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We study the estimation of the covariance matrix � of a p-dimensional normal random vector based on
n independent observations corrupted by additive noise. Only a general nonparametric assumption is im-
posed on the distribution of the noise without any sparsity constraint on its covariance matrix. In this high-
dimensional semiparametric deconvolution problem, we propose spectral thresholding estimators that are
adaptive to the sparsity of �. We establish an oracle inequality for these estimators under model miss-
specification and derive non-asymptotic minimax convergence rates that are shown to be logarithmic in
n/ logp. We also discuss the estimation of low-rank matrices based on indirect observations as well as
the generalization to elliptical distributions. The finite sample performance of the threshold estimators is
illustrated in a numerical example.
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1. Introduction

One of the fundamental problems of multivariate data analysis is to estimate the covariance
matrix � ∈ R

p×p of a random vector X ∈ R
p based on independent and identically distributed

(i.i.d.) realizations X1, . . . ,Xn of X. An important feature of data sets in modern applications is
high dimensionality. Since it is well known that classical procedures fail if the dimension p is
large, various novel methods of high-dimensional matrix estimation have been developed in the
last decade. However, an important question has not yet been settled: How can � be estimated
in a high-dimensional regime if the observations are corrupted by noise?

Let X1, . . . ,Xn be i.i.d. random variables with multivariate normal distribution N (0,�). The
maximum likelihood estimator of � is the sample covariance estimator

�∗
X := 1

n

n∑
j=1

XjX
�
j .

The estimation error of �∗
X explodes for large p. To overcome this problem, sparsity assumptions

can be imposed on �, reducing the effective number of parameters. The first rigorous studies of
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this idea go back to Bickel and Levina [4,5] and El Karoui [22] who have assumed that most
entries of � are zero or very small. This allows for the construction of banding, tapering and
thresholding estimators based on �∗

X , for which the dimension p can grow exponentially in n.
Subsequently, a rich theory has been developed in this direction including Lam and Fan [35] who
proposed a penalized pseudo-likelihood approach, Cai et al. [12] who studied minimax optimal
rates, Cai and Zhou [13] studying the �1 loss as well as Rothman et al. [47] and Cai and Liu [9]
for more general threshold procedures and adaptation, to mention only the papers most related
to the present contribution. For current reviews on the theory of large covariance estimation, we
refer to [10,25]. Heading in a similar direction as noisy observations, covariance estimation in
the presence of missing data has been recently investigated by Lounici [38] as well as Cai and
Zhang [11].

Almost all estimators in the afore mentioned results build on the sample covariance estimator
�∗

X . In this paper, we assume that only the noisy observations

Yj = Xj + εj , j = 1, . . . , n,

are available, where the errors ε1, . . . , εn are i.i.d. random vectors in R
p independent of

X1, . . . ,Xn. Then the sample covariance estimator �∗
Y is biased:

E
[
�∗

Y

]= E

[
1

n

n∑
i=1

YiY
�
i

]
= � + �,

where � = E[ε1ε
�
1 ] is the covariance matrix of the errors. Assuming � known to correct the

bias is not very realistic. Moreover, for heavy tailed the errors εj that do not have finite second
moments, � is not defined and the argument based on �∗

Y makes no sense. Several questions
arising in this context will be addressed below:

(i) How much information on the distribution of εj do we need to consistently estimate �?
(ii) Do we need finite second moments of εj and/or sparsity restrictions on � to estimate �?

(iii) What is the minimax optimal rate of estimating � based on noisy observations?

If the covariance matrix � of the errors exists and is known, the problem does not differ from
the direct observation case, since � can be simply subtracted from �∗

Y . If � can be estimated, for
instance from a separate sample of the error distribution or from repeated measurements, we can
proceed similarly. However, in the latter case, we need to assume that � is sparse, since otherwise
we cannot find a good estimator for large dimensions. Reducing our knowledge about εj further,
we may only assume that the distribution of εj belongs to a given nonparametric class. This
leads to a high-dimensional deconvolution model. The difference from standard deconvolution
problems is that the density of Xj ’s is a parametric object known up to a high-dimensional matrix
parameter �. A related model in the context of stochastic processes has been recently studied
by Belomestny and Trabs [2]. Obviously, we need some assumption on the distribution of errors
since otherwise � is not identifiable as, for example, in the case of normally distributed εj . It
turns out that we do not need a sparse covariance structure for the error distribution and we can
allow for heavy tailed errors without any moments.
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From the deconvolution point of view, it might seem surprising that � and thus the distribution
of Xj can be estimated consistently without knowing or estimating the distribution of errors
εj , but as we will show it is possible. The price to pay for this lack of information is in the
convergence rates that turn out to be very slow - logarithmic in the sample size. In the pioneering
works in one-dimensional case, Matias [41], Butucea and Matias [6] have constructed a variance
estimator in deconvolution model with logarithmic convergence rate and a corresponding lower
bound. In this paper, we provide a general multidimensional analysis of the minimax rates on the
class of sparse covariance matrices.

To replace the sample covariance matrix �∗
Y by a deconvolution counterpart, we use some

ideas from the literature on density deconvolution. Starting with Carroll and Hall [14] and Fan
[23], the deconvolution problem have been extensively studied. In particular, unknown (but in-
ferable) error distributions have been analysed by Neumann [43], Delaigle et al. [19], Johannes
[32] and Delaigle and Hall [18] among others. For adaptive estimation with unknown error dis-
tribution we refer to Comte and Lacour [15], Kappus and Mabon [33], Dattner et al. [17] and
references therein. Almost all contributions to the deconvolution literature are restricted to a
univariate model. Hence, our study contributes to the deconvolution theory by treating the mul-
tivariate case; in particular, our techniques for the lower bounds might be of interest. To our
knowledge, only Masry [40], Eckle et al. [21], and Lepski and Willer [36,37] have studied the
setting of multivariate deconvolution. They deal with a different problem, namely that of non-
parametric estimation of the density of Xj or its geometric features when the distribution of εj

is known.
Applying a spectral approach, we construct an estimator for the covariance matrix assum-

ing that Xj are normally distributed and that the characteristic function ψ of the distribu-
tion of εj decays slower than the Gaussian characteristic function. A similar idea in a one-
dimensional deconvolution problem has been developed by Butucea et al. [7]. The assumption
| log |ψ(u)|| = o(|u|2) as |u| → ∞ implies identifiability of � and allows us to construct an es-
timator �̂, which is consistent in the maximal entry norm. Based on �̂, we then construct hard
and soft thresholding estimators �̂H

τ and �̂S
τ , respectively, for sparse matrices. The sparsity is

described by an upper bound S on the �q -norm, q ∈ [0,2), of entries of �. We establish sparsity
oracle inequalities for �̂H

τ and �̂S
τ when the estimation error is measured in the Frobenius norm.

This choice of the norm is naturally related to the distance between two multivariate normal
distributions. The oracle bounds reveal that the thresholding estimators adapt to the unknown
sparsity S. For the soft thresholding estimator we present an oracle inequality, which shows that
the estimator adapts also to approximate sparsity.

Assuming that the characteristic function ψ of εj satisfies | log |ψ(u)|| = O(|u|β) for large
u ∈ R

p and some β ∈ [0,2), we prove the following upper bound on the estimation error in the
Frobenius norm: ∥∥�̂H

τ − �
∥∥≤ CS1/2

(
log

n

logp

)−(1−β/2)(1−q/2)

(1)

for some constant C > 0 and with high probability. The dependence of this bound on the sparsity
S is the same as found by Bickel and Levina [4] for the case direct observations; furthermore
the well-known quotient n/ logp drives the rate. However, the severely ill-posed nature of the
inverse problem causes the logarithmic dependence of the rate on n/ logp. We also see that the
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estimation problem is getting harder if β gets closer to 2 where it is more difficult to distinguish
the signal from the noise. Furthermore, we establish a lower bound showing that the rate in
(1) cannot be improved in a minimax sense for q = 0. Let us emphasise that our observations
Yj are by definition not normally distributed. Therefore, the proof of the lower bound differs
considerably from the usual lower bounds in high-dimensional statistics, which rely on Gaussian
models.

Covariance estimation is crucial in many applications where also observation errors appear.
For instance, many portfolio optimization approaches rely on the covariance matrix of a possibly
high number of assets where the financial data are typically perturbed due to bid-ask spreads,
micro-structure noise etc. [24,50]. While in a high-frequency regime the observation noise can
be handled by local averages, in a low-frequency situation, as daily closing prices, the denoising
is more difficult and our deconvolution approach can be applied, cf. [2]. Note that the dimension
dependence in [2] can be improved with our analysis for low-rank matrices. As another appli-
cation the spatial empirical covariance matrices of climate data and their eigenvectors, called
empirical orthogonal functions, are important spatio-temporal statistics. Naturally recordings of
climate data, e.g. sea surface temperatures, may suffer from measurement errors [16] and should
be taken into account. Especially, sparse covariance structures appear in the problem of spatio-
temporal wind speed forecasting taking into account the time series data of a target station and
data of surrounding stations, see [48].

This paper is organized as follows. In Section 2, we construct and analyze the spectral co-
variance matrix estimator. In Section 3, the resulting thresholding procedures are defined and
analyzed. In Section 4, we investigate upper and lower bounds on the estimation error. In Sec-
tion 5, some extensions of our approach are discussed including the estimation of low-rank ma-
trices based on indirect observations as well as the generalization to elliptical distributions. The
numerical performance of the procedure is illustrated in Section 6. Longer and more technical
proofs are postponed to Section 7 and to Appendices A and B.

Notation. For any x ∈R
p and q ∈ (0,∞], the �q -norm of x is denoted by |x|q and we write for

brevity |x| := |x|2. For x, y ∈ R
p the Euclidean scalar product is written as 〈x, y〉. We denote

by Ip the p × p identity matrix, and by 1{·} the indicator function. For two matrices A,B ∈
R

p×p the Frobenius scalar product is given by 〈A,B〉 := tr(A�B) inducing the Frobeninus norm
‖A‖ := √〈A,A〉. The nuclear norm is denoted by ‖A‖1 := tr(

√
A�A) and the spectral norm by

‖A‖∞ :=√
λmax(A�A), where λmax(·) stands for the maximal eigenvalue. For A ∈ R

p×p and
q ∈ [0,∞] we denote by |A|q the �q -norm of the entries of the matrix if q > 0 and the number of
non-zero entries for q = 0. We write A > 0 or A ≥ 0 if the matrix A ∈ R

p×p is positive definite
or semi-definite. We denote by P�,ψ the joint distribution of Y1, . . . , Yn when the covariance
matrix of Xj is � and the characteristic function of the noise εj is ψ . We will write for brevity
P�,ψ = P if there is no ambiguity.

2. Spectral covariance estimators

Let ψ denote the characteristic function of error distribution:

ψ(u) = E
[
ei〈u,ε1〉], u ∈R

p.
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Then the characteristic function of Yj is given by

ϕ(u) := E
[
ei〈u,Yj 〉]= exp

(
−1

2
〈u,�u〉 + logψ(u)

)
, u ∈ R

p.

Here and throughout we assume that ψ(u) 
= 0 and we use the distinguished logarithm, cf. [49],
Lemma 7.6. This assumption is standard in the literature on deconvolution. Allowing for some
zeros of ψ has been studied in [20,42]. Note that our estimation procedure defined below does
not rely on all u in R

d , but uses only u with a certain radius |u|.
The canonical estimator for the characteristic function ϕ is the empirical characteristic func-

tion

ϕn(u) := 1

n

n∑
j=1

ei〈u,Yj 〉, u ∈ R
p.

Since ϕn(u) concentrates around ϕ(u) with rate
√

n, we have ϕn(u) 
= 0 with overwhelming
probability for sufficiently large frequencies u ensuring |ϕ(u)| ≥ C

√
(log(ep))/n for some con-

stant C > 1 (see Lemma 13 and Corollary 14). In this case, logϕn(u) is well defined. On the
unlikely event {ϕn(u) = 0}, we may set logϕn(u) := 0.

Arguing similarly to Belomestny and Trabs [2], we consider the identity

logϕn(u)

|u|2 = −〈u,�u〉
2|u|2 + logψ(u)

|u|2 + logϕn(u) − logϕ(u)

|u|2 , u ∈R
p \ {0}. (2)

Both sides are normalized by |u|2 being the order of the leading term 〈u,�u〉. While the left-
hand side of (2) is a statistic based on the observations Y1, . . . , Yn, the first term on the right-hand
side encodes the parameter of interest, namely the covariance matrix �. The second term is a
deterministic error due to the unknown distribution of εj . If | logψ(u)| = o(|u|2), that is, the
error distribution is less smooth than the normal distribution, the deterministic error vanishes as
|u| → ∞. The third term in (2) is a stochastic error term. Using the first order approximation, we
get

logϕn(u) − logϕ(u) = log

(
ϕn(u) − ϕ(u)

ϕ(u)
+ 1

)
≈ ϕn(u) − ϕ(u)

ϕ(u)
. (3)

The latter expression resembles the estimation error in classical deconvolution problems. How-
ever, there is a difference since here in the denominator we have ϕ(u) rather than the characteris-
tic function of the distribution of errors. A similar structure was detected in the statistical analysis
of low-frequently observed Lévy processes by Belomestny and Reiß [1]. Following [1], one can
call this type of problems auto-deconvolution problems. Since |ϕ(u)| = e−〈u,�u〉/2|ψ(u)|, and
we assume that | logψ(u)| = o(|u|2), the stochastic error grows exponentially in |u|. Thus, the
estimation problem is severely ill-posed even in one-dimensional case.

These remarks lead us to the conclusion that � can be estimated consistently without any
particular knowledge of the error distribution as soon as | logψ(u)| = o(|u|2), and the spectral
radius |u| in (2) is chosen to achieve a trade-off between the stochastic and deterministic errors.
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To specify more precisely the condition | logψ(u)| = o(|u|2), it is convenient to consider, for any
β ∈ (0,2) and T > 0, the following nonparametric class of functions ψ :

Hβ(T ) := {ψ characteristic function on R
p : ∣∣log

∣∣ψ(u)
∣∣∣∣≤ T

(
1 + |u|ββ

)
, u ∈R

p
}
.

Note that | log |ψ(u)|| = log(1/|ψ(u)|) since |ψ(u)| ≤ 1. Therefore, the condition that deter-
mines the class Hβ(T ) can be written as the lower bound |ψ(u)| ≥ exp(−T (1 + |u|ββ)). If the
characteristic function of εj belongs to Hβ(T ), the decay |u|ββ for some β < 2 of the characteris-
tic exponent allows for separating the normal distribution of Xj from error distribution for large
|u|. The decay rate β determines the ill-posedness of the estimation problem. Noteworthy, we re-
quire neither sparsity restrictions on the joint distribution of (ε1, . . . , εn) nor moment conditions
of these random variables.

A typical representative in the class Hβ is a characteristic function of a vector of independent
β-stable random variables. In the case of identically distributed marginals, it has the form ψ(u) =
exp(−σ |u|ββ), u ∈ R

p , for some parameter σ > 0. A related example with correlated coefficients
is a p-dimensional stable distribution with characteristic function ψ(u) = exp(−σ |u|β2 ) (note

that |u|β2 ≤ |u|ββ ). Recalling that stable distributions can be characterized as limit distributions of
normalized sums of independent random variables and interpreting εj as accumulation of many
small measurement errors, suggests that these examples are indeed quite natural.

If ψ ∈ Hβ(T ), the deterministic error term in (2) is small for large values of |u|. We will
choose u in (2) in the form Uu(i,j) where U > 0 is large, and u(i,j) are p-dimensional unit
vectors defined by

u(i,i) := u(i) := (1{i=k})k=1,...,p and u(i,j) := 1√
2

(
u(i) + u(j)

)
for i 
= j. (4)

Using the symmetry of � = (σi,j )i,j=1,...,p , we obtain〈
u(i),�u(i)

〉= σi,i and
〈
u(i,j),�u(i,j)

〉= σi,j + σi,i + σj,j

2

for any i, j ∈ {1, . . . , p} with i 
= j . Motivated by (2) applied to Uu(i,j) for some spectral radius
U > 0, we introduce the spectral covariance estimator:

�̂ = (σ̂i,j )i,j=1,...,p

with σ̂i,j :=

⎧⎪⎨⎪⎩
− 2

U2
Re
(
logϕn

(
Uu(i)

))
, if i = j,

− 2

U2
Re
(
logϕn

(
Uu(i,j)

))− 1

2
(σ̂i,i + σ̂j,j ), if i 
= j.

(5)

Equivalently, we can write Re(logϕn(u)) = log |ϕn(u)| for any u ∈ R
p with |ϕn(u)| 
= 0. Since

ϕn(u) concentrates around ϕ(u), cf. Lemma 13, we have ϕn(u) 
= 0 with high probability if
ϕ(u) 
= 0.

The spectral covariance estimator �̂ can be viewed as a counterpart of the classical sample
covariance matrix for the case of indirect observations. The entries σ̂i,j of �̂ enjoy the following
concentration property.
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Theorem 1. Assume that |�|∞ ≤ R, and ψ ∈ Hβ(T ) for some β,R,T > 0. Let γ >
√

2 and

U ≥ 1 satisfy 8γ
√

(log(ep))/n < e−RU2−3T Uβ
. Set

τ(U) = 6γ
eRU2+3T Uβ

U2

(
log(ep)

n

)1/2

+ 3T U−2+β. (6)

Then, for any τ ≥ τ(U),

P�,ψ

(|σ̂i,j − σi,j | < τ
)≥ 1 − 12(ep)−γ 2

and

P�,ψ

(
max

i,j=1,...,p
|σ̂i,j − σi,j | < τ

)
≥ 1 − c∗p2−γ 2

,

where c∗ = 12e−γ 2
.

Proof. Set S(u) = Re(logϕn(u) − logϕ(u)). Using (2) we obtain, for all i, j = 1, . . . , p,

|σ̂i,i − σi,j | ≤ U−2
∣∣S(Uu(i,j)

)∣∣+ U−2
∣∣log

∣∣ψ(Uu(i,j)
)∣∣∣∣

≤ U−2
∣∣S(Uu(i,j)

)∣∣+ U−2 max
i∈{1,...,p}

∣∣log
∣∣ψ(Uu(i,j)

)∣∣∣∣.
For U ≥ 1 the last summand in this display is bounded uniformly by 3T U−2+β on the class
Hβ(T ). This remark and Corollary 14 in Section 7.1 imply that

P

(
|σ̂i,j − σi,j | ≥ 6γ

√
log(ep)√

nU2 mini,j∈{1,...,p} |ϕ(Uu(i,j))| + 3T U−2+β

)
≤ 12(ep)−γ 2

if the condition γ
√

(log(ep))/n < |ϕ(Uu(i,j))|/8 is satisfied for all i, j . Note that for any i, j =
1, . . . , p, and any ψ ∈Hβ(T ),

∣∣ϕ(Uu(i,j)
)∣∣= exp

(
−U2〈u(i,j),�u(i,j)〉

2
+ Re logψ

(
Uu(i,j)

))
≥ exp

(−U2(|�|∞ + 3T Uβ−2)).
Therefore, for γ and U satisfying the conditions of the theorem,

P

(
|σ̂i,j − σi,j | ≥ 6γ

eRU2+3T Uβ

U2

(
log(ep)

n

)1/2

+ 3T U−2+β

)
≤ 12(ep)−γ 2

.

A union bound concludes the proof. �

The first term in τ(U) is an upper bound for the stochastic error. We recover the familiar factor√
(logp)/n which is due to a sub-Gaussian bound on the maximum of the p2 entries (σ̂i,j ). The

term exp(RU2 + 3T Uβ) is an upper bound for ϕ(u)−1 appearing in the linearization (3). Note
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that for β < 2 this bound can be written as exp(RU2(1 + o(1))) for U → ∞. This suggests the
choice of spectral radius in the form U∗ = c

√
log(n/ log(ep)) for some sufficiently small constant

c > 0. The second term in (6) bounds the deterministic error and determines the resulting rate
U

−2+β∗ =O((log(n/ log(ep)))−1+β/2), cf. Theorem 5.

3. Thresholding

Based on the spectral covariance estimator, we can now propose estimators of high-dimensional
sparse covariance matrices. We consider the following sparsity classes of matrices:

G0(S,R) := {� > 0 : � = ��, |�|0 ≤ S, |�|∞ ≤ R
}

and

Gq(S,R) := {� > 0 : � = ��, |�|qq ≤ S, |�|∞ ≤ R
}

for q ∈ (0,2),
(7)

where S > 0 denotes the sparsity parameter and R > 0 bounds the largest entry of �. We also
consider larger classes G∗

q (S,R) that differ from Gq(S,R) only in that the condition � > 0 is
dropped. Note that S ≥ p for the classes Gq(S,R), since otherwise the condition � > 0 does
not hold. This restriction on S does not apply to the classes G∗

q (S,R), for which the unknown
effective dimension of � can be smaller than p. However, for the classes G∗

q (S,R), the overall
model remains, in general, p-dimensional since the distribution of the noise can be supported on
the whole space R

p .
The sparsity classes considered by Bickel and Levina [4] and in many subsequent papers are

given by

Uq(s,R) :=
{

� > 0 : � = ��,max
i

p∑
j=1

|σi,j |q ≤ s,max
i

σi,i ≤ R

}

for s,R > 0, q ∈ (0,1) and with the usual modification for q = 0. We have Uq(s,R) ⊆ Gq(sp,R),
so that our results can be used to obtain upper bounds on the risk for the classes Uq(s,R).

Based on the spectral covariance estimator, we define the spectral hard thresholding estimator
for � as

�̂H
τ := (σ̂ H

i,j

)
i,j=1,...,p

with σ̂ H
i,j := σ̂i,j1{|σ̂i,j |>τ }, (8)

for some threshold value τ > 0. The following theorem gives an upper bound on the risk of this
estimator in the Frobenius norm.

Theorem 2. Let R,T ,S > 0, β ∈ [0,2), and q ∈ [0,2). Let τ(U) be defined in (6) with param-
eters γ >

√
2 and U ≥ 1 satisfying 8γ

√
(log(ep))/n ≤ e−RU2−3T Uβ

. Then

sup
�∈G∗

q (S,R),ψ∈Hβ (T )

P�,ψ

(∥∥�̂H
τ − �

∥∥≥ 3S1/2τ 1−q/2)≤ c∗p2−γ 2

provided that τ ≥ τ(U) for q = 0, and τ ≥ 2τ(U) for q ∈ (0,2). Here, c∗ = 12e−γ 2
.
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Proof. First, consider the case q = 0 and τ ≥ τ(U). In view of Theorem 1, the event A =
{maxi,j=1,...,p |σ̂i,j − σi,j | < τ } is of probability at least 1 − c∗p2−γ 2

for all τ ≥ τ(U). On A
we have the inclusion {j : |σ̂i,j | > τ } ⊆ {j : σi,j 
= 0}, so that |�̂H |0 ≤ |�|0. Therefore, on the
event A,∥∥�̂H

τ − �
∥∥2 ≤ ∣∣�̂H

τ − �
∣∣
0

∣∣�̂H
τ − �

∣∣2∞ ≤ 2|�|0
∣∣�̂H

τ − �
∣∣2∞ ≤ 2S

∣∣�̂H
τ − �

∣∣2∞.

Note that, again on A, we have |�̂H
τ − �|∞ ≤ |�̂H

τ − �̂|∞ + |�̂ − �|∞ ≤ 2τ . Combining this
with the last display implies the assertion of the theorem for q = 0.

Consider now the case q ∈ (0,2) and τ ≥ 2τ(U). We use the following elementary fact: If
|y − ϑ | ≤ r for some y,ϑ ∈ R and r > 0, then |y1{|y|>2r} − ϑ | ≤ 3 min{|ϑ |, r} (cf. [52]). Taking
y = σ̂i,j , ϑ = σi,j , and r = τ/2, and using Theorem 1 we obtain that, on the event of probability

at least 1 − c∗p2−γ 2
,∣∣σ̂ H

i,j − σi,j

∣∣≤ 3 min
{|σi,j |, τ/2

}
, i, j = 1, . . . , p.

Thus, for any q ∈ (0,2), with probability at least 1 − c∗p2−γ 2
,∥∥�̂H

τ − �
∥∥2 =

∑
i,j

(
σ̂ H

i,j − σi,j

)2 ≤ 9
∑
i,j

min
{
σ 2

i,j , τ
2/4
}≤ 9(τ/2)2−q |�|qq ≤ 9τ 2−qS.

Since all bounds hold uniform in � ∈ G∗
q (S,R) and ψ ∈Hβ(T ), the theorem is proved. �

In the direct observation case where εj = 0 we have ψ(u) = 1 for all u ∈ R
p , so that the

deterministic error term in (6) disappears. In this case, U can be fixed and the threshold can be
chosen as a multiple of

√
(logp)/n, analogously to [4]. Together with the embedding Uq(s,R) ⊆

Gq(sp,R), we recover Theorem 2 from Bickel and Levina [4]. In Section 4, we will discuss in
detail the optimal choice of the spectral radius and the threshold in the presence of noise.

The spectral soft thresholding estimator is defined as

�̂S
τ := (σ̂ S

i,j

)
i,j=1,...,p

with σ̂ S
i,j := sign(σ̂i,j )

(|σ̂i,j | − τ
)
+

with some threshold τ > 0. It is well known, see, for example, [52], that

�̂S
τ = arg min

A∈Rp×p

{|A − �̂|22 + 2τ |A|1
}
. (9)

Adapting the proof of Theorem 2 in Rigollet and Tsybakov [45], we obtain the following oracle
inequality, which is sharp for q = 0 and looses a factor 2 otherwise.

Theorem 3. Assume that |�|∞ ≤ R, and ψ ∈ Hβ(T ) for some β,R,T > 0. Let τ ≥ τ(U)

where τ(U) is defined in (6) with parameters γ >
√

2 and U ≥ 1 such that 8γ
√

(log(ep))/n ≤
e−RU2−3T Uβ

. Then, ∥∥�̂S
τ − �

∥∥2 ≤ min
A∈Rp×p

{‖A − �‖2 + (1 + √
2)2τ 2|A|0

}
(10)
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with probability at least 1 − c∗p2−γ 2
where c∗ = 12e−γ 2

. For any q ∈ (0,2) we have, with
probability at least 1 − c∗p2−γ 2

,∥∥�̂S
τ − �

∥∥2 ≤ min
A∈Rp×p

{
2‖A − �‖2 + c(q)τ 2−q |A|qq

}
, (11)

where c(q) > 0 is a constant depending only on q .

Proof. Starting from the characterization (9), we use Theorem 2 by Koltchinskii et al. [34].
To this end, we write σ̂i,j = σi,j + ξi,j , i, j ∈ {1, . . . , p}, where ξi,j are random variables with
exponential concentration around zero due to Theorem 1. Observing σ̂i,j is thus a sequence space
model in dimension p2 and a special case of the trace regression model Yj = tr(Z�

i,jA0) + ξi,j

considered in [34]. Namely, A0 is the diagonal matrix with diagonal entries σi,j and Zi,j are
diagonalisations of the canonical basis in R

p×p . In particular, Assumption 1 in [34] is satisfied
for μ = p, that is, ‖B‖2

L2(�) = p−2|B|22 where we use the notation of [34]. Note also that the rank
of a diagonal matrix B is equal to the number of its non-zero elements. Consequently, Theorem 2
in [34] yields with λ = 2τ

p2 that

∣∣�̂S
τ − �

∣∣2
2 ≤ min

A∈Rp×p

{|A − �|22 + (1 + √
2)2τ 2|A|0

}
on the event that A = {maxi,j |σ̂i,j − σi,j | < τ }. To estimate the probability of A, we apply
Theorem 1. Inequality (11) follows from (10) using the same argument as in Corollary 2 of
[45]. �

This theorem shows that the soft thresholding estimator allows for estimating matrices that are
a not exactly sparse but can be well approximated by a sparse matrix. Choosing A = � in the
oracle inequalities (10) and (11), we obtain the following corollary analogous to Theorem 2.

Corollary 4. Let R,T ,S > 0, β ∈ (0,2), and q ∈ [0,2). Let τ ≥ τ(U) where τ(U) is defined in
(6) with parameters γ >

√
2 and U ≥ 1 such that 8γ

√
(log(ep))/n ≤ e−RU2−3T Uβ

. Then

sup
�∈G∗

q (S,R),ψ∈Hβ (T )

P�,ψ

(∥∥�̂S
τ − �

∥∥≥ CS1/2τ 1−q/2)≤ c∗p2−γ 2
,

where C = 1 + √
2 for q = 0, and C = √

c(q) for q ∈ (0,2).

4. Minimax optimality

In this section, we study minimax optimal rates for the estimation of � on the class Gq(S,R) ×
Hβ(T ). We first state an upper bound on the rate of convergence of the hard thresholding es-
timator in this high-dimensional semiparametric problem. It is an immediate consequence of
Theorem 2. Due to Corollary 4, the result directly carries over to the soft thresholding estimator.
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Theorem 5. Let R,T ,S > 0, β ∈ (0,2), and q ∈ [0,2). For γ >
√

2, set

U∗ =
√

1

4R
log

n

64γ 2 log(ep)
. (12)

Let n be large enough such that U∗ ≥ ( 3T
R

)1/(2−β) ∨ (c̄/T )1/β ∨ 1 for some numerical constant
c̄ > 0. Then for any τ ≥ τ(U∗) where τ(·) is defined in (6) we have

sup
(�,ψ)∈Gq (S,R)×Hβ (T )

P�,ψ

(∥∥�̂H
τ − �

∥∥≥ C̄1r̄n,p

)≤ C̄0p
2−γ 2

with r̄n,p := S1/2
(

R1−β/2T

(
log

n

log(ep)

)−1+β/2)1−q/2
(13)

for some numerical constants C̄0, C̄1 > 0.

Proof. It follows from the assumption on U∗ that 3T U
β∗ ≤ RU2∗ . This and the definition of U∗

imply that 8γ
√

(log(ep))/n ≤ e−RU2∗ −3T U
β∗ . Therefore, we can apply Theorem 2, which yields

the result since

τ(U∗) ≤ 6γ
e2RU2∗

U2∗

(
log(ep)

n

)1/2

+ 3T U
−2+β∗ ≤

(
2c̄

3
+ 3

)
T U

−2+β∗ . �

It is interesting to compare Theorem 5 with the result of Butucea and Matias [6] corresponding
to p = 1, S = 1, and establishing a logarithmic rate for estimation of the variance in deconvolu-
tion model under exponential decay of the Fourier transform of εj . Butucea and Matias [6] have
shown that, if log |ψ(u)| =O(|u|β), their estimator achieves asymptotically a mean squared error
of the order (logn)−1+β/2. This coincides with the case p = 1 and q = 0 of the non-asymptotic
bound in (13). A similar rate for p = 1 has been obtained by Matias [41] under the assumptions
on the decay of the Laplace transform.

We now turn to the lower bound matching (13) for q = 0. Intuitively, the slow rate comes from
the fact that the error distribution can mimic the Gaussian distribution up to some frequency in the
Fourier domain. A rigorous application of this observation to the construction of lower bounds
goes back to Jacod and Reiß [31], though in quite a different setting. For the multidimensional
case that we consider here, the issue becomes particularly challenging.

Theorem 6. Let β ∈ (0,2) and assume that C1p ≤ S ≤ C2p, T (logn)−1+β/2 ≤ C3R
β/2,

T (logn)c∗ ≥ 1 ∨ Rβ/2 for some constants C1,C2,C3 > 0, and c∗ > 0. Then, there are constants
c1, c2 > 0 such that

inf
�̃

sup
(�,ψ)∈G0(S,R)×Hβ (T )

P�,ψ

(‖�̃ − �‖ ≥ c1rn,p

)
> c2

with rn,p := S1/2R1−β/2T (logn)−1+β/2,

where the infimum is taken over all estimators �̃.
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The proof of this theorem is postponed to Section 8. We use the method of reduction to test-
ing of many hypotheses relying on a control of the χ2-divergence between the corresponding
distributions, cf. Theorem 2.6 in [51]. The present high-dimensional setting introduces some ad-
ditional difficulties. When the dimension p of the sample space is growing, an increasing num-
ber of derivatives of the characteristic functions has to be taken into account for the χ2-bound.
Achieving bounds of the correct order in p causes difficulty when p is arbitrarily large. We have
circumvented this problem by introducing a block structure to define the hypotheses. The con-
struction of the family of covariance matrices of Xj used in the lower bounds relies on ideas
from Rigollet and Tsybakov [45], while the error distributions are chosen as perturbed β-stable
distributions. To bound the χ2-divergence, we need a lower bound on the probability density of
Yj . It is shown by Butucea and Tsybakov [8] that the tails of the density of a one-dimensional
stable distribution are polynomially decreasing. We generalize this result to the multivariate case
(cf. Lemma 15 below) using properties of infinitely divisible distributions.

We now give some comments on the lower bound of Theorem 6. Assuming S of order p means
that we consider quite a sparse regime. We always have S ≤ p2. Recall also that S ≥ p as the
diagonal of the covariance matrix is included in the definition of S for the class G0(S,R). An
alternative strategy pursued in the literature is to estimate a correlation matrix, i.e., to assume
that all diagonal entries are known and equal to one. However, this seems not very natural in
the present noisy observation scheme. On the other hand, Theorem 6 shows that even in the
sparse regime S = O(p) the estimation error tends to ∞ as n → ∞ for dimensions p growing
polynomially in n. The logarithmic in n rate reflects the fact that the present semiparametric
problem is severely ill-posed.

Comparing the lower bound rn,p with the upper bound r̄n,p from Theorem 5, we see that they
coincide if the dimension satisfies p = O(exp(cnγ )) for some γ ∈ [0,1) and some c > 0. Thus,
we have established the minimax optimal rate under this condition. Note also that we only loose
a factor of order log logp for very large p, for instance, if p = en/ logn.

5. Discussion and extensions

5.1. The adaptivity issue

Since the threshold τ(U∗) in Theorem 5 depends on unknown parameters R, T , and β , a nat-
ural question is whether it is possible to construct an adaptive procedure independent of these
parameters that achieves the same rate. One possibility to explore consists in selecting τ in a
data-driven way. Another option would be to construct estimators corresponding to values of R,
T , and β on a grid, and then to aggregate them.

For direct observations an adaptive choice of the threshold, more precisely a cross-validation
criterion, has been proposed by Bickel and Levina [4] and was further investigated by Cai and
Liu [9]. For noisy observations that we consider here, the adaptation problem turns out to be more
delicate since not only an optimal constant has to be selected but also the order of magnitude of
τ(U) depends on the unknown parameter β .

Often an upper bound R on the maximal entry of � is known, so that one does not need
considering adaptation to R. Ignoring the issue of unknown R, the choice of the spectral radius
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U∗ of the order
√

R−1 log(n/ log(ep)) is universal, which reflects the fact that the estimation
problem is severely ill-posed with dominating bias. Indeed, U∗ in Theorem 5 corresponds to un-
dersmoothing such that the deterministic estimation error dominates the stochastic error without
deteriorating the convergence rates. To construct an adaptive counterpart of τ , we need either
an estimator of the error of an optimal procedure for estimating � under the | · |∞-loss or an
estimator of the “regularity” β . Therefore, extrapolating the argument of Low [39] to our setting,
it seems plausible that an adaptive choice of τ cannot, in general, lead to the optimal rate. This
does not exclude that optimal adaptive estimators can be constructed by other type of procedure,
such as aggregation of estimators on the grid as mentioned above.

5.2. Low-rank covariance matrix

Alternatively to the above setting where the covariance matrix � is sparse, we can consider
a low-rank matrix �. This is of particular interest in the context of factor models where, as
discussed by Fan et al. [26,27], an additional observation error should be taken into account.
While [26,27] estimate the covariance matrix of the noisy observations assuming that the errors
have a sparse covariance structure, a spectral approach analogous to the one developed above
allows for estimating directly the low-rank covariance matrix of X without sparsity restrictions
on the error distribution.

Such an approach, which is at first sight quite natural, would be to use the spectral covariance
estimator �̂ from (5) together with a nuclear norm penalization. The following oracle inequality
is an easy consequence of Theorem 1 in Koltchinskii et al. [34].

Proposition 7. Assume that M ⊆R
p×p is convex and let τ > 0. On the event {2‖�̂−�‖∞ ≤ τ },

the estimator �̂R
τ := arg minS∈M{‖S − �̂‖2 + τ‖S‖1} satisfies

∥∥�̂R
τ − �

∥∥2 ≤ inf
S∈M

{
‖S − �‖2 +

(
1 + √

2

2

)2

τ 2 rank(S)

}
.

To use this proposition, we need to find a bound on the spectral norm ‖�̂−�‖∞ that hold with
high probability. The techniques from Cai et al. [12] designed for the case of direct observations
allow us to obtain an upper bound on this quantity of order p up to a logarithmic in n/ log(p)

factor. Thus, the convergence rate of this estimator is rather slow.
Let us show now that another estimator can be constructed based the approach from Be-

lomestny and Trabs [2], which allows for a better dependence on p. To this end, we write

−〈u,�u〉
|u|2 = 〈�(u),�

〉
with design matrix �(u) := −uu�

|u|2 , u ∈ R
p \ {0}.

For a weight function w : Rp → R+ supported on the annulus {u ∈ R
p : 1

4 ≤ |u| ≤ 1
2 } and a

spectral radius U ≥ 1, we set wU(u) := U−pw(u/U),u ∈ R
p . Motivated by (2), we define the

weighted Lasso-type estimator

�̃λ := arg min
M∈M

{∫
Rp

(
Re logϕn(u)1{|ϕn(u)|≥ι}

|u|2 − 〈�(u),M
〉)2

wU(u)du + λ‖M‖1

}
(14)
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for a convex set M ⊆ {M ∈ R
p×p : M ≥ 0} and with nuclear norm penalisation for some λ > 0.

We have inserted a truncation function 1{|ϕn(u)|≥ι} for some threshold ι > 0 which increases the
stability of the estimator by cutting off frequencies with too small point estimates ϕn(u). Under
the universal choice ι = 1/(2

√
n) this indicator function will be one with high probability. The

estimator �̃λ is associated to the weighted scalar product which replaces the classical empirical
scalar product:

〈A,B〉U :=
∫
Rd

〈
�(u),A

〉〈
�(u),B

〉
wU(u)du and ‖A‖2

U := 〈A,A〉U ,

for matrices A,B ∈ R
p×p . As in [2], Lemma 3.2, we have for any for any positive semi-definite

matrix A ∈R
p×p an isometry with respect to the Frobenius norm

κw‖A‖2 ≤ ‖A‖2
U ≤ κw‖A‖2 with κw :=

∫
Rp

|v1|4
|v|4 w(v)dv,κw := ‖w‖L1 .

Adapting slightly the proof of Theorem 1 in [34], we obtain the following oracle inequality.

Theorem 8. Let M be convex. Define

Rn :=
∫
Rp

(
Re logϕn(u)1{|ϕn(u)|≥ι}

|u|2 − 〈�(u),�
〉)

�(u)wU(u)du.

The estimator �̃λ from (14) satisfies on the event {‖Rn‖∞ ≤ λ}

‖�̃λ − �‖2
U ≤ inf

M∈M
{‖M − �‖2

U + C2∗λ2 rank(M)
}

for the constant C∗ = (1 + √
2)/(2κw) depending only w.

We omit the proof of this theorem as it is analogous to Theorem 3.4 in [2]. In combination
with the isometry property, we obtain an oracle inequality with respect to the Frobenius norm:

‖�̃λ − �‖2 ≤ inf
M∈M

{
C∗

1‖M − �‖2 + C∗
2λ2 rank(M)

}
with C∗

1 = κw/κw and C∗
2 = (1+√

2)2/(4κ3
w). The best leading constant in this oracle inequal-

ity can be obtained by minimizing C∗
1 with respect to w. We do not detail it here.

To apply Theorem 8, we need a sharp probabilistic bound for ‖Rn‖∞. At first sight, this might
look similar to bounding ‖�̂−�‖∞ in Proposition 7. However, the dependence on the dimension
is much better because the design matrix satisfies ‖�(u)‖∞ = 1.

Consider the error distributions in the subclass of Hβ(T ) defined as follows:

H′
β(T ) := {ψ characteristic function : ∣∣log

∣∣ψ(u)
∣∣∣∣≤ T

(
1 + |u|β2

)
, u ∈R

p
}⊆Hβ(T ).
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Theorem 9. Let T > 0, β ∈ [0,2) and ψ ∈H′
β(T ) and choose ι = 1

2
√

n
. Then there are constants

Ci = Ci(w) > 0, i = 1,2, depending only on w, such that for any γ ≥ 1 and any U ≥ 1 satisfying
e‖�‖∞U2/8+2T Uβ ≤ √

n we have P(‖Rn‖∞ ≥ λ) ≤ 3e−γ 2
if

λ ≥ C1γ
2 e‖�‖∞U2/4+4T Uβ

U2
√

n
+ C2T U−2+β. (15)

The proof is given in Appendix A. The right-hand side of (15) is similar to the threshold (6),
but without

√
logp. Hence, this upper bounds depends on the dimension p only via spectral

norm ‖�‖∞. In the well-specified case, � ∈ M and optimizing over the spectral radius yields
U of the order

√
(logn)/‖�‖∞ and the corresponding λ of the order (‖�‖−1∞ logn)−1+β/2. The

error bound takes the form

‖�̃λ − �‖ ≤ C
√

rank(�)‖�‖1−β/2∞ (logn)−1+β/2

with high probability. Here, C > 0 is a constant depending only on w and T . Note that this bound
for the estimation error improves a corresponding result in [2]. In the direct observation case, we
can choose U = ‖�‖−1/2∞ and obtain ‖�̃λ − �‖ ≤ C‖�‖∞

√
rank(�)/n with high probability.

5.3. Elliptical distributions

Most of the literature on high-dimensional covariance estimation relies on a sub-Gaussian as-
sumption on the distribution of Xj . To relax the moment assumption and allow for heavy-tailed
distributions, the rich class of elliptical distributions has been studied, see the review paper by
Fan et al. [25]. We refer to Fang et al. [28] for an introduction to the theory of elliptical distribu-
tions.

We will now outline how our approach can be generalized to the case where Xj follow a
centered elliptical distribution, that is the characteristic function of Xj is of the form

E
[
ei〈u,Xj 〉]= �

(
u��u

)
, u ∈ R

p,

for some scalar function � : R → R and some positive definite matrix �, which is proportional
to the covariance matrix. The function � is called the characteristic generator. It is easy to see
that E[XjX

�
j ] = −2�′(0)� provided that � is differentiable. We impose the mild assumption

that �(·) = exp(−η(·)) for some function η : R+ → R+. Then, the characteristic function of the
observations Yj has the form

ϕ(u) = exp
(−η

(
u��u

)+ logψ(u)
)
, u ∈R

p.

We recover the Gaussian case with η(x) = x
2 . Other important examples are multivariate α-

stable distributions where η(x) = xα/2 for α ∈ (0,2] or normal mixtures. To adapt the estimation
strategy from Section 2, we assume that |Re logψ(u)| decays slower than η(u��u). If η is
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differentiable and strictly monotone with inverse function η−1, a first order Taylor approximation
and the fact that (η−1)′ = 1/(η′ ◦ η−1) yield

η−1(− log
∣∣ϕ(u)

∣∣)= η−1(η(u��u
)− log

∣∣ψ(u)
∣∣)≈ u��u − log |ψ(u)|

η′(u��u)
.

If the last term is of smaller order than u��u = 〈u,�u〉 for |u| → ∞, we can use these heuristics
to estimate �. The argument is made rigorous by the following lemma proved in Appendix B.

Lemma 10. Let E[ei〈u,Xj 〉] = exp(−η(u��u)) for a positive-definite matrix � and a strictly
monotone function η : R+ → R+ which is twice continuously differentiable outside a neighbour-
hood of the origin. Assume further that

| log |ψ(u)||
η′(〈u,�u〉) ≤ T

(
1 + |u|)β and

∣∣xη′′(x)
∣∣≤ T

∣∣η′(x)
∣∣, for all u ∈R

p, x ∈R+,

for some β < 2 and T > 0. For all u ∈ R
p with |u| ≥ (2β+1T 2/λmin)

1/(2−β) ∨ 1 we then have∣∣∣∣η−1(− log
∣∣ϕ(u)

∣∣)− 〈u,�u〉 − log |ψ(u)|
η′(〈u,�u〉)

∣∣∣∣≤ 4T 2

λmin
|u|2β−2,

where λmin > 0 is the smallest eigenvalue of �.

A major consequence of this lemma for our purposes is that |u|−2η−1(− log |ϕ(u)|) = 〈u,�u〉
|u|2 +

O(|u|−2+β) as |u| → ∞. Thus, we can act as in Section 2. This leads to the estimator �̂� =
(σ̂�

i,j )i,j=1,...,p for � where

σ̂ �
i,i := 1

U2
η−1(−Re

(
logϕn

(
Uu(i)

)))
,

σ̂�
i,j := 1

U2
η−1(−Re

(
logϕn

(
Uu(i,j)

)))− σ̂ �
i,i + σ̂ �

j,j

2
for i 
= j.

Applying an argument as in Lemma 10 together with the linearization for logϕn, we can bound
the stochastic error of the estimators σ̂ �

i,j . We obtain the following proposition analogous to
Theorem 1. The proof is again postponed to Appendix B.

Proposition 11. Let the assumptions of Lemma 10 be satisfied. Let γ >
√

2 and suppose that
U ≥ (22+βT 2/λmin)

1/(2−β) ∨ 1 satisfies 8γ
√

(log(ep))/n < ��,U for

��,U := min
i,j

η′(U2〈u(i,j),�u(i,j)
〉)∣∣ϕ(Uu(i,j)

)∣∣.
Set

τ(U) = 12γ

U2��,U

√
log(ep)

n
+ 4(T + 1)U−2+β.
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Then, for c∗ = 12e−γ 2
,

P�,ψ

(
max

i,j=1,...,p

∣∣σ̂ �
i,j − σi,j

∣∣< τ(U)
)

≥ 1 − c∗p2−γ 2
.

Under more specific assumptions on η it is possible to derive a uniform bound for ��,U . Since
|ϕ(u)| ≥ exp(−c Reη(u��u)) for some constant c > 0, the stochastic error may not explode as
fast as for normal distributions resulting in possibly faster convergence rates depending on η.
Relying on �̂�, hard and soft thresholding estimators can be constructed with similar behaviour
as for the Gaussian case.

For the estimator �̂�, the function η is assumed to be known. It would be interesting to extend
the approach of this section to the case where η belongs to a parametric family introducing an
additional nuisance parameter.

6. Numerical example

In this section, we numerically analyse the performance of the soft thresholding estimator for
the convolution model Y = X + ε, where X follows a p-dimensional normal distribution with
zero mean and covariance matrix � and ε is independent of X and has an elliptical distribution.
Specifically, we study the model

ε
d= √

WAZ,

where Z ∼ N (0, Ip) has a standard p-dimensional normal distribution, A is a p × p matrix
and W is a nonnegative random variable with a Laplace transform L. As can be easily seen, the
characteristic function of ε is given by

ψ(u) = E
[
ei〈u,ε〉]= L

(
u�AA�u

2

)
.

Thus ε has indeed an elliptical distribution. We assume that W follows a Gamma distribution
with the density pW(x) = �(ϑ)−1xϑ−1e−x , x ≥ 0, for some ϑ > 0. Then we have

ψ(u) =
(

1 + u�AA�u

2

)−ϑ

.

Our aim is to compare several estimators of the covariance matrix � based on n independent
copies Y1, . . . , Yn of Y . In the direct observations case where ε = 0 we may apply the sample
covariance matrix

�cov := �∗
Y = 1

n

n∑
j=1

YjY
�
j . (16)
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Adapting to sparsity in a high-dimensional framework, a soft thresholding estimator based on
�cov is given by the solution of the optimisation problem, cf. Rothman et al. [47],

�s
τ := arg min

S∈Rp×p

{∣∣S − �cov
∣∣2
2 + 2τ |S|1

}
, (17)

with threshold parameter τ > 0. In some situations positive definiteness of the covariance ma-
trix estimate is desirable when the covariance estimator is, for example, applied to supervised
learning or if one needs to generate samples from the underlying normal distribution. In order to
achieve positive definiteness, Rothman [46] proposed to use the following modification of (17):

�
pds
τ := arg min

S∈Rp×p,S�0

{∣∣S − �cov
∣∣2
2 + 2τ |S|1 − λ log |S|}, (18)

where |S| denotes the determinant of the matrix S and λ is a fixed small number. The loga-
rithmic barrier term in (18) ensures the existence of a positive definite solution, since log |S| =∑p

j=1 log(σj (S)), where σj (S) is the j th largest eigenvalue of S > 0. In order to solve (18), an
algorithm similar to the graphical lasso algorithm can be applied, see Friedman et al. [29].

Turning back to our deconvolution problem, we have already seen that the estimators (16), (17)
and (18) fail to deliver a consistent estimator for � unless ε is zero. Hence, we finally introduce
the positivity preserving version of the spectral soft thresholding estimator from (9):

�
sps
τ := arg min

S∈Rp×p,S�0

{|S − �̂|22 + 2τ |S|1 − λ log |S|}. (19)

The tuning parameter τ can be chosen using a method introduced in [4]. The data is ran-
domly partitioned N times into a training set of size n1 and a validation set of size n2 with
n2 = �n/ log(n)� and n1 = n−n2. The tuning parameter is then selected as τ̂ = arg minτ QN(τ),
where

QN(τ) =
N∑

m=1

∥∥�sps,(m,n1)
τ − �̂(m,n2)

∥∥2
,

where �
sps,(m,n1)
τ is the estimator, with penalty parameter τ , computed with the training set of

the mth split and �̂(m,n2) is the estimator (5) computed with the validation set of the mth split.
First, we consider a tridiagonal model where the population covariance matrix � has entries

σij = 0.4 · 1(|i − j | = 1) + 1(i = j), i, j ∈ {1,2, . . . , p}. Using this covariance model with p =
20, we generate n = 50 realizations of independent normal random vectors with mean zero and
the covariance matrix �. Adding an independent noise ε with the above elliptical distribution
with A = Id , depending on the parameter ϑ , we compute three estimates �cov, �

pds
τ and �

sps
τ .

This procedure was repeated 500 times. The parameters of the algorithms are τ = 0.25, λ =
10−4, where the parameter τ is selected as a minimum of the function Q100(τ ) shown in Figure 1.

The results are presented in Figure 2 for the case of direct observations and for three different
noise specifications corresponding to the values ϑ ∈ {0.5,1,2}. The used values of the tuning
parameter U are 1,3,3, respectively. While in the case of direct observations, the estimator �

sps
τ
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Figure 1. The objective function Q100(τ ) for the choice of the tuning parameter τ .

has no advantages over �cov and �
pds
τ , it significantly outperforms these two estimators in the

case of non-zero noise. We do not only observe a strong bias for �cov and �
pds
τ in the presence of

noise, but also a much better concentration of the spectral estimator �
sps
τ compared to the other

two procedures. The higher is the variance of the noise, the stronger are these bias and variance
effects.

Now, let us consider the case of normal noise. Note that this situation corresponds to β = 2 and
is not covered (at least formally) by our theoretical study. Specifically we generate samples from
the model Y = X + ε, where X follows a p-dimensional normal distribution with zero mean and
covariance matrix � and ε is independent of X and has also normal distribution with zero mean
and covariance matrix ρ2I . We again consider tridiagonal model where the population covariance
matrix � has entries σij = 0.4 · 1(|i − j | = 1) + 1(i = j), i, j ∈ {1,2, . . . , p}. In Figure 3, the
corresponding estimation errors for three methods are presented in the case of p = 20, τ = 0.4,
n = 50 and ρ ∈ {0.1,0.5}. As one can see, even in the case of misspecified models the spectral
estimator continues to perform reasonably well.

Finally, we study the situation where the matrix � is block diagonal with the elliptical error
distribution from above. In particular, we generate positive definite matrix with randomly-signed,
non-zero elements. A shift is added to the diagonal of the matrix so that its condition number
equals p. Using this covariance model, we generated n = 100 realizations of independent 20-
dimensional normal random vectors with mean zero and covariance �. We then proceed as before
considering the case of direct observations and ϑ ∈ {0.5,1,2}. The tuning parameter U was taken
to be 3 for all three cases. The errors show a similar behaviour as in the first case, see Figure 4.
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Figure 2. Tridiagonal �: box plots of the estimation errors ‖�o
τ − �‖ for o ∈ {cov,pds, sps} in the case of

the convolution model Y = X + ε with ε
d= √

WZ, where Z ∼N20(0, I20) and W ∼ Gamma(ϑ).

7. Proofs

7.1. Concentration of the spectral estimator

For the proof of Theorem 1, we need the following lemmas. Set S(u) = Re(logϕn(u)− logϕ(u)).
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Figure 3. Tridiagonal �: box plots of the estimation errors ‖�o
τ − �‖ for o ∈ {cov,pds, sps} in the case of

the convolution model Y = X + ε with ε
d= Z, where Z ∼N20(0, ρI20).

Lemma 12. For any x ∈ (0,1], and any u ∈R
p such that ϕ(u) 
= 0,

P
(∣∣S(u)

∣∣≥ x
)≤ 3P

(∣∣ϕn(u) − ϕ(u)
∣∣≥ x

2

∣∣ϕ(u)
∣∣).

Proof. We have

S(u) = log

∣∣∣∣ϕn(u)

ϕ(u)

∣∣∣∣≤ log

(∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣+ 1

)
≤
∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣.
Thus, P(S(u) ≥ x) ≤ P(|ϕn(u) − ϕ(u)| ≥ x|ϕ(u)|) for all x > 0. Next, on the event {|ϕn(u) −
ϕ(u)| ≤ 1

2 |ϕ(u)|} we have

−S(u) = log

∣∣∣∣ ϕ(u)

ϕn(u)

∣∣∣∣≤ log

(∣∣∣∣ϕn(u) − ϕ(u)

ϕn(u)

∣∣∣∣+ 1

)
≤ log

(
2

∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣+ 1

)
≤ 2

∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣.
Therefore, for any x > 0,

P
(−S(u) ≥ x

)≤ P
(
2
∣∣ϕn(u) − ϕ(u)

∣∣≥ x
∣∣ϕ(u)

∣∣)+ P

(∣∣ϕn(u) − ϕ(u)
∣∣> 1

2

∣∣ϕ(u)
∣∣).
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Figure 4. Block diagonal �: box plots of the estimation errors ‖�o
τ −�‖ for o ∈ {cov,pds, sps} in the case

of the convolution model Y = X + ε with ε
d= √

WZ, where Z ∼ N20(0, I20) and W ∼ Gamma(ϑ).

Since x ∈ (0,1], we obtain P(−S(u) ≥ x) ≤ 2P(|ϕn(u) − ϕ(u)| ≥ (x/2)|ϕ(u)|) and hence the
lemma. �

Lemma 13. For any κ ∈ (0,
√

n/8] we have

P

(∣∣ϕn(u) − ϕ(u)
∣∣≥ 3κ√

n

)
≤ 4e−κ2

.
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Proof. We decompose ϕn − ϕ into real and imaginary part. Both can be estimated analogously,
such that we consider only the real part. We write

Re
(
ϕn(u) − ϕ(u)

)= 1

n

n∑
k=1

ξk(u) with ξk(u) := Re
(
ei〈u,Yk〉)− Reϕ(u).

The independent and centred random variables ξk(u), k = 1, . . . , n, satisfy∣∣ξk(u)
∣∣≤ 2 and Var

(
ξk(u)

)≤ 1 − ∣∣ϕ(u)
∣∣2 ≤ 1.

Using the fact that κ ∈ (0,
√

n/8] and then applying Bernstein’s inequality we find

P

(∣∣Re
(
ϕn(u) − ϕ(u)

)∣∣≥ 3κ

2
√

n

)
≤ P

(∣∣Re
(
ϕn(u) − ϕ(u)

)∣∣≥ √
2κ√
n

+ 2κ2

3n

)
≤ 2e−κ2

. �

Corollary 14. For any γ > 0 and u ∈R
p such that γ

√
(log(ep))/n ≤ |ϕ(u)|/8 we have

P

(∣∣S(u)
∣∣≥ 6γ

√
log(ep)√

n|ϕ(u)|
)

≤ 12(ep)−γ 2
.

Proof. We use Lemma 12 with x = 6γ
√

log(ep)√
n|ϕ(u)| and then Lemma 13 with κ = γ

√
log(ep). To

apply Lemma 12, we need 6γ

√
log ep

n
≤ |ϕ(u)|, while Lemma 13 requires 8γ

√
log ep

n
≤ 1. Since

|ϕ(u)| ≤ 1 both conditions are satisfied. �

8. Proof of the lower bound: Theorem 6

Since C1p ≤ S ≤ C2p it is enough to assume that 2p ≤ S (otherwise we consider a (C1p/2)-
dimensional subspace). Furthermore, we will assume without loss of generality that S = p +
2k for some integer k ≥ 1 corresponding to p non-zero diagonal entries and 2k non-zero off-
diagonal entries of the covariance matrix. Note that under our assumptions, S, k and p are of the
same order up to constants:

S

4
≤ k = S − p

2
≤ S

2
≤ C2p

2
. (20)

Let P�,ψ denote the distribution of Yj corresponding to the covariance matrix � ∈ Gq(S,R) and
to the error distribution with characteristic function ψ ∈Hβ(T ). Set

ϕ�,ψ(u) := E�,ψ

[
ei〈u,Yj 〉]= exp

(
−1

2
〈u,�u〉 + logψ(u)

)
.

Applying Theorem 2.6 in [51], it is sufficient to construct a finite number of pairs (�i,ψi) with
�0 = RIp,ψ0 ∈ Hβ(T ) and (�i,ψi) ∈ Gq(p + 2k,R) ×Hβ(T ) for i = 1, . . . ,M , such that the
following two conditions hold:
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(i) ‖�i −�j‖ ≥ CS1/2T (R−1 logn)−1+β/2 for all 0 ≤ i < j ≤ M and some constant C > 0,
(ii) χ2(P⊗n

�j ,ψj
,P⊗n

�0,ψ0
) ≤ M/3 for all j = 1, . . . ,M .

Step 1: Constructing the pairs (�i,ψi). Without loss of generality, consider p that can be de-
composed as p = Lb where b and L are integers. For a block size b ∈ N and L = p/b ∈ N let
B ⊆ R

p×p denote the set of symmetric block diagonal matrices B = diag(A1, . . . ,AL) satisfy-
ing:

• B = (bij ) has exactly k non-zero over-diagonal entries, all equal to 1;
• bii = 0 for i = 1, . . . , n;
• Al ∈R

b×b for l = 1, . . . ,L.

There are N := Lb(b − 1)/2 = p(b − 1)/2 positions over the diagonal of B where the entry
1 can possibly appear. Since k ≤ C2p/2, we have k < N for b > C2 + 1. In what follows, we
select b > C2 + 1, which is a fixed integer independent of k and p. Lemma A.3 in Rigollet and
Tsybakov [44] yields that there is a subset {B1, . . . ,BM} ⊆ B such that for any i 
= j we have
‖Bi − Bj‖2 ≥ (k + 1)/4 and for some constants C′

1, c
′
1 > 0,

logM ≥ C′
1k log

(
1 + eN

4k

)
≥ C′

1k log

(
1 + c′

1bp

k

)
. (21)

We consider now the following family of matrices

�0 = RIp, �j = RIp + ρT

b
δ2−β
n,p Bj , j = 1, . . . ,M,

where

δn,p = R1/2
(

6 log
n

ρ′ log(1 + c′
1bp/k)

)−1/2

, (22)

and ρ,ρ′ > 0 are small enough constants to be chosen later. By construction and using (20) we
have

‖�i − �j‖ ≥ ρ
T

2b
δ2−β
n,p k1/2 ≥ T

2b
k1/2

(
6R−1 log

(
n

ρ′ log(1 + c′
1bp

k
)

))−(1−β/2)

≥ c′
2T S1/2(R−1 logn

)−(1−β/2)
,

where c′
2 > 0 is a constant. Moreover, since by assumption of the theorem, R−1T b−1δ

2−β
n,p is

uniformly bounded, the matrices �i are diagonally dominant and thus positive semi-definite for
sufficiently small ρ. We conclude that the �i thus defined are covariance matrices satisfying the
lower bound in (i) above.

We now turn to the construction of characteristic functions ψj . To have an as small as possible
L2-distance between the characteristic functions, we choose ψj such that logψj(u) − logψ0(u)

mimics 〈u, (�j − �0)u〉/2 for small frequencies, keeping the block structure. In what fol-
lows, we denote by F the Fourier transform operator. On each block of the matrix Bj =
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diag(Aj,1, . . . ,Aj,L), for j = 1, . . . ,M, l = 1, . . . ,L, we define

logψj,l(u) := ρT δ
2−β
n,p

2b
〈u,Aj,lu〉FK(δn,pu) + logψ0,l(u), u ∈ R

b,

logψ0,l(u) :=
∫
Rb

(
ei〈u,x〉 − i〈u,x〉1{β≥1} − 1

) T

ξb|x|β+b
dx, u ∈ R

b,

where ξb > 0 is a constant depending only on b, and K ∈ L1(Rb) ∩ C2(Rb) is a function satisfy-
ing FK ∈ C∞(Rb), and

FK(u) = 1 for |u| ≤ 1, FK(u) = 0 for |u| > 2, and 0 ≤FK(u) ≤ 1 ∀u.

Writing ul := (ub(l−1)+1, . . . , ubl) for 1 ≤ l ≤ L and u ∈ R
p , we then set

ψj (u) :=
L∏

l=1

ψj,l

(
ul
)
, j = 0, . . . ,M.

Note that ψ0,l is the characteristic function of a b-dimensional symmetric stable distribution, cf.
Sato [49], Theorem 14.3. To check that ψ0 ∈ Hβ(T ) is satisfied, we use Theorem 14.10 in [49],
which yields

∣∣log
∣∣ψ0(u)

∣∣∣∣≤ L∑
l=1

∣∣log
∣∣ψ0,l(u)

∣∣∣∣≤ L∑
l=1

Cβ

T

ξb

2πb/2

�(b/2)

∣∣ul
∣∣β ≤ Cβ

T

ξb

2πb/2

�(b/2)
|u|ββ,

where Cβ > 0 is a constant depending only on β and where 2πb/2

�(b/2)
is the surface area of the

(b − 1)-dimensional sphere. Thus, choosing

ξb = c
2πb/2

�(b/2)
(23)

for some sufficiently large c > 0 guarantees that ψ0 ∈Hβ(T ). Note that ξb is bounded uniformly
in b.

We also have ψj ∈ Hβ(T ) for sufficiently small ρ since maximal singular value ‖Aj,l‖∞ ≤ b

and

L∑
l=1

∣∣∣∣ρT δ
2−β
n,p

2b

〈
ul,Aj,lu

l
〉
FK

(
δn,pul

)∣∣∣∣≤ ρ‖K‖L1T

2b
δ2−β
n,p

L∑
l=1

‖Aj,l‖∞
∣∣ul
∣∣21{|ul |≤2/δn,p}

≤ ρ‖K‖L1T

2b
δ2−β
n,p

L∑
l=1

b

(
2

δn,p

)2−β ∣∣ul
∣∣β

≤ 2ρ‖K‖L1T |u|ββ.

(24)
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It remains to verify that ψj,l , l = 1, . . . ,L are indeed characteristic functions. Denoting Aj,l =
(a

j,l
k,m)k,m=1,...,b and

νj,l := 1

2b

∑
k,m

a
j,l
k,m(∂k∂mK),

where ∂k stands for the derivative with respect to kth coordinate, we rewrite the characteristic
exponent as

logψj,l(u) = ρT δ
2−β
n,p

2b

b∑
k,l=1

a
j,l
k,mukulFK(δn,pu) + logψ0(u)

= −F
[
ρT δ−β−b

n,p νj,l

(
δ−1
n,p·)](u) + logψ0(u)

=
∫
Rb

(
ei〈u,x〉 − i〈u,x〉1{β>1} − 1

)( T

ξb|x|β+b
− ρT δ−β−b

n,p νj,l(x/δn,p)

)
dx,

where in the last line we have used the relations
∫
Rb νj,l(x)dx = Fνj,l(0) = 0 and, if β ≥ 1,∫

Rb i〈u,x〉νj,l(x)dx = 〈u,∇(Fνj,l)(0)〉 = 0 for any u ∈ R
b . Consequently, ψj,l is the char-

acteristic function of an infinitely divisible distribution with Lévy density T ξ−1
b |x|−β−b −

ρT δ
−β−b
n,p νj,l(x/δn,p) provided that the latter is non-negative. To check this, it is enough to verify

the equivalent condition ρξbνj,l(x) ≤ |x|−β−b for all x ∈R
b \ {0} and some sufficiently small ρ.

We have ∥∥|x|β+bνj,l(x)
∥∥∞ ≤ ‖νj,l‖∞ + ∥∥|x|2�(β+b)/2�νj,l(x)

∥∥∞
≤ ‖Fνj,l‖L1 + ∥∥��(β+b)/2�Fνj,l

∥∥
L1,

(25)

where � denotes the Laplace operator, �x� is the minimal integer greater than x, and ‖ · ‖Lq

stands for the Lq(Rb)-norm. By construction, Fνj,l(u) = 1
2b

〈u,Aj,lu〉FK(u), and thus

‖Fνj,l‖L1 ≤ ‖Aj,l‖∞
2b

∥∥|u|2FK(u)
∥∥

L1 ≤ 1

2

∥∥|u|2FK(u)
∥∥

L1 ,

where we have used the inequality ‖Aj,l‖∞ ≤ b. Since the support of FK is compact the last
expression is bounded. The second term in (25) admits an analogous bound.

Step 2: Bounding the χ2-divergence. Due to the block structure, for any pair (�i,ψi) we have

P�i,ψi
=

L∏
l=1

Pi,l

for all i = 1, . . . ,M , l = 1, . . . ,L, where Pi,l is the convolution of the normal distribution
N (0,RIb + ρT

b
δ

2−β
n,p Ai,l) on R

b with a distribution given by the characteristic function ψi,l .
We also denote by P0 the convolution of N (0,RIb) with the stable distribution given by ψ0,l .
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We have

χ2(
P

⊗n
�i,ψi

,P⊗n
�0,ψ0

)= (1 + χ2(P�i,ψi
,P�0,ψ0)

)n − 1

=
L∏

l=1

(
1 + χ2(Pi,l ,P0)

)n − 1.
(26)

Thus, to check condition (ii) stated at the beginning of this subsection, we need to bound from
above the value

χ2(Pi,l ,P0) =
∫

f0(x)>0

(fi,l(x) − f0(x))2

f0(x)
dx, (27)

where fi,l and f0 are the densities of Pi,l and P0, respectively. To this end, we first establish a
lower bound for f0, which is the density of the convolution of a normal distribution on R

b with
zero mean and covariance matrix RIb and a stable distribution on R

b . If there is no Gaussian
component, we write R = 0 referring to a convolution of the stable distribution with a Dirac
measure in zero.

Lemma 15. In the special case of a standard stable density f0 (R = 0, T = 1) and β ∈ (0,2) we
have f0(x) ≥ Cb(1 + |x|β+b)−1 for a constant Cb > 0 depending only on b. If R > 0 and T > 0
are such that T (logn)−c ≤ CRβ/2 for some C,c > 0, we have the lower bound

f0(x) ≥ C′
bR

−b/2(logn)−cb/β 1

(1 + T −1−b/β |x|b+β)

for another constant C′
b > 0.

Proof. Step 1: We first consider the case R = 0, T = 1 and start with β ∈ (0,1). We have f0 =
hc ∗ hf where

hc(x) := F−1
[

exp

(
1

ξb

∫
|y|≤1

(
ei〈u,y〉 − 1

)( 1

|y|β+b
− 1

)
dy

)]
(x),

hf (x) := F−1
[

exp

(
1

ξb

∫
Rb

(
ei〈u,y〉 − 1

) 1

|y|β+b ∨ 1
dy

)]
(x), x ∈ R

b,

are the densities of an infinitely divisible distribution with Lévy density νc(x) := 1
ξb

( 1
|x|β+b −

1)1{|x|≤1} and an infinitely divisible distribution with Lévy density νf (x) := 1
ξb(|x|β+b∨1)

, x ∈R
b ,

respectively. Since νf is integrable, hf is the density of a compound Poisson distribution which
can be written as convolution exponential, cf. [49], Remark 27.3,

hf = e−νf (Rb)

∞∑
j=0

ν
∗j
f

j ! , (28)
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where ν
∗j
f denotes the j -fold convolution of νf , and ν∗0

f := δ0 is the Dirac measure in zero.
Therefore,

f0 = e−νf (Rb)

∞∑
j=0

hc ∗ ν
∗j
f

j ! ≥ e−νf (Rb)(hc ∗ νf ), (29)

where, with some abuse of notation, νf (Rb) stands for the total mass of νf . Due to the compact-
ness of the support of the Lévy measure corresponding to hc , the density hc admits a finite expo-
nential moment [49], Theorem 26.1, that is there exists α > 0 such that

∫
Rb eα|y|hc(y)dy < ∞.

For any x 
= 0, we have

∣∣hc ∗ νf (x) − νf (x)
∣∣= ∣∣∣∣∫

Rb

(
νf (x − y) − νf (x)

)
hc(y)dy

∣∣∣∣
≤
∫

|y|≤|x|/2

∣∣νf (x − y) − νf (x)
∣∣hc(y)dy

+
∫

|y|>|x|/2

∣∣νf (x − y) − νf (x)
∣∣hc(y)dy.

Rewriting νf (x) = μ(|x|) with μ(r) := ξ−1
b (r−β−b ∧ 1), we see that the expression in the last

display does not exceed

sup
|v|≤|x|

∣∣μ′(|v|)∣∣ ∫
Rb

|y|hc(y)dy + 2‖νf ‖∞e−α|x|/2
∫

|y|>|x|/2
eα|y|hc(y)dy

≤
(

sup
|v|≤|x|

∣∣μ′(|v|)∣∣+ 2‖νf ‖∞e−α|x|/2
)∫

Rb

(|y| ∨ eα|y|)hc(y)dy.

(30)

By the polynomial decay of μ, we have |μ′(|x|)| = o(νf (x)) as |x| → ∞ implying that |hc ∗
νf (x) − νf (x)| = νf (x)o(1) as |x| → ∞. Combining (29) and (30) yields

f0(x) ≥ e−νf (Rb)(hc ∗ νf )(x) = e−νf (Rb)νf (x)
(
1 + o(1)

)≥ C

|x|β+b
, ∀|x| > r, (31)

where C > 0 and r > 0 are constants depending only on b.
From the representation (28), we see that f0 is strictly positive. By the decay of its character-

istic function, f0 is also continuous. Together with (31), we conclude that

f (x) ≥ Cb

(
1 + |x|β+b

)−1

for β ∈ (0,1), R = 0, T = 1.
In the case β ∈ [1,2), R = 0, T = 1 the proof is analogous with the only difference that

the convolution exponential hf is shifted by a := (
∫
Rb x1νf (x)dx, . . . ,

∫
Rb xbνf (x)dx) ∈ R

b ,
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that is,

hf = e−νf (Rb)δa ∗
( ∞∑

j=0

ν
∗j
f

j !

)
,

where δa is the Dirac distribution at a. Thus, we replace everywhere above gb ∗hc by gb ∗hc ∗δa .
Clearly, the argument remains valid with such a modification.

Step 2. We now denote by f the density f0 from Step 1 corresponding to R = 0, T = 1. Thus,
f is a density with characteristic function e−C|u|β for some C > 0. With this notation, for R = 0,
T > 0 we have f0(x) = F−1[e−CT |u|β ](x) = T −b/βf (T −1/βx). We now turn to the case R > 0,
T > 0. Denoting the density of the normal distribution N (0, Ib) by g and using the lower bound
from Step 1, we obtain

f0(x) = ((T −b/βf
(
T −1/β ·)) ∗ (R−b/2g

(
R−1/2·)))(x)

≥ (2πR)−b/2
∫
Rb

Cb

1 + |T −1/βx − y|b+β
e− T 2/β

2R
|y|2 dy

≥ Cb(2πR)−b/2 1

(1 + 2b+β−1T −1−b/β |x|b+β)

×
∫
Rb

1

1 + 2β+b−1|y|b+β
e− T 2/β

2R
|y|2 dy

≥ 2πb/2Cb

4b+β�(b/2)
(2πR)−b/2 1

(1 + T −1−b/β |x|b+β)

∫
R+

rb−1

1 + rb+β
e− T 2/β

2R
r2

dr,

where in the third line we have used the fact that b+β > 1 and the convexity of |x|b+β ). Using the
assumption (logn)−c ≤ CRβ/2T −1, we deduce that with some constants C̄b,C

′
b > 0 depending

only on b,

f0(x) ≥ C̄bR
−b/2 1

(1 + T −1−b/β |x|b+β)

∫
R+

rb−1

1 + rb+β
e−(C(logn)c)2/β r2/2 dr

≥ C̄bR
−b/2(C(logn)c

)−b/β 1

(1 + T −1−b/β |x|b+β)

×
∫
R+

rb−1

1 + (C(logn)c)−1−b/βrb+β
e−r2/2 dr

≥ C′
bR

−b/2(logn)−cb/β 1

(1 + T −1−b/β |x|b+β)

∫
R+

rb−1e−r2/2

1 + rb+β
dr.

Since the last integral is finite and positive, we obtain the result of the lemma for R > 0, T > 0.
�
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Due to Lemma 15 and the assumption T (logn)−1+β/2 ≤ C3R
β/2, the χ2-divergence (27) sat-

isfies

χ2(Pj,l ,P0) ≤ CRb/2(logn)(1−β/2)b/β

(∫
Rb

(
fj,l(x) − f0(x)

)2 dx

+ 1

T 1+b/β

∫
Rb

|x|β+b
(
fj,l(x) − f0(x)

)2
dx

)
.

(32)

We now bound separately the first and the second integral in (32). Using Plancherel’s identity,
we rewrite the first integral as∫

Rb

(
fj,l(x) − f0(x)

)2
dx = 1

(2π)b
‖ϕj,l − ϕ0‖2

L2 , (33)

where ϕj,l and ϕ0 are the characteristic functions corresponding to fj,l and f0, respectively. We
now consider the difference of the characteristic exponents

ηj (u) := logϕj,l(u) − logϕ0(u) = −1

2
〈u, Āj,lu〉(1 −FK(δn,pu)

)
,

where Āj,l = (ρT δ
2−β
n,p /b)Aj,l . A first order Taylor expansion yields

ϕj,l(u) − ϕ0(u) = ηj (u)ϕ0(u)

∫ 1

0
etηj (u) dt

= ηj (u)e−R|u|2/2
∫ 1

0
ψ1−t

0,l (u)ψt
j,l(u) exp

(
− t

2
〈u, Āj,lu〉

)
dt.

Due to the property 1 − FK(δn,pu) = 0 for |u| ≤ δ−1
n,p and the elementary inequality x2e|x| ≤

exp(3|x|), ∀x ∈ R, we obtain

‖ϕj,l − ϕ0‖2
L2 ≤

∫ 1

0

∥∥∥∥ηj (u) exp

(
−R

2
|u|2 − t

2
〈u, Āj,lu〉

)∥∥∥∥2

L2
dt

≤1

4

∫ 1

0

∫
|u|>1/δn,p

∣∣〈u, Āj,lu〉∣∣2 exp
(−R|u|2 − t〈u, Āj,lu〉)dudt

≤1

4

∫
|u|>1/δn,p

exp
(−R|u|2 + 3

∣∣〈u, Āj,lu〉∣∣)du

≤1

4

∫
|u|>1/δn,p

exp
(−(R − 3ρT δ2−β

n,p

)|u|2)du,
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where we have used the bound ‖Aj,l‖∞ ≤ b. Finally, we choose ρ > 0 sufficiently small to

satisfy 3ρT δ
2−β
n,p ≤ R/4. Then,

‖ϕj,l − ϕ0‖2
L2 ≤ 1

4
e−R/(4δ2

n,p)

∫
|u|>δ−1

n,p

e−R|u|2/2 du ≤ 1

4

(
2π

R

)b/2

e−R/(4δ2
n,p). (34)

To take into account the first factor in (32), we note that the definition of δn,p in (22) imply

Rb/2(logn)(1−β/2)b/βR−b/2e−R/(12δ2
n,p) ≤ (logn)(1−β/2)b/β

(
ρ′ log(1 + c′

1bp/k)

n

)1/2

, (35)

where the last expression is uniformly bounded by a constant. Combining this remark with (33)
and (34), we finally get that there is a constant C > 0 such that

Rb/2(logn)(1−β/2)b/β

∫
Rb

(
fj,l(x) − f0(x)

)2 dx ≤ C exp

(
− R

6δ2
n,p

)
. (36)

To bound the second integral in (32), we use the following proposition proved in the supple-
mentary article [3].

Proposition 16. There is a constant C > 0 depending only on the kernel K and on b such that,
for all β ∈ (0,2) and j = 1, . . . ,M , l = 1, . . . ,L,∫

Rb

ξb|x|β+b
(
fj,l(x) − f0(x)

)2 dx ≤ C
(
1 ∨ Rβ/2) exp

(
− R

5δ2
n,p

)
. (37)

This proposition and the assumption T (logn)c∗ ≥ 1 ∨ Rβ/2 yield, via an argument analogous
to (35), that

(logn)(1−β/2)b/β Rb/2

T 1+b/β

∫
Rb

|x|β+b
(
fj,l(x) − f0(x)

)2 dx

≤ C′(logn)(1−β/2)b/β Rb/2 ∨ R(b+β)/2

T (b+β)/β
exp

(
− R

5δ2
n,p

)
≤ C exp

(
− R

6δ2
n,p

)
,

(38)

where C,C′ > 0 are constants. Combining (32), (36) and (38) and using the definition of δn,p in
(22), we find

χ2(Pj,l ,P0) ≤ C exp

(
− R

6δ2
n,p

)
≤ C

ρ′ log(1 + c′
1bp/k)

n
≤ Cρ′ logM

C′
1kn

:= ρ′′ logM

kn
, (39)

where the last inequality follows from (21). Taking into account (26) and (39), we get

χ2(
P

⊗n
�j ,ψj

,P⊗n
�0,ψ0

)≤ exp
(
Lnmax

l
χ2(Pj,l ,P0)

)
− 1

≤ exp

(
pρ′′ logM

bk

)
− 1 ≤ M2ρ′′/b − 1,

(40)
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where we have used that, by construction, L = p/b and p ≤ 2k. Finally, choose ρ′ (and thus
ρ′′) small enough to guarantee that M2ρ′′/b − 1 ≤ M/3. Hence, condition (ii) is verified, which
concludes the proof of the theorem.

Appendix A: Proof of Theorem 9

For the later reference, we set ξU := inf|u|≤U/2 |ϕ(u)| and introduce the events

�(u) := {∣∣ϕn(u) − ϕ(u)
∣∣≤ ∣∣ϕ(u)

∣∣/2
}
, u ∈ R

p.

Due to the decomposition (2), we obtain the bound

‖Rn‖∞ ≤ S(1)
n + S(2)

n + Dn, (41)

where

S(1)
n :=

∫
Rp

∣∣Re
(
logϕn(u)1{|ϕn(u)|≥ι} − logϕ(u)

)∣∣1�(u)

‖�(u)‖∞
|u|2 wU(u)du,

S(2)
n :=

∫
Rp

∣∣log
∣∣ϕn(u)

∣∣1{|ϕn(u)|≥ι} − log
∣∣ϕ(u)

∣∣∣∣1�(u)c
‖�(u)‖∞

|u|2 wU(u)du,

Dn :=
∫
Rp

∣∣log
∣∣ψ(u)

∣∣∣∣‖�(u)‖∞
|u|2 wU(u)du.

Here, S
(i)
n are stochastic error terms and Dn is a deterministic error term. Using the decay of

ψ ∈H′
β(T ), the form of the support of wU and the fact that ‖�(u)‖∞ = 1, we obtain

Dn ≤ 16U−2 sup
|u|≤U/2

∣∣log
∣∣ψ(u)

∣∣∣∣ ∫
Rp

w(v)

|v|2 dv ≤ C(w)T U−(2−β) (42)

for a constant C(w) > 0 depending only on w.
To bound S

(1)
n in (41), we first note that we have on �(u) under the assumption ξU ≥ 1/

√
n∣∣ϕn(u)

∣∣≥ ∣∣ϕ(u)
∣∣− ∣∣ϕn(n) − ϕ(u)

∣∣≥ ∣∣ϕ(u)
∣∣/2 ≥ 1

2
√

n
= ι,

for all u in the support of wU . Thus, the indicator function 1{|ϕn(u)|≥ι} in S
(1)
n can be omitted.

Linearizing the logarithm yields

logϕn(u) − logϕ(u) = log

(
ϕn(u) − ϕ(u)

ϕ(u)
+ 1

)
= ϕn(u) − ϕ(u)

ϕ(u)
+ rn(u)

with a residual rn satisfying on �(u)

∣∣rn(u)
∣∣≤ c̄

∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣2, (43)
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where c̄ > 0 is a constant. Hence, we have

S(1)
n ≤ Ln + Tn, (44)

where

Ln :=
∫
Rp

|ϕn(u) − ϕ(u)|
|u|2|ϕ(u)| wU(u)du, Tn :=

∫
Rp

|rn(u)|
|u|2 1�(u)wU(u)du.

Here, Ln is the linearized stochastic error and Tn is a remainder. By the Cauchy-Schwarz in-
equality

Ln ≤ 16

U2ξU

∫
Rp

∣∣ϕn(u) − ϕ(u)
∣∣wU(u)du ≤ 16κ1/2

w

U2ξU

Z (45)

with κ̄w = ‖w‖L1 and

Z = Z(Y1, . . . , Yn) =
(∫

Rp

∣∣ϕn(u) − ϕ(u)
∣∣2wU(u)du

)1/2

.

Similarly, we deduce from (43)

Tn ≤ 16c̄

U2

∫
Rp

|ϕn(u) − ϕ(u)|2
|ϕ(u)|2 wU(u)du ≤ 16c̄

U2ξ2
U

Z2. (46)

Note that Z satisfies the bounded difference condition

∀Yi, Y
′
i ∈R

p:
∣∣Z(Y1, . . . , Yi−1, Y

′
i , Yi+1, . . . , Yn

)− Z(Y1, . . . , Yn)
∣∣≤ 2κ̄1/2

w /n.

By the bounded difference inequality [30], Theorem 3.3.14, we get P(Z ≥ E(Z) + t) ≤
exp(− nt2

4κ̄w
), for all t > 0. Since E(Z) ≤ (κ̄w/n)1/2 this implies

P

(
Z ≥ κ̄

1/2
w√
n

(2γ + 1)

)
≤ e−γ 2

, ∀γ > 0.

Using (45), (46), and the assumption that γ ≥ 1 we find that there exists a numerical constant
c∗

1 > 0 such that

P

(
S(1)

n ≥ c∗
1κ̄wγ

U2ξU

√
n

(
1 + γ

ξU

√
n

))
≤ 2e−γ 2

.

Since ξU ≤ 1, this implies

P

(
S(1)

n ≥ 2c∗
1κ̄wγ 2

U2ξ2
U

√
n

)
≤ 2e−γ 2

. (47)
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Using lower bounds ι and ξU for |ϕn(u)| and |ϕ(u)|, respectively, and applying the elementary
bound 1{a>1} < a for any a > 0, the term S

(2)
n in (41) is bounded as follows:

S(2)
n ≤

∫
Rp

(
log ι−1 + log ξ−1

U

)
1�(u)c

wU(u)

|u|2 du

≤ 2
∫
Rp

(
log ι−1 + log ξ−1

U

) |ϕn(u) − ϕ(u)|
|ϕ(u)|

wU(u)

|u|2 du

≤ 32(2 log ξ−1
U + log 2)

U2ξU

∫
Rp

∣∣ϕn(u) − ϕ(u)
∣∣wU(u)du ≤ 32

√
κ̄w

U2ξ2
U

Z.

Hence, for some numerical constant c∗
2 > 0 we have

P

(
S(2)

n ≥ c∗
2κ̄w

U2ξ2
U

√
n
γ

)
≤ e−γ 2

, ∀γ > 0. (48)

Combining (41), (42), (47) and (48) and using the fact that γ ≥ 1 we obtain

P

(
‖Rn‖∞ ≥ (2c∗

1 + c∗
2)κ̄wγ 2

U2ξ2
U

√
n

+ C(w)T U−2+β

)
≤ 3e−γ 2

.

Finally, we use the bound ξU ≥ exp(−‖�‖∞U2/8 − 2T Uβ) that is shown similarly to the anal-
ogous bound in the proof of Theorem 1.

Appendix B: Proofs for Section 5.3

Proof of Lemma 10. By Taylor’s formula, we have for some ξ ∈ [0,1] that

R(u) := η−1(− log |ϕ|(u)
)− 〈u,�u〉 − log |ψ |(u)

η′(〈u,�u〉)

= (log |ψ |(u))2

2

(
η−1)′′(η(〈u,�u〉)− ξ log |ψ |(u)

)
.

Since (η−1)′′(x) = −η′′(η−1(x))/η′(η−1(x))3 and thus |(η−1)′′(x)| ≤ T |η−1(x)|−1 ×
|η′(η−1(x))|−2 we have

∣∣R(u)
∣∣≤ T | log |ψ |(u)|2

2|g(u, ξ)||η′(η−1(η(〈u,�u〉) − ξ log |ψ |(u)))|2 (49)

with g(u, ξ) := η−1(η(〈u,�u〉) − ξ log |ψ |(u)). Since η−1 is non-negative and monotone in-
creasing and log |ψ(u)| ≤ 0, we have∣∣g(u, ξ)

∣∣= g(u, ξ) ≥ η−1(η(〈u,�u〉))= 〈u,�u〉.
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Another Taylor expansion for the second term in the denominator in (49) yields for some ξ ′ ∈
[0,1]

η′(η−1(η(〈u,�u〉)− ξ log |ψ |(u)
))

= η′(〈u,�u〉)− ξ
(
log
∣∣ψ(u)

∣∣)(η′ ◦ η−1)′(η(〈u,�u〉)− ξ ′ log |ψ |(u)
)

= η′(〈u,�u〉)+ ξ
(
log
∣∣ψ(u)

∣∣)(η′′ ◦ η−1

η′ ◦ η−1

)(
η
(〈u,�u〉)− ξ ′ log |ψ |(u)

)
≥ η′(〈u,�u〉)− T

∣∣log |ψ |(u)
∣∣/g(u, ξ ′)

≥ η′(〈u,�u〉)(1 − T 2(1 + |u|)β/〈u,�u〉).

(50)

If |u| ≥ (2β+1T 2/λmin)
1/(2−β), then we conclude

∣∣R(u)
∣∣≤ 2| log |ψ |(u)|2

〈u,�u〉η′(〈u,�u〉)2
≤ 4T 2

λmin
|u|2β−2. �

Proof of Proposition 11. Due to Lemma 10 and the mean value theorem, the estimation error
can be bounded for any U ≥ (2β+1T 2/λmin)

1/(2−β) by∣∣σ̂ �
i,i − σi,i

∣∣≤ U−2
∣∣η−1(− log

∣∣ϕn

(
Uu(i)

)∣∣)− η−1(− log
∣∣ϕ(Uu(i)

)∣∣)∣∣
+
(

2T + 4T 2

λmin
U−2+β

)
U−2+β

= |S(Uu(i))|
U2η′(η−1(− log |ϕ(Uu(i))| + ξS(Uu(i))))

+ (2T + 2)U−2+β

for some ξ ∈ [0,1] and S(u) = log |ϕn(u)| − log |ϕ(u)| from Lemma 12. As in (50) (for any u

with g(u, ξ) ≥ 〈u,�u〉 ≥ 1), we deduce

η′(η−1(− log
∣∣ϕ(u)

∣∣+ ξS(u)
))≥ η′(〈u,�u〉)− T

(∣∣log |ψ |(u)
∣∣+ S(u)|).

On the event {|| log |ψ |(u)| + S(u)| ≤ η′(U2σii)/2}, we thus obtain

∣∣σ̂�
i,i − σi,i

∣∣≤ 2|S(Uu(i))|
U2η′(U2σii)

+ (2T + 2)U−2+β.

From this line, the argument is analogous to the proof of Theorem 1. �
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Supplementary Material

Supplement: A bound for weighted L2-distances of certain densities (DOI: 10.3150/18-
BEJ1040ASUPP; .pdf). We prove Proposition 16 which is needed to show the lower bound
for the covariance estimation in the deconvolution model. More precisely, a bound for the L2-
distance of the certain densities with polynomial weights is proved.
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