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M-estimators of location are widely used robust estimators of the center of univariate or multivariate real-
valued data. This paper aims to study M-estimates of location in the framework of functional data analysis.
To this end, recent developments for robust nonparametric density estimation by means of M-estimators
are considered. These results can also be applied in the context of functional data analysis and allow to
state conditions for the existence and uniqueness of location M-estimates in this setting. Properties of these
functional M-estimators are investigated. In particular, their consistency is shown and robustness is studied
by means of their breakdown point and their influence function. The finite-sample performance of the
M-estimators is explored by simulation. The M-estimators are also empirically compared to trimmed means
for functional data.
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1. Introduction

The importance of functional data is vastly increasing. Functional data are involved in many
real-life problems, such as, for example, the search for patterns of human brain activity (see,
e.g., [49]), the modeling of human movements applied to humanoid robotics (see, e.g., [54]), the
description of food properties (see, e.g., [34]) or the cerebral white matter tracts of subjects with
a certain illness (see, e.g., [5]). As a result, functional data analysis also receives a lot of attention
lately – see, for example, [47] for a general perspective on the topic and [17] for a non-parametric
approach.

Similarly as for finite dimensional data, it has been shown that the functional mean is highly
sensitive to the presence of outliers and other anomalies. Therefore, several robust estimators
of functional location have already been proposed in the literature, such as functional trimmed
means [8] and functional location estimators based on depth functions in functional Hilbert
spaces (see [9,11,39,40], among others), but the interesting alternative of M-estimation has not
been considered yet, as far as the authors know (see, for example, [20]).

One of the first approaches to estimate location robustly consists of M-estimators as in-
troduced by [30]. M-estimators aim to reduce the large influence of outliers on the standard
least squares/maximum likelihood estimators. For this purpose, the key idea is to replace the
square loss function by a less rapidly increasing loss function. For univariate location estimation,
M-estimators can be seen as intermediaries between the sample mean and the sample median,
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which can combine high robustness with high efficiency. M-estimators are well-established ro-
bust methods in multivariate data analysis [27,32,43]. Recently, the extension of robust methods
to more complex data settings has received increasing attention (see, e.g., [18]). Some recent
developments include [3,4,6,12–15,22,29,33,51,53,55,56,59] and [44].

In this paper, the notion of M-estimators is extended to the functional data setting. Recent
ideas of [36] in the framework of robust kernel density estimation introduce M-estimators for
Hilbert space valued data. These results allow us to study M-estimators of functional location.
In Section 2, we define M-estimators of functional location and show that appropriate condi-
tions on the loss function guarantee their existence and uniqueness. Moreover, the M-estimators
can be expressed as a weighted average of the functional observations, which allows to com-
pute them via a reweighted least squares algorithm. In Section 3, we show that the functional
M-estimators are translation equivariant, but not scale equivariant in general. Moreover, it is
shown that M-estimators are strongly consistent and Borel-measurable. Their robustness is in-
vestigated by their finite sample breakdown point as well as their influence function. The finite-
sample behavior of the estimators is analyzed by a simulation study in Section 4, where we also
make a comparison with functional trimmed means. Section 5 illustrates the use of functional lo-
cation M-estimators by means of a real-life example, while some concluding remarks are given
in Section 6.

2. Location M-estimators for functional data

Kim and Scott [36] have proposed robust nonparametric density estimators by combining kernel
density estimation with ideas from standard M-estimation (see also [37,38]). They have inter-
preted the traditional kernel density estimator based on a radial, positive semi-definite kernel as
the sample mean in the associated reproducing kernel Hilbert space, that is, a Hilbert space of
functions in which pointwise evaluation is a continuous linear functional (see [23,42,55,61], for
recent work on different problems involving these spaces). To lower the sensitivity of this mean
to outliers, [36] suggest to estimate the center robustly via M-estimators, yielding a robust kernel
density estimator. Although Kim and Scott have developed their ideas for reproducing kernel
Hilbert spaces, they have also generalized the results to other Hilbert spaces within the setting
of kernel density estimation. Moreover, their results remain valid when they are applied to gen-
eral random variables taking values on a Hilbert space of functions. We exploit this generality to
adapt their results to M-estimation of functional location.

As [28] point out, there are two different perspectives when considering functional data. Func-
tional data could be understood either as sample paths of a stochastic process with smooth mean
and covariance functions, or as realizations of Hilbert space valued random variables, which is
our approach in this work. Hence, let (�,A,P ) be a probability space and let (H,‖ · ‖H) be a
Hilbert space of functions on some set, where ‖ ·‖H is the norm associated with the inner product
〈·, ·〉H. Let X : � → H be a Hilbert space valued random variable associated with the probability
space (i.e., a measurable function w.r.t. A and B‖·‖H , the Borel σ -field generated by the topology
induced by ‖ · ‖H).

The functional M-estimators of location are based on a real-valued loss function ρ. We assume
that the loss function ρ satisfies the following conditions.
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C.1 ρ : R+ →R is continuous and non-decreasing, and ρ(0) = 0.

These assumptions on ρ are commonly made, see, for example, [43]. Following the ideas of [30,
32], the M-location value and the associated M-estimator of location for Hilbert space valued
random variables are defined as follows.

Definition 2.1. Let (�,A,P ) be a probability space, H be a Hilbert space with associated norm
‖ · ‖H, X : � → H be an associated Hilbert space valued random variable such that E(‖X‖H) <

∞ and ρ a loss function satisfying C.1. Then, the corresponding M-location value is (are) the
element(s) gM(X) in H given by

gM(X) = arg min
h∈H J (h) = arg min

h∈HE
[
ρ
(‖X − h‖H

)]
, (1)

if it exists.

Definition 2.2. Let (�,A,P ) be a probability space, H be a Hilbert space with associated
norm ‖ · ‖H and X : � → H an associated Hilbert space valued random variable. Moreover,
let (X1, . . . ,Xn) be a simple random sample from X and ρ a loss function satisfying C.1. Then,
the M-estimator of location is any Hilbert space valued statistic ĝM(X1, . . . ,Xn) which solves

ĝM(X1, . . . ,Xn) = arg min
h∈H Jn(h) = arg min

h∈H
1

n

n∑
i=1

ρ
(‖Xi − h‖H

)
, (2)

if it exists.

Note that some additional assumptions on the probability space and Hilbert space may be
required to guarantee the Borel measurability of M-estimators of location (see Proposition 3.3).

An important contribution of [36] is the establishment of conditions to ensure the existence
of Hilbert space valued M-estimators, as well as their representation as weighted means (i.e.,
convex linear combinations) of the sample elements. Notice that those weights also depend on
the M-estimators, so this representation directly leads to an iterative reweighted least squares
algorithm for the computation of M-estimates. We summarize these results for the special case
of functional location M-estimators.

Theorem 2.1 (Representer theorem –adapted from Kim and Scott [36]–). Let (�,A,P ) be
a probability space, H a Hilbert space with associated norm ‖ · ‖H and X : � → H an associ-
ated Hilbert space valued random variable such that E(‖X‖H) < ∞. Moreover, let ρ be a loss
function which satisfies conditions C.1 as well as:

C.2 ρ(x)/x −→
x→0

0,

C.3 ρ is differentiable and ρ′ and φ(x) = ρ′(x)/x are both continuous and bounded, where
we assume that φ(0) := limx→0 ρ′(x)/x exists and is finite.

Then, if E(‖X‖H) < ∞ and the M-location value exists, any gM(X) can be expressed as

gM(X) =
∫

�

u(X)X dP
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with u(X) = φ(‖X − gM(X)‖H)/
∫
�

φ(‖X − gM(X)‖H) dP .
If (X1, . . . ,Xn) is a simple random sample from X and the M-estimator of location exists, any

ĝM(X1, . . . ,Xn) can be represented as

ĝM(X1, . . . ,Xn) =
n∑

i=1

uiXi,

with ui = φ(‖Xi − ĝM(X1, . . . ,Xn)‖H)/
∑n

j=1 φ(‖Xj − ĝM(X1, . . . ,Xn)‖H).
Furthermore, if in addition to C.1–C.3 it holds that

C.4 the function J (or Jn, respectively) is strictly convex,

then the conditions:

• gM(X) = ∫
�

u(X)X dP (or ĝM(X1, . . . ,Xn) =∑n
i=1 uiXi ),

• u ∝ φ(‖X − gM(X)‖H) (or ui ∝ φ(‖Xi − ĝM(X1, . . . ,Xn)‖H)),
• ∫

�
u(X)dP = 1 (or

∑n
i=1 ui = 1),

are sufficient to guarantee that gM(X) is the functional M-location value in (1) (or to guarantee
that ĝM(X1, . . . ,Xn) is the location M-estimator in (2), respectively).

The standard least squares loss function ρ(x) = x2 does not satisfy condition C.3, but it is
well-known that this loss function does not provide robust solutions. Three common families
of loss functions that fulfill conditions C.1–C.3 are Huber [30,32], Tukey [1] and Hampel [26]
families. Huber’s family of loss functions is given by

ρH
a (x) =

{
x2/2, if 0 ≤ x ≤ a,

a(x − a/2), if a < x,
(3)

with tuning parameter a > 0. This is a convex, but not strictly convex loss function. The Huber
family of loss functions provides a hybrid approach between squared (x ≤ a) and absolute losses
(x ≥ a). It thus puts less emphasis on large errors compared to the squared error loss function.

Tukey’s biweight or bisquare family of loss functions is given by

ρT
c (x) =

{
c2/6 · (1 − (1 − (x/c)2)3), if 0 ≤ x ≤ c,

c2/6, if c < x,
(4)

with tuning parameter c > 0. This loss function is not convex anymore and once an observation
lies far from the center, with error larger than c (x ≥ c), it does not matter anymore how far it
actually is, the contribution to the loss does not change anymore. This loss function can thus
better cope with extreme outliers.
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Hampel’s family of loss functions is given by

ρa,b,c(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2/2, if 0 ≤ x < a,

a(x − a/2), if a ≤ x < b,

a(x − c)2

2(b − c)
+ a(b + c − a)/2, if b ≤ x < c,

a(b + c − a)/2, if c ≤ x,

(5)

with nonnegative tuning parameters 0 < a < b < c. This loss function shares with the Tukey
function the non convexity and the fact that observations far from the center (x ≥ c) always
contribute in the same way to the loss.

The following proposition generalizes the result in [36] that provides sufficient conditions for
the strict convexity of the functions J and Jn needed in the second part of Theorem 2.1.

Proposition 2.2. The strict convexity of J (respectively, Jn) holds if either:

C.4(i) ρ is strictly convex,

or

C.4(ii) ρ is convex, strictly increasing and P is not concentrated on a line in H (or not all of
the observations in the sample (X1, . . . ,Xn) are collinear in H, respectively).

Proof. For condition C.4(i), see [36]. For C.4(ii) in case of the function J , take γ ∈ (0,1) and
let g �= h be two arbitrary elements of H. Let l denote the line passing through g and h. Let us
consider ω ∈ � such that X(ω) does not belong to the line l. Then, X(ω) − h and X(ω) − g are
not linearly dependent. Therefore, the following triangle inequality is strict:∥∥γX(ω) − γg + (1 − γ )X(ω) − (1 − γ )h

∥∥
H

< γ
∥∥X(ω) − g

∥∥
H

+ (1 − γ )
∥∥X(ω) − h

∥∥
H
.

As ρ is strictly increasing,

ρ
(∥∥γX(ω) − γg + (1 − γ )X(ω) − (1 − γ )h

∥∥
H

)
< ρ
(
γ
∥∥X(ω) − g

∥∥
H

+ (1 − γ )
∥∥X(ω) − h

∥∥
H

)
.

Since the strict inequality expressed above holds for the set {ω ∈ � : X(ω) /∈ l}, which has posi-
tive probability by assumption, it holds that

J
(
γg + (1 − γ )h

) = E
[
ρ
(∥∥X − (γg + (1 − γ )h

)∥∥
H

)]
= E
[
ρ
(∥∥γX − γg + (1 − γ )X − (1 − γ )h

∥∥
H

)]
< E
[
ρ
(
γ ‖X − g‖H + (1 − γ )‖X − h‖H

)]
.

Using the convexity of ρ,

E
[
ρ
(
γ ‖X − g‖H + (1 − γ )‖X − h‖H

)]≤ E
[
γρ
(‖X − g‖H

)+ (1 − γ )ρ
(‖X − h‖H

)]
,
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and by the linearity of the expectation of a random variable,

E
[
γρ
(‖X − g‖H

)+ (1 − γ )ρ
(‖X − h‖H

)] = γE
[
ρ
(‖X − g‖H

)]+ (1 − γ )E
[
ρ
(‖X − h‖H

)]
= γ J (g) + (1 − γ )J (h).

An analogous reasoning in the sample case proves the strict convexity of Jn. �

Note that in case ρ is convex and strictly increasing, P is not concentrated on a line in H and
X1, . . . ,Xn are almost surely not collinear, the population uniqueness and also the almost sure
sample uniqueness are guaranteed by Proposition 2.2.

Given that the minimization problem in (2) does not have an explicit solution in general, the
representation in Theorem 2.1 makes it possible to approximate functional location M-estimates
by using a standard iteratively re-weighted least squares algorithm (see, e.g., [30]). The algorithm
can be summarized in the following steps (see also [36]). Note that if φ is non-increasing, then
under assumptions C.1–C.4 it holds that {gM

(k)}∞k=1 converges to ĝM(X1, . . . ,Xn) in the norm
‖ · ‖H, as proven in [36].

Step 1. Select initial weights u
(0)
i ∈R, for i ∈ {1, . . . , n}, such that u(0)

i ≥ 0 and
∑n

i=1 u
(0)
i = 1.

Step 2. Generate a sequence {gM
(k)}k∈N by iterating the following procedure:

gM
(k) =

n∑
i=1

u
(k−1)
i Xi, u

(k)
i = φ(‖Xi − gM

(k)‖H)∑n
j=1 φ(‖Xj − gM

(k)‖H)
.

Step 3. Terminate the algorithm when

|Jn(g
M
(k+1)) − Jn(g

M
(k))|

Jn(g
M
(k))

< ε,

for some desired tolerance ε > 0.

In practice, under the conditions of the Representer theorem the M-estimate of location of
a sample of observations from a Hilbert space valued random element X can be approximated
by this algorithm. Hence, an approximation is obtained even if the sufficient conditions for the
measurability of the M-estimator of location given in Proposition 3.3 below (i.e., the Hilbert
space is σ -compact and separable and the probability space is Polish) do not hold.

3. Properties of M-estimators of location for functional data

The loss ρ(‖h − g‖H) is typically interpreted as a measure of the error when approximating
the functional value h by means of the functional value g. Therefore, a sample M-estimator
of location can be directly interpreted as a measure of the center of the (induced) probability
distribution associated with the Hilbert space valued random variable. We now discuss properties
of this M-estimator of location. We start with some equivariance properties.
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Proposition 3.1. Let (�,A,P ) be a probability space, H a Hilbert space and X : � → H an
associated Hilbert space valued random variable. Moreover, let ρ be a loss function satisfying
C.1–C.3 and h0 ∈ H. If gM(X) is an M-location value of X, then gM(X) + h0 is an M-location
value of X + h0. In particular, if the M-location value gM(X) is unique, then it is translation
(i.e., shift) equivariant.

Proof. Indeed, since {h + h0 : h ∈ H} = H and due to the translational invariance of the norm
‖ · ‖H, one can conclude that

E
[
ρ
(∥∥(X + h0) − (gM(X) + h0

)∥∥
H

)] = E
[
ρ
(∥∥X − gM(X)

∥∥
H

)]
= min

h∈HE
[
ρ
(‖X − h‖H

)]
= min

h∈HE
[
ρ
(∥∥(X + h0) − (h + h0)

∥∥
H

)]
= min

h∈HE
[
ρ
(∥∥(X + h0) − h

∥∥
H

)]
. �

Remark 3.1. Unfortunately, the M-location value is not scale equivariant in general. A strong
extra condition about ρ is necessary (ρ being a homomorphism of the multiplicative group of
positive real numbers), which is only fulfilled if ρ is a power function. Consequently, the resulting
location M-estimators may depend heavily on the considered measurement units, similarly as in
the real case (see, e.g., [43]). In order to avoid this, the procedure to choose the tuning parameters
in loss functions such as (3)–(5) should take the distribution of the distances into account. To
fix them, we can first calculate an initial robust estimator of location. In particular, we use the
impartial trimmed mean of [8] as in [7] for this purpose. Then, the tuning constants in the loss
function are selected from the distribution of the distances between the observations and this
initial estimate. For example, a, b and c in (3)–(5) could be taken to be the median, the 75th
percentile and the 85th percentile of these distances.

For real-valued random variables with a symmetric distribution it is well-known that the mean
and the median (if unique) are equal to the point of symmetry. This property is expected for
any sensible measure of the center of a symmetric random variable. We extend this property
to Hilbert space valued random variables using the notion of symmetry as introduced by [57]
and [46], for example. Proposition 3.2 confirms that the M-location value satisfies the desirable
properties of a measure of the center of a random variable.

Proposition 3.2. Let (�,A,P ) be a probability space, H a Hilbert space, X : � → H an asso-
ciated Hilbert space valued random variable and ρ a loss function satisfying C.1–C.3. If X − h

is symmetrically distributed for some h ∈ H, then J is symmetric with respect to h. Therefore,
if g0 minimizes J , then 2h − g0 minimizes J too. Obviously, if the M-location value gM(X) is
unique, then gM(X) = h.

Proof. Since the random elements X − h and h − X have the same distribution, for any g ∈H,

J (h + g) = E
[
ρ
(‖X − h − g‖H

)]= E
[
ρ
(‖h − X − g‖H

)]= J (h − g).
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Trivially, if the M-location value is unique, gM(X) = 2h − gM(X) and, finally, gM(X) = h. �

Some extra conditions on the probability space and Hilbert space allow us to show that the
M-estimators of location are Borel measurable mappings.

Proposition 3.3. Let (�,A,P ) be a Polish probability space, H be a σ -compact and separable
Hilbert space with associated norm ‖ · ‖H and X : � → H an associated Hilbert space valued
random variable. Moreover, let (X1, . . . ,Xn) be a simple random sample from X and ρ a loss
function satisfying C.1. Then, the M-estimator of location is a Borel measurable function.

Proof. For two complete separable metric spaces, X and Y , and a function f : D ⊆ X × Y →
R, [2] give sufficient conditions for the existence of a Borel measurable mapping ϕ such that
f (x,ϕ(x)) = infy f (x, y). Let proj(D) denote the set of all first coordinates of elements of D,
then these sufficient conditions are:

• f is a real-valued Borel measurable function defined on a Borel subset D of X × Y .
• For each x ∈ proj(D), the section Dx = {y ∈ Y : (x, y) ∈ D} is σ -compact and f (x, ·) is

lower semi-continuous with respect to the relative topology on Dx .

To verify the first of these conditions for our setting, note that X ≡ � is a Polish space, so
X is indeed a complete separable metric space. Moreover, Y ≡ H and a Hilbert space is always
complete with the metric associated with the norm, d‖·‖H . Since H is assumed to be separable, it
follows that Y is also a complete separable metric space.

Now define f : � × H → R such that f (ω,h) = 1
n

∑n
i=1 ρ(‖Xi(ω) − h‖H). To show that f

is a real-valued measurable function, note that D = � ×H is a Borel set, since it is the universal
set and thus it belongs to any σ -algebra. The measurability of f now follows from the following
facts:

• All Xi : � → H are Borel measurable by definition of Hilbert space valued random vari-
ables. Then, the mappings fi : � × H → H with fi(ω,h) = Xi(ω) are obviously Borel
measurable with respect to the σ -algebra on the product space � × H and the Borel σ -
algebra on H generated by the topology induced by ‖ · ‖H.

• The mapping f0 : � × H → H such that f0(ω,h) = h is also Borel measurable following
an analogous reasoning as for fi , since the identity is measurable.

• The norm ‖ · ‖H is a continuous function and thus Borel measurable.
• ρ is assumed to be continuous and thus Borel measurable.
• The addition, product and composition of Borel measurable functions are Borel measurable

as well.

In order to verify the second condition, take into account that for each ω ∈ proj(D) = �, the
section Dω =H is σ -compact.

For each ω ∈ proj(D) = � consider the function

f (ω, ·) : H −→ R,

h �−→ f (ω,h) = 1

n

n∑
i=1

ρ
(∥∥Xi(ω) − h

∥∥
H

)
,
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then this function is continuous (and thus also lower semi-continuous) with respect to the relative
topology on Dω =H.

For each ω ∈ �, let h∗ be any element of H. It is now sufficient to check that, given any se-
quence {hn}n∈N ⊂H such that hn −→

n
h∗ (i.e., ‖hn −h∗‖H −→

n
0), it holds that limn f (ω,hn) =

f (ω,h∗). Indeed, for all i = 1, . . . , n, the triangular inequality of the norm yields∥∥Xi(ω) − h∗∥∥
H

− ∥∥hn − h∗∥∥
H

≤ ∥∥Xi(ω) − hn

∥∥
H

≤ ∥∥Xi(ω) − h∗∥∥
H

+ ∥∥h∗ − hn

∥∥
H
.

Since ‖hn − h∗‖H −→
n

0, we have that ‖Xi(ω) − hn‖H −→
n

‖Xi(ω) − h∗‖H. The continuity

of ρ implies that ρ(‖Xi(ω) − hn‖H) −→
n

ρ(‖Xi(ω) − h∗‖H) and, obviously, the result follows

because the continuity is preserved by addition and product of continuous functions.
Finally, the result by [2] guarantees the measurability of the following function:

ϕ : I −→H

ω �−→ g0 s.t. f (ω,g0) = inf
h∈Hf (ω,h)

i.e., g0 s.t.
1

n

n∑
i=1

ρ
(∥∥Xi(ω) − g0

∥∥
H

)= inf
h∈H

1

n

n∑
i=1

ρ
(∥∥Xi(ω) − h

∥∥
H

)
,

where I = {ω ∈ � : for some g0 ∈ H, f (ω,g0) = infh∈H f (ω,h)}. That is to say, ϕ is the func-
tion that assigns to each ω ∈ � for which the M-estimate of location exists, the corresponding
value of the M-estimate of location. �

A key property of estimators is their strong consistency. From Theorem 2.1, it follows that the
location M-estimator of a random sample from a Hilbert space valued random variable can be ex-
pressed as a randomly weighted mean of Hilbert space valued random variables. Although some
limit theorems exist for the complex problem of randomly weighted means where the weights
depend on the random variables Xi (see, e.g., [45]), it is not straightforward to generalize these
results to our setting. Vandermeulen and Scott [58] have recently discussed weak L1 consistency
of the M-estimators of a density function in [36], but these results do not seem directly extensible
to general Hilbert space valued random variables. Therefore, our approach is based on the result
by [31], who derived sufficient conditions for strong consistency of M-estimators in general set-
tings. In the next proposition, we state assumptions that allow us to prove the strong consistency
irrespectively of the considered norm. However, note that these assumptions include the local
compactness and separability of the Hilbert space, which limits the range of applicability of this
result to the finite dimensional case.

Theorem 3.4. Let (�,A,P ) be a probability space, H a locally compact and second-countable
Hilbert space with norm ‖ · ‖H and X : � → H an associated Hilbert space valued random
variable. Moreover, let (X1, . . . ,Xn) be a simple random sample from X and ρ a loss function
fulfilling C.1–C.3 such that either:

• ρ is subadditive and unbounded,
• ρ has linear upper and lower bounds with the same slope,
• ρ is bounded.
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If the M-location value gM(X) exists and is unique, the M-estimator of location ĝM(X1, . . . ,Xn)

is a strongly consistent estimator of gM(X). That is, ‖ĝM(X1, . . . ,Xn) − gM(X)‖H converges to
0 almost surely as n → ∞.

Proof. We are going to check that the sufficient conditions for strong consistency established
by [31] are all fulfilled under any of the assumptions above. First, consider the case that ρ is
subadditive and unbounded.

Let us denote by X ⊆H the sample space of X and let us define the real-valued function q by

q : X ×H → R, (x,h) �−→ q(x,h) := ρ
(‖x − h‖H

)
and consider,

Tn : Xn →H, (x1, . . . , xn) �−→ Tn(x1, . . . , xn) := ĝM(x1, . . . , xn).

Then, by definition of the M-estimator of location, the sequence {Tn}n∈N satisfies, almost surely,
that

lim
n→∞

[
1

n

n∑
i=1

q
(
xi, Tn(x1, . . . , xn)

)− inf
h∈H

1

n

n∑
i=1

q(xi, h)

]
,

lim
n→∞

[
1

n

n∑
i=1

ρ
(∥∥xi − Tn(x1, . . . , xn)

∥∥
H

)− inf
h∈H

1

n

n∑
i=1

ρ
(‖xi − h‖H

)]= 0.

We now recall each of Huber’s conditions and show that they are satisfied.

Condition (H-1). For each fixed h0 ∈ H, the function qh0 : X → R, qh0(x) = q(x,h0), is
B‖·‖H -measurable and separable in Doob’s sense (i.e., there is a P -null set N and a count-
able subset S ⊂ H such that for every open set U ⊂ H and every closed interval A, the sets
V1 = {x ∈ X : q(x,h) ∈ A for all h ∈ U} and V2 = {x ∈ X : q(x,h) ∈ A for all h ∈ U ∩ S} differ
by at most a subset of N ).

First note that for an arbitrarily fixed h0 ∈ H, the function qh0 : X → R such that qh0(x) =
q(x,h0) = ρ(‖x − h0‖H) is B‖·‖H -measurable because both the norm and ρ are continuous. The
function qh0 is also separable in Doob’s sense because H is second-countable, which implies
separability. Moreover, it implies that H contains a countable dense subset, which we denote by
S. Then, for every open set U ⊂ H and every closed interval A, one can verify by reductio ad
absurdum that the sets V1 = {x ∈ X : q(x,h) ∈ A for all h ∈ U} and V2 = {x ∈ X : q(x,h) ∈ A

for all h ∈ U ∩ S} coincide.

Condition (H-2). The function q is a.s. lower semi-continuous in h0, that is to say,
infh∈Un q(x,h) → q(x,h0) when the neighborhood Un of h0 shrinks to {h0}.

Indeed it will be proven that q is continuous in h0. Given any arbitrary x ∈ X, the function
qx : H→ R such that h �→ qx(h) = ρ(‖x −h‖H) is obviously continuous, since both ρ and ‖ ·‖H
are continuous. Therefore, qx(h) −→

h→h0
qx(h0).
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Condition (H-3). There is a measurable function a : X →R such that

EPX

[
q(·, h) − a(·)]− < ∞ for all h ∈ H,

EPX

[
q(·, h) − a(·)]+ < ∞ for some h ∈H,

where PX denotes the probability induced by X. Thus, γ (h) = EPX
[q(·, h) − a(·)] is well-

defined for all h.

Set a(x) = ρ(‖x‖H), which is a measurable function, and take any (fixed) h ∈ H. By the
triangular inequality of ‖ · ‖H and the subadditivity of ρ, it holds that

EPX

[
ρ
(‖x − h‖H

)− a(x)
]− = EPX

[−min
{
ρ
(‖x − h‖H

)− ρ
(‖x‖H

)
,0
}]

=
∫

{ρ(‖x‖H)>ρ(‖x−h‖H)}
[
ρ
(‖x‖H

)− ρ
(‖x − h‖H

)]
dPX

≤ ρ
(‖h‖H

) · PX

(
ρ
(‖x‖H

)
> ρ
(‖x − h‖H

))
≤ ρ
(‖h‖H

)
< ∞.

Analogously,

EPX

[
ρ
(‖x − h‖H

)− a(x)
]+ = EPX

[
max
{
ρ
(‖x − h‖H

)− ρ
(‖x‖H

)
,0
}]

=
∫

{ρ(‖x‖H)≤ρ(‖x−h‖H)}
[
ρ
(‖x − h‖H

)− ρ
(‖x‖H

)]
dPX

≤ ρ
(‖h‖H

) · PX

(
ρ
(‖x‖H

)≤ ρ
(‖x − h‖H

))
≤ ρ
(‖h‖H

)
< ∞.

Condition (H-4). There is a g0 ∈H such that γ (h) > γ (g0) for all h �= g0.

Under the assumptions in this proposition, the M-location value exists and is unique, so that

EPX

[
ρ
(∥∥x − gM(X)

∥∥
H

)]= min
h∈HEPX

[
ρ
(‖x − h‖H

)]
.

Thus,

gM(X) = arg min
h∈HEPX

[
ρ
(‖x − h‖H

)]
= arg min

h∈H
(
EPX

[
ρ
(‖x − h‖H

)]− EPX

[
ρ
(‖x‖H

)])
= arg min

h∈HEPX

[
ρ
(‖x − h‖H

)− ρ
(‖x‖H

)]= arg min
h∈H γ (h),

so g0 = gM(X) fulfills this assumption.
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Condition (H-5). There exists a continuous function b(h) > 0 such that:

• for some integrable s, infh∈H (q(x,h) − a(x))/b(h) ≥ s(x);
• lim infh→∞ b(h) > γ (g0); where ∞ denotes the point at infinity in its one-point compacti-

fication;
• EPX

[lim infh→∞(q(·, h) − a(·))/b(h)] ≥ 1.

Consider the continuous function b : H → (0,∞) given by b(h) = ρ(‖h‖H) +1. We check
that the three requirements hold for this function under the assumptions in this proposition.

• Using the properties of ρ we obtain that

inf
h∈H

ρ(‖x − h‖H) − ρ(‖x‖H)

ρ(‖h‖H) + 1
≥ inf

h∈H
−ρ(‖h‖H)

ρ(‖h‖H) + 1
≥ −1.

Hence, the first requirement holds for the integrable function s(x) := −1.
• Similarly, we have that

lim inf
h→∞ b(h) > γ (g0) = EPX

[
ρ
(‖x − g0‖H

)− ρ
(‖x‖H

)]
.

• We now check that it holds that

EPX

[
lim inf
h→∞

ρ(‖x − h‖H) − ρ(‖x‖H)

b(h)

]
≥ 1.

Consider an arbitrary sequence (hn)n∈N → ∞. Note that for any x ∈ X the sequence{
inf
k≥n

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1

}
n

is monotonically increasing and is bounded above by 1, since for all k ∈ N applying the
triangular inequality and the subadditivity of ρ yields

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1
≤ ρ(‖hk‖H)

ρ(‖hk‖H) + 1
≤ 1.

Hence, the sequence converges to its supremum

lim inf
h→∞

ρ(‖x − h‖H) − ρ(‖x‖H)

ρ(‖h‖H) + 1
= lim

n→∞

(
inf
k≥n

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1

)
= sup

n

(
inf
k≥n

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1

)
.

We now show that this supremum is at least equal to 1. By reductio ad absurdum, suppose
that

sup
n

(
inf
k≥n

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1

)
≤ 1 − ε,
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for some ε > 0. This yields a contradiction because we can find an index n∗ ∈N such that

inf
k≥n∗

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1
> 1 − ε

since for all k ≥ n∗

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1
≥ 1 − ε

2
> 1 − ε.

To find n∗, set M = 2
ε

− 1 + 4
ε

· ρ(‖x‖H) ∈ R. Since ρ is unbounded, we can then select
M∗ > 0 such that ρ(M∗) > M . Recall that limn→∞ hn = ∞, so there exists n∗ ∈ N such
that for all n ≥ n∗, ‖hn‖H > M∗. Therefore,

ρ
(‖hn − x‖H

)≥ ρ
(‖hn‖H

)− ρ
(‖x‖H

)≥ ρ
(
M∗)− ρ

(‖x‖H
)
> M − ρ

(‖x‖H
)
,

because ρ is subadditive and non-decreasing. It is now easy to check that 1 − ε/2 is a lower
bound of the sequence {

ρ(‖x − hk‖H) − ρ(‖x‖H)

ρ(‖hk‖H) + 1

}
k≥n∗

.

Indeed, for any k ≥ n∗ we have that,

ρ
(‖x − hk‖H

)− ρ
(‖x‖H

)
=
(

1 − ε

2

)
ρ
(‖x − hk‖H

)+ ε

2
ρ
(‖x − hk‖H

)−(1 − ε

2

)
ρ
(‖x‖H

)− ε

2
ρ
(‖x‖H

)
≥
(

1 − ε

2

)
ρ
(‖hk‖H

)−(1 − ε

2

)
ρ
(‖x‖H

)
+ ε

2
ρ
(‖x − hk‖H

)−(1 − ε

2

)
ρ
(‖x‖H

)− ε

2
ρ
(‖x‖H

)
=
(

1 − ε

2

)
ρ
(‖hk‖H

)+ ε

2
ρ
(‖x − hk‖H

)−(2 − ε

2

)
ρ
(‖x‖H

)
>

(
1 − ε

2

)
ρ
(‖hk‖H

)+ ε

2

(
2

ε
− 1 +

(
4

ε
− 1

)
ρ
(‖x‖H

))−
(

2 − ε

2

)
ρ
(‖x‖H

)
=
(

1 − ε

2

)
ρ
(‖hk‖H

)+ 1 − ε

2
=
(

1 − ε

2

)(
ρ
(‖hk‖H

)+ 1
)
,

which shows the third requirement and hence the strong consistency in the case that ρ is
subadditive and unbounded.

When ρ has linear upper and lower bounds sharing the slope (as happens for Huber’s loss
function), it is possible to follow a similar reasoning as above, taking into account the bounds
mx − n1 ≤ ρ(x) ≤ mx + n2, being m > 0, n1, n2 ≥ 0, for all x ≥ 0.
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When ρ is bounded (like the Tukey biweight or Hampel loss functions), such an upper bound
allows us to easily check conditions (H-1) to (H-5)(ii), but not condition (H-5)(iii). To complete
the proof, it is necessary to show that there is a compact set C in the parameter space such that the
sequence of M-estimators of location almost surely ultimately stays in C, as commented in [31].
Thanks to the parameter space being locally compact, g0 has a compact neighborhood, which we
will denote C. Note that for any element h∗ /∈ C we can fix ε = γ (h∗) − γ (g0) > 0. Using the
strong law of large numbers, there exists n0 ∈ N such that for all n ≥ n0

inf
h

1

n

n∑
i=1

ρ
(‖xi − h‖H

)− ρ
(‖xi‖H

) ≤ 1

n

n∑
i=1

ρ
(‖xi − g0‖H

)− ρ
(‖xi‖H

)
≤ γ (g0) + ε

4
< γ (g0) + ε

2

= γ
(
h∗)− ε

2
≤ 1

n

n∑
i=1

ρ
(∥∥xi − h∗∥∥

H

)− ρ
(‖xi‖H

)
.

�

We now investigate the robustness of functional location M-estimators by means of their finite
sample breakdown point. As indicated by [10], this measure of robustness, originally introduced
by [25] and further formalized by [16], can be adapted to estimators taking values in general
metric spaces. The value of the finite sample breakdown point corresponds to the minimum
proportion of observations in the sample that need to be perturbed to make the distance between
the estimates based on the original and contaminated samples arbitrarily large. The following
result shows that functional location M-estimators can have a high finite sample breakdown point
of approximately 0.5, which means that they give a reliable performance even when almost half
of the observations are contaminated.

Theorem 3.5. Let (�,A,P ) be a probability space, let H be a Hilbert space with norm ‖ · ‖H
and X : � → H an associated Hilbert space valued random variable. Moreover, let (x1, . . . , xn)

be a sample obtained from X and ρ a loss function fulfilling C.1–C.3 such that the corresponding
M-estimator of location exists and is unique. Then, the finite sample breakdown point of the M-
estimator of location is at most 1

n
�n+1

2 �, where �·� denotes the floor function. Under any of the
additional assumptions:

• ρ admits linear upper and lower bounds with the same slope,
• ρ has a finite upper bound C∗ and satisfies

ρ
(

max
1≤i,j≤n

‖xi − xj‖H
)

<
n − 2�n−1

2 �
n − �n−1

2 � − 1
· C∗; (6)

the finite sample breakdown point is exactly 1
n
�n+1

2 �.

Proof. The proof of the upper bound 1
n
�n+1

2 � is an extension of the analogous result in the real
setting, due to the translational equivariance of the M-estimators of location. When the loss func-
tion has linear upper and lower bounds with the same slope, it is possible to follow a reasoning
similar as in [41] to guarantee that the bound 1

n
�n+1

2 � is indeed attained.
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Let us now consider the case of a loss function ρ with finite upper bound. When condition (6)
holds, then it can be shown that the finite sample breakdown point is exactly 1

n
�n+1

2 �. Indeed,
we prove that the M-estimate always belongs to a ball B of finite radius (only depending on
the original sample) when at most �n−1

2 � observations from the original sample (x1, . . . , xn)

are perturbed. Let Yn,k = (y1, . . . , yn) denote the perturbed sample with k ≤ �n−1
2 � modified

observations and IYn,k ⊆ {1, . . . ,n} the subset of indices representing the original observations
that belong to Yn,k. Define B as the ball centered at xi0 , where the index i0 and the radius are
i0 = mini∈IYn,k

maxj∈IYn,k
‖xi −xj‖H, and R := max1≤j≤n ‖xi0 −xj‖H+min{t > 0;ρ(t) = C∗},

respectively.
By reductio ad absurdum, let us suppose that the M-estimate ĝM(Yn,k) does not belong to B .

Then,
n∑

i=1

ρ
(∥∥yi − ĝM(Yn,k)

∥∥
H

)≥ ∑
i∈IYn,k

ρ
(∥∥xi − ĝM(Yn,k)

∥∥
H

)≥ (n − k)C∗.

On the other hand,

n∑
i=1

ρ
(‖yi − xi0‖H

)≤ ∑
i∈IYn,k

ρ
(‖xi − xi0‖H

)+ kC∗.

Since ρ vanishes at 0 and is non-decreasing,∑
i∈IYn,k

ρ
(‖xi − xi0‖H

) = ∑
i∈IYn,k

i �=i0

ρ
(‖xi − xi0‖H

)≤ (n − k − 1)ρ
(

max
1≤i,j≤n

‖xi − xj‖H
)

< (n − k − 1) · n − 2�n−1
2 �

n − �n−1
2 � − 1

· C∗ ≤ (n − k − 1) · n − 2k

n − k − 1
· C∗

= (n − 2k)C∗.

Finally,

n∑
i=1

ρ
(‖yi − xi0‖H

) ≤ ∑
i∈IYn,k

ρ
(‖xi − xi0‖H

)+ kC∗

< (n − k)C∗ ≤
n∑

i=1

ρ
(∥∥yi − ĝM(Yn,k)

∥∥
H

)
,

which is a contradiction. �

Note that for classes of loss functions such as the Tukey or Hampel class, condition (6) trans-
lates into a condition on the tuning parameters. It states that the tuning parameters should be
chosen such that the loss function is well adapted to the data.
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The finite sample breakdown point is a global measure of robustness of an estimator. On
the other hand, the influence function is a well-known measure of the local robustness of an
estimator. The definition for the influence function of a functional T at a distribution F is given
by

IF
(
x′;T ,F

)= lim
s→0

T ((1 − s)F + sδx′) − T (F )

s
,

where δx′ represents a discrete distribution that assigns probability 1 to the point x′. Hence,
IF(x′;T ,F ) measures the change of the estimator T when the distribution F is contaminated
with infinitesimal probability mass at x′. This definition of the influence function can also be
used for Hilbert space valued statistics. Let Fs denote (1 − s)F + sδx′ for any fixed x′ ∈ H. For
the M-estimators of functional location the influence function can be obtained by adapting the
results of [36] as in the following two theorems.

Theorem 3.6. Let (�,A,P ) be a probability space, H a Hilbert space with norm ‖ · ‖H and
X : � → H an associated Hilbert space valued random variable such that ‖X‖H is bounded.
Moreover, let ρ be a loss function satisfying C.1–C.3 such that φ is Lipschitz continuous. We
assume that gM

Fs
−→
s→0

gM
F . If ġM

F := lims→0(g
M
Fs

− gM
F )/s exists, then

IF
(
x′;gM,F

)= ġM
F ,

where ġM
F ∈H satisfies

ġM
F

∫
φ
(∥∥X − gM

F

∥∥
H

)
dF +

∫ 〈ġM
F ,X − gM

F 〉H
‖X − gM

F ‖3
H

· q(∥∥X − gM
F

∥∥
H

)(
X − gM

F

)
dF

= (x′ − gM
F

)
φ
(∥∥x′ − gM

F

∥∥
H

)
,

and q(x) = xρ′′(x) − ρ′(x).

Given any x′ ∈ H, we can define the following functions, for s ∈ (0,1],
Js : H −→ R,

h �−→ Js(h) = (1 − s)E
[
ρ
(‖X − h‖H

)]+ sρ
(∥∥x′ − h

∥∥
H

)
.

The weakest notion of convergence that would guarantee that minimizers of Js converge to a
minimizer of J is the epi-convergence or �-convergence (see, e.g., [35,48]). Therefore, if the
sequence of functionals Js epi-converges to J , gM

F is unique and the sequence {gM
Fs

}s→0 is con-

vergent, gM
Fs

−→
s→0

gM
F holds.

When the general distribution F is replaced by the empirical Fn, then it is possible to find ġM
Fn

explicitly.

Theorem 3.7. Let (�,A,P ) be a probability space, H a Hilbert space with norm ‖ · ‖H and
X : � → H an associated Hilbert space valued random variable such that ‖X‖H is bounded.
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Moreover, let (x1, . . . , xn) be a sample of independent observations obtained from X and ρ a
loss function satisfying C.1–C.3 such that φ is Lipschitz continuous. If gM

Fn,s
−→
s→0

gM
Fn

(a sufficient

condition is that Jn is strictly convex) and the matrix K ′ = (〈zi, zj 〉H)n+1
i=1,j is positive definite,

where zi = xi for i = 1, . . . , n and zn+1 = x′, then

IF
(
x′;gM,Fn

)= n∑
i=1

αixi + α′x′.

Using the notation k′ = (〈x′, xi〉H)ni=1, η =∑n
i=1 φ(‖xi − gM

Fn
‖H), and denoting by Q the

diagonal matrix with Qii = q(‖xi−gM
Fn

‖H)

‖xi−gM
Fn

‖3
H

, In the n × n identity matrix and u the vector of

observation weights for the M-estimate as defined in the Representer theorem, we have that
α′ = nφ(‖x′ − gM

Fn
‖H)/η and α = (α1, . . . , αn)

t is the solution of the following system of linear
equations [

ηIn + (In − 1ut
)t

Q
(
In − 1ut

)
K
]
α

= −nφ
(∥∥x′ − gM

Fn

∥∥
H

)
u − αt

(
In − 1ut

)t
Q
(
In − 1ut

)
k′,

with K = (〈xi, xj 〉)ni,j=1.

Notice that α′ represents how the M-estimator changes when an infinitesimal amount of con-
tamination is introduced at x′. Since φ(t) = ρ′(t)/t , for robust loss functions the effect of the
contamination reduces quickly when x′ lies further away from the observations in the sample.

4. Finite-sample behavior

In this section, we present the results of a simulation study to investigate the finite-sample behav-
ior of the functional M-estimators of location. First, in Section 4.1, we numerically investigate the
finite sample breakdown point of functional M-estimators of location. With a simulation study,
we then compare M-estimators of location with trimmed means for functional data. These results
are presented in Section 4.2.

4.1. Finite sample breakdown point

For this simulation study, we consider the Hilbert space H = L2([0,1]), the space of square
Lebesgue integrable functions defined on the interval [0,1]. Given any f ∈ L2([0,1]), the as-

sociated norm is ‖f ‖H = ‖f ‖2 =
√∫

[0,1] f 2 dλ, where λ represents the Lebesgue measure on

[0,1]. The curves are represented by their values at T = 30 equidistant points in the domain
[0,1]. To empirically illustrate the behavior of functional M-estimates of location under data
contamination, a sample of n functions, {Xi}ni=1, has been generated from the following model:

Xi(t) = 4t + ei(t), i = 1, . . . , n,
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where ei(t) is a Gaussian stochastic process with mean 0 and covariance function γ (s, t) =
e−|t−s|. Two sample sizes n will represent the even (n = 100) and odd (n = 101) cases. In each
situation, using as starting value the impartial trimmed mean for functional data (see [7,8]) with
trimming proportion 0.5, the tuning parameter for the Huber loss function has been selected as
commented in Remark 3.1 and the corresponding Huber M-estimate has been computed.

The impartial trimmed mean for functional data is defined as follows. Let (�,A,P ) be a
probability space, (H,‖·‖H) be a Hilbert space and X be an H-valued random variable. Consider
a sample of independent observations (x1, . . . , xn) and a trimming level β ∈ (0,1). Let E = {E ⊂
{1, . . . , n} : #E = h} be the collection of all the subsets of size n−�nβ�. Moreover, for any E ∈ E ,
let x̄E denote the functional mean of the observations {xj : j ∈ E}, then the impartial trimmed
mean (ITM) is defined as

ĝITM,β(x1, . . . , xn) = x̄
Ê

with Ê = arg min
E∈E

1

n − �nβ�
∑
i∈E

‖xi − x̄E‖2
H
.

Cuesta-Albertos and Fraiman [8] proposed an algorithm to calculate an approximation of the
impartial trimmed mean. This approximation always corresponds to one of the observations in
the sample. We use a more refined algorithm that is obtained by adapting the concentration
algorithm of [50] to our setting. Our adaptation is similar to the recent adaptation for the case of
fuzzy-valued random variables in [7]. By including the sample observations in the set of starting
values of our algorithm, we can guarantee that its solution is at least as good as the approximation
with the simple algorithm of [8].

Afterwards, i ∈ {1, . . . , n} observations have been highly contaminated (concretely, i functions
have been translated 103 units) and Huber M-estimates have been computed again, as well as the
distances between non-contaminated and contaminated estimates for each amount of modified
observations, as shown in Figure 1. The value ◦ represents the minimum number of perturbed
observations that makes the distance between the non-contaminated and the contaminated corre-

Figure 1. Empirical value (◦) obtained for the finite sample breakdown point of the M-estimators for
functional data and distances between the non-contaminated and contaminated estimates using the Huber
loss function when the sample size is even (left) and odd (right).



2346 B. Sinova, G. González-Rodríguez and S. Van Aelst

sponding M-estimates increase arbitrarily, i.e., the finite sample breakdown point. Similar plots
can be obtained using different sample sizes, translations, tuning parameter and loss functions
fulfilling the conditions in Theorem 3.5, such as Tukey and Hampel.

4.2. Comparative study

For the comparative study, we use the same designs as in previous works on robust functional data
analysis (see, e.g., [19,39]). The first simulation model does not contain any contamination. The
other models contain different types of outlying curves. Models 2–5 contain magnitude outliers,
that is, curves that lie far from the center. Models 6–9 contain shape outliers, which are curves
that do not necessarily lie far from the center, but they show a shape or pattern that differs from
the majority. A recent overview of the types of outliers that can occur in functional data can be
found in [33]. For each of the simulation settings, we generate N = 500 samples with sample
size n = 50 or n = 80. The contamination fraction ε is either 5% or 10%.

For Models 1–5, we consider the Hilbert space H = L2([0,1]). Given any f ∈ L2([0,1]), the
associated norm is ‖f ‖H = ‖f ‖2 and the curve is represented by its values at T = 30 equidistant
points in the domain [0,1]. Therefore, the norm ‖f ‖2 of a curve f is approximated by using the

available set of points through the expression ‖f ‖2 ≈
√

1
T

∑T
k=1 f (k)2. The tuning parameters

for the Huber, Tukey and Hampel loss functions are chosen as explained in Remark 3.1.
Let {εi}ni=1 and {σi}ni=1 be two independent sequences of random variables following a

Bernoulli (with parameter ε) and a discrete uniform on {−1,1} distribution, respectively. Then,
the considered models can be described as follows.

• Model 1: The curves Xi(t) are generated according to the following distribution:

Xi(t) = 4t + ei(t), i = 1, . . . , n,

where ei(t) is a Gaussian stochastic process with mean 0 and covariance function γ (s, t) =
e−|t−s|.

• Model 2: Symmetric contamination obtained by generating the curves according to

Yi(t) = Xi(t) + εiσiM, 1 ≤ i ≤ n.

• Model 3: Asymmetric contamination given by the curves

Yi(t) = Xi(t) + εiM, 1 ≤ i ≤ n.

• Model 4: Partial (trajectories) contamination given by the curves:

Yi(t) =
{

Xi(t) + εiσiM, if t ≥ Ti,

Xi(t), if t < Ti

for 1 ≤ i ≤ n and where the corresponding Ti is a random number generated from a uniform
distribution on (0,1).
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• Model 5: Peaks contamination by generating the curves according to

Yi(t) =
{

Xi(t) + εiσiM, if Ti ≤ t ≤ Ti + l,

Xi(t), if t /∈ [Ti, Ti + l]
for 1 ≤ i ≤ n, l = 2/30 and the corresponding Ti being a random number generated from a
uniform distribution on (0,1 − l).

The value of the contamination size constant M is either 5 or 25. In Models 6–9, we consider
shape outliers instead of magnitude outliers. Since shape outliers do not necessary lie far from the
center, the Euclidean distance corresponding to the L2 norm ‖f ‖2 is not appropriate to identify
them. However, the deviating behavior of shape outliers is more easily picked up when taking
derivatives of the curves into account (see e.g. [6]). Therefore, in Models 6–9 we consider the
Sobolev space H = W 1,2([0,1]) = {f ∈ L2([0,1]) : Df ∈ L2([0,1])} with norm

‖f ‖H = ‖f ‖W =
√

‖f ‖2
2 + ‖Df ‖2

2,

and corresponding distance

d(f,g)W =
√

‖f − g‖2
2 + ∥∥D(f − g)

∥∥2
2.

Based on this distance function, shape outliers can be identified better because it does not only
involve the Euclidean distance between the functions, but also between their derivatives.

For the settings with shape outliers, the regular curves are generated according to

Xi(t) = g(t) + e1i (t), 1 ≤ i ≤ n,

where g(t) is given by either g(t) = 4t as in Models 1–5 or g(t) = 4t2. The errors e1i (t) come
from a Gaussian process with mean 0 and covariance function γ1(s, t) = e−|t−s|2 . The contami-
nated curves are generated according to

Yi(t) = g(t) + e2i (t), 1 ≤ i ≤ n,

where the Gaussian process e2i (t) still has mean 0, but its covariance function now equals
γ2(s, t) = k · e−c|t−s|μ with nonnegative parameters k, c and μ. More details about this fam-
ily of models are given in [60]. The parameters in the covariance function control the shape of
the curves. Increasing μ and k yields softer curves, while increasing c results in more irregular
curves. The data generating model is given by

Zi(t) = (1 − εi)Xi(t) + εiYi(t), 1 ≤ i ≤ n.

The following choices for the parameters are considered:

• Model 6: k = 1, c = 1, μ = 0.2 and g(t) = 4t .
• Model 7: k = 1, c = 1, μ = 0.1 and g(t) = 4t .
• Model 8: k = 1, c = 1, μ = 0.2 and g(t) = 4t2.
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• Model 9: k = 1, c = 1, μ = 0.1 and g(t) = 4t2.

Next to the sample mean of the functional data and the functional M-estimators of location
based on the Huber, Tukey and Hampel loss functions, we also consider the impartial trimmed
mean for functional data and the depth based trimmed mean of [19], so we first recall the defini-
tion of the latter measure.

The depth based trimmed mean of [19] is based on the sample depth of the observations, given
by

D(xi)n = 1 − 1

T

T∑
t=0

∣∣∣∣∣12 − 1

n

n∑
j=1

I(−∞,xi (t)]
(
xj (t)

)∣∣∣∣∣, i ∈ {1, . . . , n}.

The sample depth of the observations provides a center outward ordering of the curves. For a
given trimming level β ∈ (0,1), the depth based trimmed mean is given by the average of the
n − �nβ� curves with largest sample depth. That is, the sample depth trimmed mean (DTM)
equals

ĝDTM,β(x1, . . . , xn) =
∑n−�nβ�

i=1 xi:n
n − �nβ� ,

where xi:n are the observations ordered according to decreasing sample depth. For both ITM
and DTM, the trimming proportion has been chosen to be β = 0.2, which is a common value
(see, e.g., [19]) when no more information is available (in practice, we would not know that ε is
equal to 0.05 or 0.1). Obviously, the performance of the trimmed means could be improved by
developing an optimal trimming proportion selection procedure.

To evaluate the performance of the functional location estimators, we have calculated the in-
tegrated squared error for each of the N = 500 samples. In Models 1–5, the integrated squared
error (ISE) of a sample (x1, . . . , xn) is given by

ISE
(
(x1, . . . , xn), ĝ

)= 1

T

T∑
k=1

[
ĝ

(
k

T

)
− g

(
k

T

)]2

,

where ĝ = ĝ(x1, . . . , xn) can be any of the considered estimators (sample mean, functional loca-
tion M-estimators using either Huber, Tukey or Hampel loss function, impartial trimmed mean
or sample depth trimmed mean). Similarly, in Models 6–9 the ISE of a sample becomes

ISE
(
(x1, . . . , xn), ĝ

)= 1

T

T∑
k=1

[(
ĝ

(
k

T

)
− g

(
k

T

))2

+
(

Dĝ

(
k

T

)
− Dg

(
k

T

))2]
.

To obtain the derivates of the curves, we have used an approximation based on finite differences,
but, naturally, other methods could be considered. Finally, to summarize the performance of
the estimators, their mean squared error (MSE) together with its standard deviation have been
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computed as:

MSE(ĝ) = 1

N

N∑
j=1

ISE(ĝj ), s =

√√√√√ 1

N

N∑
j=1

(
ISE(ĝj ) − MSE(ĝ)

)2
,

where ISE(ĝj ) denotes the integrated squared error for estimator ĝj in sample j ∈ {1, . . . ,N}.
The results of the simulations are collected in Table 1 for Models 1–5 and in Table 2 for Models

6–9. Similar results are obtained when another robust location estimator, the functional median
based on the functional depth [19], is used to fix the tuning parameters of the loss functions and
also to initialize the algorithm to compute the corresponding M-estimates.

Note that the column for Model 1 in Table 1 only contains one set of results because this
is the model without outliers. For each simulation setting, the lowest MSE among the different
methods is shown in bold. From the results in these tables, we can see that, as for the case of real-
or vector-valued data, there is no uniformly best location estimator. For the non-contaminated
case (Model 1), the mean is naturally the best choice. However, the mean quickly deteriorates
when the data contain contamination. For the considered settings, it turns out that the Huber
M-estimator yields the lowest MSE in many situations, especially in the case of shape outliers
(Models 6–9 in Table 2). The Hampel M-estimator regularly yields the best results in Model 3.
Note that, of course, other choices of the tuning parameters for the Tukey and Hampel loss
functions might lead to better results for these estimators. In any case, the current results already
show the advantage of using M-estimators. These results confirm that M-estimators are robust
functional location estimators which offer a good compromise between robustness (low bias) and
efficiency, resulting in a low MSE generally.

5. Real-data example

We illustrate the M-estimates of location for functional data with the following example.
Consider the dataset of n = 472 radar waves registered by the satellite Topex/Poseidon around

an area of 25 kilometers upon the Amazon River, with the aim of using them for altimetric
and hydrological purposes. The space of study is H= L2([0,70]). The dataset contains observed
values of these curves at 70 equidistant time points within the range [0,70]. The data set, together
with a brief description, can be obtained from the web page https://www.math.univ-toulouse.fr/
~ferraty/SOFTWARES/NPFDA/npfda-datasets.html. More detailed information about the data
can be found in [21].

As outlined on the web page of the data and shown in Figure 2, there are different types of
waves. Figure 2 displays the linearly interpolated measurements for some of the waves, to show
the differences in the types of waves in this data set. Namely, there are

• curves with one heavy peak, like curve number 21;
• curves with one less heavy peak, like curve number 3;
• curves that seem to have more than one peak, like curve number 1;
• curves that do not seem to have a real peak, like curve number 5;

https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/npfda-datasets.html
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/npfda-datasets.html
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Table 1. MSE and corresponding standard error (between brackets) of the mean, the trimmed mean (ITM), the depth trimmed mean (DTM), and
Huber (M-Huber), Tukey (M-Tukey) and Hampel (M-Hampel) M-estimates in Models 1–5

n ε M Estimator Model 1 Model 2 Model 3 Model 4 Model 5

50 0.05 5 Mean 0.019203 (0.019246) 0.042175 (0.056241) 0.102664 (0.1191556) 0.031277 (0.031111) 0.020245 (0.019566)
ITM 0.041228 (0.044861) 0.036191 (0.040044) 0.040621 (0.047352) 0.042192 (0.048873) 0.040540 (0.046823)
DTM 0.024925 (0.025128) 0.027533 (0.027975) 0.030595 (0.034070) 0.032286 (0.032716) 0.027521 (0.029065)
M-Huber 0.020573 (0.020900) 0.023393 (0.023445) 0.030462 (0.032617) 0.024811 (0.025775) 0.021490 (0.022365)
M-Tukey 0.068458 (0.086371) 0.051695 (0.062963) 0.064128 (0.080539) 0.068063 (0.082042) 0.067349 (0.086128)
M-Hampel 0.044008 (0.051485) 0.037319 (0.041772) 0.043455 (0.051074) 0.044481 (0.051566) 0.043848 (0.053287)

80 0.05 5 Mean 0.013694 (0.015032) 0.027006 (0.034676) 0.091634 (0.086135) 0.020354 (0.020679) 0.014521 (0.014089)
ITM 0.027198 (0.030876) 0.024489 (0.026528) 0.027165 (0.028146) 0.025776 (0.030491) 0.026798 (0.028607)
DTM 0.016380 (0.017661) 0.018634 (0.021748) 0.022894 (0.025369) 0.020462 (0.021919) 0.018528 (0.018069)
M-Huber 0.014654 (0.016522) 0.015973 (0.018272) 0.022412 (0.025206) 0.015169 (0.015882) 0.014894 (0.014637)
M-Tukey 0.045315 (0.057328) 0.036955 (0.044038) 0.037720 (0.042080) 0.040191 (0.049716) 0.041766 (0.051849)
M-Hampel 0.028004 (0.032161) 0.025747 (0.028835) 0.027647 (0.028420) 0.026892 (0.032161) 0.027624 (0.031103)

50 0.1 5 Mean 0.068373 (0.087502) 0.338033 (0.294301) 0.050658 (0.060348) 0.024532 (0.023213)
ITM 0.034176 (0.038092) 0.037455 (0.044174) 0.038626 (0.045606) 0.042659 (0.047163)
DTM 0.032170 (0.037113) 0.053886 (0.086974) 0.042721 (0.047632) 0.033011 (0.032304)
M-Huber 0.029538 (0.031726) 0.061060 (0.073438) 0.029372 (0.033033) 0.025551 (0.026263)
M-Tukey 0.048841 (0.054898) 0.047792 (0.054820) 0.057261 (0.074057) 0.068544 (0.086066)
M-Hampel 0.036190 (0.041169) 0.037691 (0.041771) 0.041045 (0.051050) 0.044773 (0.050343)

80 0.1 5 Mean 0.040832 (0.056402) 0.297179 (0.205967) 0.027246 (0.028767) 0.014561 (0.014493)
ITM 0.022755 (0.024800) 0.021334 (0.025422) 0.021744 (0.021647) 0.025079 (0.029365)
DTM 0.018862 (0.020951) 0.034448 (0.045930) 0.024518 (0.024682) 0.018243 (0.018276)
M-Huber 0.017224 (0.019108) 0.040752 (0.044377) 0.016359 (0.016532) 0.014327 (0.015648)
M-Tukey 0.030731 (0.036051) 0.028976 (0.037778) 0.032345 (0.039253) 0.041605 (0.051620)
M-Hampel 0.022850 (0.024835) 0.021268 (0.024713) 0.022727 (0.022942) 0.026146 (0.031736)
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Table 1. (Continued)

n ε M Estimator Model 1 Model 2 Model 3 Model 4 Model 5

50 0.05 25 Mean 0.608521 (0.964104) 2.09387 (2.28607) 0.362877 (0.461968) 0.060141 (0.037809)
ITM 0.039254 (0.044935) 0.035937 (0.038311) 0.042082 (0.049751) 0.037638 (0.041441)
DTM 0.029887 (0.041196) 0.028975 (0.029200) 0.125013 (0.169009) 0.077631 (0.052955)
M-Huber 0.026531 (0.032211) 0.028756 (0.031740) 0.02526 (0.027586) 0.023510 (0.022924)
M-Tukey 0.060952 (0.078603) 0.058171 (0.070880) 0.062487 (0.074965) 0.061798 (0.079836)
M-Hampel 0.042382 (0.049789) 0.040150 (0.046511) 0.043926 (0.052464) 0.040382 (0.045112)

80 0.05 25 Mean 0.417123 (0.647261) 1.91755 (1.70766) 0.223157 (0.308306) 0.037808 (0.022049)
ITM 0.026210 (0.033108) 0.024602 (0.027218) 0.023657 (0.027654) 0.02746 (0.032988)
DTM 0.017842 (0.019961) 0.019117 (0.018921) 0.080250 (0.094733) 0.047756 (0.030056)
M-Huber 0.016246 (0.018939) 0.020108 (0.021302) 0.015948 (0.016690) 0.015996 (0.017307)
M-Tukey 0.042438 (0.056368) 0.036947 (0.051762) 0.039888 (0.052552) 0.040606 (0.049741)
M-Hampel 0.026844 (0.033460) 0.025351 (0.029268) 0.024970 (0.029514) 0.027544 (0.032193)

50 0.1 25 Mean 1.33172 (1.91994) 7.34928 (5.80978) 0.649172 (0.877986) 0.100615 (0.052521)
ITM 0.035903 (0.047082) 0.036878 (0.046616) 0.035767 (0.038587) 0.032089 (0.033875)
DTM 0.044589 (0.126620) 0.238852 (0.820844) 0.281549 (0.363469) 0.122590 (0.069193)
M-Huber 0.028959 (0.030816) 0.052190 (0.058452) 0.027647 (0.027143) 0.024738 (0.024483)
M-Tukey 0.050371 (0.063786) 0.046707 (0.059544) 0.049991 (0.062703) 0.046620 (0.059655)
M-Hampel 0.034459 (0.039967) 0.034995 (0.039768) 0.037249 (0.045652) 0.034127 (0.038973)

80 0.1 25 Mean 0.850504 (1.27149) 6.83077 (4.31747) 0.402271 (0.468268) 0.061555 (0.027645)
ITM 0.021967 (0.024331) 0.022761 (0.033777) 0.021311 (0.024577) 0.023471 (0.026155)
DTM 0.022268 (0.038530) 0.124036 (0.550383) 0.170359 (0.218541) 0.078601 (0.038582)
M-Huber 0.019365 (0.021481) 0.039244 (0.040842) 0.016147 (0.018109) 0.016321 (0.015291)
M-Tukey 0.029648 (0.034349) 0.031106 (0.040488) 0.030552 (0.039785) 0.031939 (0.039397)
M-Hampel 0.022767 (0.026150) 0.022316 (0.026552) 0.021796 (0.025544) 0.023852 (0.027021)
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Table 2. MSE and corresponding standard error (between brackets) of the mean, the trimmed mean (ITM), the depth trimmed mean (DTM), and
Huber (M-Huber), Tukey (M-Tukey) and Hampel (M-Hampel) M-estimates in Models 6–9

n ε Estimator Model 6 Model 7 Model 8 Model 9

50 0.05 Mean 0.278113 (0.168456) 0.321940 (0.215465) 0.275798 (0.171702) 0.319261 (0.201474)
ITM 0.106459 (0.096693) 0.101038 (0.087106) 0.094702 (0.083255) 0.107983 (0.095597)
DTM 0.390294 (0.252391) 0.461141 (0.317118) 0.387891 (0.255572) 0.446280 (0.291377)
M-Huber 0.069833 (0.058318) 0.066822 (0.055995) 0.064437 (0.054801) 0.07176 (0.059385)
M-Tukey 0.179066 (0.169368) 0.164969 (0.144269) 0.159793 (0.156639) 0.184133 (0.183535)
M-Hampel 0.109636 (0.104157) 0.102254 (0.088511) 0.095988 (0.087562) 0.114649 (0.102563)

80 0.05 Mean 0.171281 (0.084480) 0.207449 (0.111521) 0.163277 (0.086557) 0.201092 (0.104882)
ITM 0.063997 (0.057002) 0.069350 (0.061218) 0.071373 (0.071925) 0.063025 (0.059847)
DTM 0.240762 (0.126659) 0.295736 (0.161671) 0.229626 (0.123639) 0.292698 (0.161348)
M-Huber 0.042394 (0.035933) 0.045964 (0.039066) 0.045579 (0.042751) 0.042162 (0.036992)
M-Tukey 0.103399 (0.098657) 0.110678 (0.106923) 0.115176 (0.111074) 0.100845 (0.096861)
M-Hampel 0.064670 (0.059019) 0.070369 (0.061955) 0.072703 (0.073892) 0.064386 (0.061827)

50 0.1 Mean 0.503312 (0.273895) 0.569512 (0.284861) 0.493756 (0.246616) 0.584617 (0.292074)
ITM 0.096455 (0.087461) 0.101523 (0.084384) 0.100245 (0.087318) 0.099889 (0.086490)
DTM 0.699371 (0.391043) 0.814804 (0.410607) 0.703274 (0.361495) 0.858913 (0.446574)
M-Huber 0.077265 (0.061095) 0.080585 (0.062364) 0.074852 (0.056917) 0.078349 (0.062356)
M-Tukey 0.142503 (0.139147) 0.148784 (0.135452) 0.143118 (0.143674) 0.142575 (0.140302)
M-Hampel 0.098219 (0.088274) 0.103504 (0.085956) 0.097889 (0.087873) 0.100827 (0.085214)

80 0.1 Mean 0.316009 (0.140514) 0.366224 (0.159513) 0.307506 (0.138383) 0.372142 (0.165260)
ITM 0.067109 (0.058206) 0.058388 (0.048746) 0.057200 (0.049419) 0.061645 (0.053649)
DTM 0.450599 (0.202575) 0.530599 (0.234825) 0.431662 (0.199880) 0.541167 (0.252168)
M-Huber 0.052811 (0.040578) 0.045542 (0.034687) 0.046112 (0.036250) 0.048030 (0.037221)
M-Tukey 0.093819 (0.092566) 0.082335 (0.078285) 0.082007 (0.079620) 0.084871 (0.082654)
M-Hampel 0.067228 (0.058391) 0.056552 (0.047065) 0.056812 (0.051564) 0.060219 (0.050724)
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Figure 2. Waveforms numbers 21 (top left), 3 (top middle), 1 (top right), 5 (bottom left) and 4 (bottom
right).

• “flat noisy curves”, like curve number 4.

The data set is thus heterogeneous and then we use robust M-estimators to estimate the center
of the majority of the functional data. For this analysis, we use the L2 norm, so we focus on mag-
nitude outliers. We consider the Huber, Tukey and Hampel loss functions. The tuning constants
in these loss functions are determined as explained before, using the impartial trimmed mean
(with β = 0.2) as initial solution.

The three resulting M-estimates are plotted in Figure 3, where the functional sample mean
has been added as well. Note that the algorithm for the functional M-estimators as explained
in Section 2 obtains the values of these location M-estimates evaluated on the 70 equidistant
points. The algorithm does not require any pre-smoothing of the functional observations and
thus the resulting estimates cannot be influenced by such preprocessing of the data. However,
to represent the resulting M-estimates as curves, some post-smoothing of the estimates returned
by the algorithm is needed. For this purpose, we have used the function Data2fd from the R
package fda, considering a B-spline basis in this example. The obtained estimated curves are
shown in Figure 3. From this figure, we can clearly see that the sample mean is highly influenced
by the deviating types of waves (i.e., flat noisy curves), whereas Huber and especially Tukey and
Hampel M-estimates show a more robust behavior, leading to a better estimate of the center of
the majority of the curves.
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Figure 3. Estimates for the center of the radar waves data, obtained by the mean and Huber, Tukey and
Hampel M-estimators.

6. Concluding remarks

We have introduced M-estimators of functional location and studied their properties. Well-known
loss functions such as Huber, Tukey and Hampel loss functions yield robust location estimators
also in the functional context. The Representer theorem allows us to represent these M-estimators
as adaptively weighted means. Since the estimators are not scale equivariant in general, the tun-
ing constant(s) in these loss functions need to be selected with some care. We have used the
distribution of distances corresponding to the impartial trimmed mean for functional data for
this purpose. The impartial trimmed mean has also been used as initial estimate in the iterative
algorithm that is used to calculate the M-estimates. The simulation study suggests that the Hu-
ber M-estimator of functional location shows good behavior in a wide range of contamination
settings. However, the example indicates that the Tukey and Hampel M-estimators, which use
a bounded loss function, may yield more robust results in some (more extreme) contamination
scenarios.

In future work, we will focus on extending these results to important related settings such as
multivariate functional data and (fuzzy) set-valued data which can be embedded in convex cones
of certain Hilbert spaces (see, e.g., [24,52]). Moreover, alternative sets of sufficient conditions
guaranteeing the strong consistency and Borel measurability of M-estimators of location could
be searched for in order to relax the requirements for strong consistency to include infinite di-
mensional spaces. Finally, a thorough study on the selection of the tuning parameters and their
influence on the estimates should be developed.
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