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We consider here quantitative convergence to equilibrium for the kinetic Fokker–Planck equation. We
present a weak hypocoercivity approach à la Villani, using weak Poincaré inequality, ensuring subexpo-
nential convergence to equilibrium in H1 sense or in L2 sense.
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1. Introduction

The long-time behavior of the kinetic linear Fokker–Planck equation has been studied for a long
time and is by itself a very interesting problem as being one of the simplest hypoelliptic models,
noticeably hard to study. From a probabilistic point of view, we are interested in the law of the
following degenerate stochastic differential equation on R

n ×R
n:{

dXt = Yt dt

dYt = √
2dBt − ∇V (Xt ) dt − Yt dt.

Let f (t, x, v) be the density of (Xt , Yt ). Assume that the equation above admits an invariant
measure dμ = f∞(x, v) dx dv (with finite or infinite mass), where f∞(x, v) lies in C2(Rn) and
is positive everywhere. Then the new unknown h(t, x, v) = f (t, x, v)/f∞(x, v) solves the cor-
responding partial differential equation:

∂h

∂t
+ v · ∇xh − ∇V (x) · ∇vh = �vh − v · ∇vh. (1.1)

Before considering convergence to equilibrium for this model, let us recall some analytical is-
sues about regularity and well-posedness. It was shown by Helffer and Nier [[8], Section 5.2] that
(1.1) generates a C∞ regularizing contraction semigroup in L2(μ) as soon as V lies in C∞(Rn),

here dμ = e
−[V (x)+ |v|2

2 ]
Z

dx dv with normalization constant Z. In [14], Villani used smooth ap-
proximation to get the same kind of results under less regular potential V .
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Theorem 1.1 (Villani [14]). Let V ∈ C1(Rn), lower bounded. Then for any h0 ∈ L2(μ), equa-
tion (1.1) admits a unique distributional solution h = h(t, x, v) ∈ C(R+;D′(Rn

x × R
n
v)) ∩

L∞
loc(R+;L2(μ)) ∩ L2

loc(R+;H 1
v (μ)), such that h(0, ·) = h0.

If we set f = e
−[V (x)+ |v|2

2 ]
h

Z
, the equation becomes:

∂f

∂t
+ v · ∇xf − ∇V (x) · ∇vf = �vf + ∇v · (vf ). (1.2)

f (t) can be interpreted (if it is nonnegative) as a density of particles, or (if it is a probability
density) as a law of a random variable in phase space. But the assumptions on the initial datum
for (1.2) are more stringent for the well-posedness theorem, see Theorem 7 in [14].

Our main purpose is to study the long time behavior of the solution of this equation. As we all
know for symmetric Markov process, a Poincaré inequality for the Dirichlet energy has the same
meaning as a Poincaré inequality for the invariant measure μ, which is equivalent to a L2 expo-
nential convergence. However due to the degeneracy of the generator associated to the Fokker–
Planck equation, a Poincaré inequality related to the Dirichlet energy E(f,f ) = ∫ |∇vf |2 dμ

cannot hold. More generally, for non symmetric Markov process, an exponential convergence
in L2 sense (not uniform) is not equivalent to a Poincaré inequality for the Dirichlet energy. In
this model, coercivity is equivalent to Poincaré inequality or logarithmic Sobolev inequality for
the invariant measure μ previously defined. Under the condition of coercivity, Villani [14] estab-
lished different kinds of exponential convergence with explicitly computable rates, in H 1 sense
[Theorem 35], in L2 sense [Theorem 37], and in the sense of relative entropy [Theorem 39].
Furthermore, Villani [14] (see also [13]) studied hypocoercivity for some dissipative evolution
equations which is very similar to problems encountered in the theory of hypoellipticity, and
developed a new method for studying convergence problems in a rather systematic and abstract
way. It is suggested to refer to the Part I of [14] for a nice presentation of coercivity and hypoco-
ercivity.

Recently, J. Dolbeault, C. Mouhot, and C. Schmeiser [6] used a new approach to prove hypoco-
ercivity for a large class of linear kinetic equations with only one conservation law. They also
gave the exponential decay in L2(μ) for our model.

On the other hand, there are fewer examples about subexponential decay. In [2] Remark 6.7,
Bakry, Cattiaux and Guillin gave an example of the subexponential decay by using Lyapunov
function (Meyn–Tweedie’s method [9–11]), see also [5] for the quantitative coupling approach.
This approach relies however on the calculus of the constants of a “small set” for which only (if
available) bad evaluations are known. Remark however that no knowledge of the explicit form of
the invariant measure is needed.

In this paper, we will study subexponential decay under the weak coercivity condition and
the explicit constants of convergence will be given. Here, weak coercivity means weak Poincaré
inequality. For the kinetic linear Fokker–Planck equation, a suitable norm is the key to get the
convergence rate. We will use the same choice of the norm as [14]. This paper is organized as
follows. In Section 2, we present the definitions and some useful results. The weak hypoco-
ercivity and examples will be given in Sections 3 and 4 separately. In the Appendix, proof of
Proposition 3.3 is given.
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2. Framework and useful results

2.1. The kinetic Fokker–Planck equation

Given a nice (at least C1, lower bounded) function V : Rn → R,
∫

e−V (x) dx < ∞. For (x, v) ∈
R

n ×R
n, set

ρ∞(x, v) = e−[V (x)+ |v|2
2 ]

Z
, μ(dx dv) = ρ∞(x, v) dx dv,

where Z is chosen for that μ is a probability measure on R
n ×R

n. Define

Ai := ∂

∂vi

, A := ∇v, B := v · ∇x − ∇V (x) · ∇v,

L := −�v + v · ∇v + v · ∇x − ∇V (x) · ∇v.

The associated equation is the kinetic Fokker–Planck equation with confinement potential V , in
the form

∂h

∂t
+ v · ∇xh − ∇V (x) · ∇vh = �vh − v · ∇vh.

By direct computation in L2(μ), we can check that

A∗
i = − ∂

∂vi

+ vi, A∗A =
n∑

i=1

A∗
i Ai = −�v + v · ∇v,

B∗ = −B, L = A∗A + B.

Then the equation takes the form ∂h/∂t + Lh = 0. By more calculations, we can get

[
Ai,A

∗
j

] = AiA
∗
j − A∗

jAi =
{

1 i = j,

0 i 
= j,

Ci := [Ai,B] = AiB − BAi = ∂

∂xi

, C := [C1, . . . ,Cn] = ∇x,[
A∗

i ,Cj

] = A∗
i Cj − CjA

∗
i = 0, [Ai,Cj ] = AiCj − CjAi = 0,

[B,Ci] = BCi − CiB = (v · ∇x − ∇V · ∇v)
∂

∂xi

− ∂

∂xi

(v · ∇x − ∇V · ∇v)

=
n∑

j=i

∂2V

∂xi∂xj

· ∂

∂vj

,

[A,C] = [
A∗,C

] = 0,
[
A,A∗] = I, [B,C] = ∇2V (x) · ∇v.
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2.2. Semigroup, weak coercivity

The unbounded operator S is to be thought as the generator of the semigroup (Pt )t≥0: Pt =
e−tS . We assume that the semigroup (t, h) → e−tSh is continuous as a function of both t and h,
satisfying the semigroup property e0S = Id, e−(t+s)S = e−tSe−sS for t, s ≥ 0, and

∀h ∈ D(S),
d

dt

∣∣∣∣
t=0+

e−tSh = −Sh.

Similar to the definition of coercivity, we define (β,�)-weak coercivity of operator S as fol-
lows, which will be abbreviated to weak coercivity.

Definition 2.1 (Weak coercivity). Let S be an unbounded operator on a Hilbert space H, with
kernel K. D(S) is dense in H. β(s) is a nonnegative and non-increasing function on (0,+∞),
β(s) ↓ 0, as s ↑ +∞. And � : H → [0,∞] satisfies �(ch) = c2�(h). The operator S is said to
be (β,�)-weak coercive on K⊥, if

β(s)〈h,Sh〉H ≥ ‖h‖2
H − s�(h), ∀s > 0, h ∈ K⊥ ∩ D(S).

Remark 2.2. If lims→0 β(s) = λ < +∞, we obtain exactly λ-coercivity. The (weak) coercivity
depends on the scalar product. Most of the time, (weak) coercivity is in the sense of L2(μ) or
the modified product ((·, ·)) which will be introduced later in Section 3. If the Hilbert space H is
L2(μ), the form of this inequality imitates the weak Poincaré inequality for the measure μ. In
this paper, �(h) = ‖h‖2∞, ‖h‖∞ = sup |f |. Sometimes, �(h) = Osc(h)2 := (supf − inff )2.

As previously recalled, the coercivity is equivalent to “‖e−tSh‖2
H ≤ e−2λt‖h‖2

H for all h ∈H”
([14], Proposition 9). We have here the following theorem.

Theorem 2.3. Assume that S is (β,�)-weak coercive on K⊥, then∥∥e−tSh
∥∥2
H ≤ inf

s>0
β(s)>0

{
s sup

r∈[0,t]
�

(
e−rth

) + exp
[−2t/β(s)

]‖h‖2
H

}
, t > 0, h ∈K⊥.

Consequently, if �(e−tSh) ≤ �(h) for any t ≥ 0, then∥∥e−tSh
∥∥2
H ≤ ξ(t)

[
�(h) + ‖h‖2

H
]
, t > 0, h ∈K⊥.

Where ξ(t) := inf{s > 0 : − 1
2β(s) log s ≤ t} for t > 0. In particular, ξ(t) ↓ 0 as t ↑ ∞.

Proof. Assume that h ∈K⊥ ∩ D(S), let H(t) := ‖e−tSh‖2
H. By weak coercivity,

H ′(t) = −2
〈
e−tSh, Se−tSh

〉 ≤ − 2

β(s)
H(t) + 2s

β(s)
�

(
e−tSh

)
, t ≥ 0, β(s) > 0.

By Gronwall’s lemma, we can get the results. �
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Remark 2.4. It should be noted that the functional � for the subsequent approach is non-
increasing along the flow.

2.3. Poincaré inequality and weak Poincaré inequality

As we know, Poincaré inequality means exponential decay for symmetric Markov process (see
[2]), Theorem 1.3. In order to describe convergence rates slower than exponential, the weak
Poincaré inequality was introduced by M. Rockner and F.-Y. Wang [12]. We refer to [1] for a
nice introduction on the subject of functional inequalities.

Definition 2.5. We say that the measure μ satisfies a Poincaré inequality, if there exists a con-
stant CP , such that, for all f ∈ C1

b ,

Varμ(f ) :=
∥∥∥∥f −

∫
f dμ

∥∥∥∥2

2
≤ CP

∫
|∇f |2 dμ.

Definition 2.6. We say that the measure μ satisfies a weak Poincaré inequality, if for all s > 0
and f ∈ C1

b ,

Varμ(f ) ≤ β(s)

∫
|∇f |2 dμ + s‖f ‖2∞, (2.1)

here, β(s) is a nonnegative and non-increasing function on (0,+∞), β(s) ↓ 0, as s ↑ +∞.

It has to be noted that for dμ = e−V dx a probability measure with V locally bounded, there
exists β such that μ verifies a weak Poincaré inequality. Thus, our theorems around convergence
of the kinetic Fokker–Planck equation will furnish convergence estimates for nearly all the cases
left by Villani.

Remark 2.7. Sometimes we consider another form of the weak Poincaré inequality (see [4]):

Varμ(f ) ≤ β(s)

∫
|∇f |2 dμ + s Osc(f )2.

Note that Osc(f ) ≤ 2‖f ‖∞, the latter is stronger than the former in a sense. Since Varμ(f ) ≤
Osc(f )2/4, we may set β(s) = 0 for s ≥ 1 in the former, and β(s) = 0 for s ≥ 1/4 in the latter.

Remark 2.8. Using capacity-measure criterion, Zitt [15], Theorem 29, showed that a weak
Poincaré inequality is indeed equivalent to other variants with weaker norms than the L∞ one: if
φ,ψ are two Young functions with φ(x) = ψ(x2), let Nφ be the Orlicz norm associated to φ, a
measure μ satisfies a weak Poincaré inequality (2.1) if and only if

Varμ(f ) ≤ αφ(s)

∫
|∇f |2 dμ + sNφ(f 2)
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with αφ(s) = cβ(ψ̂−1(s/2)/4), c an universal constant, and ψ̂(x) = ((ψ∗)−1(1/x))−1 where ψ∗
is the Fenchel–Legendre dual of ψ . We may thus for example consider Lp norms instead of L∞
norm.

3. Decay in H1 under weak coercivity of A∗A + C∗C

For the kinetic Fokker–Planck equation, there is a natural H1-Sobolev norm ‖ · ‖H1(μ):

‖h‖2
H1(μ)

= ‖h‖2
2 + ‖Ah‖2

2 + ‖Ch‖2
2 = ‖h‖2

2 + ‖∇h‖2
2.

In Villani [14] Theorem 35, the exponential convergence in H1 sense under coercivity of A∗A+
C∗C in L2(μ) sense was got by the following theorem.

Theorem 3.1 (Villani [14]). For the kinetic Fokker–Planck equation, assume that V ∈ C2(Rn)

with |∇2V (x)| ≤ M(1 + |∇V |) for a constant M ≥ 0 and the measure μ satisfies the Poincaré
inequality. Then there are constants C ≥ 1 and λ > 0, explicitly computable, such that for all
h ∈ H1(μ),

∫
hdμ = 0, ∥∥e−tLh

∥∥
H1(μ)

≤ Ce−λt‖h‖H1(μ).

In the above theorem, coercivity of A∗A+C∗C in L2 means Poincaré inequality for invariant
measure μ. Next, we will consider the convergence under weak coercivity of A∗A + C∗C in
L2, which means weak Poincaré inequality. And the condition for potential V (x): |∇2V (x)| ≤
M(1 + |∇V |) will be replaced by |∇2V (x)| ≤ M .

There is an associated scalar product to the H1-Sobolev norm, which will be denoted by
〈·, ·〉H1 . Furthermore, we define ((·, ·)):

((h,h)) = ‖h‖2
2 + a‖Ah‖2

2 + 2b〈Ah,Ch〉2 + c‖Ch‖2
2.

Here c ≤ b ≤ a and b2 < ac. We can see that 〈·, ·〉H1 and ((·, ·)) define equivalent norms:

min(1, a, c)

(
1 − b√

ac

)
‖h‖2

H1 ≤ ((h,h))

≤ max(1, a, c)

(
1 + b√

ac

)
‖h‖2

H1 .

By polarization, we can define the scalar product ((·, ·)). So we easily get the following proposi-
tion.

Proposition 3.2. For h ∈H1 ∩ D(L),

−1

2

d

dt

((
e−tLh, e−tLh

)) = ((
e−tLh,Le−tLh

))
.
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In particular,

−1

2

d

dt

∣∣∣∣
t=0

((
e−tLh,Le−tLh

)) = ((h,Lh)).

The proposition below is the key in the next theorem. A proof is provided in the Appendix. It
can be seen as a particular case of a result by Villani, with a simpler and self contained proof,
which moreover leads to easily traceable constants.

Proposition 3.3. For the kinetic Fokker–Planck equation, we always assume that V ∈ C2(Rn)

and |∇2V (x)| ≤ M with a constant M ≥ 0, for all x ∈ R
n. There is a constant κ > 0, such that

((h,Lh)) ≥ κ
(‖Ah‖2

2 + ‖Ch‖2
2

)
with κ := min( 3

4 + a − bM,b − (a + b + cM)2). For example, we can choose c < 1
M(M+2)2 ,

b = cM , a = cM2.

Remark 3.4. |∇2V (x)| ≤ M is satisfied for all the examples which we will consider later. For
instance, for α > 0, 0 < p < 2, let Ṽ (x) = (n + α) ln(1 + |x|) and Ṽ (x) = |x|p . In order to set
V ∈ C2(Rn), we have to modify them to make them smooth enough in a very small neighborhood
of 0, but |∇2V (x)| ≤ M is still correct for the modified V (x). We will see these examples later.

Remark 3.5. Recall that one may weaken the assumption to |∇2V (x)| ≤ M(1 + |∇V |) (of
course, κ is then poorly estimated). It is due to the first part of Theorem 18 and Lemma A.24 in
Appendix A.23 in Villani’s work [14].

3.1. Convergence to equilibrium in H1

It is now clear that weak coercivity of A∗A + C∗C in L2(μ) is equivalent to weak Poincaré
inequality for measure μ. By Proposition 3.3, we can get our main results.

Theorem 3.6. Under the hypotheses of Proposition 3.3 and a weak Poincaré inequality

Varμ(f ) ≤ β(s)

∫
|∇f |2 dμ + s‖f ‖2∞, s > 0,

for the same constant κ as in Proposition 3.3 and for
∫

hdμ = 0 and t > 0, it holds

((
e−tLh,Le−tLh

)) ≤ inf
s>0

β(s)>0

(
((h,h)) exp

{−λ(s)t
} + κs

β(s)λ(s)
sup

0≤t ′≤t

∥∥e−t ′Lh
∥∥2

∞

)
.

Here,

λ(s) = min

(
κ,

κ

β(s)

)(
max(1, a, c)

(
1 + b√

ac

))−1

.
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Furthermore, ((
e−tLh,Le−tLh

)) ≤ ξ(t)
(
((h,h)) + ‖h‖2∞

)
.

Here,

ξ(t) = K inf
s>0

β(s)>0

{
s

min(β(s),1)
, t ≥ − 1

λ(s)
log

Ks

min(β(s),1)

}
,

K = max(1, a, c)

(
1 + b√

ac

)
.

In particular, ξ(t) → 0 as t → ∞.

Proof. By weak Poincaré inequality, we have

‖Ah‖2
2 + ‖Ch‖2

2 =
∫

|∇h|2 dμ ≥ 1

β(s)
‖h‖2

2 − s

β(s)
‖h‖2∞.

Then,

((h,Lh)) ≥ κ

2

(‖Ah‖2
2 + ‖Ch‖2

2

) + κ

2

(
1

β(s)
‖h‖2

2 − s

β(s)
‖h‖2∞

)

≥ κ ′‖h‖H1 − κs

2β(s)
‖h‖2∞

(
κ ′ = min

(
κ

2
,

κ

2β(s)

))

≥ κ ′′((h,h)) − κs

2β(s)
‖h‖2∞(

κ ′′ = κ ′
(

max(1, a, c)

(
1 + b√

ac

))−1)
.

Let λ(s) = 2κ ′′, we have

d

dt

((
e−tLh,Le−tLh

)) ≤ −λ(s)
((

e−tLh,Le−tLh
)) + κs

β(s)

∥∥e−tLh
∥∥2

∞.

By Gronwall’s lemma, we can finish the first conclusion. Noticing ‖e−tLh‖2∞ ≤ ‖h‖2∞ and set-
ting κs

β(s)λ(s)
≤ exp{−λ(s)t}, we get the second part. It is easy to see that 1

λ(s)
is decreasing and

s
min(β(s),1)

is increasing, so ξ(t) → 0 as t → ∞. �

By the equivalence of 〈·, ·〉H1 and ((·, ·)), we have the following corollary.

Corollary 3.7. With the same notations of theorem above, for
∫

hdμ = 0, we have

∥∥e−tLh
∥∥2
H1 ≤ 1

min(1, a, c)(1 − b√
ac

)
ξ(t)

(
max(1, a, c)

(
1 + b√

ac

)
‖h‖2

H1 + ‖h‖2∞
)

.
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Remark 3.8. One may find that L∞ control is too strong. Recall Remark 2.8, one may get
another version under weaker norms (Lp for p > 2 or more general Orlicz norms), but with a
slower rate. One may also use truncation arguments to do so.

The previous theorem suffers however from a serious drawback. Indeed it is required that the
initial condition is in H1. However, it can be improved by the regularization technique.

3.2. Convergence to equilibrium in L2

From the work of Guillin–Wang [7], we can get the gradient estimate of the solutions below.

Lemma 3.9. Let h be a bounded measurable function, then there exists a constant d0 > 0, for
all 0 < t0 < 1, such that ∥∥∇e−t0Lh

∥∥2
2 ≤ d0‖h‖2∞

t3
0

.

By direct computation, we have the following statement.

Theorem 3.10. Let h be a bounded measurable function, then there exists a constant d0 > 0, for
0 < t0 < 1 and

∫
hdμ = 0, such that∥∥e−(t+t0)Lh

∥∥2
2 ≤ d1

(
K‖h‖2

2 + d2‖h‖2∞
)
ξ(t)

here, d1 = (min(1, a, c)(1 − b√
ac

))−1, d2 = (
d0K

t3
0

+ 1), K = max(1, a, c)(1 + b√
ac

).

4. Examples for a weak Poincaré inequality

Two types of potentials in position space for the probability measure 1
ZV

e−V (x) dx will be consid-

ered separately in this section with V (x) ∈ C2(Rn), where ZV is the proper normalizing constant.
We will verify that all conditions are satisfied for these V (x), then the weak Poincaré inequal-

ity can be set up for the invariant measure e
−[V (x)+ |v|2

2 ]
Z

dx dv. So we can get the conclusions of
Theorem 3.6 and Theorem 3.10.

4.1. For the generalization of (1 + α) ln(1 + |x|) (α > 0)

For n = 1, let Ṽ (x) = (1 + α) ln(1 + |x|). It was shown by Barthe, Cattiaux and Roberto [3] that
1

Z
Ṽ
e−Ṽ (x) dx = dm̃α(x) = 1

2α(1 + |x|)−1−α dx satisfies the weak Poincaré inequality

Varm̃α
(f ) ≤ β̃(s)

∫
|∇f |2 dm̃α + s Osc(f )2.
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Here β̃(s) = c̃αs−2/α for 0 < s < 1/4, and β̃(s) = 0 for s ≥ 1/4. But Ṽ (x) = (1 + α) ln(1 + |x|)
is not smooth at point 0, so we have to modify it. In the following, we will generalize it to the
case n ≥ 1.

Let

V (x) =
⎧⎨
⎩

(1 + α) ln
(
1 + |x|), |x| ≥ 1,

−3(1 + α)

32
x4 + 7(1 + α)

16
x2 + (1 + α)

(
ln 2 − 17

32

)
, |x| < 1.

(4.1)

It is easy to see that V (x) is C2(R), bounded below by (1 + α)(ln 2 − 17/32) > 0, and 0 is
the median of the measure 1

ZV
e−V (x) dx. By Corollary 4 in [3], we can verify that the modified

measure dmα(x) = 1
ZV

e−V (x) dx still satisfies the weak Poincaré inequality (Osc(f ) replaces

‖f ‖∞ ) as the original measure m̃α(x). As m̃α(x), β(s) = cαs−2/α for 0 < s < 1/4 and β(s) = 0
for s ≥ 1/4.

Let mn
α be the n-fold product of mα , i.e. mn

α(x) = ⊗n
mα(x). Thanks to the sub-additivity

property of the variance, mn
α satisfies the weak Poincaré inequality

Varmn
α
(f ) ≤ cα

(
s

n

)−2/α ∫
|∇f |2 dmn

α + s Osc(f )2, 0 < s < 1/4.

Since the gaussian measure dγ n(v) = (2π)− n
2 e− |v|2

2 dv satisfies the Poincaré inequality with
Cp = 1, the product measure mn

α ⊗ γ n satisfies the weak Poincaré inequality:

Varmn
α⊗γ n(f ) ≤ β(s)

∫
|∇f |2 dmn

α ⊗ γ n + s‖f ‖2∞,

where β(s) = max( 1
4 , 1

4cα( s
n
)−2/α) for 0 < s < 1, and β(s) = 0 for s ≥ 1.

In the other hand, it is easy to verify that |∇2V (x)| ≤ M for a constant M ≥ 0. Then the results
of convergence in H1 and in L2 can be established for this case by the theorems before.

Corollary 4.1. If the potential belongs to the type of (1 + α) ln(1 + |x|), there exist constants
K ≥ 1, cα,n > 0, κ > 0, such that for

∫
hdμ = 0,((

e−tLh,Le−tLh
)) ≤ ξ(t)

(
((h,h)) + ‖h‖2∞

)
.

Here,

ξ(t) = K inf
s>0

β(s)>0

{
s

min(β(s),1)
, t ≥ − 1

λ(s)
log

Ks

min(β(s),1)

}
,

with β(s) = max( 1
4 , 1

4cα,ns
−2/α) and λ(s) = K−1 min(κ, κ

β(s)
). Furthermore, for a fixed h with∫

hdμ = 0, there exits a constant A > 1 such that for all t > t0,∥∥e−tLh
∥∥

2 ≤ A‖h‖∞[1 + t]− α
2 .
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4.2. For the generalization of |x|p (0 < p < 1)

As the steps above, we first consider n = 1. Let Ṽ (x) = |x|p , 1
Z

Ṽ
e−Ṽ (x) dx = dṽp(x) =

e−|x|p
2�(1+1/p)

dx satisfies a weak Poincaré inequality

Varṽp
(f ) ≤ β̃(s)

∫
|∇f |2 dṽp + s Osc(f )2.

Here β̃(s) = c̃p(log(2/s))
2
p

−2 for 0 < s < 1/4, and β̃(s) = 0 for s ≥ 1/4, see [3]. But Ṽ (x) =
|x|p is not smooth at point 0 also. In the following, we will deal with it as before.

Let

V (x) =
⎧⎨
⎩

|x|p, |x| ≥ 1,

p(p − 2)

8
x4 + p(4 − p)

4
x2 +

(
1 − 3

4
p + 1

8
p2

)
, |x| < 1.

(4.2)

It is easy to see that V (x) is C2(R), bounded below by 1 − 3
4p + 1

8p2 > 0, and 0 is the median
of the measure 1

ZV
e−V (x) dx. By the Corollary 4 in [3], we can verify that the modified measure

dmα(x) = 1
ZV

e−V (x) dx still satisfies the weak Poincaré inequality (Osc(f ) replaces of ‖f ‖∞)

as the original measure ṽp(x). As ṽp(x), β(s) = cp(log(2/s))
2
p

−2 for 0 < s < 1/4 and β(s) = 0
for s ≥ 1/4.

Let vn
p be the n-fold product of vp , that is, vn

p(x) = ⊗n
vp(x), then vn

p satisfies the inequality:

Varvn
p
(f ) ≤ cp

(
log(2n/s)

) 2
p

−2
∫

|∇f |2 dvn
p + s Osc(f )2, 0 < s < 1/4.

Similarly, the product measure vn
p ⊗ γ n satisfies the weak Poincaré inequality:

Varvn
p⊗γ n(f ) ≤ β(s)

∫
|∇f |2 dvn

p ⊗ γ n + s‖f ‖2∞,

where β(s) = max( 1
4 , 1

4cp(log(2n/s))
2
p

−2
) for 0 < s < 1, and β(s) = 0 for s ≥ 1.

At last, it is easy to see |∇2V (x)| ≤ M for a constant M ≥ 0.

Corollary 4.2. If the potential belongs to the type of |x|p , for
∫

hdμ = 0, there exist constants
K ≥ 1, cα,n > 0, κ > 0, such that((

e−tLh,Le−tLh
)) ≤ ξ(t)

(
((h,h)) + ‖h‖2∞

)
.

Here,

ξ(t) = K inf
s>0

β(s)>0

{
s

min(β(s),1)
, t ≥ − 1

λ(s)
log

Ks

min(β(s),1)

}
,
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with β(s) = cα,n(log(1/s))
2
p

−2 and λ(s) = K−1 min(κ, κ
β(s)

). Furthermore, for a fixed h with∫
hdμ = 0, there exists a constant A > 1 such that for all t > t0,∥∥e−tLh

∥∥
2 ≤ A‖h‖∞e−tp/(2−p)

.

Appendix

Proof of Proposition 3.3

In this Appendix, we will simplify the calculation in C. Villani [14] and give more explicit esti-
mates. We have defined the norm ((·, ·)):

((h,h)) = ‖h‖2
2 + a‖Ah‖2

2 + 2b〈Ah,Ch〉2 + c‖Ch‖2
2.

Here c ≤ b ≤ a and b2 < ac. By polarization,

((h,Lh)) = 〈h,Lh〉 + a 〈Ah,ALh〉︸ ︷︷ ︸
I

+ c 〈Ch,CLh〉︸ ︷︷ ︸
III

+b
(〈ALh,Ch〉 + 〈Ah,CLh〉)︸ ︷︷ ︸

II

.

By B∗ = −B ,

〈h,Lh〉 = 〈
h,A∗Ah

〉 + 〈h,Bh〉 = ‖Ah‖2. (A.1)

For each of the terms I, II and III, the contributions of A∗A and B will be estimated separately,
and they will be denoted by IA, IB , IIA, IIB , IIIA, IIIB .

First of all,

IB = 〈Ah,ABh〉 =
∑

i

∫
(Aih)(AiBh)dμ

=
∑

i

∫
(Aih)(BAih)dμ +

∑
i

∫
(Aih)(AiBh − BAih)dμ (A.2)

= 0 + 〈
Ah, [A,B]h〉 = 〈Ah,Ch〉 ≥ −‖Ah‖‖Ch‖,

where the antisymmetry of B was used. Then,

IA = 〈
Ah,A∗Ah

〉 = ∑
ij

〈
Aih,AiA

∗
jAjh

〉 = ∑
ij

(〈
Aih,A∗

jAiAjh
〉 + 〈

Aih,
[
Ai,A

∗
j

]
Ajh

〉)

=
∑
ij

(〈AjAih,AiAjh〉 + 〈
Aih,

[
Ai,A

∗
j

]
Ajh

〉)
(A.3)

=
∑
ij

(〈AiAjh,AiAjh〉 + 〈
Aih,

[
Ai,A

∗
j

]
Ajh

〉)

= ∥∥A2h
∥∥2 + 〈

Ah,
[
A,A∗]Ah

〉 = ∥∥A2h
∥∥2 + ‖Ah‖2.
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Here we used the equality [A,A∗] = I in Section 2.2.
Next,

IIB = 〈ABh,Ch〉 + 〈Ah,CBh〉
= 〈ABh,Ch〉 + 〈Ah,BCh〉 + 〈

Ah, [C,B]h〉
= 〈ABh,Ch〉 − 〈BAh,Ch〉 + 〈

Ah, [C,B]h〉
(A.4)

= ‖Ch‖2 + 〈
Ah, [C,B]h〉

≥ ‖Ch‖2 − ‖Ah‖∥∥[C,B]h∥∥
≥ ‖Ch‖2 − M‖Ah‖2.

(Here ‖[C,B]h‖ = ‖∇2V (x) · Ah‖ ≤ M‖Ah‖ was used.)

IIA = 〈
AA∗Ah,Ch

〉 + 〈
Ah,CA∗Ah

〉
=

∑
ij

(〈
AiA

∗
jAjh,Cih

〉 + 〈
Aih,CiA

∗
jAjh

〉)

=
∑
ij

(〈
A∗

jAiAjh,Cih
〉 + 〈[

Ai,A
∗
j

]
Ajh,Cih

〉 + 〈
Aih,A∗

jCiAjh
〉)

(A.5)

=
∑
ij

〈AiAjh,AjCih〉 +
∑

i

〈Ai,Cih〉 +
∑
ij

〈AjAih,CiAjh〉

= 2
〈
A2h,CAh

〉 + 〈Ah,Ch〉 ≥ −2
∥∥A2h

∥∥‖CAh‖ − ‖Ah‖‖Ch‖.
(Here we used the commutation of C with both A and A∗.)

Finally,

IIIB = 〈Ch,CBh〉 =
∑

i

〈Cih,CiBh〉 = 0 +
∑

i

〈
Cih, [Ci,B]h〉

(A.6)
≥ −‖Ch‖∥∥[C,B]h∥∥ ≥ −M‖Ah‖‖Ch‖,

IIIA = 〈
Ch,CA∗Ah

〉 = ∑
ij

〈
Cih,CiA

∗
jAjh

〉 = ∑
ij

〈
Cih,A∗

jCiAjh
〉

(A.7)
=

∑
ij

〈AjCih,CiAjh〉 =
∑
ij

〈CiAjh,CiAjh〉 = ‖CAh‖2.

(Here the commutation of C with both A and A∗ was used again.)
On the whole, combined with these estimations,

((h,Lh)) ≥ ‖Ah‖2 + a
(∥∥A2h

∥∥2 + ‖Ah‖2 − ‖Ah‖‖Ch‖)
+ b

(‖Ch‖2 − M‖Ah‖2 − 2
∥∥A2h

∥∥‖CAh‖ − ‖Ah‖‖Ch‖)
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+ c
(‖CAh‖2 − M‖Ah‖‖Ch‖)

≥ (1 + a − bM)‖Ah‖2 − (a + b + cM)‖Ah‖‖Ch‖ + b‖Ch‖2

+ a
∥∥A2h

∥∥2 − 2b
∥∥A2h

∥∥‖CAh‖ + c‖CAh‖2.

Noting b2 < ac, a‖A2h‖2 − 2b‖A2h‖‖CAh‖ + c‖CAh‖2 ≥ 0. Then

((h,Lh)) ≥
(

1 + a − bM − 1

4

)
‖Ah‖2 + (

b − (a + b + cM)2)‖Ch‖2.

It is easy to choose a, b, c, such that κ := min( 3
4 +a−bM,b− (a+b+cM)2) > 0. For example,

we can choose c < 1
M(M+2)2 , b = cM , a = cM2.
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