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Completely random measures (CRMs) and their normalizations are a rich source of Bayesian nonpara-
metric priors. Examples include the beta, gamma, and Dirichlet processes. In this paper, we detail two
major classes of sequential CRM representations—series representations and superposition representa-
tions—within which we organize both novel and existing sequential representations that can be used for
simulation and posterior inference. These two classes and their constituent representations subsume exist-
ing ones that have previously been developed in an ad hoc manner for specific processes. Since a complete
infinite-dimensional CRM cannot be used explicitly for computation, sequential representations are often
truncated for tractability. We provide truncation error analyses for each type of sequential representation,
as well as their normalized versions, thereby generalizing and improving upon existing truncation error
bounds in the literature. We analyze the computational complexity of the sequential representations, which
in conjunction with our error bounds allows us to directly compare representations and discuss their rela-
tive efficiency. We include numerous applications of our theoretical results to commonly-used (normalized)
CRMs, demonstrating that our results enable a straightforward representation and analysis of CRMs that
has not previously been available in a Bayesian nonparametric context.

Keywords: Bayesian nonparametrics; completely random measure; normalized completely random
measure; Poisson point process; truncation

1. Introduction

In many data sets, we can view the data points as exhibiting a collection of underlying traits. For
instance, each document in the New York Times might touch on a number of topics or themes, an
individual’s genetic data might be a product of the populations to which their ancestors belonged,
or a user’s activity on a social network might be dictated by their varied personal interests. When
the traits are not directly observed, a common approach is to model each trait as having some
frequency or rate in the broader population [2]. The inferential goal is to learn these rates as well
as whether—and to what extent—each data point exhibits each trait. Since the traits are unknown
a priori, their cardinality is also typically unknown.

As a data set grows larger, we can reasonably expect the number of traits to increase as well. In
the cases above, for example, we expect to uncover more topics as we read more documents, more
ancestral populations as we examine more individuals’ genetic data, and more unique interests as
we observe more individuals on a social network. Bayesian nonparametric (BNP) priors provide
a flexible, principled approach to creating models in which the number of exhibited traits is
random, can grow without bound, and may be learned as part of the inferential procedure. By
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generating a countable infinity of potential traits—where any individual data point exhibits only
finitely many—these models enable growth in the number of observed traits with the size of the
data set.

In practice, however, it is impossible to store a countable infinity of random variables in mem-
ory or learn the distribution over a countable infinity of variables in finite time. Conjugate priors
and likelihoods have been developed [36] that theoretically circumvent the infinite representation
altogether and perform exact Bayesian posterior inference [11]. However, these priors and like-
lihoods are often just a single piece within a more complex generative model, and ultimately an
approximate posterior inference scheme such as Markov Chain Monte Carlo (MCMC) or varia-
tional Bayes (VB) is required. These approximation schemes often necessitate a full and explicit
representation of the latent variables.

One option is to approximate the infinite-dimensional prior with a related finite-dimensional
prior: that is, to replace the infinite collection of random traits by a finite subset of “likely” traits.
To do so, first enumerate the countable infinity of traits in the full model and write (ψk, θk) for
each paired trait ψk (e.g., a topic in a document) and its rate or frequency θk . Then the discrete
measure � := ∑∞

k=1 θkδψk
captures the traits/rates in a sequence indexed by k. The (ψk, θk) pairs

are random in the Bayesian model, so � is a random measure. In many cases, the distribution
of � can be defined by specifying a sequence of simple, familiar distributions for the finite-
dimensional ψk and θk , known as a sequential representation. Given a sequential representation
of �, a natural way to choose a subset of traits is to keep the first K < ∞ traits and discard the
rest, resulting in an approximate measure �K . This approach is called truncation. Note that it is
also possible to truncate by removing atoms with weights less than a specified threshold [4,35],
though this approach is not as easily incorporated in posterior inference algorithms.

Sequential representations have been shown to exist for completely random measures
(CRMs) [15,27], a large class of nonparametric priors that includes such popular models as
the beta process [18,26] and the gamma process [8,15,23,29,50]. Numerous sequential represen-
tations of CRMs have been developed in the literature [7,11,15,24,43,44]. CRM priors are often
paired with likelihood processes—such as the Bernoulli process [49], negative binomial process
[10,51], and Poisson likelihood process [50]. The likelihood process determines how much each
trait is expressed by each data point. Sequential representations also exist for normalized com-
pletely random measures (NCRMs) (sometimes referred to as normalized random measures with
independent increments) [22,25,33,39–42], which provide random distributions over traits, such
as the Dirichlet process [14,47]. NCRMs are typically paired with a likelihood that assigns each
data point to a single trait using the NCRM as a discrete distribution.

Since (N)CRMs have many possible sequential representations, a method is required for de-
termining which to use for the application at hand and, once a representation is selected, for
choosing a truncation level. Our main contributions enable the principled selection of both rep-
resentation and truncation level using approximation error:

1. We provide a comprehensive characterization of the different types of sequential represen-
tations for (N)CRMs, filling in many gaps in the literature of sequential representations
along the way. We classify these representations into two major groups: series represen-
tations, which are constructed by transforming a homogeneous Poisson point process; and
superposition representations, which are the superposition of infinitely many Poisson point
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processes with finite rate measures. We also introduce two novel sequential representations
for (N)CRMs.

2. We provide theoretical guarantees on the approximation error induced when truncat-
ing these sequential representations. We give the error as a function of the prior pro-
cess, the likelihood process, and the level of truncation. While truncation error bounds
for (N)CRMs have been studied previously, past work has focused on specific combina-
tions of (N)CRM priors and likelihoods—in particular, the Dirichlet-multinomial [6,19,21,
47], beta-Bernoulli [13,37], generalized beta-Bernoulli [45], and gamma-Poisson [46] pro-
cesses. In the current work, we give much more general results for bounding the truncation
error.

Our results fill in large gaps in the analysis of truncation error, which is often measured in
terms of the L1 (a.k.a. total variation) distance between the data distributions induced by the full
and truncated priors. We provide the first analysis of truncation error for some sequential repre-
sentations of the beta process with Bernoulli likelihood [49], for the beta process with negative
binomial likelihood [10,51], and for the normalization of the generalized gamma process [8], the
σ -stable process, and the generalized inverse gamma [30,33] with discrete likelihood. Moreover,
even when truncation results already exist in the literature [13,19,37,46], we improve on those
error bounds by a factor of two. The reduction arises from our use of the point process machinery
of CRMs, circumventing the total variation bound used originally by [19,20] upon which most
modern truncation analyses are built. We obtain our truncation error guarantees by bounding the
probability that data drawn from the full model will use a feature that is not available to the
truncated model. Thinking in terms of this probability provides a more intuitive interpretation of
our bounds that can be communicated to practitioners and used to guide them in their choice of
truncation level.

The remainder of this paper is organized as follows. In Section 2, we provide background
material on CRMs and establish notation. In our first main theoretical section, Section 3, we de-
scribe seven different sequential CRM representations, including four series representations and
three superposition representations, two of which are novel. Next, we provide a general theoreti-
cal analysis of the truncation error for series and superposition representations in Section 4. We
provide analogous theory for the normalized versions of each representation in Section 5 via an
infinite extension of the “Gumbel-max trick” [17,34]. We determine the complexity of simulating
each representation in Section 6. In Section 7, we summarize our results (Table 1) and provide
advice on how to select sequential representations in practice. Proofs for all results developed in
this paper are provided in the the supplemental article [12].

2. Background

2.1. CRMs and truncation

Consider a Poisson point process on R+ := [0,∞) with rate measure ν(dθ) such that

ν(R+) = ∞ and
∫

min(1, θ)ν(dθ) < ∞. (2.1)
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Such a process generates a countable infinity of values (θk)
∞
k=1, θk ∈R+, having an almost surely

finite sum
∑∞

k=1 θk < ∞. In a BNP trait model, we interpret each θk as the rate or frequency of
the kth trait. Typically, each θk is paired with a parameter ψk associated with the kth trait (e.g., a
topic in a document or a shared interest on a social network). We assume throughout that ψk ∈ �

for some space � and ψk
i.i.d.∼ G for some distribution G. Constructing a measure by placing

mass θk at atom location ψk results in a completely random measure (CRM) [27]. As shorthand,
we will write CRM(ν) for the completely random measure generated as just described:

� :=
∑

k

θkδψk
∼ CRM(ν).

The trait distribution G is left implicit in the notation as it has no effect on our results. Further,
the possible fixed-location and deterministic components of a CRM [27] are not considered here
for brevity; these components can be added (assuming they are purely atomic) and the analysis
modified without undue effort. The CRM prior on � is typically combined with a likelihood that
generates trait counts for each data point. Let h(· | θ) be a proper probability mass function on N∪
{0} for all θ in the support of ν (though the present work may be easily extended to likelihoods
with support in R). Then a collection of conditionally independent observations X1:N := {Xn}Nn=1
given � are distributed according to the likelihood process LP(h,�), that is,

Xn :=
∑

k

xnkδψk

i.i.d.∼ LP(h,�),

if xnk ∼ h(x | θk) independently across k and i.i.d. across n. The desideratum that each Xn

expresses a finite number of traits is encoded by the assumption that∫ (
1 − h(0 | θ)

)
ν(dθ) < ∞.

Since the trait counts are typically latent in a full generative model specification, define the

observed data Yn | Xn

indep∼ f (· | Xn) for a conditional density f with respect to a measure μ on
some space. For instance, if the sequence (θk)

∞
k=1 represents the topic rates in a document corpus,

Xn might capture how many words in document n are generated from each topic and Yn might
be the observed collection of words for that document.

Since the sequence (θk)
∞
k=1 is countably infinite, it may be difficult to simulate or perform

posterior inference in this model. One approximation scheme is to define the truncation �K :=∑K
k=1 θkδψk

. Since it is finite, the truncation �K can be used for exact simulation or in posterior
inference—but some error arises from not using the full CRM �. To quantify this error, consider
its propagation through the above Bayesian model. Define Z1:N and W1:N for �K analogous to
the definitions of X1:N and Y1:N for �:

Zn | �K
i.i.d.∼ LP(h,�K), Wn | Zn

indep∼ f (· | Zn), n = 1, . . . ,N.

A standard approach to measuring the distance between � and �K is to use the L1 metric
between the marginal densities pN,∞ and pN,K (with respect to some measure μ) of the final
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observations Y1:N and W1:N [13,19,37]:

1

2
‖pN,∞ − pN,K‖1 := 1

2

∫
y1:N

∣∣pN,∞(y1:N) − pN,K(y1:N)
∣∣μ(dy1:N).

All of our bounds on 1
2‖pN,∞ − pN,K‖1 are also bounds on the probability that X1:N contains a

feature that is not in the truncation �K (cf. Sections 4 and 5). This interpretation may be easier
to digest since it does not depend on the observation model f and is instead framed in terms of
the underlying traits the practitioner is trying to estimate.

2.2. The gamma-Poisson process

To illustrate the practical application of the theoretical developments in this work, we provide
a number of examples throughout involving the gamma process [8], denoted 	P(γ,λ, d), with
discount parameter d ∈ [0,1), scale parameter λ > 0, mass parameter γ > 0, and rate measure

ν(dθ) = γ
λ1−d

	(1 − d)
θ−d−1e−λθ dθ.

Setting d = 0 yields the undiscounted gamma process [15,29,50]. The gamma process is often
paired with a Poisson likelihood,

h(x | θ) = θx

x! e
−θ .

Throughout the present work, we use the rate parametrization of the gamma distribution (to
match the gamma process parametrization), for which the density is given by

Gam(x;a, b) = ba

	(a)
xa−1e−bx.

Appendix A provides additional example applications of our theoretical results for two other
CRMs: the beta process BP(γ,α, d) [9,48] with Bernoulli or negative binomial likelihood, and
the beta prime process BPP(γ,α, d) [11] with odds-Bernoulli likelihood.

3. Sequential representations

Sequential representations are at the heart of the study of truncated CRMs. They provide an itera-
tive method that can be terminated at any point to yield a finite approximation to the infinite pro-
cess, where the choice of termination point determines the accuracy of the approximation. Thus,
the natural first step in providing a coherent treatment of truncation analysis is to do the same
for sequential representations. In past work, two major classes of sequential representation have
been used: series representations of the form

∑∞
k=1 θkδψk

, and superposition representations of

the form
∑∞

k=1
∑Ck

i=1 θkiδψki
, where each inner sum of Ck atoms is itself a CRM. This section
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examines four series representations [7,15,43,44] and three superposition representations (two
of which are novel) [9,11,24]. We show how previously-developed sequential representations for
specific CRMs fit into these seven general representations. Finally, we discuss a stochastic map-
ping procedure that is useful in obtaining new representations from the transformation of others.
Proofs for the results in this section may be found in Appendix C.

3.1. Series representations

Series representations arise from the transformation of a homogeneous Poisson point process
[44]. They tend to be somewhat difficult to analyze due to the dependence between the atoms
but also tend to produce very simple representations with small truncation error (cf. Sections 4

and 7). Throughout the paper we let 	k = ∑k

=1 E
, E


i.i.d.∼ Exp(1), be the ordered jumps of a
unit-rate homogeneous Poisson process on R+, let ν be a measure on R+ satisfying the basic

conditions in Eq. (2.1), and let ψk
i.i.d.∼ G.

Inverse-Lévy [15]

Define ν←(u) := inf{x : ν([x,∞)) ≤ u}, the inverse of the tail measure ν([x,∞)). We say �

has an inverse-Lévy representation and write � ← IL-Rep(ν) if

� =
∞∑

k=1

θkδψk
with θk = ν←(	k).

Ferguson and Klass [15] showed that � ← IL-Rep(ν) implies � ∼ CRM(ν). The inverse-Lévy
representation is analogous to the inverse CDF method for generating an arbitrary random vari-
able from a uniform random variable, with the homogenous Poisson process playing the role of
the uniform random variable. It is also the optimal sequential representation in the sense that the
sequence θk that it generates is non-increasing. While an elegant and general approach, simulat-
ing the inverse-Lévy representation is difficult, as inverting the function ν([x,∞)) is analytically
intractable except in a few cases.

Example 3.1 (Gamma process, 	P(γ,λ,0)). We have ν([x,∞)) = γ λE1(λx), where E1(x) :=∫ ∞
x

u−1e−u du is the exponential integral function [1]. The inverse-Lévy representation for
	P(γ,λ,0) is thus

� =
∞∑

k=1

λ−1E−1
1

(
γ −1λ−1	k

)
δψk

.

Neither E1 nor its inverse can be computed in closed form, so one must resort to numerical
approximations.
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Bondesson [7]

We say � has a Bondesson representation and write � ← B-Rep(c, g) if for c > 0 and g a
density on R+,

� =
∞∑

k=1

θkδψk
with θk = Vke

−	k/c,Vk
i.i.d.∼ g.

Theorem 3.1 shows that Bondesson representations can be constructed for a large, albeit re-
stricted, class of CRM rate measures. We offer a novel proof of Theorem 3.1 in Appendix C
using the induction strategy introduced by [5]. Similar proof ideas are also used to prove trunca-
tion error bounds for sequential representations in Section 4. We use a slight abuse of notation
for brevity: if ν(dθ) is a measure on R+ that is absolutely continuous with respect to Lebesgue
measure, then ν(θ) is the density of ν(dθ) with respect to the Lebesgue measure.

Theorem 3.1 (Bondesson representation [7]). Let ν(dθ) = ν(θ)dθ be a rate measure satisfying
Eq. (2.1). If θν(θ) is nonincreasing, limθ→∞ θν(θ) = 0, and cν := limθ→0 θν(θ) < ∞, then
gν(v) := −c−1

ν
d

dv
[vν(v)] is a density on R+ and

� ← B-Rep(cν, gν) implies � ∼ CRM(ν).

Example 3.2 (Bondesson representation for 	P(γ,λ,0)). The following representation for
the gamma process with d = 0 was described by [7] and [5]. Since θν(θ) = γ λe−λθ is non-
increasing and cν = limθ→0 θν(θ) = γ λ, we obtain gν(v) = λe−λv = Exp(v;λ). Thus, it follows
from Theorem 3.1 that if � ← B-Rep(γ λ,Exp(λ)), then � ∼ 	P(γ,λ,0). The condition that
θν(θ) is non-increasing fails to hold if d > 0, so we cannot apply Theorem 3.1 to 	P(γ,λ, d)

when d > 0.

Thinning [43]

Using the nomenclature of [44], we say � has a thinning representation and write � ←
T-Rep(ν, g) if g is a probability measure on R+ such that ν is absolutely continuous with re-
spect to g, i.e. ν 
 g, and

� =
∞∑

k=1

θkδψk
with θk = Vk1

(
dν

dg
(Vk) ≥ 	k

)
,Vk

i.i.d.∼ g.

Rosiński [43] showed that � ← T-Rep(ν, g) implies � ∼ CRM(ν). Note that 	k
a.s.→ ∞ as

k → ∞, so the probability that dν
dg

(Vk) ≥ 	k is decreasing in k. Thus, this representation gener-
ates atoms with θk = 0 (which have no effect and can be removed) increasingly frequently and
becomes inefficient as k → ∞.
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Example 3.3 (Thinning representation for 	P(γ,λ, d)). If we let g = Gam(1−d,λ), then the
thinning representation for 	P(γ,λ, d) is

� =
∞∑

k=1

Vk1(Vk	k ≤ γ )δψk
with Vk

i.i.d.∼ Gam(1 − d,λ).

Rejection [44]

Using the nomenclature of [44], we say � has a rejection representation and write � ←
R-Rep(ν,μ) if μ is a measure on R+ satisfying Eq. (2.1) and dν

dμ
≤ 1, and

� =
∞∑

k=1

θkδψk
with θk = Vk1

(
dν

dμ
(Vk) ≥ Uk

)
, (Vk)k∈N ∼ PoissP(μ),Uk

i.i.d.∼ Unif[0,1].

Rosiński [44] showed that � ← R-Rep(ν,μ) implies � ∼ CRM(ν). This representation is very
similar to the thinning representation, except that the sequence (Vk)k∈N is generated from a
Poisson process on R+ rather than i.i.d. This allows Vk

a.s.→ 0 as k → ∞, causing the frequency
of generating ineffective atoms θk = 0 to decay as k → ∞, assuming μ is appropriately chosen
such that dν

dμ
(θ) → 1 as θ → 0. This representation can thus be constructed to be more efficient

than the thinning representation. We can calculate the efficiency in terms of the expected number
of rejections (that is, the number of θk that are identically zero):

Proposition 3.2. For R-Rep(ν,μ), the expected number of rejections is

E

[ ∞∑
k=1

1(θk = 0)

]
=

∫ (
1 − dν

dμ
(x)

)
μ(dx).

Remark. If μ and ν can be written as densities with respect to Lebesgue measure, then the
integral in Proposition 3.2 can be rewritten as

∫
(μ(x) − ν(x))dx.

Example 3.4 (Rejection representation for 	P(γ,λ,0)). Following [44], consider μ(dθ) =
γ λθ−1(1 + λθ)−1 dθ . We call CRM(μ) the Lomax process, LomP(γ,λ−1), after the related
Lomax distribution. We can use the inverse-Lévy method analytically with μ since μ←(u) =

1
λ(e(γ λ)−1u−1)

. Thus, the rejection representation of 	P(γ,λ,0) is

� =
∞∑

k=1

Vk1
(
Uk ≤ (1 + λVk)e

−λVk
)
δψk

with Vk = 1

λ(e(γ λ)−1	k − 1)
,Uk

i.i.d.∼ Unif[0,1].

Unlike in the thinning construction given in Example 3.3, only a finite number of rates will be
set to zero almost surely. In particular, the expected number of rejections is γ λcγ , where cγ is
the Euler–Mascheroni constant.
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Example 3.5 (Rejection representation for 	P(γ,λ, d), d > 0). For the case of d > 0, we
instead use μ(dθ) = γ λ1−d

	(1−d)
θ−1−d dθ . We can again use the inverse-Lévy method analytically

with μ since μ←(u) = (γ ′u−1)1/d , where γ ′ := γ λ1−d

d	(1−d)
. The rejection representation is then

� =
∞∑

k=1

Vk1
(
Uk ≤ e−λVk

)
δψk

with Vk = (
γ ′	−1

k

)1/d
,Uk

i.i.d.∼ Unif[0,1].

The expected number of rejections is γ λ1−d

d
, so the representation is efficient for large d , but

extremely inefficient when d is small.

3.2. Superposition representations

Superposition representations arise as an infinite sum of CRMs with finite rate measure. These
tend to be easier to analyze than series representations as they decouple atoms between the
summed CRMs, but can produce representations with larger truncation error (cf. Sections 4
and 7). Throughout, let ν be a measure on R+ satisfying the basic conditions in Eq. (2.1), and let

ψk
i.i.d.∼ G.

Decoupled Bondesson

We say � has a decoupled Bondesson representation and write � ← DB-Rep(c, g, ξ) if for
c > 0, ξ > 0, and g a density on R+,

� =
∞∑

k=1

Ck∑
i=1

θkiδψki
with

Ck
i.i.d.∼ Poiss(c/ξ), θki = Vkie

−Tki , Tki

indep∼ Gam(k, ξ),Vki
i.i.d.∼ g.

(3.1)

This is a novel superposition representation, though special cases are already known [38,46].
Theorem 3.3 shows that the decoupled Bondesson representation applies to the same class of
CRMs as the Bondesson representation from Section 3.1.

Theorem 3.3 (Decoupled Bondesson representation). Let ν(dθ) = ν(θ)dθ , cν , and gν be as
specified in Theorem 3.1. Then for any fixed ξ > 0,

� ← DB-Rep(cν, gν, ξ) implies � ∼ CRM(ν).

The proof of Theorem 3.3 in Appendix C generalizes the arguments from [38] and [46]. The
free parameter ξ controls the number of atoms generated for each outer sum index k; its princi-
pled selection can be made by trading off computational complexity (cf. Section 6) and truncation
error (cf. Section 4).
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Example 3.6 (Decoupled Bondesson representation for 	P(γ,λ,0)). Arguments paralleling
those made in Example 3.2 show that the 	P(γ,λ,0) representation from [46] follows directly
from an application of Theorem 3.3: if � ← DB-Rep(γ λ,Exp(λ), ξ), then � ∼ 	P(γ,λ,0). As
in the Bondesson representation setting, Theorem 3.3 does not apply to 	P(γ,λ, d) when d > 0
because the condition that θν(θ) is non-increasing fails to hold.

Size-biased [11,24]

Let π(θ) := h(0 | θ). We say � has a size-biased representation and write � ← SB-Rep(ν,h) if

� =
∞∑

k=1

Ck∑
i=1

θkiδψki
with

Ck

indep∼ Poiss(ηk), θki

indep∼ 1

ηk

π(θ)k−1(1 − π(θ)
)
ν(dθ), ηk :=

∫
π(θ)k−1(1 − π(θ)

)
ν(dθ).

(3.2)

Broderick et al. [11] and James [24] showed that � ← SB-Rep(ν,h) implies � ∼ CRM(ν). If
the rate measure ν and the likelihood h are selected to be a conjugate exponential family then,
noting that

∑∞
x=1 h(x | θ) = 1 −π(θ), the rate θki can be sampled from a mixture of exponential

family distributions:

θki | zki

indep∼ 1

ηkzki

h(zki | θ)π(θ)k−1ν(dθ), zki

indep∼ Categorical
(
(ηkx/ηk)

∞
x=1

)
,

ηkx :=
∫

h(x | θ)π(θ)k−1ν(dθ).

Example 3.7 (Size-biased representation for 	P(γ,λ, d)). For the Gamma process, values for
ηkx and ηk can be found using integration by parts and the standard gamma distribution integral,
while θki | zki is sampled from a gamma distribution by inspection:

ηkx = γ λ1−d	(x − d)

x!	(1 − d)(λ + k)x−d
, ηk =

⎧⎨
⎩

γ λ1−d

d

(
(λ + k)d − (λ + k − 1)d

)
, d > 0,

γ λ
(
log(λ + k) − log(λ + k − 1)

)
, d = 0,

θki | zki

indep∼ Gam(x − d,λ + k).

Power-law

We say � has a power-law representation and write � ← PL-Rep(γ,α, d, g) if for γ > 0,

0 ≤ d < 1, α > −d , and g a density on R+,

� =
∞∑

k=1

Ck∑
i=1

θkiδψki
with

Ck
i.i.d.∼ Poiss(γ ), θki = VkiUkik

k−1∏
j=1

(1 − Ukij ),Vki
i.i.d.∼ g,Ukij

indep∼ Beta(1 − d,α + jd).

(3.3)
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This is a novel superposition representation, although it was previously developed in the spe-
cial case of the beta process (where g(v) = δ1) [9]. The name of this representation arises
from the fact that it exhibits Types I and II power-law behavior [9] under mild conditions
when d > 0, as we show in Theorem C.1 in the Appendix (note, however, that it will not ex-
hibit power-law behavior when d = 0). Theorem 3.5 below shows the conditions under which
� ← PL-Rep(γ,α, d, g) implies � ∼ CRM(ν). Its proof in Appendix C relies on the notion
of stochastic mapping (Lemma 3.4), a powerful technique for transforming one CRM into an-
other. Note that in Lemma 3.4, the case where u is a deterministic function of θ via the mapping
u = τ(θ) may be recovered by setting κ(θ,du) = δτ(θ).

Lemma 3.4 (CRM stochastic mapping). Let � = ∑∞
k=1 θkδψk

∼ CRM(ν). Then for any prob-
ability kernel κ(θ,du), we have κ(�) ∼ CRM(νκ), where

κ(�) :=
∞∑

k=1

ukδψk
, uk | θk ∼ κ(θk, ·) and νκ(du) :=

∫
κ(θ,du)ν(dθ).

Theorem 3.5 (Power-law representation). Let ν(dθ) = ν(θ)dθ be a rate measure satisfying
Eq. (2.1), and let gν be a density on R+ such that

ν(u) =
∫

θ−1gν

(
uθ−1)νBP(dθ),

where

νBP(dθ) = γ
	(α + 1)

	(1 − d)	(α + d)
1[θ ≤ 1]θ−1−d(1 − θ)α+d−1 dθ

is the rate measure for the beta process BP(γ,α, d) from Eq. (A.1). Then

� ← PL-Rep(γ,α, d, gν) implies � ∼ CRM(ν).

Example 3.8 (Power-law representation for 	P(γ,λ, d)). If we choose gν = Gam(λ,λ), then
using the change of variable w = u(θ−1 − 1),∫

θ−1gν

(
uθ−1)νBP(dθ)

= γ λ
λλ

	(1 − d)	(λ + d)
uλ−1

∫
θ−λ−d−1e−λuθ−1

(1 − θ)λ+d−1 dθ du

= γ λ
λλ

	(1 − d)	(λ + d)
u−1−de−λu

∫
wλ+d−1e−λw dw du

= γ
λ1−d

	(1 − d)
u−1−de−λu du.

It follows immediately from Theorem 3.5 that if � ← PL-Rep(γ,λ, d,Gam(λ,λ)), then � ∼
	P(γ,λ, d). To the best knowledge of the authors, this power-law representation for the gamma
process is novel.
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4. Truncation analysis

Each of the sequential representations developed in Section 3 shares a common structural
element—an outer infinite sum—which is responsible for generating a countably infinite num-
ber of atoms in the CRM. In this section, we terminate these outer sums at a finite truncation
level K ∈ N, resulting in a truncated CRM �K possessing a finite number of atoms. We develop
upper bounds on the error induced by this truncation procedure. All of the truncated CRM error
bounds in this section rely on Lemma 4.1, which is a tightening (by a factor of two) of the bound
in [19,20] (for its generalization to arbitrary discrete random measures, see Lemma D.1).

Lemma 4.1 (CRM protobound). Let � ∼ CRM(ν). For any truncation �K , if

Xn | � i.i.d.∼ LP(h,�), Zn | �K
i.i.d.∼ LP(h,�K),

Yn | Xn
indep∼ f (· | Xn), Wn | Zn

indep∼ f (· | Zn),

then, with pN,∞ and pN,K denoting the marginal densities of Y1:N and W1:N , respectively,

1

2
‖pN,∞ − pN,K‖1 ≤ 1 − P

(
supp(X1:N) ⊆ supp(�K)

)
.

The proof of all results in this section (including Lemma 4.1) can be found in Appendix D. All
of the provided truncation results use the generative model in Lemma 4.1, and are summarized
in Table 1 in Section 7. Throughout this section, for a given likelihood model h(x | θ) we define
π(θ) := h(0 | θ) for notational brevity. The asymptotic behavior of truncation error bounds is
specified with tilde notation:

a(K) ∼ b(K), K → ∞ ⇐⇒ lim
K→∞

a(K)

b(K)
= 1.

4.1. Series representations

Each of the series representations can be viewed a functional of a standard Poisson point process
and a sequence of i.i.d. random variables with some distribution g on R+. In particular, we may
write each in the form

� =
∞∑

k=1

θkδψk
with θk = τ(Vk,	k),Vk

i.i.d.∼ g, (4.1)

where 	k are the jumps of a unit-rate homogeneous Poisson point process on R+, and τ : R+ ×
R+ → R+ is a non-negative measurable function such that limu→∞ τ(v,u) = 0 for g-almost
every v. The truncated CRM then takes the form

�K :=
K∑

k=1

θkδψk
.
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Theorem 4.2 provides a general truncation error bound for series representations of the form
Eq. (4.1), specifies its range, and guarantees that the bound decays to 0 as K → ∞.

Theorem 4.2 (Series representation truncation error). The error in approximating a series
representation of � with its truncation �K satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − e−BN,K ≤ 1,

where

BN,K :=
∫ ∞

0

(
1 −E

[
π

(
τ (V,u + GK)

)N ])
du, (4.2)

G0 := 0, GK
indep∼ Gam(K,1) for K ≥ 1, and V

indep∼ g. Furthermore,

∀N ∈ N, lim
K→∞BN,K = 0.

Remark. An alternate form of BN,K that is sometimes easier to use in practice can be found by
applying the standard geometric series formula to Eq. (4.2), which yields

BN,K =
N∑

n=1

∫ ∞

0
E

[
π

(
τ (V,u + GK)

)n−1(1 − π
(
τ (V,u + GK)

))]
du.

A simplified upper bound on BN,K can be derived by noting that π(θ) ≤ 1, so

BN,K ≤ N

∫ ∞

0

(
1 −E

[
π

(
τ (V,u + GK)

)])
du. (4.3)

This bound usually gives the same asymptotics in K as Eq. (4.2).

The main task in using Theorem 4.2 to develop a truncation error bound for a series represen-
tation is evaluating the integrand in the definition of BN,K . Thus, we next evaluate the integrand
and provide expressions of the truncation error bound for the four series representations out-
lined in Section 3.1. Throughout the remainder of this section, GK is defined as in Theorem 4.2,
F0 ≡ 1, and FK is the CDF of GK .

Inverse-Lévy representation

For this representation, we have

τ(v,u) = ν←(u) := inf
{
y : ν([y,∞)

) ≤ u
}
.

To evaluate the bound in Eq. (4.3), we use the transformation of variables x = ν←(u + GK) and
the fact that for a, b ≥ 0, ν←(a) ≥ b ⇐⇒ a ≤ ν([b,∞)) to conclude that

BN,K ≤ N

∫ ∞

0
FK

(
ν[x,∞)

)(
1 − π(x)

)
ν(dx). (4.4)
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Recent work on the inverse-Lévy representation has developed Monte Carlo estimates of the error
of the truncated random measure moments for those ν([x,∞)) with known inverse ν← [3]. In
contrast, the result above provides an explicit bound on the L1 truncation error. Our bound does
not require knowing ν←, which is often the most challenging aspect of applying the inverse-Lévy
representation.

Example 4.1 (IL-Rep truncation for LomP(γ,λ−1) with Poisson likelihood). Recall from
Example 3.4 that the Lomax process LomP(γ,λ−1) is the CRM with rate measure ν(dθ) =
γ λθ−1(1 + λθ)−1 dθ , so ν[x,∞) = γ λ log{1 + (λx)−1}. Using Eq. (4.4), we have

BN,K ≤ Nγλ

∫ ∞

0
FK

(
γ λ log

{
1 + (λx)−1})(1 − e−x

)
x−1(1 + λx)−1 dx.

Since FK(t) ≤ tK/K! ≤ (3t/K)K , for any a > 0 the integral is upper bounded by

∫ a

0
(1 + λx)−1 dx + FK

(
γ λ log

{
1 + 1

λa

})∫ ∞

a

x−1(1 + λx)−1 dx

≤ a + FK

(
γ λ log

{
1 + 1

λa

})
log

{
1 + 1

λa

}

≤ λ−1(eb − 1
)−1 + b(3γ λb/K)K where b := log

{
1 + (λa)−1}.

(4.5)

Replacing (eb − 1)−1 with the approximation e−b and then setting the two terms in Eq. (4.5)

equal, we obtain b = KW0({3γ λ
K+2
K+1 (K + 1)

1
K+1 }−1), where W0 is the product logarithm func-

tion, that is,

W0(y) = x ⇐⇒ xex = y. (4.6)

Thus, using the fact that e−t ≤ (et − 1)−1 and λ
K+2
K+1 (K + 1)

1
K+1 reaches its maximum at K =

max(0, eλ−1 − 1), we conclude that

BN,K ≤ 2Nγ [1 + (3γ λ)−1]
exp(KW0({3γ λmax(λ, e)}−1)) − 1

∼ 2Nγ
[
1 + (3γ λ)−1]e−KW0({3γ λmax(λ,e)}−1), K → ∞.

Bondesson representation

For this representation, we have

τ(v,u) = ve−u/c, g(dv) = −c−1 d

dv

(
vν(v)

)
dv.

Writing the expectation over V explicitly as an integral with measure g(v)dv, using the trans-
formation of variables u = −c logx/v (so x = ve−u/c), and given the definition of g(v) =
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−c−1 d
dv

(vν(v)) for the Bondesson representation, we have

BN,K ≤ N

∫ ∞

0

(
1 −E

[
π

(
ve−GK/c

)])
ν(dv).

Example 4.2 (Truncation of the Bondesson representation for 	P(γ,λ,0)). Let G̃K
D=

GK/(γ λ). Since π(θ) = e−θ and c = γ λ, we have∫ ∞

0

(
1 −E

[
π

(
ve−GK/c

)])
ν(dv) = γ λE

[∫ ∞

0

(
1 − e−ve−G̃K

)
v−1e−λv dv

]

= γ λE
[
log

(
1 + e−G̃K /λ

)]
≤ γE

[
e−G̃K

] = γ

(
γ λ

1 + γ λ

)K

.

The second equality follows by using the power series for the exponential integral [1], Chapter 5.
Thus,

BN,K ≤ Nγ

(
γ λ

1 + γ λ

)K

.

Thinning representation

For this representation, we have

τ(v,u) = v1

[
dν

dg
(v) ≥ u

]
, g any distribution on R+ s.t. ν 
 g.

Since π(0) = 1 by Lemma B.3, we have that 1 − π(v1(A)) = (1 − π(v))1(A) for any event A.
Using this fact, we have

BN,K ≤ N

∫ ∞

0

(
1 − π(v)

)∫ dν
dg

(v)

0
FK(u)dug(dv). (4.7)

Analytic bounds for the thinning representation of specific processes tend to be opaque and
notationally cumbersome, so we simply compare its truncation error in Section 7 to the other
representations by numerical approximation of Eq. (4.7).

Rejection representation

Assume that we can use the inverse-Lévy representation to simulate PoissP(μ). Then for the
rejection representation we have

τ(v,u) = μ←(u)1

[
dν

dμ

(
μ←(u)

) ≥ v

]
, g(dv)= 1[0 ≤ v ≤ 1]dv,
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where μ satisfies ν 
 μ, dν
dμ

≤ 1, and μ←(u) := inf{x : μ([x,∞)) ≤ u}. Using the same tech-
niques as for the thinning and inverse-Lévy representations, we have that

BN,K ≤ N

∫ ∞

0
FK

(
μ[x,∞)

)(
1 − π(x)

)
ν(dx). (4.8)

Example 4.3 (R-Rep truncation for 	P(γ,λ,0) with Poisson likelihood). Using Eq. (4.8) and
the fact that 1 − e−x ≤ x, we have

BN,K ≤ Nγλ

∫ ∞

0
FK

(
γ λ log

{
1 + (λx)−1})e−λx dx. (4.9)

Arguing as in Example 4.1, we see that the integral in Eq. (4.9) is upper bounded by∫ a

0
e−λx dx + FK

(
γ λ log

{
1 + 1

λa

})∫ ∞

a

e−λx dx

≤ a + λ−1FK

(
γ λ log

{
1 + 1

λa

})

= λ−1((eb − 1
)−1 + (3γ λb/K)K

)
,

(4.10)

where b := log{1 + (λa)−1}. Replacing (eb − 1)−1 with the approximation e−b and then setting
the two terms in Eq. (4.10) equal to each other, we obtain b = KW0({3γ λ}−1) (where W0 is
defined in Eq. (4.6)) and conclude that

BN,K ≤ 2Nγ

eKW0({3γ λ}−1) − 1
∼ 2Nγ e−KW0({3γ λ}−1), K → ∞.

Example 4.4 (R-Rep truncation for 	P(γ,λ, d) with Poisson likelihood, d > 0). We have

BN,K ≤ N
γλ1−d

	(1 − d)

∫ ∞

0
FK

(
γ ′x−d

)(
1 − e−x

)
x−1−de−λx dx.

The integral can be upper bounded as∫ a

0
x−d dx + FK

(
γ ′a−d

)∫ ∞

a

(
1 + e−x

)
x−1−de−λx dx

≤ (1 − d)−1a1−d + 	(−d)
(
λd − (1 + λ)d

)(
3γ ′K−1a−d

)K
.

Setting the two terms equal and solving for a, we obtain

BN,K ≤ 2N
γλ1−d

	(2 − d)

[
(1 − d)	(−d)

] d(1−d)
d(1−d)+K

[
3γ λ1−d

d	(1 − d)K

] Kd(1−d)
d(1−d)+K

∼ 2N
γλ1−d

	(2 − d)

[
3γ λ1−d

d	(1 − d)

]d(1−d)

K−d(1−d), K → ∞.
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4.2. Superposition representations

For superposition representations, the truncated CRM takes the form

�K :=
K∑

k=1

Ck∑
i=1

θkiδψki
.

Let �+
K := � − �K denote the tail measure. By the superposition property of Poisson point

processes [28], the tail measure is itself a CRM with some rate measure ν+
K and is independent

of �K :

�+
K =

∞∑
k=K+1

Ck∑
i=1

θkiδψki
∼ CRM

(
ν+
K

)
, �+

K ⊥⊥ �K, � = �K + �+
K. (4.11)

The following result provides a general truncation error bound for superposition representations,
specifies its range, and guarantees that the bound decays to 0 as K → ∞.

Theorem 4.3 (Superposition representation truncation error). The error in approximating a
superposition representation of � ∼ CRM(ν) with its truncation �K satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − e−BN,K ≤ 1,

where

BN,K :=
∫ (

1 − π(θ)N
)
ν+
K(dθ). (4.12)

Furthermore, ∀N ∈N, limK→∞ BN,K = 0.

Remark. As for series representations, an alternate form of BN,K that is sometimes easier to
use can be found by applying the standard geometric series formula to Eq. (4.12):

BN,K =
N∑

n=1

∫
π(θ)n−1(1 − π(θ)

)
ν+
K(dθ).

A simplified upper bound on BN,K can be derived by noting that π(θ) ≤ 1, so

BN,K ≤ N

∫ ∞

0

(
1 − π(θ)

)
ν+
K(dθ).

This bound usually gives the same asymptotics in K as Eq. (4.12).

The main task in using Theorem 4.3 to develop a truncation error bound for a superposition
representation is determining its tail measure ν+

K . In the following, we provide the tail measure
for the three superposition representations outlined in Section 3.2.
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Decoupled Bondesson representation

For each point process in the superposition, an average of c/ξ atoms are generated with inde-

pendent weights of the form V e−Tk where V
indep∼ g and Tk

indep∼ Gam(k, ξ). Therefore, the tail
measure is

ν+
K(dθ) = c

ξ

∞∑
k=K+1

g̃k,ξ (θ)dθ,

where g̃k,ξ is the density of V e−Tk . The bound for the decoupled Bondesson representation can
therefore be expressed as

BN,K ≤ N
c

ξ

∞∑
k=K+1

E
[
1 − π

(
V e−Tk

)]
.

Example 4.5 (Decoupled Bondesson representation truncation for 	P(γ,λ,0)). Using the
fact that 1 − e−θ ≤ θ , we have

BN,K = Nγλ

ξ

∞∑
k=K+1

E
[
1 − π

(
Vk1e

−Tk1
)] ≤ Nγλ

ξ

∞∑
k=K+1

E
[
Vk1e

−Tk1
]

= Nγλ

ξ

∞∑
k=K+1

1

λ

(
ξ

1 + ξ

)k

= Nγ

(
ξ

1 + ξ

)K

,

which is equivalent (up to a factor of 2) to the bound in [46].

Size-biased representation

The constructive derivation of the size-biased representation [11], proof of Theorem 5.1, imme-
diately yields

ν+
K(dθ) = π(θ)Kν(dθ).

Therefore, the size-biased representation truncation error bound can be expressed using the for-
mula for ηk from Eq. (3.2) as

BN,K =
N∑

n=1

∫
π(θ)K+n−1(1 − π(θ)

)
ν(dθ) =

N∑
n=1

ηK+n. (4.13)

Example 4.6 (Size-biased representation truncation for 	P(γ,λ, d)). For d > 0, the standard
gamma integral yields

ηk =
∫

π(θ)k−1(1 − π(θ)
)
ν(dθ) = γ λ1−d

d

(
(λ + k)d − (λ + k − 1)d

)
.
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The sum from Eq. (4.13) is telescoping, so canceling terms,

BN,K ≤ γ λ1−d

d

(
(λ + K + N)d − (λ + K)d

) ∼ γNλ1−dKd−1, K → ∞,

where the asymptotic result follows from Lemma B.4. To analyze the d = 0 case, we use
L’Hospital’s rule to take the limit of the integral:

lim
d→0

∫
π(θ)k−1(1 − π(θ)

)
ν(dθ) = γ λ

(
log(λ + k) − log(λ + k − 1)

)
.

Canceling terms in the telescopic sum yields

BN,K ≤ γ λ
(
log(λ + K + N) − log(λ + K)

) ∼ γ λNK−1, K → ∞,

where the asymptotic result follows from an application of Lemma B.4.

Power-law representation

For each point process in the superposition, an average of γ atoms are generated with indepen-

dent weights of the form V Uk

∏k−1

=1(1 − U
), where V

indep∼ g and U


indep∼ Beta(1 − d,α + 
d).
Therefore, the tail measure is

ν+
K(dθ) = γ

∞∑
k=K+1

g̃k(θ)dθ,

where g̃k is the density of the random variable V Uk

∏k−1

=1(1 − U
). The truncation error bound

may be expressed as

BN,K ≤ Nγ

∞∑
k=K+1

E

[
1 − π

(
V Uk

k−1∏

=1

(1 − U
)

)]
.

Example 4.7 (Power-law representation truncation for 	P(γ,λ, d)). Let βk be a random vari-
able with density g̃k (with λ in the place of α). Using 1 − e−θ ≤ θ , we have

∞∑
k=K+1

E
[
1 − π(βk)

] ≤
∞∑

k=K+1

E[βk] = E

[ ∞∑
k=K+1

βk

]
=

K∏
k=1

λ + kd

λ + kd − d + 1
,
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where the final equality follows from [19], Theorem 1. Thus,

BN,K ≤ γN

K∏
k=1

λ + kd

λ + kd − d + 1

∼ γN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λ

λ + 1

)K

, d = 0,

	(λ+1
d

)

	(λ+d
d

)
K1−d−1

, 0 < d < 1,

K → ∞,

(4.14)

where the 0 < d < 1 case in Eq. (4.14) follows by Lemma B.5 applied to

K∏
k=1

λ + kd

λ + kd − d + 1
= 	((λ + 1)/d)

	((λ + d)/d)

	(λ/d + K + 1)

	(λ/d + K + d−1)
.

4.3. Stochastic mapping

We now show how truncation bounds developed elsewhere in this paper can be applied to CRM
representations that have been transformed using Lemma 3.4. For � ∼ CRM(ν), we denote its
transformation by �̃ = κ(�). For any object defined with respect to �, the corresponding object
for �̃ is denoted with a tilde. For example, in place of N and X1:N (for �), we use Ñ and X̃1:Ñ
(for �̃). We make BN,K a function of π(θ) in the notation of Proposition 4.4; when one applies
stochastic mapping to a CRM, one usually also wants to change the likelihood h(x | θ), and thus
also changes π(θ) = h(0 | θ). The proof of Proposition 4.4 may be found in Appendix D.

Proposition 4.4 (Truncation error under a stochastic mapping). Consider a representation
for � ∼ CRM(ν) with truncation error bound BN,K(π). Then for any likelihood h̃(x | u), if �̃

is a stochastic mapping of � under the probability kernel κ(θ,du), its truncation error bound is

B1,K(π
κ,Ñ

), where π
κ,Ñ

(θ) := ∫
h̃(0 | u)Ñκ(θ,du).

4.4. Hyperpriors

In practice, prior distributions are often placed on the hyperparameters of the CRM rate measure
(i.e., γ , α, λ, d , etc.). We conclude our investigation of CRM truncation error by showing how
bounds developed in this section can be modified to account for the use of hyperpriors. Note
that we make the dependence of BN,K on the hyperparameters � explicit in the notation of
Proposition 4.5.

Proposition 4.5 (CRM truncation error with a hyperprior). Given hyperparameters �, con-
sider a representation for � | � ∼ CRM(ν), and let BN,K(�) be given by Eq. (4.2) (for a series
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representation) or Eq. (4.12) (for a superposition representation). The error of approximating �

with its truncation �K satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − e−E[BN,K(�)] ≤ 1.

Example 4.8 (Decoupled Bondesson representation truncation for 	P(γ,λ,0)). A standard
choice of hyperprior for the mass γ is a gamma distribution, i.e. γ ∼ Gam(a, b). Combining
Proposition 4.5 and Example 4.5, we have that

E
[
BN,K(�)

] ≤ N
a

b

(
ξ

ξ + 1

)K

.

5. Normalized truncation analysis

In this section, we provide truncation error bounds for normalized CRMs (NCRMs). Examples
include the Dirichlet process [14], the normalized gamma process [8,22,31–33,41], and the nor-
malized σ -stable process [29,33]. Given a CRM � on � , we define the corresponding NCRM �

via �(S) := �(S)/�(�) for each measurable subset S ⊆ � . Likewise, given a truncated CRM
�K , we define its normalization �K via �K(S) := �K(S)/�K(�). Note that any simulation
algorithm for �K can be used for �K by simply normalizing the result. This does not depend
on the particular representation of the CRM, and thus applies equally to all the representations in
Section 3.

The first step in the analysis of NCRM truncations is to define their approximation error in
a manner similar to that of CRM truncations. Since � and �K are both normalized, they are
distributions on �; thus, observations X1:N are generated i.i.d. from �, and Z1:N are generated
i.i.d. from �K . Y1:N and W1:N have the same definition as for CRMs. As in the developments
of Section 4, the theoretical results of this section rely on a general upper bound, provided by
Lemma 5.1.

Lemma 5.1 (NCRM protobound). Let � ∼ CRM(ν), and let its truncation be �K . Let their
normalizations be � and �K respectively. If

Xn | � i.i.d.∼ �, Zn | �K
i.i.d.∼ �K,

Yn | Xn
indep∼ f (· | Xn), Wn | Zn

indep∼ f (· | Zn),

then

1

2
‖pN,∞ − pN,K‖1 ≤ 1 − P

(
X1:N ⊆ supp(�K)

)
,

where pN,∞, pN,K are the marginal densities of Y1:N and W1:N , respectively.

The analysis of CRMs in Section 4 relied heavily on the Poisson process structure of the rates
in � and X1:N ; unfortunately, the rates in � do not possess the same structure and thus lack many
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useful independence properties (the rates must sum to one). Likewise, sampling Xn for each n

does not depend on the atoms of � independently (Xn randomly selects a single atom based on
their rates). Rather than using the basic definitions of the above random quantities to derive an
error bound, we decouple the atoms of � and X1:N using a technique from extreme value theory.
A Gumbel random variable T with location μ ∈R and scale σ > 0, denoted T ∼ Gumbel(μ,σ ),
is defined by the cumulative distribution function and corresponding density

P(T ≤ t) = e−e− t−μ
σ and

1

σ
e−(

t−μ
σ

)−e−(
t−μ
σ )

.

An interesting property of the Gumbel distribution is that if one perturbs the log-probabilities of
a finite discrete distribution by i.i.d. Gumbel(0,1) random variables, the arg max of the resulting
set is a sample from the discrete distribution [17,34]. This technique is invariant to normalization,
as the arg max is invariant to the corresponding constant shift in the log-transformed space. For
present purposes, we develop the infinite extension of this result.

Lemma 5.2 (Infinite Gumbel-max sampling). Let (pi)
∞
i=1 be a collection of positive numbers

such that
∑

i pi < ∞ and let p̄j := pj∑
i pi

. If (Ti)
∞
i=1 are i.i.d. Gumbel(0,1) random variables,

then arg maxi∈N Ti + logpi exists, is unique a.s., and has distribution

arg max
i∈N

Ti + logpi ∼ Categorical
(
(p̄j )

∞
j=1

)
.

The proof of this result, along with the others in this section, may be found in Appendix E.
The utility of Lemma 5.2 is that it allows the construction of � and X1:N without the problematic
coupling of the underlying CRM atoms due to normalization; rather than dealing directly with
�, we log-transform the rates of �, perturb them by i.i.d. Gumbel(0,1) random variables, and
characterize the distribution of the maximum rate in this process. The combination of this dis-
tribution with Lemma 5.2 yields the key proof technique used to develop the truncation bounds
in Theorems 5.3 and 5.4. The results presented in this section are summarized in Table 1 in
Section 7.

5.1. Series representations

The following result provides a general truncation error bound for normalized series represen-
tations, specifies its range, and guarantees that it decays to 0 as K → ∞. We again use the
general series representation notation from Eq. (4.1), where g is a distribution on R+, and
τ : R+ × R+ → R+ is a measurable function such that limu→∞ τ(v,u) = 0 for g-almost ev-
ery v.

Theorem 5.3 (Normalized series representation truncation error bound). The error of ap-
proximating a series representation of � ∼ NCRM(ν) with its truncation �K satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − (1 − BK)N ≤ 1,
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where

BK := E

[∫ ∞

0
J (	K, t)

(∫ 1

0
J (	Ku, t)du

)K−1(
− d

dt
e
∫ ∞

0 (J (u+	K,t)−1)du

)
dt

]
, (5.1)

J (u, t) = E
[
e−t ·τ(V,u)

]
, V ∼ g, and 	K ∼ Gam(K,1).

Furthermore, limK→∞ BK = 0.

Example 5.1 (Dirichlet process, DP(γ ), B-Rep). The Dirichlet process with concentration γ >

0 is a normalized gamma process N	P(γ,1,0). From Example 3.2, we have cν = γ and gν =
Exp(1), and from Section 4.1 we have τ(v,u) = ve−u/cν . Therefore J and its antiderivative are

J (u, t) = E
[
e−tV e−u/γ ] = (

1 + te−u/γ
)−1 and

∫
J (u, t)du = γ log

(
eu/γ + t

)
.

Using the antiderivative to evaluate the integrals in the formula for BK , writing the expectation
over 	K ∼ Gam(K,1) explicitly, and making a change of variables we have

BK = γ K+1

	(K)

∫ ∞

0

∫ ∞

1

(
log

(
s + t

1 + t

))K−1

(s + t)−(γ+2) ds dt =
(

γ

1 + γ

)K

,

where the last equality is found by multiplying and dividing the integrand by (1 + t)−(γ+2), and
making the change of variables from s to x = log s+t

1+t
. Therefore, the truncation error can be

bounded by

1

2
‖pN,∞ − pN,K‖1 ≤ 1 −

(
1 −

(
γ

γ + 1

)K)N

∼ N

(
γ

γ + 1

)K

, K → ∞.

The bound in Example 5.2 has exponential decay, and reproduces earlier DP truncation error
bound rates due to [19] and [21]. However, the techniques used in past work do not generalize
beyond the Dirichlet process, while those developed here apply to any NCRM.

5.2. Superposition representations

The following result provides a general truncation error bound for normalized superposition
representations, specifies its range, and guarantees that it decays to 0 as K → ∞. We once again
rely on the property that the truncation �K and tail �+

K are mutually independent CRMs, as
expressed in Eq. (4.11), with the tail measure denoted ν+

K .

Theorem 5.4 (Truncation error bound for normalized superposition representations). The
error of approximating a superposition representation of � ∼ NCRM(ν) with its truncation �K

satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − (1 − BK)N ≤ 1,
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where

BK :=
∫ ∞

0

(∫
θe−θt ν+

K(dθ)

)
e
∫
(e−θt−1)ν(dθ) dt. (5.2)

Furthermore, limK→∞ BK = 0.

This bound can be applied by using the tail measures derived earlier in Section 4.2.

Example 5.2 (Dirichlet process, DP(γ ), DB-Rep). As in Example 5.1, we view the Dirich-
let process with concentration γ > 0 as a normalized gamma process N	P(γ,1,0). First, by
Lemma B.8, the integral in the exponential is

exp

(∫ (
e−tθ − 1

)
ν(dθ)

)
= exp

(
γ

∫ ∞

0

(
e−tθ − 1

)
θ−1e−θ dθ

)
= (t + 1)−γ .

Example 3.2 shows cν = γ and gν(v) = e−v , and Eq. (C.1) provides the tail measure ν+
K for the

decoupled Bondesson representation,

ν+
K(dθ) = γ

ξ

∞∑
k=K+1

ξk

	(k)

(∫ 1

0
(− logx)k−1xξ−2e−θx−1

dx

)
dθ.

Substituting this result, using Fubini’s theorem to swap the order of integration and summation,
evaluating the integral over θ , and making the substitution x = e−s yields

BK = γ

ξ

∞∑
k=K+1

ξk

	(k)

∫∫
s,t≥0

sk−1e−(ξ−1)s(t + 1)−γ

(es + t)2
ds dt.

Noting that ∀s ≥ 0, es ≥ 1, we have for any a ∈ (0,1] ∩ (0, γ ),

BK ≤ γ

ξ

∞∑
k=K+1

ξk

	(k)

∫ ∞

0
sk−1e−(ξ+a)s ds

∫ ∞

0
(t + 1)−(γ+1−a) dt

= γ

(γ − a)ξ

∞∑
k=K+1

(
ξ

ξ + a

)k

= γ

a(γ − a)

(
ξ

ξ + a

)K

.

Therefore, for any a ∈ (0,1] ∩ (0, γ ),

1

2
‖pN,∞ − pN,K‖1 ≤ 1 −

(
1 − γ

a(γ − a)

(
ξ

ξ + a

)K)N

∼ Nγ

a(γ − a)

(
ξ

ξ + a

)K

, K → ∞.

To find the tightest bound, one can minimize with respect to a given γ, ξ,K .
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Example 5.3 (Normalized gamma process, N	P(γ,λ, d), SB-Rep). By Lemma B.8, the inte-
gral in the exponential is

exp

(∫ (
e−θt − 1

)
ν(dθ)

)
=

⎧⎨
⎩

exp
(−γ λ1−dd−1

(
(t + λ)d − λd

))
, d > 0,(

λ

t + λ

)γ λ

, d = 0,
(5.3)

and the standard gamma integral yields

∫
θe−θt ν+

K(dθ) = γ
λ1−d

	(1 − d)

∫
θ−de−(K+t+λ)θ dθ = γ λ1−d(K + t + λ)d−1. (5.4)

When d > 0, multiplying the previous two displays and integrating over t ≥ 0 yields

BK = γ λ1−deγλ/d

∫ ∞

λ

(K + t)d−1e−γ λ1−d td/d dt ≤ Cγ,λ,d(K + λ)d−1,

where we have used (K + t)d−1 ≤ (K + λ)d−1 for t ≥ λ and the change of variables u =
γ λ1−dd−1td to find that Cγ,λ,d = eσ σ 1−d−1

λ1−d	(d−1, σ ), where σ = γ λd−1 and 	(a, x) :=∫ ∞
x

θa−1e−θ dθ is the upper incomplete gamma function. Therefore,

1

2
‖pN,∞ − pN,K‖1 ≤ 1 − (

1 − Cγ,λ,d(K + λ)d−1)N ∼ NCγ,λ,dKd−1, K → ∞.

When d = 0, multiplying Eqs. (5.3) and (5.4) and integrating over t ≥ 0 yields

BK

γλ1+γ λ
=

∫ ∞

λ

(K + t)−1t−γ λ dt ≤

⎧⎪⎪⎨
⎪⎪⎩

(K + λ)−1
( 1

γ λ
(K + λ)1−γ λ − λ1−γ λ

1 − γ λ

)
, γ λ �= 1,

K−1 log

(
K + λ

λ

)
, γ λ = 1,

where we obtain the bound for γ λ �= 1 by splitting the integral into the intervals [λ,K + λ] and
[K + λ,∞) and bounding each section separately, and we obtain the bound for γ λ = 1 via the
transformation u = t/(K + t). Therefore, asymptotically

1

2
‖pN,∞ − pN,K‖1 � N

{
Cγ,λK

−min(1,γ λ), γ λ �= 1,

λK−1 logK, γλ = 1,
K → ∞,

where Cγ,λ := max( λγλ

1−γ λ
,

γ λ2

γ λ−1 ).

Truncation of the N	P(γ,λ, d) has been studied previously: [4] threshold the weights of the
unnormalized CRM to be beyond a fixed level ε > 0 prior to normalization, and develop error
bounds for that method of truncation. These results are not directly comparable to those of the
present work due to the different methods of truncation (i.e., sequential representation termina-
tion versus weight thresholding).
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5.3. Hyperpriors

As in the CRM case, we can place priors on the hyperparameters of the NCRM rate measure
(i.e., γ , α, λ, d , etc.). We conclude our investigation of NCRM truncation error by showing how
bounds developed in this section can be modified to account for hyperpriors. Note that we make
the dependence of BK on the hyperparameters � explicit in the notation of Proposition 5.5.

Proposition 5.5 (NCRM truncation error with a hyperprior). Given hyperparameters �,
consider a representation for � | � ∼ CRM(ν), let � | � be its normalization, and let BK(�) be
given by Eq. (5.1) (for a series representation) or Eq. (5.2) (for a superposition representation).
The error of approximating � with its truncation �K satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1 − (

1 −E
[
BK(�)

])N ≤ 1.

Example 5.4 (Dirichlet process, DP(γ ), B-Rep). If we place a Lomax prior on γ , that is, γ ∼
LomP(a,1), then combining Proposition 5.5 and Example 5.1 yields

1

2
‖pN,∞ − pN,K‖1 ≤ 1 −

(
1 − 	(a + 1)	(K + 1)

	(a + K + 1)

)N

∼ N	(a + 1)(K + 1)−a, K → ∞.

6. Simulation and computational complexity

The sequential representations in Section 3 are each generated from a different finite sequence of
distributions, resulting in a different expected computational cost for the same truncation level.
Thus, the truncation level itself is not an appropriate parameter with which to compare the error
bounds for different representations and we require a characterization of the computational cost.
We investigate the mean complexity E[R] of each representation, where R is the number of
random variables sampled, as a function of the truncation level for each of the representations in
Section 3.

We begin with the series representations. For each value of k = 1, . . . ,K , each series rep-
resentation generates a single trait ψk ∼ G and a rate θk composed of some transformation of
random variables. Thus, all of the series representations in this work satisfy E[R] = rK for some
constant r : by inspection, the inverse-Lévy representation has r = 2, and all the remaining series
representations have r = 3.

The superposition representations, on the other hand, generate a Poisson random variable to
determine the number of atoms at each value of k = 1, . . . ,K , and then generate those atoms.
Therefore, the mean simulation complexity takes the form E[R] = ∑K

k=1 1 + rkE[Ck] for some
constants rk that might depend on the value of k. For the decoupled Bondesson representation,
rk = 3 since each atom requires generating three values (ψki , Vki , and Tki ), and E[Ck] = c/ξ , so
E[R] = ( 3c

ξ
+1)K . For the size-biased representation, rk = 3 since each atom requires generating

three values (ψki , zki , and θki ), and E[Ck] = ηk , so E[R] = K + 3
∑K

k=1 ηk . Note that here
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E[R] ∼ K , for K → ∞ since ηk is a decreasing sequence. For the power-law representation,
rk = k + 2, since each atom requires generating ψki , Vki , and k beta random variables, and
therefore E[R] = (1 + 5γ

2 )K + γ
2 K2.

7. Summary of results

Table 1 summarizes our truncation and simulation cost results as applied to the beta, (normalized)
gamma, and beta prime processes. Results for the Bondesson representation of BP(γ,1,0) as
well as the decoupled Bondesson representations of BP(γ,λ,0) and 	P(γ,λ,0) were previously

Table 1. Asymptotic error bounds and simulation cost summary. Error bounds are presented up to a con-
stant that varies between models. Be = Bernoulli, OBe = odds Bernoulli, Poi = Poisson

Rep. Random measure h Asymptotic error bound Complexity

IL LomP(γ,λ−1) Poi Ne−KW0({3γ λmax(λ,e)}−1) 2K

B

BP(γ,λ ≥ 1,0) Be
Nγ (

γλ
γλ+1 )K

3K
	P(γ,λ,0) Poi
BPP(γ,λ,0) OBe

DP(γ ) – N(
γ

γ+1 )K

T – – See Eq. (4.7) 3K

R

BP(γ,λ,0) Be

N

⎧⎪⎨
⎪⎩

e−KW0({3γ λ}−1), d = 0,

K−d(1−d), d > 0(	P),

K−1/d , d > 0(BP,BPP)

3K
	P(γ,λ,0) Poi
BPP(γ,λ,0) OBe

DB

BP(γ,λ ≥ 1,0) Be
N(

ξ
ξ+1 )K	P(γ,λ,0) Poi

( 3c
ξ + 1)K

BPP(γ,λ > 1,0) OBe

DP(γ ) – Nγ
a(γ−a)

(
ξ

ξ+a
)K,a ∈ (0,1] ∩ (0, γ )

SB

BP(γ,λ, d) Be
NKd−1

K
	P(γ,λ, d) Poi
BPP(γ,λ, d) OBe

N	P(γ,λ, d) – N

⎧⎨
⎩

K−1 logK, d = 0, γ λ = 1,

K−min(1,γ λ), d = 0, γ λ �= 1,

Kd−1, d > 0

PL
BP(γ,λ, d) Be

N

⎧⎪⎨
⎪⎩

( λ
λ+1 )K, d = 0(BP,	P),

2−K, d = 0(BPP),

K1−1/d , d > 0

γ
2 K2	P(γ,λ, d) Poi

BPP(γ,λ > 1, d) OBe
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known, and are reproduced by our results. All other results in the table are novel to the best of
the authors’ knowledge. It is interesting to note that the bounds and expected costs within each of
the representation classes often have the same form, aside from some constants. Across classes,
however, they vary significantly, indicating that the chosen sequential representation of a process
has more of an influence on the truncation error than the process itself.

Figure 1 shows a comparison of how the truncation error bounds vary with the expected com-
putational cost E[R] of simulation for the (normalized) gamma process and Poisson likelihood
with N = 5 observations. Results shown for the thinning, rejection, and inverse-Lévy represen-
tations are computed by Monte-Carlo approximation of the formula for BN,K in Eq. (4.3), while

Figure 1. Truncation error bounds for representations of the (normalized) gamma-Poisson process, with
γ = 1, λ = 2, and ξ = γ λ. The left column is for the unnormalized process, while the right column
is for the normalized process. Each row displays results for a different value of the discount parameter
d ∈ {0,0.1,0.5}.
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all others use closed-form expressions from the examples in Sections 4 and 5. Note that the Bon-
desson and decoupled Bondesson representations do not exist when d > 0. Further, only those
representations for which we provide closed-form bounds in the examples are shown for the nor-
malized gamma process; we leave the numerical approximation of the results from Theorems 5.3
and 5.4 as an open problem. Similar figures for other processes (in particular, the beta-Bernoulli
and beta prime-odds Bernoulli) are provided in Appendix A. Note that all bounds presented are
improved by a factor of two versus comparable past results in the literature, due to the reliance
on Lemmas 4.1 and 5.1 rather than the earlier bound found in [19].

In Figure 1, the top row shows results for the light-tailed process (γ = 1, λ = 1, d = 0, and
ξ = c = γ λ). All representations except for thinning and size-biased capture its exponential trun-
cation error decay. This is due to the fact that the thinning representation generates increasingly
many atoms of weight 0 as K → ∞, and the expected number of atoms at each outer index for
the size-biased representation decays as K → ∞. The inverse-Lévy representation has the low-
est truncation error as expected, as it is the only representation that generates a nonincreasing
sequence of weights (and so must be the most efficient [3]). Based on this figure and those in
Appendix A for other processes, it appears that the Bondesson representation typically provides
the best tradeoff between simplicity and efficiency, and should be used whenever its conditions in
Theorem 3.1 are satisfied. When the technical conditions are not satisfied, the rejection represen-
tation is a good alternative. If ease of theoretical analysis is a concern, the decoupled Bondesson
representation provides comparable efficiency with the analytical simplicity of a superposition
representation.

The bottom two rows of Figure 1 show results for the heavy-tailed process (γ = 1, λ = 2,
and d ∈ {0.1,0.5}). The representation options are more limited, as the technical conditions of
the Bondesson and decoupled Bondesson representations are not satisfied. Here the rejection
representation is often the best choice due to its simplicity and competitive performance with
the inverse-Lévy representation. However, one must take care to check its efficiency beforehand
using Proposition 3.2 given a particular choice of μ(dθ). For example, the choice of μ(dθ) ∝
θ−1−d dθ in the present work makes the rejection representation very inefficient when d 
 1
for both the gamma-Poisson (Figure 1) and beta prime-odds Bernoulli (Figure A.2) processes,
but efficient for the beta-Bernoulli process (Figure A.1). If no μ(dθ) yields reasonable results,
the power-law representation is a good choice for d 
 1 as its truncation bound approaches the
exponential decay of the light-tailed process. For larger d > 0, the size-biased representation is a
good alternative.

Based on the results in Figure 1, it appears that there is no single dominant representation
for all situations (provided the inverse-Lévy representation is intractable, as it most often is).
However, as a guideline, the rejection and Bondesson representations tend to be good choices for
light-tailed processes, while the rejection, size-biased, and power-law representations are good
choices for heavy-tailed processes.

8. Discussion

We have investigated sequential representations, truncation error bounds, and simulation algo-
rithms for (normalized) completely random measures. In past work, the development and analysis



Truncated random measures 1285

of these tools has occurred only on an ad hoc basis. The results in the present paper, in con-
trast, provide a comprehensive characterization and analysis of the different types of sequential
(N)CRM representations available to the practitioner. However, there are a number of remaining
open questions and limitations.

First, this work does not consider the influence of observed data: all analyses assume an a
priori perspective, as truncation is typically performed before data are incorporated via posterior
inference (e.g., in variational inference for the DP mixture [6] and BP latent feature model [13]).
However, analysis of a posteriori truncation has been studied in past work as well [16,19,21]. In
the language of CRMs, observations introduce a fixed-location component in the posterior pro-
cess, while the unobserved traits are drawn from the (possibly normalized) ordinary component
of a CRM [11,21]. We anticipate that this property makes observations reasonably simple to in-
clude: the truncation tools provided in the present paper can be used directly on the unobserved
ordinary component, while the fixed-location component may be treated exactly.

In addition, there are important open questions regarding the sequential representations devel-
oped in this work. It is unknown whether generalized versions of the Bondesson and decoupled
Bondesson representations can be developed for larger classes of rate measures. The power-law
representation does provide a partial answer in the decoupled Bondesson case. Regarding size-
biased representations, one might expect that the use of conjugate exponential family CRMs [11]
would yield a closed-form expression for the truncation bound. In all of the cases provided in
this paper, this was indeed the case; the integrals were evaluated exactly and a closed-form ex-
pression was found. However, we were unable to identify a general expression applicable to all
conjugate exponential family CRMs. Based on the examples provided, we conjecture that such
an expression exists. Finally, fundamental connections between some of the representations were
left largely unexplored in this work. This is an open area of research, although progress has been
made by connecting decoupled Bondesson and size-biased representations for (hierarchies of)
generalized beta processes [45], Section 6.4.

A final remark is that one of the primary uses of sequential representations in past work has
been in the development of posterior inference procedures [6,13,38]. The present work provides
no guidance on which truncated representations are best paired with which inference methods.
We leave this as an open direction for future research, which will require both theoretical and
empirical investigation.
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