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Central limit theorem for Fourier transform
and periodogram of random fields
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In this paper, we show that the limiting distribution of the real and the imaginary part of the Fourier trans-
form of a stationary random field is almost surely an independent vector with Gaussian marginal distri-
butions, whose variance is, up to a constant, the field’s spectral density. The dependence structure of the
random field is general and we do not impose any restrictions on the speed of convergence to zero of
the covariances, or smoothness of the spectral density. The only condition required is that the variables
are adapted to a commuting filtration and are regular in some sense. The results go beyond the Bernoulli
fields and apply to both short range and long range dependence. They can be easily applied to derive the
asymptotic behavior of the periodogram associated to the random field. The method of proof is based on
new probabilistic methods involving martingale approximations and also on borrowed and new tools from
harmonic analysis. Several examples to linear, Volterra and Gaussian random fields will be presented.
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1. Introduction

The discrete Fourier transform, defined as

Sn(t) =
n∑

k=1

eiktXk, (1)

where i = √−1 is the imaginary unit, plays an essential role in the study of stationary time
series (Xj )j∈Z of centered random variables with finite second moment, adapted to a filtration
(Fu)u∈Z .

The periodogram, introduced as a tool by Schuster [27], is essential for the estimation of the
spectral density of the stationary processes. It is defined by

In(t) = 1

2πn

∣∣Sn(t)
∣∣2

, t ∈ [−π,π). (2)

There is a vast literature concerning these statistics. They are often used to determine hidden
periodicities. Denote by λ the Lebesgue measure on the real line. In Peligrad and Wu [24], it
was proved a surprising result, that, under ergodicity and a very mild regularity condition, for
λ-almost all frequencies t , the random variables ReSn(t)/

√
n and ImSn(t)/

√
n are asymptoti-

cally independent identically distributed random variables with normal distribution, mean 0 and
variance πf (t). Here f is the spectral density of (Xj )j∈Z . The regularity condition, namely
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E(X0|F−∞) = 0 a.s., is a mild restriction of dependence and accommodates large classes of
sequences with short and long range dependence. This result implies that for λ-almost all t , the
periodogram In(t) converges in distribution to f (t)χ2, where χ2 has a chi-square distribution
with 2 degrees of freedom, even in the case of processes with long memory. The proof of this
result is based on the celebrated Carleson theorem [4] about almost sure convergence of Fourier
transforms, combined with martingale approximations and Fourier analysis.

In this paper, we analyze the asymptotic properties of the Fourier transform for random fields.
Let d be a positive integer. We start with a strictly stationary random field (Xu)u∈Zd of square in-
tegrable and centered random variables. We introduce the discrete Fourier transform for random
fields by the rotated sum

Sn(t) =
∑

1≤u≤n

eiu·tXu,

where we have 1 ≤ u ≤ n and t ∈ I = [−π,π)d . By u ≤ n we understand u = (u1, . . . , ud),
n = (n1, . . . , nd) and 1 ≤ u1 ≤ n1, . . . ,1 ≤ ud ≤ nd . Also u · t = u1t1 + · · · + udtd .

For a weakly stationary random field the spectral analysis was initiated in several papers by
Helson and Lowdenslager [15], Kallianpur et al. [20] and Francos et al. [11]. These papers stress
the huge difficulties when one tries to extend the results from sequences of random variables to
random fields. One of the difficulty is that for random fields the future and past do not have a
unique interpretation. Also, many of the important spectral analysis results relevant to the proofs,
do not fully extend to double indexed sequences, including the celebrated Fejér–Lebesgue the-
orem (cf. Bary [1], page 139) or the Carleson theorem [4] (see Fefferman [10]). To compensate
for the lack of ordering of the filtration, we utilize the notion of commuting filtration. Such filtra-
tions have a certain Markovian character. For instance, for d = 2, we can start with a stationary
random field with independent rows or columns which generate a commuting filtration. Then,
we construct a stationary random field which is a function of the initial one.

The main result of the paper is a natural extension from sequences of random variables, in-
dexed by integers, to random fields of the result of Peligrad and Wu [24]. Under certain regu-
larity conditions, we shall prove that, almost surely in t ∈ I , both the real and imaginary part of
Sn(t)/

√
n1 · · ·nd converge to independent normal variables whose variance is, up to a multiplica-

tive constant, the spectral density of the random field, denoted by f (t). The ergodicity condition
is imposed to only one of the directions of the random field.

The periodogram, has the following extension to the random field:

In(t) = 1

(2π)dn1 · · ·nd

∣∣∣∣
∑

1≤u≤n

eiu·tXu

∣∣∣∣
2

, t ∈ I.

Our result is that, for almost all frequencies t ∈ I , the limiting distribution of In(t) is f (t)χ2(2),
where χ2(2) is a chi-square distribution with two degrees of freedom.

The proof is based on a new, interesting representation for the spectral density in terms of
projection operators, which is the most important tool for establishing our result. The proof also
involves a martingale approximation for random fields as well as laws of large numbers for
Fourier sums, which have interest in themselves.

We consider two types of summations. The first result is for summations of the variables
in a multi-dimensional cube. The reason we first restrict ourselves to summations indexed by
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the cubes is due to the relation between our results and optimal results available in harmonic
analysis. For example, for d = 2, Theorem 1 in Marcinkiewicz and Zygmund [22] shows that
the Fejér–Lebesgue theorem holds for spectral densities in L1 when the summation is taken
over rectangles of size m × n, provided that m,n → ∞ such that m/n ≤ a and n/m ≤ a for
some positive number a. This result fails when the summation is taken over general rectangles.
However, if the summation is taken over the sets 1 ≤ u1 ≤ n, 1 ≤ u2 ≤ m, where n ≥ m → ∞,
one should assume the integrability of f (u) ln+ f (u) as a minimal condition for the validity of
the Fejér–Lebesgue theorem (see Jessen et al. [19]). We shall also give a result in this context,
where the summation is taken over unrestricted rectangles.

When dealing with random fields the notation can become rather complicated. This is the
reason why, for presenting the material, we implemented the following strategy: We treat first
the case d = 2. Then, we mention the small differences for treating the general case of multi-
dimensional index set by using the mathematical induction.

Our paper is organized as follows. In a preliminary section, we review several facts about
limiting variance of the Fourier series, introduce the notions of stationary random fields and
commuting filtrations. In Section 3, we obtain a representation of the spectral density in terms
of projection operators, which extends a recent result by Lifshitz and Peligrad [21] beyond the
setting of Bernoulli shifts. We also state and prove our main results on the limiting distribution of
double indexed, random Fourier sums. The extension to general index set is given in Section 4.
Section 5 is dedicated to examples, such as functions of Gaussian sequences, linear and nonlinear
random fields with independent innovations. It is remarkable that the only condition required for
the validity of our results for linear or Volterra random fields with independent innovations is
equivalent to merely the existence of these fields. In a supplementary section, we prove two laws
of large numbers and other lemmas about commuting filtrations.

Our paper joins the recent increased interest in finding martingale methods for random fields,
initiated by Rosenblatt [26] and continued by Gordin [14]. We would like to mention several
remarkable papers in this direction. For instance, the paper by Volný and Wang [29] treated
projection conditions and orthomartingales. Volný [28] discovered that the fields of stationary
orthomartingales require the ergodicity in only one of the directions of the field as a necessary
condition for the CLT. Cuny et al. [7] treated dynamical system via projection conditions. The
paper of El Machkouri et al. [8] deals with random fields which are functions of i.i.d. Wang
and Woodroofe [30], Peligrad and Zhang [25] and Giraudo [13] treated the Maxwell–Woodroofe
condition. Also, in the context of dynamical systems, the CLT for Fourier transform for random
fields was stated in Cohen and Conze [5] for K-systems. It should also be mentioned that a
central limit theorem for periodogram of random fields was obtained by Miller [23] under mixing
conditions. All these papers were inspirational.

2. Preliminaries

Spectral density and limiting variance

We call the complex valued zero mean field of random variables (Xm)m∈Z2 defined on a prob-
ability space (�,K,P ), weakly stationary (or second order stationary), if there are complex
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numbers γ (m), m ∈ Z2, such that for all u,v ∈ Z2,

cov(Xu,Xv) = E(XuX̄v) = γ (u − v).

In the context of weakly stationary random fields, it is known that there exists a unique measure
on I = [−π,π)2, such that

γ (u) =
∫

I

eiu·xF(dx), for all u ∈ Z2,

where u · x is the inner product. If F is absolutely continuous with respect to Lebesgue measure
λ2 on I = [−π,π)2 then, the Radon–Nikodym derivative f of F with respect to the Lebesgue
measure is called spectral density (F(dt) = f (t)dt), and we have

γ (u) =
∫

I

eiu·xf (x)dx, for all u ∈ Z2.

The variance of partial sums on rectangles is

E
∣∣Sn(t)

∣∣2 =
∑

1≤u,v≤n

γ (u − v)eit·(u−v).

Well-known computations show that

E
∣∣Sn(t)

∣∣2 =
∑

1≤u,v≤n

eit·(u−v)

∫
I

eix·(u−v)f (x)dx

=
∫

I

∑
1≤u,v≤n

eix·(u−v)f (x − t)dx.

So, with the notation x = (x1, x2), one can rewrite

1

n1n2
E

∣∣Sn(t)
∣∣2 =

∫
I

Kn1(x1)Kn2(x2)f (x − t)dx,

where Kn(x) is the Fejér Kernel

Kn(x) =
∑
|j |<n

(
1 − |j |

n

)
eijx .

Furthermore, by Theorem 1 in Marcinkiewicz and Zygmund [22], for λ2-almost all t in I , we
obtain a limiting representation for the spectral density, namely

lim
n→∞

1

n2
E

∣∣Sn,n(t)
∣∣2 = (2π)2f (t). (3)
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If in addition f (u) ln+ f (u) is integrable, then

lim
n1≥n2→∞

1

n1n2
E

∣∣Sn1,n2(t)
∣∣2 = (2π)2f (t). (4)

Stationary random fields and stationary filtrations

In order to construct stationary filtrations, we shall start with a strictly stationary real valued
random field ξ = (ξu)u∈Z2 , defined on a probability space (�,K,P ) and define the filtrations

Fk,� = σ(ξj,u : j ≤ k,u ≤ �). (5)

To ease the notation, sometimes the conditional expectation will be denoted by

Ea,bX = E(X|Fa,b).

We shall consider that the filtration is commuting in the sense that

Eu,vEa,bX = Ea∧u,b∧vX. (6)

It is remarkable that, by Problem 34.11 in Billingsley [2] (see Lemma 12), condition (6) is equiv-
alent to the apparently weaker condition: for a ≥ u and X integrable we have

Eu,vEa,bX = Eu,b∧vX. (7)

Now we introduce the stationary random field (Xm)m∈Z2 , in the following way. We define first

X0 = g
(
(ξu)u∈Z2

)
,

where g : RZ2 → C and 0 = (0,0).
Without restricting the generality, we shall define (ξu)u∈Z2 in a canonical way on the prob-

ability space � = RZ2
, endowed with the σ -field, B(�), generated by cylinders. Then, if

ω = (xv)v∈Z2 we define ξ ′
u(ω) = xu. We construct a probability measure P ′ on B(�) such that

for all B ∈ B(�) and any m and u1, . . . ,um we have

P ′((xu1 , . . . , xum) ∈ B
) = P

(
(ξu1, . . . , ξum) ∈ B

)
.

The new sequence (ξ ′
u)u∈Z2 is distributed as (ξu)u∈Z2 and re-denoted (ξu)u∈Z2 . We shall also

redenote P ′ as P . Now on RZ2
we introduce the operators

T u(
(xv)v∈Z2

) = (xv+u)v∈Z2 .

Two of them will play an important role in our paper namely, when u = (1,0) and when u =
(0,1). By interpreting the indexes as notations for the lines and columns of a matrix, we shall
call

T
(
(xu,v)(u,v)∈Z2

) = (xu+1,v)(u,v)∈Z2
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the vertical shift and

S
(
(xu,v)(u,v)∈Z2

) = (xu,v+1)(u,v)∈Z2

the horizontal shift. Then define

Xj,k = g
(
T jSk(ξu)u∈Z2

)
. (8)

3. Results and proofs

Spectral density representation in terms of projections

In this section, we first find a useful representation of the spectral density for regular functions
and commuting filtrations. It extends a result of Lifshitz and Peligrad [21] beyond the case of
Bernoulli shifts. The proof follows the same lines as in Lifshitz and Peligrad [21]. We shall point
out the differences and give it here for completeness, clarification and equivalent definitions.

For an integrable random variable X, we introduce the projection operators by defining

P0̃,0X = (E0,0 − E−1,0)X,

P0,0̃X = (E0,0 − E0,−1)X.

Note that, by (6), we have

P0X = P0̃,0P0,0̃X = P0,0̃P0̃,0X

and by stationarity, for all u,v ∈ Z

Pu,vX = Eu,vX − Eu,v−1X − Eu−1,vX + Eu−1,v−1X. (9)

Define F−∞,m = ⋂
u∈Z Fu,m and Fm,−∞ = ⋂

v∈Z Fm,v .
Now let X0 be defined as before, in L2(�,F,P ). Then we have the following orthogonal

representation

X0 =
∑

u∈Jn,m

PuX0 + Rnm + Unm,

where n and m are two positive integers, Jn,m = [−n, . . . , n] × [−m, . . . ,m],
Rnm = E(X0|F−n−1,m) + E(X0|Fn,−m−1) − E(X0|F−n−1,−m−1),

and

Unm = X0 − E(X0|Fn,m).

We assume the following two regularity conditions

E(X0|F−∞,0) = 0 a.s. and E(X0|F−∞,0) a.s. (10)



CLT for Fourier transform 505

Note that

E(X0|F−n−1,−m−1) = E
(
E(X0|F0,−m−1)|F−n−1,0

)
.

By passing to the limit and using the reverse martingale theorem and arguments similar to The-
orem 34.2(V) in Billingsley [2], we obtain that

lim
n→∞ lim

m→∞Rnm = 0 a.s. and in L2.

Since X0 is measurable with respect to
∨

u∈Z2 Fu = F∞,∞, by the martingale convergence the-
orem,

lim
n→∞ lim

m→∞Unm = 0 a.s. and in L2.

Therefore,

X0 = lim
n→∞ lim

m→∞

n∑
j=−n

m∑
k=−m

P−j,−kX0 a.s. and in L2.

We shall denote this limit by

X0 =
∑

u∈Z2

PuX0. (11)

Note that for u 
= v and for all X and Y in L2(�,K,P ) we have

cov(PuX,PvY) = 0. (12)

Observe also that, by taking into account (11), (12) and stationarity, we have

∑
u∈Z2

E|PuX0|2 = E|X0|2 < ∞. (13)

We would like now to define a random variable which will be used to characterize the spectral
density of random fields. For random variables, this was achieved in Peligrad and Wu [24] by
using Carleson [4] and also Hunt and Young [18] theorems. For random fields, these theorems do
not hold in general. We could use instead a weaker form of them or, as an alternative, an iterated
procedure.

In the sequel, we shall use the notation ‖X‖2 = E(|X|2).

Martingale difference construction

We start from the identity (13) and note that this identity implies

∑
u∈Z2

|PuX0|2 < ∞ P -a.s. (14)
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Let �′ ⊂ � with P(�′) = 1 be such that the convergence above holds for all ω ∈ �′. By the
main theorem in Fefferman [9] for convergence of double Fourier series, we obtain the almost
sure convergence in the following sense: For ω ∈ �′ we have

∑
j∈Z2

e−ij·tP0Xj(ω) = lim
n→∞

∑
j∈In

e−ij·tP0Xj(ω) λ2-a.e.,

where In = [−n,n] × [−n,n].
By Fubini theorem, for almost all t ∈ I , we also have that

∑
j∈Z2

e−ij·tP0Xj = lim
n→∞

∑
j∈In

e−ij·tP0Xj P -a.s. (15)

Furthermore, by relation (1) in Fefferman’s paper [9] and by (14), for a positive constant C, we
have that ∫

I

sup
n

∣∣∣∣
∑
j∈In

e−ij·tP0Xj

∣∣∣∣
2

dt ≤ C
∑

u∈Z2

|PuX0|2 P -a.s.

Whence, by integrating and using (13), we obtain

E

∫
I

sup
n

∣∣∣∣
∑
j∈In

e−ij·tP0Xj

∣∣∣∣
2

dt ≤ CE
∑

u∈Z2

|PuX0|2 ≤ C‖X0‖2.

It follows that for almost all t ∈ I

E

(
sup
n

∣∣∣∣
∑
j∈In

e−ij·tP0Xj

∣∣∣∣
2)

< ∞.

By the dominated convergence theorem, the convergence in (15) also holds in L2.
Let us denote by

D0(t) = lim
n→∞

∑
j∈In

e−ij·tP0Xj P -a.s. and in L2. (16)

In the next theorem, we point out a representations for the spectral density by using definition
(16).

Theorem 1. Let (Xk)k∈Z2 be a stationary sequence defined by (8) and the filtration (Fk)k∈Z2 is
commuting as in (6). Assume that the second moment is finite and the regularity condition (10)
is satisfied. Then, the sequence (Xk)k∈Z2 has spectral density which has the representation:

f (t) = 1

(2π)2
E

∣∣D0(t)
∣∣2

, t ∈ I. (17)
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Proof of Theorem 1. Let us compute the covariance of Xk and X0. By using the projection
decomposition in (11), written for both Xk and X0, together with the orthogonality of the pro-
jections in (12) and stationarity, we have for all k ∈ Z2,

cov(Xk,X0) = cov

(∑
j∈Z2

PjXk,
∑

u∈Z2

PuX0

)

=
∑
j∈Z2

cov(PjXk,PjX0) =
∑
j∈Z2

cov(P0Xk+j,P0Xj).

(18)

Let us analyze the function f (t) defined in (17). By Fubini theorem and (13) we have

∫
I

f (t)dt = 1

(2π)2
E

∫
I

∣∣∣∣
∑
j∈Z2

e−ij·tP0Xj

∣∣∣∣
2

dt = E
∑
j∈Z2

|PjX0|2 < ∞.

Now, let us compute the Fourier coefficients of f (t). For every k ∈ Z2, by the definition of f (t)
and Fubini theorem we have∫

I

eik·tf (t)dt = 1

(2π)2

∑
u,j∈Z2

E

∫
I

ei(k−j+u)·tP0XjP0Xu dt.

By using the orthogonality of the exponential functions, we obtain
∫

I

eik·tf (t)dt =
∑

j,u∈Z2

cov(P0Xj,P0Xu)1{k−j+u=0}

=
∑

u∈Z2

cov(P0Xu+k,P0Xu).

Now, comparing this expression with (18) we see that f in formula (17) is the spectral density
for (Xk)k∈Z2 . �

Remark 2. For defining the spectral density iterated limits are also possible. By applying Car-
leson [4] and Hunt and Young [18] theorems twice, consecutively in each variable, one can show
that the following limits exist: for λ2-almost all t ∈ [−π,π)2, we can define a random variable
D̃0(t) in the following sense

D̃0(t) = lim
n→∞ lim

m→∞

n∑
u1=−n

m∑
u2=−m

P0(Xu1,u2)e
−iu·t P -a.s. and in L2.

Similarly, we can also define the other iterated limit

D̂0(t) = lim
m→∞ lim

n→∞

n∑
u1=−n

m∑
u2=−m

P0(Xu1,u2)e
−iu·t P -a.s. and in L2.
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Also, we can obtain the following alternative definitions for the spectral density:

f (t) = 1

(2π)2
E

∣∣D̂0(t)
∣∣2 = 1

(2π)2
E

∣∣D̃0(t)
∣∣2

.

Note that in all the characterizations of f (t) the limits commute with the integrals.

Remark 3. By (6) and its definition, D0(t) is a martingale difference in each coordinate

E0,−1D0(t) = 0 and E−1,0D0(t) = 0 P -a.s.

We are ready to state our main result. Everywhere in the paper ⇒ denotes convergence in
distribution.

Theorem 4. Assume that (Xk)k∈Z2 and (Fk)k∈Z2 are as in Theorem 1. In addition, assume that
one of the shifts T or S is ergodic. Then, for λ2-almost all t ∈ I ,

1

n

(
ReSn,n(t), ImSn,n(t)

) ⇒ (N1,N2) as n → ∞,

where N1, N2 are i.i.d. normally distributed random variables with mean 0 and variance
2π2f (t), where f (t) is the spectral density of the sequence (Xk)k∈Z2 . Furthermore, if
f (u) ln+ f (u) is integrable then

1√
n1n2

(
ReSn1,n2(t), ImSn1,n2(t)

) ⇒ (N1,N2) as n1 ∧ n2 → ∞

with N1, N2 as above.

Proof of Theorem 4. This proof has several steps. Let us point out the idea of the proof. First we
show that the proof can be reduced to random variables with continuous spectral density. Then,
we construct a random field which is a martingale difference in each coordinate and has the same
limiting distribution as the original sigma field. To validate this approximation we shall use the
limiting variance given in (3) and (4) along with the representation of the spectral density given
in Theorem 1. The result will follow by obtaining the central limit theorem for the martingale
random field. To fix the ideas let us assume that the shift S is ergodic.

Martingale approximation

Let us recall the definition of D0(t) given in (16) and introduce a new notation:

D
(�)
0 (t) =

∑
j∈I�

P0(Xj)e
−ij·t →

∑
j∈Z2

P0(Xj)e
−ij·t = D0(t) P -a.s. and in L2. (19)

Note that D0(t) and D
(�)
0 (t) are functions of (ξu)u∈Z2 . By using stationarity and translation

operators T and S we define D
(�)
k (t) and Dk(t) for any k ∈ Z2. Note that, by Remark 3, both
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(D
(�)
u,v(t)) and (Du,v(t)) are coordinate-wise martingale differences with respect to the filtrations

(F∞,v)v and (Fu,∞)u respectively.
For almost all t ∈ I we shall approximate Sn(t) by the martingale

Mn(t) =
n∑

j=1

eij·tDj(t). (20)

To validate this approximation, we first consider the situation when n = (n,n). Define the mar-
tingale

M(�)
n (t) =

n∑
j=1

eij·tD(�)
j (t) (21)

and, for t′ fixed, the “proper” Fourier series in t,

M(�)
n

(
t, t′

) =
n∑

j=1

eij·tD(�)
j

(
t′
)
.

Note that we can bound

∣∣Sn(t) − Mn(t)
∣∣2

≤ 3
(∣∣Sn(t) − M(�)

n
(
t, t′

)∣∣2 + ∣∣M(�)
n

(
t, t′

) − M(�)
n (t)

∣∣2 + ∣∣M(�)
n (t) − Mn(t)

∣∣2)
.

By (3), for almost all t ∈ I

lim
n→∞

1

n2
E

∣∣Sn(t) − M(�)
n

(
t, t′

)∣∣2 = (2π)2f (�)
(
t, t′

)
,

where f (�)(t, t′) is the spectral density of (Xk − D
(�)
k (t′))k.

By using the representation (17) given in Theorem 1, and taking into account that P0D
(�)
j (t′) =

0 P -a.s. for j ∈ Z2 with j 
= 0 we obtain

f (�)
(
t, t′

) = 1

(2π)2
E

∣∣∣∣
∑
j∈Z2

P0Xje
−ij·t − D

(�)
0

(
t′
)∣∣∣∣

2

= 1

(2π)2
E

∣∣D0(t) − D
(�)
0

(
t′
)∣∣2

.

On the other hand, by the orthogonality of the projections,

1

n2
E

∣∣M(�)
n

(
t, t′

) − M(�)
n (t)

∣∣2 = E
∣∣D(�)

0

(
t′
) − D

(�)
0 (t)

∣∣2 (22)

and

1

n2
E

∣∣M(�)
n (t) − Mn(t)

∣∣2 = E
∣∣D(�)

0 (t) − D0(t)
∣∣2

.
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So, overall, by the above considerations,

lim sup
n→∞

1

n2
E

∣∣Sn(t) − Mn(t)
∣∣2

≤ 3
(
E

∣∣D0(t) − D
(�)
0

(
t′
)∣∣2 + E

∣∣D(�)
0

(
t′
) − D

(�)
0 (t)

∣∣2 + E
∣∣D(�)

0 (t) − D0(t)
∣∣2)

.

Note now that D
(�)
0 (t′) is continuous in t′ and so, by the dominated convergence theorem,

limt′→t D
(�)
0 (t′) = D

(�)
0 (t) in L2. Therefore, by taking into account (19), and letting first t′ → t

and then � → ∞, we obtain for λ2-almost all t ∈ I the approximation

lim
n→∞

1

n2
E

∣∣Sn(t) − Mn(t)
∣∣2 = 0.

Furthermore, if n = (n1, n2) and f (u) ln+ f (u) is integrable, by replacing in the proof the limit
given in (3) by (4), for λ2-almost all t ∈ I we have

lim
n1>n2→∞

1

n1n2
E

∣∣Sn(t) − Mn(t)
∣∣2 = 0. (23)

By using Theorem 25.4 in Billingsley [2], the limit (23) shows that, the proof of Theorem 4 is
now reduced to prove the central limit theorem for Mn(t).

The central limit theorem for the martingale

Proposition 5. Consider Mn(t) defined by (20) where n = (n1, n2). Then the real and imaginary
part of Mn(t) converge to independent normal random variables with variance E|D0,0(t)|2/2
when n1 ∧ n2 → ∞.

Proof. To ease the notation, we shall drop t and denote Dj,k = Dj,k(t), Mn = Mn(t).
We start by writing (t = (t1, t2))

1√
n1n2

Mn = 1√
n1

n1∑
j=1

eij t1
1√
n2

n2∑
k=1

eikt2Dj,k.

Note that, by construction and since the filtration (Fj ,k ) is commuting, the sequence (D′
n2,j

)j
defined by

D′
n2,j

= 1√
n2

n2∑
k=1

eikt2Dj,k

is a triangular array of complex martingale differences with respect to the filtration (Fj ,∞ )j .
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For a and b real numbers let us find the limiting distribution of

a
1√
n1n2

ReMn + b
1√
n1n2

ImMn

= 1√
n1

n1∑
j=1

[
(a cos j t1 + b sin j t1)ReD′

n2,j
+ (b cos j t1 − a sin j t1) ImD′

n2,j

]

= 1√
n1

n1∑
j=1

�n2,j .

(24)

In order to find the limiting distribution of n
−1/2
1

∑n1
j=1 �n2,j we have to prove now a central limit

theorem for the triangular array of martingale differences (�n2,j )j≥1. According to a classical
result, which can be found in Gänssler and Häusler [12], we have to establish that

max
1≤j≤n1

1√
n1

|�n2,j | →L2 0 as n1 ∧ n2 → ∞.

and to verify the Raikov type condition, namely

1

n1
E

∣∣∣∣∣
n1∑

j=1

(
�2

n2,j
− E�2

n2,j

)∣∣∣∣∣ → 0 as n1 ∧ n2 → ∞. (25)

The first condition is easy to verify since, by the stationarity involved in the model and the main
result in Peligrad and Wu [24], the variables (|D′

n2,j
|2)j are uniformly integrable and therefore,

(|�n2,j |2)j in (24) are also uniformly integrable.
In order to verify (25), after using the well-known trigonometric formulas

2 cos2 x = 1 + cos 2x, 2 sin2 x = 1 − cos 2x,

cos2 x − sin2 x = cos 2x, 2(cosx)(sinx) = sin 2x,

by Lemma 10 in Section 6, it follows that for almost all t ∈ I , the terms involving cos 2j t1 or
sin 2j t1 in (25) are negligible as n1 ∧ n2 → ∞.

After simple computations, proving (25) is reduced to show that

1

n1
E

∣∣∣∣∣
n1∑

j=1

(∣∣D′
n2,j

∣∣2 − E
∣∣D′

n2,j

∣∣2)∣∣∣∣∣ → 0.

We shall apply Lemma 11 below. Clearly it is enough to prove that

1

n1
E

∣∣∣∣∣
n1∑

j=1

(
Re2 D′

n2,j
− E Re2 D′

n2,j

)∣∣∣∣∣ → 0
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and

1

n1
E

∣∣∣∣∣
n1∑

j=1

(
Im2 D′

n2,j
− E Im2 D′

n2,j

)∣∣∣∣∣ → 0.

Their proofs are similar and we shall deal only with the first one involving the real part.
Let m be a positive integer. By using Cramèr theorem, trigonometric formulas, the main The-

orem in Peligrad and Wu [24], ergodicity of S and Lemma 10 from Section 6, we can easily
show that the vector valued sequence of martingales (ReD′

n2,1
, . . . ,ReD′

n2,m
)n2 converges to a

Gaussian vector (N1, . . . ,Nm) with the covariance structure, for all k,

cov(N1,Nj ) = cov(Nk,Nk+j ).

The computations are simple and left to the reader. Because of the martingale property, we have
the orthogonality of (ReD′

n2,k
)k . In addition, we also have uniform integrability of the fam-

ily (|D′
n2,1

|2)n2 , provided by the results in Peligrad and Wu [24]. By applying the continuous
mapping theorem and the convergence of moments theorem associated to the convergence in
distribution (Theorem 25.12 in Billingsley [2]), we obtain

cov(N1,Nk) = lim
n2→∞ cov

(
ReD′

n2,1,ReD′
n2,k

) = 0.

This shows that the Gaussian limit (Nk)k is a stationary and independent sequence. It fol-
lows that, for all m ∈ N , (Re2 D′

n2,1
, . . . ,Re2 D′

n2,m
)n2 converges to an independent vector

(N2
1 , . . . ,N2

m) and (N2
k )k is stationary and ergodic. Therefore, (25) holds by Lemma 11 in Sec-

tion 6. �

By all of the above considerations, we obtain

a
1√
n1n2

ReMn(t) + b
1√
n1n2

ImMn(t) ⇒ (
a2 + b2)N(

0,E
∣∣D0,0(t)

∣∣2)
,

and the result follows. �

4. Random fields with multi-dimensional index set

In this section, we discuss the differences which occur when the index set is Zd . The main dif-
ference is that we use some recent results on summability of multi-dimensional trigonometric
Fourier series which are surveyed and further developed in Weisz [31]. Many summability re-
sults, needed for our proofs, have already been extended from dimension 1 to dimension d , but
the results are very different depending on the summation type and on the shape of the regions
in Zd containing the indexes of summations. Our intention is to present a method rather than the
most general results. The probabilistic tools are completely developed in our paper. However,
the statements are limited by the level of knowledge in harmonic analysis. In order to construct
the approximating martingale we can always base ourselves on the summation on cubes, where
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the celebrated Carleson–Hunt theorem extends completely for square integrable functions (see
Theorem 4.4. in Weisz [31]) or we can use an iterative procedure. However, the statements of the
CLT and the conditions imposed to the spectral density, strongly depend on shape of the sum-
mation region and the extensions of the Fejér–Lebesgue theorem, namely on the validity of (3).
These regions of summation can be restricted by using conditions imposed to various norms on
Zd or the summations can be taken over nonrestricted rectangles. In the latter case, additional
restrictions have to be imposed to the spectral density. This is an active field of research in har-
monic analysis and our results can be reformulated whenever a progress is achieved. We shall
formulate the general results by using only summations over cubes and nonrestricted rectangles.

To introduce the regularity conditions we shall start with a strictly stationary real valued ran-
dom field ξ = (ξu)u∈Zd , defined on the canonical probability space RZd

and define the filtrations
Fu = σ(ξj : j ≤ u). Recall that by j ≤ u we understand that each coordinate of j is less or equal
the corresponding coordinate of u. By taking intersections of sigma algebras or sigma algebra
generated by unions of sigma algebras, we can consider the coordinates of u in Fu being valued
in Z ∪ {−∞,∞}. The filtration is commuting if EuEaX = Eu∧aX, where the minimum is taken
coordinate-wise. We define X0 = f ((ξu)u∈Zd ). We also define Ti the coordinate-wise transla-
tions and Xk = f (T

k1
1 ◦ · · · ◦ T

kd

d (ξu)u∈Zd ). We call f regular if E(X0|Fu) = 0 a.s., when at
least a coordinate of u is −∞.

Our general result is summarized in the following theorem.

Theorem 6. Assume that (Xk)k∈Zd and (Fk)k∈Zd are as above and f is regular. In addition,
assume that one of the shifts Ti is ergodic, 1 ≤ i ≤ d . Then, for λd -almost all t ∈ [0,2π)d ,

1

nd/2

(
ReSn(t), ImSn(t)

) ⇒ (N1,N2) as n → ∞,

where n = (n, . . . , n), N1, N2 are i.i.d. normally distributed random variables with mean 0 and
variance 2d−1πdf (t), and f (t) is the spectral density of the sequence (Xk)k∈Zd . Furthermore,
if f (u)(ln+ f (u))d−1 is integrable, then

1√
n1n2 · · ·nd

(
ReSn(t), ImSn(t)

) ⇒ (N1,N2) as
∧

1≤i≤d

ni → ∞,

with N1, N2 as above.

Proof of Theorem 6. The proof of this theorem follows the same lines as of Theorem 4 with the
following differences. In order to be able to obtain a characterization of the spectral density, we
have to introduce the d-dimensional projection operator. By using the commutative property of
the filtrations it is convenient to define

P0(X) =P1 ◦P2 ◦ · · · ◦Pd(X),

where

Pj (Y ) = E
(
Y |F (j)

0

) − E
(
Y |F (j)

−1

)
.



514 M. Peligrad and N. Zhang

Above we used the notation: F (j)

0 = F0, and F (j)

−1 = Fu, where u has all the coordinates 0
with the exception of the j th coordinate, which is −1. For instance when d = 3, P2(Y ) =
E(Y |F0,0,0) − E(Y |F0,−1,0).

We can easily see that, by using the commutativity property, this definition is a generalization
of the case d = 2. We note that, by using this definition of P0(X), the statement and the proof
of Theorem 1 remain unchanged if we replace Z2 with Zd . The definition of the approximating
martingale is also clear as well as the proof. We point out the following two differences in the
proof. One difference is that instead of Theorem 1 in Marcinkiewicz and Zygmund [22] we use
Corollary 14.4 in Weisz [31], which assures the validity of (3) for λd -almost all t in [0,2π)d .
Another difference in the proof is that Proposition 5 is proved by induction. More precisely,
we use instead of the results in Peligrad and Wu [24] the induction hypothesis. For proving the
second part of the Theorem 6, we use several results in Weisz [31], namely Corollary 16.5 about
unrestricted summability and the line above relation 15.2 on page 123. �

5. Examples

We start this section by mentioning an easy way to generate commuting filtrations. This happens
for instance, when we consider a stationary random field ξ = (ξ̄ �)�∈Z with its columns ξ̄ � =
(ξu,�)u∈Z independent copies of a stationary stochastic process. Of course, we can also consider
as well random fields with independent lines. This can be seen by combining Lemmas 13 and 12
in Section 6. The random field of interest is then constructed by taking functions of (ξk,j )k,j∈Z

as in definition (8). Furthermore, if the columns of (ξk,j ) are independent, then F0,−∞ is trivial.
If the lines of (ξk,j )k,j∈Z are independent then F−∞,0 is trivial.

Next, we give examples of stationary random fields (ξu)u∈Z2 which generate commuting fil-
tration and in addition both F0,−∞ and F−∞,0 are trivial.

Independent copies of a stationary sequence with “nonparallel” past and
future

The ρ-mixing coefficient, also known as maximal coefficient of correlation is defined as

ρ(A,B) = sup
{
Cov(X,Y )/‖X‖2‖Y‖2 : X ∈ L2(A), Y ∈ L2(B)

}
.

For the stationary sequence of random variables (ξk)k∈Z , denote by F0 the past σ -field generated
by ξk with indices k ≤ 0 and by Fn the future σ -field after n−steps generated by ξj with indices
j ≥ n. The sequence of coefficients (ρn)n≥1 is then defined by

ρn = ρ
(
F0,Fn

)
.

If ρn < 1 for some n > 1, then the tail sigma field F−∞ = ⋂
n∈Z σ((ξj )j≤n) is trivial; see Propo-

sition (5.6) in Bradley [3]. In this case it is customary to say that F0 and Fn are not parallel.
Now we take a random field with columns ξ̄ j = (ξk,j )k∈Z independent copies of a stationary
sequence with ρn < 1 for some n > 1. Clearly, because the columns are independent the sigma
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field F0,−∞ is trivial. Furthermore, we shall argue that F−∞,0 is also trivial. To prove it, we
apply Theorem 6.2 in in Csáki and Fischer [6] (see also Theorem 6.1 in Bradley [3]). According
to this theorem

ρ
(
σ
(
(ξk,j )j∈Z,k≤0

)
, σ

(
(ξk,j )j∈Z,k≥n

))
= sup

j

ρ
(
σ
(
(ξk,j )k≤0

)
, σ

(
(ξk,j )k≥n

)) = ρn < 1.

Therefore we also have that F−∞,0 is trivial and our theorem applies. For this case, we obtain
the following corollary:

Corollary 7. Assume that the random field (ξk,j )k,j∈Z consists of columns, which are indepen-
dent copies of a stationary sequence (ξj )j∈Z having ρn < 1 for some n > 1. Construct (Xn)n∈Z2

by (8) and assume that the variables are centered and square integrable. Then the results of
Theorems 1 and 4 hold.

As a particular example we can take, as generator of the commuting sigma algebras, inde-
pendent copies of a Gaussian sequence with a special type of spectral density. It is convenient
to define the spectral density on the unit circle in the complex plane, denoted by T . Let μ de-
note normalized Lebesgue measure on T (normalized so that μ(T ) = 1). For a given random
sequence X := (Xk)k∈Z , a “spectral density function” (if one exists) can also be viewed as a real,
nonnegative, Borel, integrable function f : T → [0,∞) such that for every k ∈ Z

cov(Xk,X0) =
∫

t∈T

tkf (t)μ(dt).

Let (ξj )j∈Z be a stationary Gaussian sequence and let n be a positive integer. The following
two conditions are equivalent:

(a) ρn < 1.
(b) (ξj )j∈Z has a spectral density function f (on T ) of the form

f (t) = ∣∣p(t)
∣∣ exp

(
u(t) + ṽ(t)

)
, t ∈ T ,

where p is a polynomial of degree at most n − 1 (constant if n = 1), u and v are real
bounded Borel functions on T with ‖v‖∞ < π/2, and ṽ is the conjugate function of v.

For n = 1, this equivalence is due to Helson and Szegö [17]. For general n ≥ 1, it is due to
Helson and Sarason [16], Theorem 6.

Functions of i.i.d.

Our results also hold for any random field which is Bernoulli, that is, a function of i.i.d. random
field. For instance, if (ξn)n∈Zd is a random field of independent, identically distributed random
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variables and we define (Xk)k∈Zd and (Fk)k∈Zd as in Theorem 6. Then the filtration is commut-
ing and the regularity conditions of Theorem 6 are satisfied provided the variables are centered.
If in addition X0 is square integrable, then the result of Theorem 6 holds.

For the next two examples the only conditions imposed are equivalent to the existence of the
fields involved.

Example 8 (Linear field). Let (ξn)n∈Zd be a random field of independent, identically distributed
random variables which are centered and have finite second moment. Define

Xk =
∑
j∈Zd

ak−jξj.

Assume that
∑

j∈Zd a2
j < ∞. Then the CLT in Theorem 6 holds.

Another class of nonlinear random fields is the Volterra process, which plays an important role
in the nonlinear system theory.

Example 9 (Volterra field). Let (ξn)n∈Zd be a random field of independent random variables
identically distributed centered and with finite second moment. Define

Xk =
∑

u,v∈Zd

au,vξk−uξk−v,

where au,v are real coefficients with au,u = 0 and
∑

u,v∈Zd a2
u,v < ∞. Then the CLT in Theorem 6

holds.

6. Supplementary results

In this section, we prove two auxiliary results. They are laws of large numbers which have interest
in themselves.

The following lemma is an extension of a result in Zhang [32].

Lemma 10. Assume that the triangular array (Xn2,k)k∈Z is row-wise stationary and (Xn2,k)n2≥1

is uniformly integrable for any k fixed. In addition assume that Xn2,k ⇒ Xk , where Xk’s have the
same distribution and are in L1. Then, for λ-almost all t ∈ [−π,π),

1

n1

n1∑
k=1

eiktXn2,k → 0 a.s. when n1 ∧ n2 → ∞.

Proof. Let m ≥ 1 be a fixed integer and define consecutive blocks of indexes of size m, Ij (m) =
{(j − 1)m + 1, . . . ,mj }. In the set of integers from 1 to n1 we have [n1/m] such blocks of
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integers and a last one containing less than m indexes. By the stationarity of (Xn2,k)k∈Z we have

1

n1
E

∣∣∣∣∣
n1∑

k=1

eiktXn2,k

∣∣∣∣∣ ≤ 1

n1

[n1/m]∑
j=1

E

∣∣∣∣
∑

k∈Ij (m)

eiktXn2,k

∣∣∣∣

+ 1

n1
E

∣∣∣∣∣
n1∑

j=[n1/m]m+1

eij tXn2,j

∣∣∣∣∣

≤ 1

m
E

∣∣∣∣∣
m∑

k=1

eiktXn2,k

∣∣∣∣∣ + on1(1) as n1 → ∞.

Now, again by the uniform integrability of (Xn2,k)n2≥1 and the convergence of moments associ-
ated to the weak convergence (see Theorem 25.12 in Billingsley [2]) we have

lim
n2→∞E

∣∣∣∣∣
m∑

k=1

eiktXn2,k

∣∣∣∣∣

≤ lim
n2→∞E

∣∣∣∣∣
m∑

k=1

Xn2,k sinkt

∣∣∣∣∣ + lim
n2→∞E

∣∣∣∣∣
m∑

k=1

Xn2,k coskt

∣∣∣∣∣

= E

∣∣∣∣∣
m∑

k=1

Xk sin kt

∣∣∣∣∣ + E

∣∣∣∣∣
m∑

k=1

Xk coskt

∣∣∣∣∣.

Since the Xk’s have the same distribution, by Zhang [32], for almost all t ∈ [−π,π)

1

m

m∑
k=1

Xk sin kt → 0 and
1

m

m∑
k=1

Xk coskt → 0 P -a.s. and in L1.
�

Lemma 11. Assume that the triangular array (Xn2,k)k∈Z is row-wise stationary, mean 0 and
(Xn2,k)n2≥1 is uniformly integrable for any k fixed. In addition assume that the finite dimensional
distributions of (Xn2,k)k converge in distribution to those of (Xk)k as n2 → ∞, where (Xk)k is
stationary and ergodic and in L1. Then

1

n1

n1∑
k=1

Xn2,k converges in L1 to 0 when n1 ∧ n2 → ∞.

Proof. As in the previous lemma, we make blocks of variables as before and use the inequality

1

n1
E

∣∣∣∣∣
n1∑

k=1

Xn2,k

∣∣∣∣∣ ≤ 1

m
E

∣∣∣∣∣
m∑

k=1

Xn2,k

∣∣∣∣∣ + on1(1) as n1 → ∞.
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Now, by the uniform integrability and the weak convergence of the sequence (Xn2,k)n2≥1, we
obtain

lim
n2→∞E

∣∣∣∣∣
m∑

k=1

Xn2,k

∣∣∣∣∣ = E

∣∣∣∣∣
m∑

k=1

Xk

∣∣∣∣∣.
Furthermore, note also that by the conditions of this lemma we also have E(Xk) = 0 for all k.
By the ergodic theorem

∑m
k=1 Xk/m → 0 a.s. and in L1 and therefore

E

∣∣∣∣∣
1

m

m∑
k=1

Xk

∣∣∣∣∣ → 0 as m → ∞.
�

The following lemma follows by Problem 34.11 in Billingsley [2].

Lemma 12. Assume that X, Y , Z are integrable random variables. Then the following are equiv-
alent

E
(
g(X,Y )|σ(Y,Z)

) = E
(
g(X,Y )|Y )

a.s.,

E
(
g(Z,Y )|σ(Y,X)

) = E
(
g(Z,Y )|Y )

a.s.

We recall the following lemma which is not difficult to verify. Its proof is left to the reader.

Lemma 13. Assume that X, Y , Z are integrable random variables such that (X,Y ) and Z are
independent. Assume that g(X,Y ) is integrable. Then

E
(
g(X,Y )|σ(Y,Z)

) = E
(
g(X,Y )|Y )

a.s.
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