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The abundance of high-dimensional data in the modern sciences has generated tremendous interest in penal-
ized estimators such as the lasso, scaled lasso, square-root lasso, elastic net, and many others. In this paper,
we establish a general oracle inequality for prediction in high-dimensional linear regression with such meth-
ods. Since the proof relies only on convexity and continuity arguments, the result holds irrespective of the
design matrix and applies to a wide range of penalized estimators. Overall, the bound demonstrates that
generic estimators can provide consistent prediction with any design matrix. From a practical point of view,
the bound can help to identify the potential of specific estimators, and they can help to get a sense of the
prediction accuracy in a given application.
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1. Introduction

Oracle inequalities are the standard theoretical framework for measuring the accuracy of high-
dimensional estimators [9]. Two main benefits of oracle inequalities are that they hold for finite
sample sizes and that they adapt to the underlying model parameters. Oracle inequalities are thus
used, for example, to compare estimators and to obtain an idea of the sample size needed in a
specific application.

For high-dimensional prediction, there are two types of oracle inequalities: so-called fast rate
bounds and so-called slow rate bounds. Fast rate bounds hold for near orthogonal designs and
bound the prediction error in terms of the sparsity of the regression vectors. Such bounds have
been derived for a number of methods, including the lasso, the square-root lasso, and their exten-
sions to grouped variables, see [3,9–11,19,44] and others. Slow rate bounds, on the other hand,
hold for any design and bound the prediction error in terms of the penalty value of the regression
vectors. Some examples of such bounds have been developed [26,29,30], but a general theory
has not been established. Importantly, unlike the unfortunate naming suggests, slow rate bounds
are of great interest. In particular, slow rate bounds are not inferior to fast rate bounds, quite in
contrast [16,20]: (i) Slow rate bounds hold for any design, while fast rate bounds impose strong
and in practice unverifiable assumptions on the correlations in the design. (ii) Even if the assump-
tions hold, fast rate bounds can contain unfavorable factors, while the factors in slow rate bounds
are small, global constants. (iii) Also in terms of rates, slow rate bounds can outmatch even the
most favorable fast rate bounds. See [16] and references therein for a detailed comparison of the
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two types of bounds. To avoid confusion in the following, we will use the terms penalty bounds
instead of slow rate bounds and sparsity bounds instead of fast rate bounds.

In this paper, we develop a general penalty bound for prediction in high-dimensional linear
regression. This oracle inequality holds for any sample size, design, and noise distribution, and
it applies to a very general family of estimators. For established estimators such as the lasso and
the square-root lasso, the result does not imply new guarantees, but it unifies existing bounds
in a concise fashion. In general, the result is a convenient resource for penalty bounds, and it
demonstrates that prediction guarantees hold broadly in high-dimensional regression.

The organization of the paper is as follows. Below, we introduce the setting and notation and
establish relationships to existing work. In Section 2, we state the general result. In Section 3, we
specialize this result to specific estimators, including lasso, square-root lasso, group square-root
lasso, and others. In Section 4, we conclude with a brief discussion. The proofs are deferred to
the Appendix.

The ordering of the following sections is geared towards readers that wish to dive into the
technical aspects right away. For getting a first overview instead, one can have a quick glance at
the model and the estimators in Displays (1) and (2), respectively, and then skip directly to the
examples in Section 3.

Setting and notation

Model

We consider linear regression models of the form

Y = Xβ∗ + ε (1)

with outcome Y ∈R
n, design matrix X ∈R

n×p , regression vector β∗ ∈R
p , and noise vector ε ∈

R
n. Our goal is prediction, that is, estimation of Xβ∗. We allow for general design matrices X,

that is, we do not impose conditions on the correlations in X. Moreover, we allow for general
noise ε, that is, we do not restrict ourselves to specific distributions for ε.

Estimators

We are particularly interested in high-dimensional settings, where the number of parameters p

rivals or even exceeds the number of samples n. As needed in such settings, we assume that the
regression vector β∗ has some additional structure. This structure can be exploited by penalized
estimators, which are the most standard methods for prediction in this context. We thus consider
estimators of the form

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ pen(λ,β)
}
,

where g is some real-valued link function, the mapping pen(λ,β) : Rk × R
p → R accounts

for the structural assumptions, and λ is a vector-valued tuning parameter. More specifically, we
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consider assumptions on β∗ that are captured by (semi-)norms; the corresponding estimators
then read

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
. (2)

To derive results that are specific enough to be useful in concrete examples, we impose some
additional conditions in the following.

Link function

The link function g : R → [0,∞) satisfies g(0) = 0, is continuous and strictly increasing on
[0,∞), and is continuously differentiable on (0,∞) with strictly positive and non-increasing
derivative g′(x) := d

dy
g(y)|y=x . Moreover, the function R

n → [0,∞): α �→ g(‖α‖2
2) is assumed

to be strictly convex. The most important examples of link functions are g(x) = x and g(x) =√
x.

Form of the penalties

We assume that the penalties are composite norms. First, we assume that the tuning parameter
λ := (λ1, . . . , λk)


 is in (0,∞)k . We then assume that the matrices M1, . . . ,Mk ∈ R
p×p satisfy⋂k

j=1 Ker(Mj ) = {0p×p}, where Ker denotes the kernel of a matrix. This assumption is mild,
simply stating that the row space of all matrices M1, . . . ,Mk combined span R

p , that is, each
parameter is covered by some penalization. In the simplest cases, the matrices equal the identity
matrix. In general, however, these matrices allow for the incorporation of complex structural
assumptions. For example, group structures can be modeled by taking the matrices M1, . . . ,Mk

equal to (arbitrarily overlapping) block-diagonal matrices with some of the blocks in each Mj

equal to zero. Finally, the single norms ‖ · ‖qj
with qj ≥ 1 are the regular �qj

-norms on R
p .

Their dual norms are denoted by ‖ · ‖∗
qj

, and it holds that ‖ · ‖∗
qj

= ‖ · ‖pj
for pj ∈ [1,∞] such

that 1/pj + 1/qj = 1. Since each ‖ · ‖qj
is a norm, and since the rows of the matrices Mj span

the entire R
p , the penalty is indeed a norm.

Treatment of overlap

We introduce some further notation to make our result sharp also in cases where variables are
subject to more than one penalty term, such as in the overlapping group (square-root) lasso. For
this, we first denote by A+ the Moore–Penrose pseudoinverse of a matrix A. We then note that
by the rank assumption on the matrices M1, . . . ,Mk , there are projection matrices P1, . . . ,Pk ∈
R

p×p such that
k∑

j=1

PjM
+
j Mj = Ip×p . (3)

The projection matrices enter the “empirical process” terms associated with the tuning parame-
ters and the prediction bounds. Our results hold for any P1, . . . ,Pk that satisfy the above equality;
however, appropriate choices are needed to obtain sharp bounds. In generic examples, the choice
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of P1, . . . ,Pk is straightforward: if k = 1 (see, for example, the lasso, square-root lasso, and
fused lasso) or if the row spaces of the matrices M1, . . . ,Mk are disjoint (see, for example, the
group lasso with non-overlapping groups), one can select P1, . . . ,Pk = Ip×p . More generally, if
k > 1 and some variables are penalized twice (see, for example, the group lasso with overlapping
groups), slightly more complicated choices lead to optimal bounds.

Technical assumption on the noise distributions

We consider general noise distributions; for example, we allow for heavy-tailed noise and for cor-
relations within ε and between ε and X. However, we exclude non-generic noise distributions for
technical ease. More specifically, we assume that Y �= 0n and minj∈{1,...,k} ‖(XPjM

+
j )
ε‖∗

qj
> 0

with probability one. This implies in particular that g′(‖Y − Xβ̂λ‖2
2) > 0 with probability one,

see Lemma A.3 in the Appendix. To illustrate that the assumptions hold in generic cases, note
that the ‖ · ‖∗

qj
’s are norms, so that the second condition simply states that (XPjM

+
j )
ε �= 0p ,

j ∈ {1, . . . , k}, with probability one. As an example, consider now the non-overlapping group
penalty, which corresponds to standard group lasso/square-root lasso. One can then check read-
ily that the assumption is equivalent to X
ε �= 0p holding with probability one, which is satisfied
for any generic continuous distributions of X and ε. It is also straightforward to relax the condi-
tion to hold only with probability 1 − κ , κ ≡ κ(n) → 0 as n → ∞, to include discrete noise via
standard concentration bounds; we omit the details.

Relations to existing literature

Statistical guarantees for high-dimensional prediction with penalized estimators are typically for-
mulated in terms of oracle inequalities. A variety of oracle inequalities is known, we refer to [8,
9,19] and references therein, and for some cases, also corresponding concentration inequalities
are available [13], Theorem 1.1. However, most of these bounds impose severe constraints on the
model, such as eigenvalue-type conditions on the design matrix [11,42] – see [16,20] for in-depth
comparisons of penalty bounds and sparsity bounds in the lasso case. In strong contrast, we are
interested in oracle inequalities that do not involve additional constraints. Such results are known
both for the penalized formulation of the lasso [26,29,30] and for the constraint formulation [12].
We are interested in studying whether this type of guarantees can be established more generally
in high-dimensional regression.

To achieve this generality, we introduce arguments mainly based on convexity and continu-
ity. Convexity has been used previously to establish �∞ – and support recovery guarantees for
the lasso [45], prediction bounds for the constraint version of the lasso [12] and for the lasso in
transductive and semi-supervised learning [1], guarantees for low-rank matrix completion [26],
and bounds for sparse recovery via entropy penalization [24]. The arguments in [45] are dif-
ferent from ours in that they have different objectives and lead to stringent assumptions on the
design. Intermediate results in [12], page 6, for the constraint lasso can be related to parts of
our approach when our proof is specialized to the penalized lasso (cf. our pages 1249–1253);
yet, the strategy in [12] based on a projection argument is different from ours, and extensions of
that argument to the penalized lasso and, more generally, to our framework with multiple tuning
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parameters/penalty terms and different link functions do not seem straightforward. Finally, the
convexity arguments in [1], Proof of Lemma 1, [26], Equation (2.6), and [24], Inequalities (3.1)
and (3.2), can be related to some of the techniques on pages 1249-1253.

Our continuity arguments evolve around Brouwer’s fix-point theorem. As intermediate steps,
we show that suitable tuning parameters exist in the first place and that the unbounded set (0,∞)k

of tuning parameters can be replaced by a bounded set. These facts are known for the lasso and
the square-root lasso, see [3] and others, but they are novel and non-trivial in the general case
and might thus be of interest by themselves.

Our result specializes correctly and confirms existing expectations. As one example, our
bounds for the penalized version of the lasso match the corresponding bounds in the litera-
ture [26,30] and relate to similar expectation-type results [29]. As another example, the bounds
for the (group) square-root lasso match the results of the (group) lasso, complementing previous
findings that show the correspondence of the two methods in oracle inequalities under additional
constraints [3,10].

We also mention that our bounds are near rate-optimal in the absence of further assumptions.
Indeed, it has been shown that the rates for lasso prediction [16], Proposition 4 (even when the
noise is Gaussian) cannot be improved in general beyond 1/

√
n, which corresponds to our bound

up to log-factors – see the Examples section. Under RE-type assumptions [43], one can find the
rate s logp/n for the lasso prediction error, where s is the number of non-zero elements in β∗. In
the case where s is small, this can be a substantial improvement over the

√
logp/n‖β∗‖1-rate.

Refined versions, allowing for a potentially large number of small entries in β∗, can be found
in [44]. However, RE-type assumptions are very restrictive and often seem unlikely to hold in
practice. We come back to this issue in the Discussion section.

We finally relate to oracle inequalities for objectives different from prediction. Besides pre-
diction, standard goals include variable selection and �1-, �2-, and �∞-estimation, we refer again
to [9,19] and references therein. These objectives necessarily involve strict assumptions on the
design and are thus not of major relevance here. More closely related to our work is out-of-sample
prediction, which – on a high level – can be thought of as being somewhere between estimation
and prediction. Classical results demonstrate that the lasso can achieve out-of-sample prediction
without further assumptions on the design [18]. Another similarity to prediction is that consis-
tency guarantees for constraint lasso in out-of-sample prediction can be formulated in terms of
�1-balls of predictors [18], Theorems 1 and 3. (The �1-balls in [18] are, however, more restrictive
than the �1-balls needed for prediction.) On the other hand, the optimality of the �1-related rates
suggested in [18] and the applicability of the results to other estimators considered in our paper
remain open questions.

2. General result

We now state the general oracle inequality for the framework described on pages 1226–1228.
For this, we first have to discuss the existence of suitable tuning parameters. The valid tuning
parameters in standard results for the lasso, for example, are of the form c‖X
ε‖∞, where the
factor c ≥ 2 depends on the specific type of oracle inequality (c = 2 for the standard penalty
bounds; c > 2 for the standard sparsity prediction or estimation bounds, see [4,15] and others).
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To show that there is a corresponding range for the tuning parameters in our general bounds, we
derive the following result.

Lemma 2.1 (Existence). Consider fixed constants c1, . . . , ck ∈ (0,∞). With probability one,
there is a tuning parameter λ ≡ λ(c1, . . . , ck) ∈ (0,∞)k such that

λ

2g′(‖Y − Xβ̂λ‖2
2)

= (c1
∥∥(XP1M

+
1

)

ε
∥∥∗

q1
, . . . , ck

∥∥(XPkM
+
k

)

ε
∥∥∗

qk

)

.

This proof of existence ensures that suitable tuning parameters exist for arbitrary estimators
of the form (2). If g : x �→ x, Lemma 2.1 can be verified easily. In particular, the above equation
simplifies to λ = 2c1‖X
ε‖∞ for the lasso. In general, however, the statement is more intricate,
and there might be several tuning parameters that satisfy the equality. Our proof is, therefore,
more involved, invoking continuity arguments and Brouwer’s fixed-point theorem, see Appendix.

One can also replace the implicit equalities in Lemma 2.1 by explicit bounds on the tun-
ing parameters. Note first that g′(‖Y − Xβ̂λ‖2

2) is not monotone in the tuning parameter in
general. However, this problem can be circumvented by deriving concentration bounds. More
specifically, for any link function g and even for heavy-tailed noise distributions, one can
use empirical process theory (such as [28], for example) to derive concentration bounds for
|g′(‖Y − Xβ̂λ‖2

2) − g′(‖ε‖2
2)| (very rough bounds are sufficient). This then implies bounds for

the left-hand side in Lemma 2.1, and consequently, allows one to replace the implicit inequalities
by explicit lower bounds on the tuning parameters.

We are now ready to state the main result.

Theorem 2.1 (Penalty bound). For any choice of c1, . . . , ck ∈ (0,∞), with probability one,
the estimator β̂λ defined by (2) with tuning parameter λ as in Lemma 2.1 above satisfies the
prediction bound

1

n

∥∥X(β∗ − β̂λ
)∥∥2

2 ≤ inf
u∈(0,1)
β∈Rp

{
1

4u(1 − u)n

∥∥X(β∗ − β
)∥∥2

2

+ 1

n

k∑
j=1

1 + cj

1 − u

∥∥(XPjM
+
j

)

ε
∥∥∗

qj
‖Mjβ‖qj

− 1

n

k∑
j=1

cj − 1

1 − u

∥∥(XPjM
+
j

)

ε
∥∥∗

qj

∥∥Mjβ̂
λ
∥∥

qj

}
.

This oracle inequality provides bounds for the prediction errors of the estimators (2). Our
proofs are based only on convexity and continuity arguments, making the result very general and
sharp in its constants.

Let us provide some interpretations of the result. Note first that the bounds apply to any positive
c1, . . . , ck , but the most interesting case is c1, . . . , ck ≥ 1, since the terms on the right-hand side
that depend on the estimator itself can then be dropped. We first consider a tuning parameter
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λ ∈ (0,∞)k that satisfies the equality in Lemma 2.1 with c1, . . . , ck = 1. We set β := β̂λ for ease
of notation. Now, choosing u = 0.5 in the above functional implies

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ min
β∈Rp

{
1

n

∥∥X(β∗ − β
)∥∥2

2 + 4

n

k∑
j=1

∥∥(XPjM
+
j

)

ε
∥∥∗

qj
‖Mjβ‖qj

}
. (4)

To bring this on a more abstract level, we denote the prediction loss by L(β) := ‖X(β∗ − β)‖2
2/n

and introduce model classes Fv := {β ∈ R
p : 4

∑k
j=1 ‖(XPjM

+
j )
ε‖∗

qj
‖Mjβ‖qj

/n = v} in-
dexed by v ∈ [0,∞). Inequality (4) then reads

L(β) ≤ min
v∈[0,∞)

min
β∈Fv

{
L(β) + v

}
.

Thus, the estimator β performs as well as the minimizer of the loss over the class Fv – up to
a complexity penalty of Fv . For another abstract view on the theorem, we define a loss for any
a ∈ (0,∞)k by

La(β) := 1

n

∥∥X(β∗ − β
)∥∥2

2 + 1

n

k∑
j=1

aj‖Mjβ‖qj
.

This loss balances prediction accuracy against model complexity. Now, we observe that if
2(cj − 1)‖(XPjM

+
j )
ε‖∗

qj
= aj , choosing again u = 0.5 in the initial functional yields

La
(
β̂λ
)≤ (1 + max

j∈{1,...,k}
4‖(XPjM

+
j )
ε‖∗

qj

aj

)
min
β∈Rp

La(β).

This means that the estimator β̂λ performs as well – again up to constants – as the minimizer
of the loss La. These forms of our bound fit the classical notions of oracle inequalities (with
sharp leading constant) in empirical risk minimization [25], Chapter 1.1, and non-parametric
estimation [39], Chapter 1.8. Finally, we consider again λ, then set β = β∗ and take the limit
u → 0 in Theorem 2.1. We find

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ 2

n

k∑
j=1

∥∥(XPjM
+
j

)

ε
∥∥∗

qj

∥∥Mjβ
∗∥∥

qj
. (5)

This form of our bound commensurates with typical formulations of oracle inequalities in high
dimensions [9], Chapters 2.4.2 and 6.2; in particular, the bound implies known prediction bounds
with correct constants – see the following section.

The tuning parameter λ minimizes
∑k

j=1(1 + cj )‖(XPjM
+
j )
ε‖∗

qj
‖Mjβ‖qj

/(n(1 − u)), the
first term on the right-hand side of the bound, under the constraint that c1, . . . , ck ≥ 1 (which
implies that the terms on the right-hand side that depend on the estimator can be dropped). This
choice of the tuning parameter also leads to rates that have been shown to be near-optimal in
certain cases [16], Proposition 4. However, this does not necessarily mean that λ minimizes
the prediction loss ‖X(β∗ − β̂λ)‖2

2. Explicit formulations of tuning parameters that minimize
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the prediction loss are to date unknown. Nevertheless, some insights have been developed: for
example, [16,20] discuss lasso tuning parameters as a function of the correlations in X, and
[2] and [35], Section 4, discuss lasso/scaled lasso tuning parameters that can lead to minimax
rates in the case of sparsity and small correlations. Furthermore, our essay does not provide
any guidance on how to select tuning parameters in practice; indeed, the tuning parameters in
Lemma 2.1 depend on the noise ε, which is unknown in practice. For ideas on the practical
selection of the lasso tuning parameter with finite sample guarantees, we refer to [14,15]. For
ideas on how to make the selection of tuning parameters independent of unknown model aspects,
we refer to [17,27] and the square-root/scaled lasso example in the following section.

We conclude this section highlighting five other properties of Theorem 2.1 (much of this be-
comes more lucid in the context of the specific examples discussed in the next section): First, the
bound involves the values of the tuning parameters to the power one and holds for any design
matrix X. The bound contains the penalty values of the regression vectors. Hence, the bounds
are penalty bounds. Second, the oracle inequality holds for any distribution of the noise ε. Third,
the bounds hold for any sample size n; in particular, the bounds are non-asymptotic. Fourth, the
bounds become smaller if the correlations in X become larger, cf. [20]. Fifth, the link function g

appears in the existence result on tuning parameters but not in the prediction bound. This last,
interesting point clarifies the role of the link function: its essential purpose is to “reshuffle” the
tuning parameter path. One can relate this observation to the discussion of the lasso/square-root
lasso below.

3. Examples

We now apply our general results to some specific estimators of the form (2).

Lasso

The lasso [36] is defined as

β̂λ ∈ arg min
β∈Rp

{‖Y − Xβ‖2
2 + λ‖β‖1

}
.

We first show that we can recover the standard penalty bounds that have been derived in the lasso
literature, see, for example, [26], Equation (2.3) in Theorem 1, and [20], Equation (3). The proofs
use that lasso objective function is minimal at β̂λ, that is, for any β ∈R

p , it holds that∥∥Y − Xβ̂λ
∥∥2

2 + λ
∥∥β̂λ
∥∥

1 ≤ ‖Y − Xβ‖2
2 + λ‖β‖1.

This is equivalent to∥∥Y − Xβ∗ + Xβ∗ − Xβ̂λ
∥∥2

2 + λ
∥∥β̂λ
∥∥

1 ≤ ∥∥Y − Xβ∗ + Xβ∗ − Xβ
∥∥2

2 + λ‖β‖1
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and ∥∥Y − Xβ∗∥∥2
2 + 2

〈
Y − Xβ∗,Xβ∗ − Xβ̂λ

〉+ ∥∥Xβ∗ − Xβ̂λ
∥∥2

2 + λ
∥∥β̂λ
∥∥

1

≤ ∥∥Y − Xβ∗∥∥2
2 + 2

〈
Y − Xβ∗,Xβ∗ − Xβ

〉+ ∥∥Xβ∗ − Xβ
∥∥2

2 + λ‖β‖1.

Invoking the model (1) and consolidating, this yields

∥∥Xβ∗ − Xβ̂λ
∥∥2

2 ≤ ∥∥Xβ∗ − Xβ
∥∥2

2 + 2
〈
ε,Xβ̂λ − Xβ

〉+ λ‖β‖1 − λ
∥∥β̂λ
∥∥

1.

Hölder’s inequality and the triangle inequality then lead to

∥∥Xβ∗ − Xβ̂λ
∥∥2

2 ≤ ∥∥Xβ∗ − Xβ
∥∥2

2 + 2
∥∥X
ε

∥∥∞(∥∥β̂λ
∥∥

1 + ‖β‖1
)+ λ‖β‖1 − λ

∥∥β̂λ
∥∥

1.

Hence, for λ = λ = 2‖X
ε‖∞, we eventually find

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ min
β∈Rp

{
1

n

∥∥X(β∗ − β
)∥∥2

2 + 4

n

∥∥X
ε
∥∥∞‖β‖1

}
.

Observing that k = 1 and M1 = P1 = Ip×p in this example, one can check that (4) recovers this
bound.

In the case β = β∗, Inequality (5) does slightly better. Indeed, our results imply

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ 2

n

∥∥X
ε
∥∥∞∥∥β∗∥∥

1,

which is smaller by a factor 2 than the above right-hand side at β = β∗. The same bound also
follows from [34], Inequality (23). The key property that allows one to derive bounds with the
improved factor is convexity; therefore, in the lasso case, one can also find the above bound with
the techniques in the papers mentioned in the corresponding discussion on page 1228, such as [1,
24,26].

To provide a sense for the rates, we mention that if ε1, . . . , εn
i.i.d.∼ N (0, σ 2) and (X
X)jj = n

for all j ∈ {1, . . . , p}, it holds that λ ≈ σ
√

n log(p) and ‖X(β∗ − β)‖2
2/n� σ

√
log(p)/n‖β∗‖1.3

Importantly, the rate is lower bounded by 1/
√

n – unless further assumptions on the design ma-
trix X are imposed [16], Proposition 4.

We finally note that one can also include “tailored” tuning parameters, which corresponds
to considering the lasso as a specification of our general framework with k = p and not
necessarily equal tuning parameters λ1, . . . , λp . One can check easily that in particular if
(X
ε)1, . . . , (X


ε)p i.i.d., one obtains the same bounds as above.

3The wiggles indicate that we are interested only in the rough shapes and neglect constants, for example.
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Square-root/scaled lasso

The square-root lasso [3] reads

β̂λ ∈ arg min
β∈Rp

{‖Y − Xβ‖2 + λ‖β‖1
}
.

In our framework, k = 1 and M1 = P1 = Ip×p , so that λ = ‖X
ε‖∞/‖Y − Xβ̂λ‖2 and the pre-
diction bound (5) reads

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ 2

n

∥∥X
ε
∥∥∞∥∥β∗∥∥

1.

A similar bound is implied by [34], Theorem 1, and Inequality (4) and the general bound in our
main theorem translate accordingly (for ease of comparison, we focus on (5) in the following).
The bounds match the corresponding ones for the lasso, but the tuning parameters differ. The
crux of the square-root lasso, and similarly, the scaled lasso [34], is that their tuning parameters

can be essentially independent of the noise variance. For example, if ε1, . . . , εn
i.i.d.∼ N (0, σ 2)

and (X
X)jj = n for all j ∈ {1, . . . , p}, it holds4 that λ ≈ ‖X
ε‖∞/‖ε‖2 ≈√log(p), which is
independent of σ . Since σ is typically unknown in practice, the square-root/scaled lasso can thus
facilitate the tuning of λ.

Slope estimator

The slope estimator [6] can be written as

β̂λ ∈ arg min
β∈Rp

{
‖Y − Xβ‖2

2 + λ

p∑
j=1

ωj |β|(j)

}
,

where |β|(j) denotes the j th largest entry of β in absolute value, ω1 ≥ · · · ≥ ωp > 0 is a non-
increasing sequence of weights, and λ > 0 is a tuning parameter. A promising case for the slope

estimator is the one where ε1, . . . , εn
i.i.d.∼ N (0, σ 2) and (X
X)jj = n for all j ∈ {1, . . . , p}. The

weights can then be chosen as ωj := 2σ
√

n log(2p/j) in the spirit of the Benjamini–Hochberg
procedure [6,33], and a theoretically justified choice of the tuning parameter is λ > 4 + √

2 [2],
Equation (2.5). In particular, this choice works in the sense of the first part of Theorem 2.1, and
one finds the bound ‖X(β∗ − β)‖2

2/n� λσ
√

log(p)/n‖β∗‖1, for example, which coincides with
the bounds above. Similar considerations apply to the oscar penalty [7].

4See page 1237 for some hints.
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Elastic net

The elastic net [47] reads

β̂λ ∈ arg min
β∈Rp

{‖Y − Xβ‖2
2 + λ1‖β‖1 + λ2‖β‖2

2

}
.

This is not directly in the form (2). However, one can use the usual trick writing the estimator
as a lasso with augmented data, cf. [21], Lemma 1. Using M1 = P1 = Ip×p , our results then
hold for any tuning parameters that satisfy λ1 = 2‖X
ε − λ2β

∗‖∞. For example, we can set
λ2 = arg minλ2

‖X
ε − λ2β
∗‖∞ and λ1 = 2‖X
ε − λ2β

∗‖∞. The bound in (5), for example,
then reads

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ 2

n

∥∥X
ε − λ2β
∗∥∥∞∥∥β∗∥∥

1 ≤ 2

n

∥∥X
ε
∥∥∞∥∥β∗∥∥

1.

Similar results hold if, for example, the settings with the normal noise vectors described in the
two examples above apply and λ2 =O(

√
n). The main intent of the elastic net is to improve vari-

able selection. However, our results show that the elastic net with well-chosen tuning parameters
also has similar penalty guarantees for prediction as the lasso.

Lasso and square-root lasso with group structures

The estimators considered so far are based on a simple notion of sparsity. In practice, however,
it can be reasonable to assume more complex sparsity structures in the regression vector β∗.
Estimators that take such structures into account include the group lasso [46], group square-root
lasso [10], hierarchical group lasso [5], lasso with overlapping groups [22], and sparse group
lasso [32]. They all fit our framework.

In contrast to the examples above, the matrices M1, . . . ,Mk,P1, . . . ,Pk play a nontrivial role
in these examples. On a high level, the matrix Mj specifies which variables are incorporated in
the j th group. If groups overlap, the matrix Pj specifies which parts of X
ε are attributed to the
tuning parameter λj . For example, if the mth variable is in the j th and lth group, the matrices Pj

and Pl can be chosen such that the corresponding element (X
ε)m is part of either λj or λl and
not in both of them.

As an illustration, let us consider the group lasso with non-overlapping groups:

β̂λ ∈ arg min
β∈Rp

{
‖Y − Xβ‖2

2 + λ

k∑
j=1

‖βGj
‖2

}
.

Here, G1, . . . ,Gk is a partition of {1, . . . , p} and (βGj
)i := βi1{i ∈ Gj }. To put the estimator in

framework (2), one can either generalize the estimator to incorporate possibly different tuning
parameters for each group, set Mj to (Mj )st = 1{s = t, s ∈ Gj }, and then choose a dominating
tuning parameter, or one can directly extend our results (as mentioned earlier) to arbitrary norm
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penalties. In any case, the projection matrices/matrix equal the identity matrix, our standard
tuning parameter is λ = 2 maxl∈{1,...,k} ‖(X
ε)Gl

‖2, and the bound (5) gives

1

n

∥∥X(β∗ − β
)∥∥2

2 ≤ 2

n
max

l∈{1,...,k}
∥∥(X
ε

)
Gl

∥∥
2

k∑
j=1

∥∥β∗
Gj

∥∥
2.

Trend filtering and total variation/fused penalty

Trend filtering [23,37] reads

β̂λ ∈ arg min
β∈Rp

{‖Y − β‖2
2 + λ‖Mβ‖1

}
,

where for given l ∈ {1,2, . . . }, the matrix M ∈ R
p×p is defined as M := D × · · · × D︸ ︷︷ ︸

l times

with D ∈

R
p×p given by

Dij :=

⎧⎪⎨⎪⎩
−1 if i < p and i = j,

1 if i < p and i = j − 1,

0 otherwise.

We find λ = 2‖M+
ε‖∞, and (5) implies5

1

n

∥∥β∗ − β
∥∥2

2 ≤ 2

n

∥∥M+
ε
∥∥∞∥∥Mβ∗∥∥

1.

In the case l = 1, the estimator becomes

β̂λ ∈ arg min
β∈Rp

{
‖Y − β‖2

2 + λ

p∑
j=2

|βj − βj−1|
}

,

which corresponds to the total variation [31] and fused lasso penalizations [38]. Moreover, one
can check that the Moore–Penrose inverse of M = D is then given by D+ with entries

D+
ij :=

⎧⎪⎨⎪⎩
(j − p)/p if i ≤ j < p,

j/p if i > j, j < p,

0 if j = p.

We find λ = 2‖D+
ε‖∞ and the corresponding bound

1

n

∥∥β∗ − β
∥∥2

2 ≤ 2

n

∥∥D+
ε
∥∥∞∥∥Dβ∗∥∥

1.

5Unlike assumed earlier, Ker(M) �= {0p×p} in this example, but one can replace matrix M by the invertible matrix
M + ε Ip×p and then take the limit ε → 0.
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4. Discussion

Sparsity bounds have been derived for many high-dimensional estimators. In this paper, we com-
plement these bounds with corresponding penalty bounds. Which type of bound is sharper de-
pends on the underlying model. As a general rule, penalty bounds improve with increasing cor-
relations in the design matrix, while sparsity bounds deteriorate with increasing correlations and
are eventually infinite once the design matrix is too far from an orthogonal matrix [16].

Without making assumptions on the design, and for a wide range of penalized estimators, our
results imply non-trivial rates of convergence for prediction. This is of direct practical relevance,
since the assumptions inflicted by sparsity bounds are often unrealistic in applications and, in
any case, depend on inaccessible model parameters and thus cannot be verified in practice. For
example, sparsity bounds for the lasso have been derived under a variety of assumptions on
X, including RIP, restricted eigenvalue condition, and compatibility condition, see [43] for an
overview of these concepts. Results from random matrix theory show that these assumptions are
fulfilled with high probability if the data generating process is “nice” (sub-Gaussian, isotropic,
. . . ) and the sample size n is large enough, see [40] for a recent result. Unfortunately, in practice,
the data generating processes are not necessarily nice, and sample sizes can be small – not only
in comparison with the number of parameters, but also in absolute terms. Moreover, even if the
conditions of fast rates bounds are satisfied, these bounds can contain very large factors and are
then only interesting from an asymptotic point of view.

Appendix: Proofs

We start with four auxiliary results, Lemmas A.1–A.3. We then prove Lemma 2.1 and Theo-
rem 2.1. Figure 1 depicts the dependence structure of the results.

Hints for page 1234: Note that (see [41], Section 2.2, for maximal inequalities that can be used
for the last line)

‖Y − Xβ‖2 = ∥∥Y − Xβ∗ + Xβ∗ − Xβ
∥∥

2

≤ ∥∥Y − Xβ∗∥∥
2 + ∥∥Xβ∗ − Xβ

∥∥
2

≤ ‖ε‖2 +
√

2‖X
ε‖∞‖β∗‖1

n

√
n�

√
n +
√

log(p)‖β∗‖1√
n

√
n

and similarly

‖Y − Xβ‖2 �
√

n −
√

log(p)‖β∗‖1√
n

√
n.

Thus, as long as ‖β∗‖1 = o(
√

n/ log(p)), it holds that λ ≈ ‖X
ε‖∞/‖ε‖2 ≈√log(p).
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Figure 1. Dependencies between the results. For example, the arrow between Lemma A.1 and Lemma 2.1
depicts that the proof of Lemma 2.1 makes use of Lemma A.1.

A.1. Auxiliary lemmas

Lemma A.1. For any β̂λ, β̃λ ∈ arg minβ∈Rp {g(‖Y − Xβ‖2
2) + ∑k

j=1 λj‖Mjβ‖qj
} and α ∈

[0,1], it holds that Xβ̂λ = Xβ̃λ and

αβ̂λ + (1 − α)β̃λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.

Lemma A.2. Let Rk be equipped with the Euclidean norm, and R be equipped with the absolute
value norm. Then, the function

(0,∞)k →R

λ �→ g
(∥∥Y − Xβ̂λ

∥∥2
2

)
and the function

(0,∞)k →R

λ �→ ∥∥Y − Xβ̂λ
∥∥2

2

are both continuous.

Lemma A.3. With probability one, it holds that ‖Y − Xβ̂λ‖2
2 > 0 and g′(‖Y − Xβ̂λ‖2

2) > 0 for
any tuning parameter λ ∈ (0,∞)k .

A.2. Proofs of the auxilliary lemmas

Proof of Lemma A.1. The case α ∈ {0,1} is straightforward, so that we consider a given α ∈
(0,1). We first show that Xβ̂λ = Xβ̃λ. Since the function α �→ g(‖α‖2

2) is strictly convex by
assumption, it follows for any vectors a, ã ∈ R

n that

g
(∥∥αa + (1 − α)ã

∥∥2
2

)≤ αg
(‖a‖2

2

)+ (1 − α)g
(‖ã‖2

2

)
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with strict inequality if a �= ã. Using this with a = Y − Xβ̂λ and ã = Y − Xβ̃λ, and invoking the
convexity of the norms ‖ · ‖qj

, we find

g
(∥∥Y − X

(
αβ̂λ + (1 − α)β̃λ

)∥∥2
2

)+ k∑
j=1

λj

∥∥Mj

(
αβ̂λ + (1 − α)β̃λ

)∥∥
qj

= g
(∥∥α(Y − Xβ̂λ

)+ (1 − α)
(
Y − Xβ̃λ

)∥∥2
2

)
+

k∑
j=1

λj

∥∥αMj β̂
λ + (1 − α)Mj β̃

λ
∥∥

qj

≤ αg
(∥∥Y − Xβ̂λ

∥∥2
2

)+ (1 − α)g
(∥∥Y − Xβ̃λ

∥∥2
2

)
+ α

k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
+ (1 − α)

k∑
j=1

λj

∥∥Mjβ̃
λ
∥∥

qj

= α

(
g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj

)

+ (1 − α)

(
g
(∥∥Y − Xβ̃λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̃
λ
∥∥

qj

)

with strict inequality if Xβ̂λ �= Xβ̃λ. Moreover, we note that

β̂λ, β̃λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

implies

g
(∥∥Y − Xβ̃λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̃
λ
∥∥

qj
= g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
.

Combining the results yields

g
(∥∥Y − X

(
αβ̂λ + (1 − α)β̃λ

)∥∥2
2

)+ k∑
j=1

λj

∥∥Mj

(
αβ̂λ + (1 − α)β̃λ

)∥∥
qj

≤ g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
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with strict inequality if Xβ̂λ �= Xβ̃λ. Using again that

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
,

we find that the above inequality is actually an equality, so that

Xβ̂λ = Xβ̃λ

and

αβ̂λ + (1 − α)β̃λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

as desired. �

Proof of Lemma A.2. To show that the function λ �→ g(‖Y − Xβ̂λ‖2
2) is continuous, we first

show that the function

R
k → R

λ �→ g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj

is continuous.
For this, we show the continuity at any fixed λ ∈ (0,∞)k . Given an ε > 0, define m :=

2 max1≤j≤k{ g(‖Y‖2
2)

λj
} and δ := min1≤j≤k

λj

2 ∧ ε√
km

, where ∧ denotes the minimum. Consider

now an arbitrary λ′ ∈ (0,∞)k with ‖λ − λ′‖2 < δ.
As a next step, note that Criterion (2) implies

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
≤ g
(‖Y‖2

2

)
.

In particular, since the function g is non-negative on [0,∞) by assumption, it holds that

k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
≤ g
(‖Y‖2

2

)
.

Thus, we have

λj

∥∥Mjβ̂
λ
∥∥

qj
≤ g
(‖Y‖2

2

)
for j ∈ {1,2, . . . , k}.
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Hence, if λj > 0, it holds that

∥∥Mjβ̂
λ
∥∥

qj
≤ g(‖Y‖2

2)

λj

for j ∈ {1,2, . . . , k}. (A.6)

Also note that by Criterion (2), it holds that

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
≤ g
(∥∥Y − Xβ̂λ′∥∥2

2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ′∥∥

qj

and

g
(∥∥Y − Xβ̂λ′∥∥2

2

)+ k∑
j=1

λ′
j

∥∥Mjβ̂
λ′∥∥

qj
≤ g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λ′
j

∥∥Mjβ̂
λ
∥∥

qj
.

Rearranging these two inequalities, we obtain

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
− g
(∥∥Y − Xβ̂λ′∥∥2

2

)− k∑
j=1

λ′
j

∥∥Mjβ̂
λ′∥∥

qj

≤
k∑

j=1

(
λj − λ′

j

)∥∥Mjβ̂
λ′∥∥

qj

and

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
− g
(∥∥Y − Xβ̂λ′∥∥2

2

)− k∑
j=1

λ′
j

∥∥Mjβ̂
λ′∥∥

qj

≥
k∑

j=1

(
λj − λ′

j

)∥∥Mjβ̂
λ
∥∥

qj
.

By Hölder’s inequality and Inequality (A.6), it holds that

k∑
j=1

(
λj − λ′

j

)∥∥Mjβ̂
λ
∥∥

qj
≥ −∥∥λ − λ′∥∥

1 max
1≤j≤k

{∥∥Mjβ̂
λ
∥∥

qj

}
≥ −∥∥λ − λ′∥∥

1 max
1≤j≤k

{
g(‖Y‖2

2)

λj

}
and similarly

k∑
j=1

(
λj − λ′

j

)∥∥Mjβ̂
λ′∥∥

qj
≤ ∥∥λ − λ′∥∥

1 max
1≤j≤k

{
g(‖Y‖2

2)

λ′
j

}
.
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Now trivially, max1≤j≤k{ g(‖Y‖2
2)

λj
} ≤ m. Moreover,

max
1≤j≤k

{
g(‖Y‖2

2)

λ′
j

}
≤ max

1≤j≤k

{
g(‖Y‖2

2)

λj − ‖λ − λ′‖2

}
≤ m

by definition of m and δ. Using this and again the definition of δ, we then find∣∣∣∣∣g(∥∥Y − Xβ̂λ
∥∥2

2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
− g
(∥∥Y − Xβ̂λ′∥∥2

2

)− k∑
j=1

λ′
j

∥∥Mjβ̂
λ′∥∥

qj

∣∣∣∣∣< ε.

This implies the desired continuity.
Now we show that function λ �→ g(‖Y − Xβ̂λ‖2

2) is continuous. We proceed with contradic-
tion. Thus, we assume there exist λ′ ∈ (0,∞)k and ε0 > 0, so that for any δ > 0, there exists
λ ∈ (0,∞)k satisfying∥∥λ − λ′∥∥

2 < δ and
∣∣g(∥∥Y − Xβ̂λ

∥∥2
2

)− g
(∥∥Y − Xβ̂λ′∥∥2

2

)∣∣≥ ε0.

We note that by Lemma A.1, the value of g(‖Y − Xβ̂λ‖2
2) does not depend on the specific choice

of the estimator β̂λ. Since x �→ g(x) is strictly increasing, there exists ε′
0 ≡ ε′

0(ε0) > 0 such that∣∣∥∥Xβ̂λ
∥∥2

2 − ∥∥Xβ̂λ′∥∥2
2

∣∣> ε′
0. (A.7)

Define the set B := {β ∈ R
p : |‖Xβ̂λ′ ‖2

2 − ‖Xβ‖2
2| > ε′

0}. It follows directly that β̂λ′
/∈ B , and

due to Inequality (A.7) above, it follows that β̂λ ∈ B . Let η > 0 be arbitrary. Invoking Crite-
rion (2) and the continuity of the objective function (note that taking minima does not affect the
continuity), we obtain

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj
= min

β∈B

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

≥ min
β∈B

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λ′
j‖Mjβ‖qj

}
− η

if δ is sufficiently small. Moreover, using β̂λ′
/∈ B and again the continuity, it holds for δ suffi-

ciently small that

min
β∈B

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λ′
j‖Mjβ‖qj

}
> min

β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λ′
j‖Mjβ‖qj

}
+ ξ

≥ min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
+ ξ/2
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for a ξ ≡ ξ(λ′, ε′
0) > 0. Choosing η = ξ/4, we find

min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

> min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
+ ξ/4,

which is a contradiction and thus concludes the proof of the continuity of the function λ �→
g(‖Y − Xβ̂λ‖2

2). The continuity of the function λ �→ ‖Y − Xβ̂λ‖2
2 then follows from the as-

sumption that the link function g is continuous and increasing. This concludes the proof of the
lemma. �

Proof of Lemma A.3. Since Y �= 0n with probability one, we assume Y �= 0n in the following.
We then show that ∥∥Y − Xβ̂λ

∥∥
2 > 0.

We do this by contradiction, that is, we assume∥∥Y − Xβ̂λ
∥∥

2 = 0.

This implies

Y − Xβ̂λ = 0n. (A.8)

Since β �→ g(‖Y − Xβ‖2
2) is convex, the subdifferential ∂βg(‖Y − Xβ‖2

2)|β=β̂λ exists. Thus, the
KKT conditions imply

0p ∈ ∂βg
(‖Y − Xβ‖2

2

)∣∣
β=β̂λ +

k∑
j=1

λj∂β‖Mjβ‖qj

∣∣
β=β̂λ ,

which implies by the chain rule

0p ∈ ∂xg(x)
∣∣
x=‖Y−Xβ̂λ‖2

2

(−2X
(Y − Xβ̂λ
))+ k∑

j=1

λj∂β‖Mjβ‖qj

∣∣
β=β̂λ .

Plugging Equality (A.8) into this display yields

0p ∈
k∑

j=1

λj∂β‖Mjβ‖qj

∣∣
β=β̂λ .

This means that the vector β̂λ minimizes the function β �→∑k
j=1 λj‖Mjβ‖qj

. However, since
λ1, . . . , λk > 0, and by assumption on the matrices M1, . . . ,Mk , this mapping is a norm and is
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thus minimized only at 0p . Consequently, β̂λ = 0p . However, Equality (A.8) then gives

Y = Xβ̂λ = X0p = 0n,

which contradicts Y �= 0n. Thus, Y − Xβ̂λ �= 0n, and it follows that ‖Y − Xβ̂λ‖2
2 �= 0.

Since the function x �→ g(x) is continuously differentiable on (0,∞) with strictly positive
derivative, we finally obtain

g′(∥∥Y − Xβ̂λ
∥∥2

2

)
> 0

as desired. �

A.3. Proof of Lemma 2.1

Proof of Lemma 2.1. The proof consists of three steps. First, we show that the solution equals
zero if the tuning parameters are large enough. Second, we show that if one element of the tuning
parameter is sufficiently large, increasing that element does not affect the estimator. Finally, we
use these results to show the existence of suitable tuning parameters.

Let us start with some notation. For each j ∈ {1, . . . , k}, we define the set Aj ⊂ {1,2, . . . , p}
such that for any u ∈ Aj , the uth row of Mj is not zero, that is, Aj := {u ∈ {1, . . . , p} :
maxv∈{1,...,p} |(Mj )uv| > 0}. By assumption on the sequence M1, . . . ,Mk , it holds that⋃k

j=1 Aj = {1, . . . , p}. For j ∈ {1, . . . , k}, define the vector (X
Y)j ∈ R
p via (X
Y)

j
i :=

(X
Y)i1{i ∈ Aj }, and set m := maxj∈{1,...,k} 2g′(‖Y‖2
2)‖(X
Y)j‖∗

qj
∨ 1, where ∨ denotes the

maximum.
The three mentioned steps now read in detail:

1. Show that for any λ ∈ [m,∞)k , it holds that

{0p} = arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.

2. Show that Xβ̂λ̃ = Xβ̂λ if λ̃, λ ∈ (0,∞)k satisfy

λ̃j > λj = m if j ∈ B,

λ̃j = λj if j /∈ B

for a non-empty subset B ⊂ {1,2, . . . , k}.
3. Show that with probability one, there exists a vector λ ∈ (0,∞)k that satisfies

λj

2g′(‖Y − Xβ̂λ‖2
2)

= cj

∥∥(XPjM
+
j

)

ε
∥∥∗

qj
(A.9)

for all j ∈ {1, . . . , k}.
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Step 1: We first show that

0p ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

implies

{0p} = arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.

Assume for a λ ∈ [m,∞)k , it holds that

0p ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.

then by Lemma A.1, for any β̂λ ∈ arg minβ∈Rp {g(‖Y − Xβ‖2
2) +∑k

j=1 λj‖Mjβ‖qj
}, it holds

that Xβ̂λ = 0n. Hence, by assumption on the matrices M1, . . . ,Mk , it holds for any β̂λ �= 0p ,

g
(∥∥Y − Xβ̂λ

∥∥2
2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj

= g
(‖Y‖2

2

)+ k∑
j=1

λj

∥∥Mjβ̂
λ
∥∥

qj

> g
(‖Y‖2

2

)+ k∑
j=1

λj‖Mj 0p‖qj

= g
(‖Y − X0p‖2

2

)+ k∑
j=1

λj‖Mj 0p‖qj
.

This contradicts β̂λ ∈ arg minβ∈Rp {g(‖Y − Xβ‖2
2) +∑k

j=1 λj‖Mjβ‖qj
}, and thus, β̂λ = 0p .

Thus,

{0p} = arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}

as desired. It is left to show that for any vector λ ∈ [m,∞)k , it holds that

0p ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.
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By the KKT conditions, we have to show that there are vectors κ(j) ∈ ∂β‖Mjβ‖qj
|β=0p

such
that

−2g′(‖Y‖2
2

)
X
Y +

k∑
j=1

λjκ(j) = 0p. (A.10)

Define Ã1 := A1, Ãj := Aj \ {A1, . . . ,Aj−1} for j = 2, . . . , k. In particular, Ãj ⊂ Aj , the Ãj ’s
are disjoint, and

⋃k
j=1 Ãj = {1, . . . , p}. With this notation, we need to show that for any v ∈ Ãj

and j ∈ {1, . . . , k}, it holds that

−2g′(‖Y‖2
2

)(
X
Y

)
v
+

k∑
j=1

λjκ(j)v = 0.

Define the vector κ(j) for j ∈ {1, . . . , k} via

κ(j)v :=

⎧⎪⎨⎪⎩
2g′(‖Y‖2

2)(X

Y)

j
v

λj

if v ∈ Ãj ,

0 if v /∈ Ãj .

Since Ãj ⊂ Aj and Ãj ’s are disjoint, we find for all j ∈ {1, . . . , k} and v ∈ Ãj , that

−2g′(‖Y‖2
2

)(
X
Y

)
v
+

k∑
j=1

λjκ(j)v = −2g′(‖Y‖2
2

)(
X
Y

)j
v
+ λjκ(j)v.

By definition of the vectors κ(j) for j ∈ {1, . . . , k}, we thus have

−2g′(‖Y‖2
2

)(
X
Y

)j
v
+ λjκ(j)v = 0,

which implies

−2g′(‖Y‖2
2

)(
X
Y

)
v
+

k∑
j=1

λjκ(j)v = 0.

Since λj ≥ m ≥ 2g′(‖Y‖2
2)‖(X
Y)j‖∗

qj
, it also follows by taking the dual norm on both sides

that ∥∥κ(j)
∥∥∗

qj
≤ 2g′(‖Y‖2

2)‖(X
Y)j‖∗
qj

λj

≤ 1, (A.11)

and hence, κ(j) ∈ ∂β‖Mjβ‖qj
|β=0p

for all j ∈ {1, . . . , k}. So we get

0p ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
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as desired. We conclude that

{0p} = arg min
β∈Rp

{
g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj

}
.

Step 2: Consider a pair of vectors λ, λ̃ ∈ (0,∞)k , that satisfy λ̃j > λj = m for j ∈ B and
λ̃j = λj for j ∈ {1, . . . , k} \ B . For λ, fix a solution

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

)+ k∑
j=1

λj‖Mjβ‖qj

}

with corresponding subdifferentials κ(j) ∈ ∂β‖Mjβ‖qj
|β=β̂λ that satisfy the KKT conditions

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)
X
(Y − Xβ̂λ

)+ k∑
j=1

λjκ(j) = 0p.

We first need to show that

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

)+ k∑
j=1

λ̃j‖Mjβ‖qj

}
.

By the KKT conditions, we have to show that there are the vectors κ̃(j) ∈ ∂β‖Mjβ‖qj
|β=β̂λ such

that

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)
X
(Y − Xβ̂λ

)+ k∑
j=1

λ̃j κ̃(j) = 0p.

Define κ̃(j) for j ∈ {1, . . . , k} via

κ̃(j) := λj

λ̃j

κ(j).

Plugging this into the previous display yields

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)
X
(Y − Xβ̂λ

)+ k∑
j=1

λ̃j κ̃(j)

= −2g′(∥∥Y − Xβ̂λ
∥∥2

2

)
X
(Y − Xβ̂λ

)+ k∑
j=1

λjκj .
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Therefore, it holds that

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)
X
(Y − Xβ̂λ

)+ k∑
j=1

λ̃j κ̃(j) = 0p.

Moreover, by definition of κ̃(j) and Inequality (A.11), we have that

∥∥κ̃(j)
∥∥∗

qj
= λj

λ̃j

∥∥κ(j)
∥∥∗

qj
≤ ∥∥κ(j)

∥∥∗
qj

≤ 1

for all j ∈ B . So, κ̃(j) ∈ ∂β‖Mjβ‖qj
|β=β̂λ for any j ∈ {1, . . . , k}. Hence, it holds that

β̂λ ∈ arg min
β∈Rp

{
g
(‖Y − Xβ‖2

)+ k∑
j=1

λ̃j

∥∥(Mjβ)j
∥∥

qj

}
.

This gives Xβ̂λ̃ = Xβ̂λ by Lemma A.1.
Step 3: Finally, we show the existence of a λ ∈ (0,∞)k that satisfies Equality (A.9). For this,

we define

a := m ∧
(

2g′(‖Y‖2
2

)
min

j∈{1,...,k} cj

∥∥(XPjM
+
j

)

ε
∥∥∗

qj

)
.

By assumption on the noise ε, it holds that a > 0 with probability one. Next, we consider the
function

f : [a,m]k → R
k

λ �→ f (λ) := 2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
c1
∥∥(XP1M

+
1

)

ε
∥∥∗

q1
, . . . , ck

∥∥(XPkM
+
k

)

ε
∥∥∗

qk

)

.

Note first that g(‖Y − Xβ̂λ‖2
2) ≤ g(‖Y‖2

2) by definition of the estimator β̂λ. Hence, since g′ is
non-increasing, we find

min
λ∈[a,m]k

min
j∈{1,...,k}f (λ)j ≥ a.

Note also that [a,m]k is compact and that f is continuous by Lemmas A.2 and A.3 and the
assumption that g′(x) is continuous on (0,∞). It therefore holds that

sup
λ∈[a,m]k

∥∥f (λ)
∥∥∞ ≤ b

for some b ∈ (0,∞). Using this and Step 2, we find that the function f and the function

h : [a, b ∨ m]k → [a, b ∨ m]k

λ �→ h(λ) := 2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
c1
∥∥(XP1M

+
1

)

ε
∥∥∗

q1
, . . . , ck

∥∥(XPkM
+
k

)

ε
∥∥∗

qk

)
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have the same images, that is,{
y : y = f (λ),λ ∈ [a,m]k}= {y : y = h(λ),λ ∈ [a, b ∨ m]k}.

The function h is continuous. Moreover, [a, b ∨ m]k is a compact and convex subset of Rk . We
can thus apply Brouwer’s fixed-point theorem to deduce that

λ = 2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
c1
∥∥(XP1M

+
1

)

ε
∥∥∗

q1
, . . . , ck

∥∥(XPkM
+
k

)

ε
∥∥∗

qk

)

for a vector λ ∈ [a, b ∨ m]k . According to Lemma A.3, it holds that g′(‖Y − Xβ̂λ‖2

2) > 0 with
probability one, so that

λ

2g′(‖Y − Xβ̂λ‖2
2)

= (c1
∥∥(XP1M

+
1

)

ε
∥∥∗

q1
, . . . , ck

∥∥(XPkM
+
k

)

ε
∥∥∗

qk

)

as desired. �

A.4. Proof of Theorem 2.1

Proof of Theorem 2.1. Consider the function

R
p →R

β �→ f (β) := g
(‖Y − Xβ‖2

2

)+ k∑
j=1

λj‖Mjβ‖qj
.

According to our assumptions on the link function and the penalties, f is convex, and β̂λ

minimizes f . Therefore, 0p ∈ ∂f (β)|β=β̂λ . Subdifferentials are additive, so that we can write
∂f (β)|β=β̂λ as a sum of subdifferentials of the individual parts of f . In particular, we can de-
compose 0p ∈ ∂f (β)|β=β̂λ as

0p = ∂

∂β
g
(‖Y − Xβ‖2

2

)∣∣∣∣
β=β̂λ

+
k∑

j=1

λjκj ,

where κj ∈ ∂{α �→ ‖Mjα‖qj
}|α=β̂λ and, using the assumption that the function g is differentiable

on (0,∞),

∂

∂β
g
(‖Y − Xβ‖2

2

)∣∣∣∣
β=β̂λ

= −2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
X
(Y − Xβ̂λ

))
.

Adding the pieces together implies for all β ∈ R
p

0 = 0

p

(
β − β̂λ

)= (−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
X
(Y − Xβ̂λ

))+ k∑
j=1

λjκj

)
(
β − β̂λ

)
.
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Now, κj ∈ ∂{α �→ ‖Mjα‖qj
}|α=β̂λ , which means by the definition of subdifferentials for convex

functions that for all β ∈R
p

‖Mjβ‖qj
≥ ∥∥Mjβ̂

λ
∥∥

qj
+ 〈κj ,β − β̂λ

〉
,

which is equivalent to

‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj
≥ κ


j

(
β − β̂λ

)
.

Combining with the above yields

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
X
(Y − Xβ̂λ

))
(
β − β̂λ

)+ k∑
j=1

λj

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

)≥ 0.

According to the model (1), we can replace Y with Xβ∗ + ε to obtain(
X
(Y − Xβ̂λ

))
(
β − β̂λ

)
= (X
(Xβ∗ + ε − Xβ̂λ

))
(
β − β̂λ

)
= (X(β∗ − β̂λ

))

X
(
β − β̂λ

)+ ε
X
(
β − β̂λ

)
= (X(β∗ − β̂λ

))

X
(
β∗ − β̂λ + β − β∗)+ ε
X

(
β − β̂λ

)
= ∥∥X(β∗ − β̂λ

)∥∥2
2 + (X(β∗ − β̂λ

))

X
(
β − β∗)+ ε
X

(
β − β̂λ

)
.

Now, we note that for any u > 0,

(
X
(
β∗ − β̂λ

))

X
(
β − β∗)≥ −u

∥∥X(β∗ − β̂λ
)∥∥2

2 − ‖X(β − β∗)‖2
2

4u
.

Using this in the foregoing display and consolidating gives us

(
X
(Y − Xβ̂λ

))
(
β − β̂λ

)≥ (1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2 − ‖X(β − β∗)‖2

2

4u
+ ε
X

(
β − β̂λ

)
.

Plugging this back into the earlier display yields, noting that g′ is a positive function by assump-
tion,

−2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
(1 − u)

∥∥X(β∗ − β̂λ
)∥∥2

2 − ‖X(β − β∗)‖2
2

4u
+ 〈ε,X(β − β̂λ

)〉)

+
k∑

j=1

λj

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

)≥ 0.
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Rearranging this inequality, we obtain

2g′(∥∥Y − Xβ̂λ
∥∥2

2

)(
(1 − u)

∥∥X(β∗ − β̂λ
)∥∥2

2 + 〈ε,X(β − β̂λ
)〉)

≤
k∑

j=1

λj

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

)+ 2g′(∥∥Y − Xβ̂λ
∥∥2

2

)‖X(β − β∗)‖2
2

4u
.

According to Lemma A.3, we can divide both sides by 2g′(‖Y − Xβ̂λ‖2
2), so that

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2 + 〈ε,X(β − β̂λ

)〉
≤

k∑
j=1

λj

2g′(‖Y − Xβ̂λ‖2
2)

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

)+ ‖X(β − β∗)‖2
2

4u

and

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2

≤ 〈ε,X(β̂λ − β
)〉+ k∑

j=1

λj

2g′(‖Y − Xβ̂λ‖2
2)

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

)+ ‖X(β − β∗)‖2
2

4u

with probability one. Recall that by Equation (3), the vector β̂λ − β can be rewritten as

β̂λ − β =
k∑

j=1

PjM
+
j Mj

(
β̂λ − β

)
.

So we can reorganize the inner product 〈ε,X(β̂λ − β)〉 according to

〈
ε,X
(
β̂λ − β

)〉= 〈ε,X k∑
j=1

PjM
+
j Mj

(
β̂λ − β

)〉

=
k∑

j=1

〈
ε,XPjM

+
j Mj

(
β̂λ − β

)〉

=
k∑

j=1

〈(
XPjM

+
j

)

ε,Mj

(
β̂λ − β

)〉
.
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Plugging this into the previous inequality yields

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2

≤
k∑

j=1

(〈(
XPjM

+
j

)

ε,Mj

(
β̂λ − β

)〉+ λj

2g′(‖Y − Xβ̂λ‖2
2)

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

))

+ ‖X(β − β∗)‖2
2

4u
.

Using Hölder’s Inequality, we can rewrite the first term in the second line according to〈(
XPjM

+
j

)

ε,Mj

(
β̂λ − β

)〉≤ ∥∥(XPjM
+
j

)

ε
∥∥∗

qj

∥∥Mjβ̂
λ − Mjβ

∥∥
qj

.

Plugging this back into the previous display gives

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2

≤
k∑

j=1

(∥∥(XPjM
+
j

)

ε
∥∥∗

qj

∥∥Mjβ̂
λ − Mjβ

∥∥
qj

+ λj

2g′(‖Y − Xβ̂λ‖2
2)

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

))

+ ‖X(β − β∗)‖2
2

4u
.

We can modify this further by applying the triangle inequality and by reorganizing the terms. We
find

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2

≤
k∑

j=1

(∥∥(XPjM
+
j

)

ε
∥∥∗

qj

(∥∥Mjβ̂
λ
∥∥

qj
+ ‖Mjβ‖qj

)
+ λj

2g′(‖Y − Xβ̂λ‖2
2)

(‖Mjβ‖qj
− ∥∥Mjβ̂

λ
∥∥

qj

))

+ ‖X(β − β∗)‖2
2

4u

=
k∑

j=1

(∥∥(XPjM
+
j

)

ε
∥∥∗

qj
+ λj

2g′(‖Y − Xβ̂λ‖2
2)

)
‖Mjβ‖qj

+
k∑

j=1

(∥∥(XPjM
+
j

)

ε
∥∥∗

qj
− λj

2g′(‖Y − Xβ̂λ‖2
2)

)∥∥Mjβ̂
λ
∥∥

qj
+ ‖X(β − β∗)‖2

2

4u
.
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We now set λ according to Lemma 2.1. It then holds that

λj

2g′(‖Y − Xβ̂λ‖2
2)

= cj

∥∥(XPjM
+
j

)

ε
∥∥∗

qj

for all j ∈ {1, . . . , k}. Then it follows that

(1 − u)
∥∥X(β∗ − β̂λ

)∥∥2
2

≤
k∑

j=1

(1 + cj )
∥∥(XPjM

+
j

)

ε
∥∥∗

qj
‖Mjβ‖qj

+
k∑

j=1

(1 − cj )
∥∥(XPjM

+
j

)

ε
∥∥∗

qj

∥∥Mjβ̂
λ
∥∥

qj

+ ‖X(β∗ − β)‖2
2

4u
.

To bring this into the standard form, assuming u < 1, we finally divide both sides by (1 − u)n

and find

1

n

∥∥X(β∗ − β̂λ
)∥∥2

2

≤ 1

n

k∑
j=1

1 + cj

1 − u

∥∥(XPjM
+
j

)

ε
∥∥∗

qj
‖Mjβ‖qj

+ 1

n

k∑
j=1

1 − cj

1 − u

∥∥(XPjM
+
j

)

ε
∥∥∗

qj

∥∥Mjβ̂
λ
∥∥

qj

+ 1

4u(1 − u)n

∥∥X(β∗ − β
)∥∥2

2.

Since β ∈ R
p and u ∈ (0,1) were arbitrary, this inequality provides us with the desired state-

ment. �
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