = nH L(n), and the same argument as in the
proof of Theorem 1 applies.

Remark 3. The relation between (8) and (9) is a well-known problem. In one direction, for a
sequence of random variables convergence of moments implies weak convergence if the limiting
distribution is uniquely determined by its moments. The question whether this is true is known
as the moment problem (see, e.g., [38], Section 11, and references therein). On the other hand,
for a sequence of random variables convergence of moments is implied by the weak convergence
if the appropriately transformed sequence is uniformly integrable.

Depending on the problem considered, it may be easier to establish intermittency by consid-

ering cumulants instead of moments. For m € N and ¢ > 0, let K)(;m)(t) denote the mth order
cumulant of Y (¢). The corresponding cumulant variant of the scaling function can be defined as

(m)
1 t
oy(m) = zhm M’ meN, (11)

—00 logt
assuming K,(/m)(t) # 0 and the limit exists and is finite. When the form of oy is established, the
relation between moments and cumulants can be used to obtain the expression for ty. Note,
however, that both (6) and (11) involve absolute values.
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In the next section, we review basic facts about the supOU processes. These provide great
flexibility in modeling of stationary phenomena. This is because a supOU process can be chosen
to have any self-decomposable distribution as its marginal distribution and a variety of correlation
structures. Some particular choices will lead to intermittent cumulative processes.

3. SupOU processes

In order to define superpositions of OU type processes, we introduce some notation and review
basic facts about random measures and OU type processes.

3.1. Preliminaries

Let

KY(;) = C{§ i Y} = log]EeigY

denote the cumulant (generating) function of a random variable ¥ and, assuming it exists, /cl(,'")

for m € N will denote the mth cumulant of Y, that is

(m) a"
Ky = (—=i)" dé-—mKY(g)’f=0'
If ky (+) is analytic around the origin, then
o0 .
@o)"
k(@)= =k (12)

m=1

For a stochastic process Y = {Y (¢)} we write ky (¢, t) = ky()(¢), and by suppressing ¢ we mean

ky(§) =ky (L, 1),

that is, the cumulant function of the random variable Y (1). Similarly, for the cumulants of Y (¢),
we use the notation /c,(/m) (¢) and K,(/m) for K)(,m) (1). Recall that the cumulant function of an infinitely

divisible random variable Y has the Lévy—Khintchine representation

b ;
C{tiY}=iag — 5¢2+fR(e’“ —1—=ill_())uldx), ¢ €R,

where a € R, b > 0, and the Lévy measure (i is a deterministic Radon measure on R \ {0} such
that ({0}) = 0 and [ min{1, x?};(dx) < oc. The triplet

(a,b,n)

is referred to as the characteristic triplet. A stochastic process {L(t),t > 0} with stationary,
independent increments and continuous in probability (L(r) —* 0 as t — 0) has a cadlag modi-
fication which we refer to as a Lévy process. For any infinitely divisible random variable Y, there
is a corresponding Lévy process {L(t),t > 0} such that Y =4 L(1).
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An infinitely divisible random variable X is selfdecomposable if its characteristic function
#(9) =Ee'?X, 6 € R, has the property that for every c € (0, 1) there exists a characteristic func-
tion ¢, such that

¢(0) = ¢ (c0)¢:(0)

for all & € R. This means that that X has the same distribution as ¢X + Z., where X and Z. and
independent, and Z. has the characteristic function ¢.. In this case, X can be represented as

X:fooe*dL(s), (13)
0

where L = {L(t),t > 0} is a Lévy process whose law is determined uniquely by that of X. The
process L is called the background driving Lévy process (BDLP) corresponding to the infinitely
divisible random variable X. The cumulant functions of X and L(1) are related by

o0
KX(C)zf KL(e_Sg)ds. (14)
0
From [26], Corollary 1, kx is differentiable for ¢ # O, {fo ¢)—>0as0#¢—0and

KkL(§) =L (9). s5)

The BDLP L can be extended to a two-sided Lévy process by putting for 7 <0, L(r) = L (=t-)
where {L(¢),t > 0} is an independent copy of the process {L(?), t > 0} modified to be cadlag.
The Ornstein—Uhlenbeck type (OU) process is a process {X (¢), t € R} defined by

t
X(r)ze—“/ e“dL(,\s):fRe—““‘lm,m)(/\t—s)dL(s), (16)

—00

where A > 0. It can be shown that {X (7), r € R} is strictly stationary with the stationary distri-
bution equal to the selfdecomposable law of X corresponding to the BDLP L. When X (¢) has a
finite second moment, the correlation function is (see [3])

r(t) =e 7, T>0.
Alternatively, starting with a Lévy process L satisfying Elog(1 + |L(1)|) < oo, one can define
an OU type process as a stationary solution of the stochastic differential equation

dX (1) =—AX(t)dt +dL(\r).

We now turn to supOU processes. To define them, we need some basic facts about infinitely
divisible independently scattered random measures (i.d.i.s.rm.). Let S be a Borel subset of RY
and let S be a o-ring of S (i.e., countable unions of sets in S belong to S and if A and B are sets
in S with A C B, then B\ A € 5). A collection of random variables A = {A(A), A € §} defined
on a probability space (€2, F, P) is said to be an independently scattered random measure if
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for every sequence {A,} of disjoint sets in S, the random variables A(A,), n =1,2,... are
independent and if

A<U A,,) =Y A(A)  as.
n=l1

n=1

whenever UZOZI A, € §. We will be interested in the case when A is infinitely divisible, that is,
for each A € S, A(A) is an infinitely divisible random variable whose cumulant function can be
written as

2 .
C{¢ i A} =igmo(A) — %ml(A)Jr/R(e’“ — 1 —igx1, () O(A, dx),

where my is a signed measure, m; is a positive measure and for every A € S, Q(A,dx) is a
measure on B(R) without atom at 0 such that fR min{1, x?}Q(A, dx) < oo. In this case, we say
that A has the Lévy characteristics (mq, m1, Q) and Q is called the generalized (deterministic)
Lévy measure. An important object in characterizing the class of non-random functions that are
integrable with respect to A is the control measure m defined as

m(A)=IMOI(A)+m1(A)+/min{l,xz}Q(A,dx).
R

The conditions for integrability of functions with respect to A can be found in [3] and [35].
If function f on R4 x R is integrable with respect to the random measure A, then the cumulant
function of the random variable | A SdN s

C{Ci/AfdA} Z/AKL(ff(w))M(dw)» a7

where « is the cumulant function associated with the Lévy basis A. More details on integration
can be found in [35].

In defining the stationary supOU processes, we will be interested in the homogeneous case
where the characteristic triplet is of the form

my=aM, mi=bM and Q(dw,dx)=M(dw)ur(dx),

where a € R, b > 0, up is a Lévy measure and M is a measure on S. Note that M and p are
deterministic. Then the cumulant function of the random variable A(A) is

C{LE A} =M(A)kr (), (18)
where k is the cumulant function associated with the triplet (a, b, u1,), that is,
2
kp(Q)=ita — %b—}— A(e’“ —1—ifxl—11(x))pr(dx). (19)

For more details, see also [7,10,11,18] where such measures are also referred to as Lévy bases.



The unusual properties of supOU processes 2037
3.2. SupOU processes

Although OU type processes provide a rich class of stationary models, their correlation structure
is rather limited from the modeling perspective. On the other hand, superpositions of OU type
processes introduced in [3] provide far more flexibility and can exhibit long-range dependence.
They are obtained by randomizing the parameter A in (16), using a probability measure = with
support in R.. The probability measure 7 will affect the dependence structure. We present basic
facts about these processes following [3] and [18] (see also [7]).

Suppose A is a homogenous infinitely divisible independently scattered random measures on
S =R x R such that (18) holds with M = x Leb being the product of a probability measure
7 on R, and the Lebesgue measure on R. We say that

(a,b,jur,m)

is the generating quadruple ([18]) and the corresponding independently scattered random mea-
sure A will be referred to as the Lévy basis.

The following result gives the existence of a superposition Ornstein—Uhlenbeck process; see
[3], Theorem 3.1. We denote the points in Ry x R as w = (&, 5) and A(dw) = A(dE&, ds).

Theorem 2. Let kx be the cumulant function of some selfdecomposable law, (a, b, ur) be the
characteristic triplet of the associated BDLP with cumulant function «, and let w be a probabil-
ity measure on R . Define the Lévy basis A on Ry x R with generating quadruple (a, b, 11, )
and set

£1
X(1) = / et / ¢ A(dE, ds) = / / e g ) BT — )A(E. ). (20)
]R+ —00 R+ R

Then X ={X (), t € R} is a well-defined, infinitely divisible and strictly stationary process.
Moreover, for t] < --- < ty, the joint cumulant function of (X (t1), ..., X (ty) is

cler, o tn £ (XD, X (1))

u erit (2)
= [ [ (3 bty = srgge ) dsmaas).
B JR =1
In particular, since X = {X (¢t), t € R} is stationary,
Cle X)) =xx(),
and assuming that X (t) has finite second moment, its correlation function is given by
r(t) =/ e T (dE), 7>0. (22)
Ry

Definition 3. The process X = {X (), t € R} defined by (20) in Theorem 2 is called a superpo-
sition Ornstein—Uhlenbeck (supOU) process.
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Relation (22) is obtained by setting m = 2 in (21), taking derivatives with respect to ¢ and ¢
and letting them tend to 0. By comparing the definition of superposition (20) with the standard
OU type process (16), one can see the supOU process is obtained by randomizing the parameter
A in (16) according to the probability measure . A choice of 7 will play an important role.
Taking 7 as in (24) below will make X long-range dependent.

Remark 4. Here is a summary of the measures involved. The supOU process X () in (20) is
defined through an integral involving the random measure A(d&,ds). For a fixed ¢, the corre-
sponding cumulant function is

x (@) =Cle X)) = /R A% 1 (Lo.00) (61 — $)5¢57%%) ds 7(dE),
+

where k, given in (19) is associated with the Lévy basis A and involves the Lévy measure pz..
The cumulant function «x thus involves the corresponding deterministic measure

Q(dw,dx) = M(dw)pur(dx) = (d§)Leb(ds)ur(dx),
where w = (&, 5).

Remark 5. In [18], a supOU process is defined as
X(1)= / f e g o) (1 — $)A(dE, ds), (23)
Ry JR

where A has generating quadruple (@, b, L, T) such that p := fR+é’1ﬁ(d§) < 00. How-

ever, the two approaches are equivalent. Taking a = pd, b = ob, ur = piir and 7w (d€) =
p'&717 (d&) in Theorem 2, we obtain a process which has the same law as the process X
defined in (23) (see [18], Proposition 2.1).

Example 1. If the measure 7 in (21) is degenerate such that w({A}) = 1 for some A > O, then it
follows from (21) that the finite dimensional distributions of X are the same as for the standard
OU type process (16), that is

Cler o tm 5 (X)), ... X))} = /RKL (Z 1j0,00) (At} _S)Cje_“j—“) ds.

j=1

Example 2. Suppose 7 in (21) is a discrete probability measure such that 7 ({Ar}) = pr, k € N
and A; > 0. Then we have that

Cler o tm 5 (X(1), ... X))} = Z /R DKL (Z 110.00) (Aktj — S);je—xkzm) ds.
k=1 j=1
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Thus in this case, X has the same distribution as the infinite discrete type superposition

iZX“Ht),teR},

k=1

where {X® (1), € R}, k € N are independent standard OU type processes corresponding to pa-
rameter A; and BDLP with cumulant function pg«y, k € N. In the case of finite second moment,
such discrete type superposition is well defined in the sense of L? and a.s. convergence (see [22]),
and from (22) the correlation function is

o0
r(t) = Zef)‘kfpk, 7>0.
k=1

By appropriate choices of probability measure 7 one can achieve different correlation struc-
tures of the supOU processes. We will use the notation f ~ g if f(x)/g(x) - 1 asx — 0 or
x — oo. It follows from (22) that the correlation function can be considered as the Laplace trans-
form of 7. Using Karamata’s Tauberian theorem [13], Theorem 1.7.1’, one can easily obtain the
following result [18].

Proposition 1. Suppose X is a square integrable supOU process with correlation function r, L
is a slowly varying function at infinity and « > 0. Then

n((O, x]) ~ L(xil)xa, asx —0 (24)

if and only if
r(t) ~T(+a)L(t)t™%, as T — oo. (25)
The bigger the mass of 7 is near the origin, the slower is the decay of the correlation function

at infinity. Hence, in view of (25), if « € (0, 1) the correlation function is not integrable, and
supOU process exhibits long-range dependence. We will denote

o=2H=2(1-H)

with H as the long-range dependence parameter. Hence, « € (0, 1) corresponds to H € (1/2,1).
More details on the dependence structure in specific examples can be found in [5].

Example 3. Suppose X is a supOU process such that 7 is Gamma distribution with density

1

@ x*71e™ g 00) (%),

flx)=

where o > 0. Then
_vx)
(@)

7((0, x]) , x>0,
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where y (o, x) = f(f u®"le™" du is the incomplete Gamma function. From the asymptotic ex-
pansion of y ([1], Eq. 6.5.4 and Eq. 6.5.29), we have that

1
n((O,x])mea, as x — 0.

By Lemma 1, the correlation function has the property

r(t)y~t7 %, as T — 00.

In this case, we can explicitly compute from (22) that

r(r)=/ooe*”—1 e dx = (14 1) /oox“*‘efxdxz(wz)*“.
0 [(e) ['(@) Jo

Note that for « € (0, 1] the correlation function exhibits long-range dependence, while for o > 1
short-range dependence.

Example 4. If 7 is the Mittag-Leffler distribution, then the correlation function of the supOU
process is

rm=(01+1%)", O0<a<2.

The supOU process obtained in this way is long-range dependent for « € (0, 1] and short-range
dependent for « € (1, 2).

Example 5. Another long-range dependent example can be obtained with

r(@) = Eo(—=1"),  ye© 1),ae(,1),

where
E,()=) ———, - €C,
a(?) /;)r(akﬂ) <

is the Mittag-Leffler function. In this case
T Y

r("f)’“m,

as T — OoQ.

See [5], Example 4, for details.

In our study of intermittency, we will be concerned with the camulant properties of integrated
and partial sum process of supOU process. Tractable expressions for camulant functions in both
cases are established in the following subsections.
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3.3. Integrated process

Suppose X is a supOU process defined in (20) and let X* = {X*(¢),r > 0} be the integrated
process

t
X*(1) = / X(s)ds. 26)
0
Fora,b e R, let
1
g(a,b) = E(l - ef"b)

and recall that kx=(¢, ) and « )(("l) (t) denote the cumulant function and the mth order cumulant
of X*(¢), respectively.

Proposition 2 (Theorem 4.1 in [3]). The cumulant function kx= of X*(t) satisfies
[ee] t
Kx*(é“,t)=§/0 /0 Ky (e(s, £)¢) ds(d§), (27)

where kx (&) is the cumulant function of X (1).

Proposition 3 (Theorem 4.2 in [3]). Assume that kx is analytic in a neighborhood of the origin.
The cumulants of X*(t) are then given by

Ky () = k" m b1 (1), (28)
where the K)(é") are the cumulants of X (1),

m—1
*© —1\1
In1 () = fo (am_1+rs+2<—1)"—1<mk )Ee—"*)s—mnus) (29)

k=1

with
m—1
—1\1
am_1=Z<—1>"(mk ); (30)
k=1

The analyticity of the xx in Proposition 3 ensures the existence of all the cumulants of the
marginal distribution of the underlying supOU process X. Note also that analyticity does not
depend on the measure 7 since the choice of w does not affect the one-dimensional marginal
distribution of X . The following is a useful criterion [29], Theorem 7.2.1, for checking analyticity
of the cumulant function.

Lemma 1. The characteristic and cumulant functions are analytic in a neighborhood of the
origin if and only if there is a constant C such that the corresponding distribution function F
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satisfies

1—F(x)+F(—x):0(e7“x), as x — 00,
forall0 <u < C.

It follows from Lemma 1 that the cumulant function of X () is analytic in the neighborhood
of the origin if there exists a > 0 such that

Eed! X0l < 00,

This implies in particular that all the moments and cumulants of X (¢) exist. This condition is
satisfied for many selfdecomposable distributions.

Example 6. The inverse Gaussian distribution
1G(3, ), y >0,6 >0,

with density

8 _ 1 _
fice.H(x) = e x 3/26Xp{—§(52x l—l-)/zx)}l(o,oo)(x)
T

is selfdecomposable and hence, for any choice of probability measure s, there exists a supOU
process X with IG(8, y) stationary distribution. Since exponential moments are finite, the cumu-
lant generating function is analytic in a neighborhood of the origin and has the form

Kkx(0) =8(y —y/¥?—2ig).

Example 7. The normal inverse Gaussian distribution
NIG(e, 8,6, 1),  a>=1B[,6>0,neR

is another example of selfdecomposable distribution. The density of NIG(«, 8, 8, 1) distribution
satisfies (see [2])

INIG(a, 8,8, 1) (X) ~ Clx| 732 emalxl+x, as x — +o0.

Hence, there is a > 0 such that Ee/X(®| < 0o, the cumulant generating function is analytic in a
neighborhood of the origin and has the form

Kx(©) =ing +8(Ja? — B2 = \Ja? — (B+i0)?).

Other examples of supOU processes satisfying conditions of Proposition 3 can be obtained by
taking the marginal distribution to be gamma, variance gamma, tempered stable, Euler’s gamma,
or z-distribution. See [5] and [22] for more details. On the other hand, the Student’s 7-distribution

T(,8, 1), v>0,>0,uelR
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whose density is

_vtl

v =—F——|1 ) R)
ST .5, (%) (SF(%)F(%) + 5 X €

provides an example of a self-decomposable distribution for which the cumulant function is not
analytic around the origin since E|X |7 = oo for g > v (see, e.g., [24]).

It is worth noting that one can obtain expressions for cumulants without assuming analyticity.
In fact, taking derivatives with respect to ¢ in (27) and letting { — 0, one recovers the formula
(28). This approach can be used to investigate cumulants and moments when they exists only up
to some finite order, as in the case of Student’s distribution. In this paper, we assume analyticity
in order not to complicate the exposition.

3.4. Partial sum process

In addition to the integrated process, we also consider partial sums of a discretely sampled supOU
process. Let

L]

Xt = ZX(i) (3D
i=1
and define
11— efab
n(a,b)=e bTﬂ' (32)

The following two propositions establish the cumulant function and cumulants for the partial
sum process. The proofs are given in the supplemental article [21].

Proposition 4. The cumulant function kx+ of X (t) satisfies
oo / L]
kx+ (1) = /0 (Z(Kx (5 k. £)7) — kx (n(k. £)2)) + xx (n(Le). s)§)>n<d5), (33)

k=1

where kx (&) is the cumulant function of X (1).

Proposition 5. Assume that the cumulant function kx of X (t) is analytic in a neighborhood of
the origin. The cumulants of X (t) are then given by

K (0) = k8 Tu1 (1),
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(m)
X

where the k, ' are the cumulants of X (1) and

In—1(t) = /Ooo<(1 —e ™) (] - 1)

" R e (LR
+(1=e™) Y] (?)Pl)wﬁﬁ (34)
j=1
1
_ o lilgym
+ (1 —e71%) )(1_e_$)mn(ds).

4. Intermittency of integrated and partial sum process

In this section, we establish asymptotic properties of cumulants and moments of the integrated
supOU process X* defined in (26) and the partial sum process X defined in (31). The underlying
supOU process will be assumed to have a power law decay of the correlation function, which can
be achieved with the appropriate choice of the probability measure 7, as given by Proposition 1.
In the case of long-range dependence, we will show that both variants of cumulative processes
can be intermittent. Before doing that, we provide examples where asymptotic normality easily
follows.

Example 8. Consider a supOU process from Example 2 such that 7 is a discrete probability
measure with finite support

{Mik=1,....,K} and 7 ({A})= px.

In this case, supOU process has the same distribution as the finite superposition X = {X(¢),¢ €
R} defined by

K
X =) x®w,

k=1

where {X®)(r),r e R}, k=1, ..., K are independent standard OU type processes corresponding
to parameter A; and BDLP with cumulant function pyky, k=1,..., K. Suppose E|X (1)]?1% <
oo for some § > 0 and let {S(¢), r > 0} denote the centered partial sum process

1)
S(t) =Y (X()—EX@)).

i=1

Each OU type process {X® (1), r e R}, k=1, ..., K satisfies the strong mixing property with an
exponentially decaying rate of mixing coefficients [30], and so does a sequence X (i),i € Nas a
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finite sum of these processes. Application of the invariance principle for strong mixing sequences
([16]; see also [33]) shows that

S(nt)
o\/n

as n — 0o, where {B(t),t € [0, 1]} is a Brownian motion, o positive constant and the conver-
gence is weak convergence in Skorokhod space D[0, 1]. In particular, (8) holds with Y being the
partial sum process and for every ¢ € [0, 1]

= B(1), t€[0,1],

S(nt) 4
o v — N, 1),

as n — 00. If ¢ > 2 is such that E|X (1)|? < oo, then by the result of [40], the gth absolute
moment of S(nt)/(o+/n) converges to that of N'(0, ). Then by Theorem 1 the scaling function
of the partial sum process S(¢) is

15(q) =q/2,

and there is no intermittency.

Example 9. Let {X(¢),t > 0} be a Gaussian supOU process, that is a supOU process with the
generating quadruple

(0, a2,0, ),

where 02 > 0 and 7 is a probability measure. One can check from (21) that X is indeed a
Gaussian process with zero mean. Suppose further that 7 satisfies (24) for some « > 0 so that
the correlation function satisfies (25). Let Xt (¢) = Z}’:Jl X (i) be the corresponding partial sum
process.

When o« < 1, long-range dependence is present, and from [39], Lemma 5.1, the normalized
partial sum process

! +
NGO
with H = 1 —«/2, converges in Skorokhod space DI[O0, 1] to a process that is fractional Brownian
motion with Hurst parameter H up to a multiplicative constant. The partial sum X (¢) is a mean
zero Gaussian random variable with the variance satisfying E(X T ~C L] 2d L([t]) (see
the proof of [39], Lemma 5.1). Since the gth absolute moment of a Gaussian distribution is
proportional to the gth power of the standard deviation, it follows that

x+(q) = Hgq,

and there is no intermittency.
If @ > 1, then the variance of X (¢) is of the order 7!/2, and the finite-dimensional distributions
of

1
mx+(nt)
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converge to those of the Brownian motion, see [25], Theorem 2.3.1. In the case o = 1, the limit
is also Gaussian with an extra factor of a slowly varying function in the variance and in the
normalizing sequence of the partial sum, see [25], Theorem 2.3.2. The same argument as in the
case o < 1 shows that the scaling function is

x+(q) =q/2,

and there is no intermittency.

To show that the integrated supOU process X*(¢) = fot X (s)ds can be intermittent, we first
establish the form of the cumulant based scaling function ox+(m) defined in (11). Recall that
K)((m) denotes the mth cumulant of X (¢). In particular, /c)((l) =EX(¢). The proof is given in the

supplemental article [21].

Theorem 3. Suppose that the stationary supOU process X defined in (20) satisfies the conditions
of Proposition 1 and satisfies (24) with some o > 0. Further, suppose that kx is analytic in
a neighborhood of the origin and let ox+ be the cumulant based scaling function (11) of the
integrated process {X*(t),t > 0}. If the mean /cg) # 0, then

ox+(1) =1,
and for every m > o + 1 such that K)((m) # 0, we have
oxx(m)=m — .

Using the relation between cumulants and moments we can now obtain the corresponding
asymptotic behavior of the moments. This will yield intermittency as defined in (7). In central
limit type theorems with finite variance, one supposes that the mean is zero. We shall do this here
as well and thus set the first cumulant /cg) = 0. Again, the proofs of Theorem 4 and Theorem 5

below are given in the supplemental article [21].

Theorem 4. Suppose that for the non-Gaussian supOU process X the assumptions of Theorem 3
hold with a > 0, /c;(l) =0and /c)((z) #0. If tx+ is the scaling function (6) of X* = {X*(¢),t > 0},
then for every q > q*

x+(q) =g —a,

where g* is the smallest even integer greater than 2. In particular, for g* < p <r

Tx+(p) o (r)

P r

and hence X* is intermittent.

The proof uses the following lemma.
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Lemma 2. Suppose that « > 0 and f is a convex function such that f(q) = q — o for three
values of q, namely q € {x, y, z}, x <y < z. Then the function f must be a straight line segment,
i.e. f(q) =q — «a for any q in the interval [x, z7].

Proof. Trivially, f(q) <q — « forany g € [x, z]. If g € (x, y), then by convexity

i)+ 2L 1) = F ).
7—¢q 7—q

Dividing both sides by % > 0 and rearranging yields

q

—a)—
y

foy =Ty - I =221 y—4q
=Yy z—Yy 7 —

(z—a)=q—q.
For g € (y, z) convexity implies
q-) y—x
— )+ ——=f@) = f()
q—x qg—x
and by analogous steps we can deduce f(q) > g — «. U

We can now apply Proposition 5 to establish the following result for the partial sum supOU
process. The result is similar to that for the integrated process X*. In fact, the moments and
cumulants of X*(¢) and X*(¢) have the same asymptotic behavior as ¢ — oo, and therefore
ox+(m) = ox+(m). The proof of Theorem 5 can be found in the supplement [21].

Theorem 5. Suppose that the supOU process satisfies the conditions of Proposition 1 and sat-
isfies (24) with some a > 0, kx is analytic in a neighborhood of the origin and let ox+ be the

cumulant based scaling function (11) of the partial sum process {X ™ (t),t > 0}. IfK)((l) # 0, then
ox+(1)=1.
Ifm>a+1 and/cgfm) #0, then

ox+(m)=m —«.

Set o =2(1 — H) with H € (1/2,1) so that o € (0, 1). A special case of Theorem 5 was
proved in [22] for the specific situation of the Example 2. In the notation of Example 2, the case
considered there corresponds to a discrete type superposition X (£) = Y ;2 X ®)(£) obtained by
choosing

e =A/k, A>0 and pp=C¢(1+2(1— H))/ k20 C>0,

where ¢ is the Riemann zeta function. In addition, it is assumed that the cumulants of the standard
OU type processes {X® (1)} scale in a specific way. Under these conditions, the cumulants of
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the centered partial sum process S(7) = Z.ml (X (@) —EX(i)) are shown to have the form

K" (N1) = Cy LIN) N2 (1 4 0(1)),

as N — oo, where C,, is a positive constant and L a slowly varying function.
Using the same argument as in the proof of Theorem 4, we obtain the following result on
intermittency of the partial sum process.

Theorem 6. Suppose that for the non-Gaussian supOU process X the assumptions of Theorem 3
hold with a > 0, k) = 0 and K&’ # 0. If ty+ is the scaling function (6) of Xt = {X T (1), 1 > 0},
then for every g > g*

x+(@) =q —a.

where q* is the smallest even integer greater than 2o. Thus X is intermittent.

Remark 6. In Example 8 (finite superpositions case) and Example 9 (Gaussian case), we have
shown that there is no intermittency. Note that these two cases are clearly not covered in Theo-
rems 4 and 6 where we suppose a non-Gaussian process and regular variation (24) of measure 7.

On the other hand, particular examples of supOU processes satisfying conditions of Theorems
4 and 6 can be obtained by choosing for the marginal distribution any selfdecomposable distribu-
tion with zero mean and analytic cumulant function (e.g., distributions from Examples 6 and 7)
and by taking the measure 7 that satisfies (24) (e.g., measures given in Examples 3, 4 and 5). For
any such combination, we obtain an intermittent supOU process. Under these conditions, both
the integrated and the partial sum process are intermittent. This implies that (8) and (9) cannot
both hold. The study of limit theorems for integrated supOU processes and how they relate to the
intermittency property will appear in future work.
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