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We consider the grass-bushes-trees process, which is a two-type contact process in which one of the types
is dominant. Individuals of the dominant type can give birth on empty sites and sites occupied by non-
dominant individuals, whereas non-dominant individuals can only give birth at empty sites. We study the
shifted version of this process so that it is ‘seen from the rightmost dominant individual’ (which is well
defined if the process occurs in an appropriate subset of the configuration space); we call this shifted process
the grass-bushes-trees interface (GBTI) process. The set of stationary distributions of the GBTI process is
fully characterized, and precise conditions for convergence to these distributions are given.

Keywords: contact process; interacting particle systems

1. Introduction

The grass-bushes-trees (GBT) process is a continuous-time Markov process (ξt )t≥0 on {0,1,2}Z
defined as follows. We endow {0,1,2}Z with the product topology and endow the vector space
of continuous real-valued functions on {0,1,2}Z with the supremum norm, making it a Banach
space. We then consider the operator, defined on a suitable subspace of this Banach space, given
by

Lf (ξ) =
∑

x:ξ(x)=1

(
δ1 · (f (

ξ0→x
) − f (ξ)

) + λ1 ·
∑

y:0<|y−x|≤K1:
ξ(y)=0 or 2

(
f

(
ξ1→y

) − f (ξ)
))

+
∑

x:ξ(x)=2

(
δ2 · (f (

ξ0→x
) − f (ξ)

) + λ2 ·
∑

y:0<|y−x|≤K2:
ξ(y)=0

(
f

(
ξ2→y

) − f (ξ)
))

,

where δ1, δ2, λ1, λ2 ≥ 0, K1,K2 ∈N, and

ξ i→x(z) =
{

i if z = x,

ξ(z) otherwise.
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The domain of L can be taken as the set of functions f satisfying

∑
x∈Z

sup
{∣∣f (ξ) − f

(
ξ ′)∣∣ : ξ, ξ ′ ∈ {0,1,2}Z, ξ(y) = ξ ′(y) for all y �= x

}
< ∞.

By Theorems 2.9 and 3.9 of Chapter 1 of [10], the closure of L is a Markov generator, which
uniquely determines the Markov process (ξt )t≥0 on the space of trajectories on {0,1,2}Z which
are right continuous and have left limits.

Given disjoint sets A,B ⊂ Z, we will write (ξ
A,B
t )t≥0 to denote the GBT process with initial

configuration ξ
A,B
0 = 1A + 2 · 1B (though we will omit the superscripts when the initial config-

uration is clear from the context or unimportant). We refer the reader to [5] and [6], where the
grass-bushes-trees process was first considered.

This process can be seen as a model for biological competition between two species, denoted
1 and 2: a vertex in state 0 is empty, whereas a vertex in state 1 or 2 contains an individual of
the corresponding species. The above infinitesimal generator gives the following rules for the
dynamics (with i = 1 or 2):

• an individual of species i dies with rate δi ;
• an individual of species i gives birth at sites within range Ki with rate λi , but
• an individual of type 2 cannot be born at a site containing an individual of type 1.

The name of the process is due to the interpretation in which a vertex in state 0, 1 or 2 is respec-
tively said to contain grass, a tree or a bush (so that trees can produce offspring over grass and
bushes, whereas bushes can only produce offspring over grass).

Here we will be interested in the following choice of parameters:

δ1 = δ2 = 1, λ1 = λ2 = λ > 0, K1 = K2 = K ∈ N. (1.1)

The important feature of this choice of parameters is that (using the common abuse of notation
in which a set A ⊂ Z is identified with its indicator function 1A) both processes

({
x : ξt (x) �= 0

})
t≥0 and

({
x : ξt (x) = 1

})
t≥0

are contact processes with rate λ and range K (see [10] and [11] for expositions on the contact
process). Thus, in the grass-bushes-trees dynamics, 1’s evolve as a contact process, whereas 2’s
evolve as a contact process in a dynamic random environment: they can only occupy vertices that
are not taken by 1’s (this idea is made precise in the proof of Lemma 2.1 below).

The contact process on Z
d exhibits a phase transition delimited by λc(Z

d ,K) ∈ (0,∞). If
λ ≤ λc , then the process is ergodic and the only stationary distribution is δ∅, which gives full
mass to the configuration in which all vertices are zero. If λ > λc, the process is not ergodic and
apart from δ∅, there is one more extremal stationary distribution, obtained as the distributional
limit, as time is taken to infinity, of the process started from full occupancy. Throughout this
paper, we fix d = 1, K ∈N and also fix λ in the corresponding supercritical region, that is,

λ > λc(Z,K). (1.2)
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In [2], motivated by a conjecture in [4], the authors considered the grass-bushes-trees process
with parameters given by (1.1) and (1.2) and the initial configuration in which all vertices x ≤ 0
are in state 1 and all vertices x > 0 are in state 2. For this process, defining Rt = sup{x : ξt (x) =
1} and Lt = inf{x : ξt (x) = 2}, the interval delimited by Rt and Lt is called the interface and
|Rt − Lt | is the interface size (note that Rt − Lt is necessarily negative when the range K = 1,
whereas it can be positive or negative if K > 1). It was then shown that the interface size is
stochastically tight (in (2.10) below we reproduce the exact statement). This leads to the natural
conjecture that the process “seen from the interface” converges in distribution, and in the present
paper we address this point (moreover, as we will explain shortly, we allow for more general
initial configurations).

Let us give some definitions in order to state our results. We define the set of configurations

Y = {
ξ ∈ {0,1,2}Z : inf

{
x : ξ(x) = 1

} = −∞, sup
{
x : ξ(x) = 1

}
< ∞}

. (1.3)

We remark that the GBT process (ξt )t≥0 started from a configuration in Y almost surely never
leaves Y . Then, defining as above Rt = sup{x : ξt (x) = 1}, we have −∞ < Rt < ∞ for all t and
we can introduce the shifted version of the process,

ξ̃t (x) = ξ(x + Rt), x ∈ Z, t ≥ 0.

(ξ̃t )t≥0 is itself a Markov process in the set of configurations

Y0 = {
ξ̃ ∈ {0,1,2}Z : inf

{
x : ξ̃ (x) = 1

} = −∞, sup
{
x : ξ̃ (x) = 1

} = 0
}
. (1.4)

We call (ξ̃t ) the grass-bushes-trees interface (GBTI) process. We fully describe the set of extremal
stationary distributions for the GBTI process and give sharp conditions for convergence to these
distributions.

Theorem 1.1. For the GBTI process with rates given by (1.1) and (1.2), the set of stationary
and extremal distributions consists of two measures ν and ν̄. These measures are mutually sin-
gular: ν is supported on configurations where 2’s are absent, and ν̄ is supported on the set of
configurations

Y ′
0 =

{
ξ̃ ∈ {0,1,2}Z : inf

{
x : ξ̃ (x) = 1

} = −∞, sup
{
x : ξ̃ (x) = 1

} = 0,

inf
{
x : ξ̃ (x) = 2

}
> −∞, sup

{
x : ξ̃ (x) = 2

} = ∞

}
. (1.5)

Theorem 1.2. Let (ξ̃t )t≥0 be the GBTI process with parameters given by (1.1) and (1.2) and
started from a (deterministic) initial configuration ξ̃0 ∈ Y0. Then,

(a) (ξ̃t )t≥0 converges to ν̄ if and only if

for all M > 0, lim
n→∞ #

{
x ∈ [M√

n,2n − M
√

n] : ξ̃0(x) = 2
} = ∞. (�)

(b) (ξ̃t )t≥0 converges to ν if and only if

sup
{
x : ξ̃0(x) = 2

}
< ∞. (∗)
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Condition (�) fails for initial configurations in which the vertices in state 2 appear either in
finite number or quite sparsely. For example, if ξ̃0 is such that ξ̃0(x) = 2 if and only if x = 23n

for some n ∈N, then (�) fails for any M .
A byproduct of our proofs of the above results is of independent interest. Namely, we establish

the impossibility of coexistence of 1’s and 2’s in the GBT process.

Theorem 1.3. Let (ξt )t≥0 be the GBT process with parameters given by (1.1) and (1.2) and
started from a configuration with finitely many 2’s. Then,

P
(∀t ∃x, y : ξt (x) = 1, ξt (y) = 2

) = 0. (1.6)

In particular, if the initial configuration has infinitely many 1’s and finitely many 2’s, then the
2’s eventually disappear, and if the initial configuration has finitely many 1’s and 2’s, then the 2’s
can only survive if the 1’s disappear.

It is worth contrasting this result with the case of a related competition model, Neuhauser’s
multitype contact process (MCP) introduced in [14]. The MCP differs from the GBT in that in
the MCP, both 1’s and 2’s are forbidden from giving birth at occupied vertices, so that the model
is symmetric (as long as one takes birth and death rates to be the same for the two types). In [1]
and [15], it was shown that for the (symmetric) MCP with λ > λc(Z), coexistence of the two
types is in fact possible: for example, if the process is started from finitely many 1’s and 2’s, then
with positive probability neither type ever disappears. It would be very interesting to determine
whether or not the corresponding fact holds for the multidimensional versions of the GBT and
MCP.

While on this topic, let us also mention that it would be interesting to investigate the stationary
distributions of the interface process obtained from the MCP. As of now, what is known is that,
if the process is started from all 1’s to the left of the origin and all 2’s to the right of the origin,
then the size of the interface is tight ([15]) and its position moves diffusively ([12]).

To conclude this Introduction, let us detail how the rest of the paper is organized. In Section 2,
we introduce notation and give a few results about the original (one-type) contact process and
the grass-bushes-trees process, including a useful stochastic domination result (Lemma 2.1). In
Section 3, we prove Theorem 1.3. Sections 4 and 5 are dedicated to the definitions of the measures
ν and ν, respectively. Finally, Section 6 is dedicated to the proof of Theorem 1.2 and Section 7
to the proof of Theorem 1.1.

2. Notation and preliminary results

Sets and configurations

We denote Z+ = {1,2, . . .}, Z− = −Z+, Z∗+ = (Z−)c and Z
∗− = (Z+)c . We will often abuse

notation in our treatment of intervals, for example writing an interval as (a, b) when we mean
the integer interval {x ∈ Z : a < x < b}. We adopt the usual convention that inf∅ = ∞ and
sup∅ = −∞. The cardinality of a set A will be denoted by #A.



2260 E. Andjel, T. Mountford and D. Valesin

We will often refer to the sets Y and Y0 introduced in (1.3) and (1.4), and also define

X = {
ζ ∈ {0,1}Z : inf

{
x : ζ(x) = 1

} = −∞, sup
{
x : ζ(x) = 1

}
< ∞}

, (2.1)

X0 = {
ζ ∈ {0,1}Z : inf

{
x : ζ(x) = 1

} = −∞, sup
{
x : ζ(x) = 1

} = 0
}
. (2.2)

We will often associate a set A to its indicator function 1A, which will allow us to write things like
A ∈ X or A ∈ X0. Similarly, if A,B ⊂ Z are disjoint, we will identify the pair (A,B) with the
configuration 1A + 2 ·1B , so we will for example, write (A,B) ∈ Y or (A,B) ∈ Y0. Throughout
this paper, spaces as {0,1}Z and {0,1,2}Z are endowed with the product topology and any of
their subspaces with the corresponding subspace topology.

Graphical construction

As mentioned in the Introduction, throughout the paper we fix K ∈N and λ larger than λc(Z,K),
the critical parameter of the one-dimensional contact process with range K . We will construct
all the processes we are interested in using a single graphical construction, that is, a family of
Poisson processes commanding the transitions in the dynamics; although this construction is
quite well known, let us present it in order to fix notation. A Harris system is a collection H of
independent Poisson point processes on [0,∞),{

Dx : x ∈ Z
}
, each with rate 1,{

D(x,y) : x, y ∈ Z, |x − y| ≤ K
}
, each with rate λ.

Given a realization of all these processes and (x, t1), (y, t2) ∈ Z × [0,∞) with t1 < t2, an in-
fection path from (x, t1) to (y, t2) is a càdlàg function γ : [t1, t2] → Z such that: (1) γ (t1) = x,
(2) γ (t2) = y, (3) t /∈ Dγ(t) for all t and (4) t ∈ D(γ (t−),γ (t)) whenever γ (t) �= γ (t−). In case
there is an infection path from (x, t1) to (y, t2), we say that the two space–time points are con-
nected by an infection path, and write (x, t1) ↔ (y, t2) in H (though dependence on H will in
general be omitted). Given sets A,B ⊂ Z, we write A × {t1} ↔ B × {t2} if (x, t1) ↔ (y, t2) for
some x ∈ A and y ∈ B . We write (x, t1) ↔ B × {t2} instead of {x} × {t1} ↔ B × {t2} and write
A × {t1} ↔ (y, t2) instead of A × {t1} ↔ {y} × {t2}.

For A ⊂ Z, x ∈ Z and t ≥ 0, we let

ζA
t (x) = 1

{
A × {0} ↔ (x, t)

}
.

Then, (ζA
t )t≥0 is a contact process with initial occupancy on A. In case supA < ∞, we almost

surely have sup ζA
t < ∞ for all t , so we can define

RA
t = sup ζA

t , ζ̃ A
t (x) =

{
ζA
t

(
x + RA

t

)
, if ζA

t �=∅,

� otherwise,

where � denotes a cemetery state. Then, (ζ̃ A
t )t≥0 is the contact process with initial occupancy

on A seen from the rightmost site in state 1.
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For disjoint sets A,B ⊂ Z, x ∈ Z and t ≥ 0, we let

ξ
A,B
t (x) =

⎧⎪⎨
⎪⎩

1 if A × {0} ↔ (x, t),

2 if A × {0} � (x, t),B × {0} ↔ (x, t),

0 otherwise.

Then, (ξ
A,B
t )t≥0 is a grass-bushes-trees process started with 1’s on A and 2’s on B . In case

supA < ∞, also let

ξ̃
A,B
t (x) =

{
ξ

A,B
t

(
x + RA

t

)
if ζA

t �=∅,

� otherwise.

Then, (ξ̃
A,B
t )t≥0 is the process defined above seen from the rightmost 1.

Let us remark that, in case #A = ∞, we almost surely have ζA
t �= ∅, hence ζ̃ A

t �= � and
ξ̃

A,B
t �= � for all t .

Unless we explicitly state otherwise, we will always assume that the processes we consider
are all defined in the same probability space using a single graphical construction. We will then
be able to take advantage of useful properties of this coupling, such as

{
x : ξA,B

t (x) = 1
} = {

x : ζA
t (x) = 1

}
,

{
x : ξA,B

t (x) �= 0
} = {

x : ζA∪B
t (x) �= 0

}
(we could of course not have introduced the notations ζA

t and ζ̃ A
t and instead write ξ

A,∅
t and

ξ̃
A,∅
t , respectively, but we find it convenient to be able to refer to the one-type processes exclu-

sively). We will also omit the superscripts of ζ and ξ when the initial configuration is clear from
the context or unimportant.

Behavior of the right edge

One of the elementary facts about the supercritical contact process is that the right edge moves
with positive speed, that is,

∃α = α(λ,K) > 0 : R
Z

∗−
t

t

t→∞−−−→ α almost surely and in L1; (2.3)

the proof, which is based on the subadditive ergodic theorem, is carried out in [10] for K = 1,
but works equally well for any K ∈N. A Central Limit theorem is also known to hold:

∃σ = σ(λ,K) : R
Z

∗−
t − α · t√

t

t→∞−−−→
(d)

N
(
0, σ 2). (2.4)

This was proved in [7] for K = 1 and in [13] for K ∈ N. The constants α and σ of (2.3) and (2.4)
will be fixed throughout the paper.
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Partial order on configurations

We define a partial order � on {0,1,2}Z by setting ξ � ξ ′ if and only if{
x : ξ(x) = 1

} ⊆ {
x : ξ ′(x) = 1

}
and

{
x : ξ(x) = 2

} ⊇ {
x : ξ ′(x) = 2

}
. (2.5)

This induces a relation of stochastic domination, also denoted by �, on pairs of random con-
figurations (or pairs of probability measures) on {0,1,2}Z. However, whenever we write ξ � ξ ′
for a pair of random configurations ξ and ξ ′, it should be understood that the configurations are
defined in the same probability space and the inequality holds in the almost sure sense.

The joint graphical construction given above reveals that:

Claim 2.1. If ξ and ξ ′ are (deterministic or random) configurations such that ξ � ξ ′ and (ξt )t≥0

and (ξ ′
t )t≥0 are grass-bushes-trees processes started from ξ and ξ ′, respectively, then ξt � ξ ′

t for
all t ≥ 0.

Still regarding the partial order �, the following will be a useful tool.

Lemma 2.1. Assume A,B ⊂ Z are disjoint, and let (ζA
t )t≥0, (ζ̂ B

t )t≥0 be two independent con-
tact processes started from occupancy in A and B , respectively. Then, there exists a version
(ξ

A,B
t )t≥0 of the grass-bushes-trees process started from 1A + 2 · 1B such that

ζA
t + 2

(
1 − ζA

t

)
ζ̂ B
t � ξ

A,B
t for all t ≥ 0. (2.6)

Proof. Let H and Ĥ be two independent Harris systems with rate λ and range K . We construct
(ζA

t )t≥0 using H and (ζ̂ B
t )t≥0 using Ĥ . Then, for each t ≥ 0, we let ξt be defined as follows. In

case ζA
t (x) = 1, we set ξt (x) = 1. In case there exists an infection path γ in Ĥ from B × {0} to

(x, t) such that ζA
s (γ (s)) = 0 for each s ∈ [0, t], we set ξt (x) = 2.

Inspecting the rates at which the transitions occur in the process (ξt )t≥0 reveals that it is a
version of the grass-bushes-trees process started from 1A + 2 · 1B . Moreover, we have

{
x : ζA

t (x) = 1
} = {

x : ξA,B
t (x) = 1

}
,

{
x : ζA

t (x) = 0, ζ̂ B
t (x) = 1

} ⊇ {
x : ξA,B

t (x) = 2
}
.

�

Insulating points

Given β > 0 and a Harris system H , we say that a point x ∈ Z is β-insulating if the following
hold:

• for all t , ζ x
t �= ∅, sup ζ x

t ≥ x and inf ζ x
t ≤ x;

• if (y,0) ↔ (z, t) for some y ≤ x and z ≥ x − βt , then (x,0) ↔ (z, t);
• if (y,0) ↔ (z, t) for some y ≥ x and z ≤ x + βt , then (x,0) ↔ (z, t).
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In case x is β-insulating, the cone {y ∈ Z : x − βt ≤ y ≤ x + βt} is called a descendancy barrier.
In [13] and [2], it was shown by the following proposition.

Proposition 2.1. For any K ∈ N and λ > λc(Z,K), there exist β̄ > 0, δ̄ > 0 such that

P(0 is β̄-insulating) > δ̄ and (2.7)

∀ε > 0 ∃n : ∀A ⊂ Z with #A ≥ n, P(no point of A is β̄-insulating) < ε. (2.8)

(In Lemma 2.6(i) of [2] it is shown that a vertex x satisfies certain properties in the Harris
system with positive probability, and then Proposition 2.7(i) and (iii) of [2] imply that a vertex
satisfying the mentioned list of properties is β̄-insulating in the sense that we give here. Property
(2.8) above can be obtained from Lemma 2.6(ii) of [2] through a routine argument that we will
omit). The constants β̄ and δ̄ of the above proposition will be fixed throughout the paper.

One immediate consequence of the definition of β̄-insulating points is:

(0,0) is β̄-insulating
(2.9)

=⇒ for all t, R
Z

∗−
t = R0

t ≥ −β̄t and ζ
Z

∗−
t ≡ ζ 0

t on [−β̄t,∞).

Interface tightness. In [2], the following has been proved:

∀ε > 0 ∃L > 0 :
P
(
ξ̃
Z

∗−,Z+
t (x) �= 2 for all x ≤ −L, ξ̃

Z
∗−,Z+

t (x) = 2 for some x ≤ L
)
> 1 − ε ∀t ≥ 0.

(2.10)

Using the coupled construction of the one-type process and the GBT process using a single Harris
system, we see that the above is the same as

∀ε > 0 ∃L > 0 :

P

(
ζ
Z

∗−
t and ζZ

t coincide on
(−∞,R

Z
∗−

t − L
]

but not on
(
R
Z

∗−
t − L,R

Z
∗−

t + L
]

)
> 1 − ε ∀t ≥ 0.

(2.11)

3. Extinction of bushes and a consequence

Lemma 3.1. For any L > 0 there exists t∗ > 0 such that

P
(
R
Z

∗−
t∗ = R

(−∞,L]
t∗

)
>

1

4
.

Proof. For any t > 0 we have

P
(
R
Z

∗−
t = R

(−∞,L]
t

) = P
(
sup

{
x : ξZ∗−,[1,L]

t (x) = 1
}

> sup
{
x : ξZ∗−,[1,L]

t (x) = 2
})

(3.1)
≥ P

(
sup ζ

Z
∗−

t > sup ζ̂
(−∞,L]
t

)
,
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where (ζ
Z

∗−
t )t≥0 and (ζ̂

(−∞,L]
t )t≥0 are two independent contact processes (see Lemma 2.1). Now,

by (2.4), the probability in (3.1) converges to 1
2 as t → ∞. �

Lemma 3.2. For any disjoint sets A,B satisfying infA = −∞ and #B < ∞, there exists t∗ such
that

P
(
sup

{
x : ξA,B

t∗ (x) = 1
}

> sup
{
x : ξA,B

t∗ (x) = 2
})

>
1

8
. (3.2)

Proof. Using (2.8), we choose N > 0 such that, for any D ⊂ Z with #D ≥ N , the probability
that some point of D is β̄-insulating is larger than 7

8 . We then take a, b, c ∈ Z, a < b < c so that
#(A∩[a, b]) ≥ N and B ⊂ [b, c]. Next, we choose t∗ corresponding to L = c−a in the previous
lemma. Then, with probability larger than 1

8 both the following events occur:

E1 = {∃x∗ ∈ A ∩ [a, b] : x∗ is β̄-insulating
}
,

E2 = {
R

(−∞,a]
t∗ = R

(−∞,c]
t∗

}
.

On E1 ∩ E2 we have

RA
t∗ ≥ Rx∗

t∗
(2.9)= R

(−∞,x∗]
t∗ ≥ R

(−∞,a]
t∗ = R

(−∞,c]
t∗ ≥ RB

t∗ ;

the inequality RA
t∗ ≥ RB

t∗ is the same as the event in (3.2). �

Lemma 3.3. For any disjoint sets A,B satisfying infA = −∞, #B < ∞ and B ⊂ [infA, supA],
there exists t∗ such that

P
(
ξ

A,B
t∗ (x) �= 2 ∀x

)
>

δ̄

2
,

where δ̄ is as in Proposition 2.1

Proof. Using (2.8), we can find a, b ∈ Z, a < b < infB ,

P
(∃x∗ ∈ A ∩ [a, b] : x∗ is β̄-insulating

)
> 1 − δ̄

2
.

Hence, with probability larger than δ̄
2 , the event in the above probability occurs and moreover,

y∗ = supA is β̄-insulating. In that case, at time t∗ = (y∗ − a)/(2β̄), the descendancy barrier
growing from some point x∗ in A ∩ [a, b] and the one growing from y∗ intersect, and it then
follows from the definition of descendancy barriers that {x : ξA,B

t∗ (x) = 2} =∅. �

Lemma 3.4. If A,B ⊂ Z are disjoint sets with #A = ∞ and #B < ∞, then

P
(∃t : ξA,B

t (x) �= 2 ∀x
) = 1.
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Proof. By symmetry, it suffices to treat the case in which infA = −∞. The result is an immedi-
ate consequence of Lemmas 3.2 and 3.3 and the Markov property. �

Proof of Theorem 1.3. Since on {ζA
t �=∅ ∀t} we have #ζA

t

t→∞−−−→ ∞ almost surely, the theorem
will follow from proving

∀ε > 0 ∃N : #A ≥ N,#B < ∞ =⇒ P
(∃t : ξA,B

t (x) �= 2 ∀x
)
> 1 − ε. (3.3)

Fix ε > 0. Using (2.8), we choose N such that any subset of Z with at least N points has at least
one β̄-insulating point with probability larger than 1− ε. Then assume A,B ⊂ Z are disjoint sets
with #A ≥ N and #B < ∞. We define, for all x ∈ Z,

τ(x,B) = inf
{
t : ζ (−∞,x]

t = ζ
(−∞,x]∪B
t , ζ

[x,∞)
t = ζ

[x,∞)∪B
t

}
.

By Lemma 3.4, we have τ(x,B) < ∞ almost surely for all x, hence the event⋃
x∈A

{
τ(x,B) < ∞, x is β̄-insulating

}

has probability larger than 1 − ε. We now claim that if this event occurs, there exists t > 0 such
that ξt (x) �= 2 for all x. Indeed, assume that x∗ is a point of A which is β̄-insulating and so that
τ(x∗,B) < ∞. Assume (z,0) ↔ (y, τ (x∗,B)) for some z ∈ B and y ∈ Z. If z ≥ x∗, it follows
from ζ

(−∞,x∗]
τ(x∗,B) = ζ

(−∞,x∗]∪B
τ(x∗,B) that (x∗,0) ↔ (y, τ (x∗,B)), so ξ

A,B
τ(x∗,B)(y) = 1. The case z < x∗

is treated similarly, so the proof is complete. �

Corollary 3.1. For any ε > 0 and any A ⊂ Z infinite and bounded from above, there exists
t0 = t0(ε,A) such that, for all t ≥ t0,

P
(
RA

t = R
Z

∗−
t , ζA

t ≡ ζ
Z

∗−
t on

[
RA

t − β̄t,RA
t

])
> 1 − ε. (3.4)

Proof. Fix ε > 0. Using (2.8), we choose a ∈ Z
∗− such that

P
(∃x ∈ A ∩ [a,0] : x is β̄-insulating

)
> 1 − ε/3 (3.5)

and then, using (2.4) and Theorem 1.3, we choose t0 such that, for all t ≥ t0,

P
(
R

(−∞,a]
t ≥ 0

)
> 1 − ε/3 and (3.6)

P
(
ζ

(−∞,a]
t = ζ

Z
∗−∪A

t

)
> 1 − ε/3. (3.7)

Now let t ≥ t0 and assume the events that appear in (3.5), (3.6) and (3.7) all occur. Fix a β̄-
insulating point x∗ ∈ A ∩ [a,0]. We will prove that

Rx∗
t > 0, ζ

Z
∗−∪A

t ≡ ζ x∗
t on

[
x∗ − β̄t,∞)

. (3.8)



2266 E. Andjel, T. Mountford and D. Valesin

It is not hard to see that the event described in (3.8) is contained in the event inside the probability
in (3.4).

In order to prove (3.8), we start with

Rx∗
t

(2.9)= R
(−∞,x∗]
t ≥ R

(−∞,a]
t > 0.

Next, fix y ≥ x∗ − β̄t such that ζ
Z

∗−∪A

t (y) = 1. Since we assume that the event in (3.7) occurs,
there exists z ≤ a such that (z,0) ↔ (y, t). Since (z,0) and (y, t) are on opposite sides of the

line {(x∗ − β̄s, s) : s ≥ 0}, we must also have (x∗,0) ↔ (y, t). This shows that ζ
Z

∗−∪A

t ∩ [x∗ −
β̄t,∞) ⊂ ζ x∗

t ∩ [x∗ − β̄t,∞); the reverse inequality is trivial, so we are done. �

4. One-type process seen from the right edge: The measure ν

In this section, we focus on the (supercritical, one-type) contact process seen from the right edge,
(ζ̃t )t≥0. We will prove the following.

Proposition 4.1. The supercritical contact process seen from the right edge has a unique sta-
tionary distribution ν on X0. For any A ∈X0, ζ̃ A

t converges in distribution to ν as t → ∞.

Remark 4.1. The measure ν of Proposition 4.1 is obviously also stationary for the GBTI process
(ξ̃t )t≥0, and is indeed one of the two measures mentioned in Theorem 1.1.

Remark 4.2. For the case when the process has range K = 1, the statement of Proposition 4.1
has already been proved in [7]. Since here we allow for range K ≥ 1, we give a full proof.

In order to prove Proposition 4.1, we will first need to prove the following lemma.

Lemma 4.1. Let μt denote the distribution of ζ̃
Z

∗−
t . Then, for any ε > 0 and k > 0 there exists

L > 0 such that

lim sup
T →∞

1

T

∫ T

0
μt

({
ζ̃ ∈X0 :

L∑
i=1

ζ̃ (−i) ≤ k

})
dt < ε. (4.1)

Proof. First, note that there exists a constant ck > 0 such that

μt+1

({
ζ̃ ∈ X0 :

L∑
i=1

ζ̃ (−i) = 0

})
≥ ck · μt

({
ζ̃ ∈ X0 :

L∑
i=1

ζ̃ (−i) ≤ k

})
. (4.2)

Hence,

lim sup
T →∞

1

T

∫ T

0
μt

({
ζ̃ :

L∑
i=1

ζ̃ (−i) ≤ k

})
dt ≤ 1

ck

lim sup
T →∞

1

T

∫ T

0
μt

({
ζ̃ :

L∑
i=1

ζ̃ (−i) = 0

})
dt.
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Noting that

dE(R
Z

∗−
t )

dt
≤ −L · μt

({
ζ̃ :

L∑
i=1

ζ̃ (−i) = 0

})
+ C,

where C is constant depending only on the rate λ and range R, we obtain

E(R
Z

∗−
T )

T
≤ −L

T

∫ T

0
μt

({
ζ̃ :

L∑
i=1

ζ̃ (−i) = 0

})
dt + C.

By (2.3), limT →∞ E(R
Z

∗−
T )/T = α > 0, so

lim sup
T →∞

1

T

∫ T

0
μt

({
ζ̃ :

L∑
i=1

ζ̃ (−i) = 0

})
dt ≤ C

L
.

Therefore the conclusion of the lemma holds for any L > C
ckε

. �

Proof of Proposition 4.1. For each n ∈ Z+, let

μn = 1

n

∫ n

0
μt dt. (4.3)

For each ε > 0, using Lemma 4.1, we can obtain an increasing sequence (Lk)k∈Z+ such that,
setting

K =
{

ζ̃ ∈ X0 :
Lk∑
i=1

ζ̃ (−i) ≥ k for all k

}
(4.4)

we have

μn(K) > 1 − ε for all n.

Noting that K is a compact subset of X0, this shows that the family {μn : n ∈ Z+} is tight. Hence,
by Prohorov’s theorem (see Section 5 of [3]), there exists an increasing sequence (ni)i∈Z+ and a
measure ν on X0 such that μ(ni) converges weakly to ν on X0. Any measure on X0 obtained as
a limit of the measures (4.3) is stationary for (ζ̃t ); for a proof of this, see Proposition 1.8(e) in
[10]. Hence, ν is stationary.

Now, Corollary 3.1 implies that

∀L > 0, ε > 0, lim
t→∞ν

({
A ∈X0 : P(

ζ̃ A
t ≡ ζ̃

Z
∗−

t on [−L,0]) > 1 − ε
}) = 1. (4.5)

This shows that ζ̃
Z

∗−
t converges in distribution to ν. Now, for any A ∈ X0, another application of

Corollary 3.1 shows that

∀L > 0, lim
t→∞P

(
ζ̃ A
t ≡ ζ̃

Z
∗−

t on [−L,0]) = 1,

so that ζ̃ A
t converges to ν as well. The uniqueness of ν then readily follows. �
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5. Two-type process seen from the interface: The measure ν

We now define the second stationary measure mentioned in Theorem 1.1 as the limit of the
GBTI process in which, in the initial configuration, the set of 1’s is given by ν and every vertex
not occupied by a 1 is occupied by a 2.

Proposition 5.1. Let (ξ̃∗
t )t≥0 be the GBTI process with initial distribution

ξ̃∗
0 = 1A + 2 · 1Ac , with A ∼ ν.

Then, as t → ∞, ξ̃∗
t converges in distribution to a measure ν on Y0, which is stationary for the

GBTI.

Proof. For each t ≥ 0, let νt denote the distribution of ξ̃∗
t . Since {x : ξ̃t (x) = 1} ∼ ν for every t ,

it can be shown using sets K similar to the one in (4.4) that {νt : t ≥ 0} is a tight family of
probabilities on Y0.

Define

E(L,A0,B0) = {
(A,B) ∈ Y0 : A ∩ [−L,0] = A0,B ∩ [−L,L] ⊃ B0

}
,

for L ∈ Z+,A0 ⊂ [−L,0],B0 ⊂ [−L,L],A0 ∩ B0 =∅.

We claim that, for all L, A0, B0,

t �→ νt

(
E(L,A0,B0)

)
is decreasing. (5.1)

To see this, fix r, s ≥ 0. Let (ξ̃∗∗
t )t≥0 be the GBTI process with initial distribution νr . Now, con-

struct (ξ̃∗
t ) and (ξ̃∗∗

t ) with the same graphical representation and with initial conditions verifying
{x : ξ̃∗

0 (x) = 1} = {x : ξ̃∗∗
0 (x) = 1}. Then,{

x : ξ̃∗
s (x) = 1

} = {
x : ξ̃∗∗

s (x) = 1
}
, and

{
x : ξ̃∗

s (x) = 2
} ⊇ {

x : ξ̃∗∗
s (x) = 2

}
.

Since ξ̃∗∗
s

(d)= ξ̃∗
r+s , this proves (5.1).

Now, the statement that νt converges weakly as t → ∞ is equivalent to the statement that
any sequence (νti )i∈Z+ with (ti) increasing and ti → ∞ has a weakly convergent subsequence,
and the limiting measure does not depend on the choice of (ti). With this in mind, fix (ti). By
tightness and Prohorov’s theorem, there exists a subsequence (tij )j∈Z+ and a probability ν on Y0
such that νtij

→ ν. Additionally, for all L, A0 and B0,

ν
(
E(L,A0,B0)

) = lim
j→∞νtij

(
E(L,A0,B0)

) (5.1)= lim
t→∞νt

(
E(L,A0,B0)

)
.

This and the inclusion-exclusion formula imply that, defining

E′(L,A0,B0) = {
(A,B) ∈ Y0 : A ∩ [−L,0] = A0,B ∩ [−L,L] = B0

}
,

for L ∈ Z+,A0 ⊂ [−L,0],B0 ⊂ [−L,L],A0 ∩ B0 =∅,



Grass-bushes-trees interface 2269

we also have

ν
(
E′(L,A0,B0)

) = lim
t→∞νt

(
E′(L,A0,B0)

) ∀L,A0,B0.

This shows that ν is uniquely determined.
Finally, the fact that ν is stationary follows from Proposition 1.8(d) in [10]. �

6. Convergence to ν and ν

6.1. Condition (�) implies convergence to ν

Lemma 6.1. We have

lim
M→∞ lim inf

n→∞ P
(
ζ
Z

∗−
n/α ≡ ζZ

n/α on (−∞, n − M
√

n]) = 1, (6.1)

where α is as in (2.3).

Proof. Using (2.4) and (2.11), given ε > 0 we can choose L and M such that, for n large enough,

P

(
R
Z

∗−
n/α ≥ n − M

2

√
n

)
> 1 − ε/2,

P
(
ζ
Z

∗−
n/α ≡ ζZ

n/α on
(−∞,R

Z
∗−

n/α − L
])

> 1 − ε/2.

Additionally assuming that n is large enough that M
2

√
n ≥ L, the probability in (6.1) is larger

than 1 − ε, so we are done. �

Lemma 6.2. Letting

B(M,n) = {
B ⊂ Z : #

(
B ∩ [M√

n,2n − M
√

n]) ≥ M
}
, (6.2)

we have

lim
M→∞ lim inf

n→∞ inf
B∈B(M,n)

P

(
ζB
n/α ≡ ζZ

n/α on

[
n − M

2

√
n,n + M

2

√
n

])
= 1. (6.3)

Proof. Fix ε > 0. By the previous lemma we can choose M0 > 0 and n0 > 0 such that, if n ≥ n0,

P(ζ
Z

∗−
n/α ≡ ζZ

n/α on (−∞, n − M0
2

√
n]) > 1 − ε/2. By (2.8), we can choose M1 ≥ M0 such that

any subset of Z with at least M1/2 points has at least one β̄-insulating point with probability at
least 1 − ε/2.

Now let n ≥ n0 so that n � M1
√

n and assume B ⊂ Z satisfies #(B ∩[M1
√

n,2n−M1
√

n]) ≥
M1. We either have #(B ∩ [M1

√
n,n]) ≥ M1/2 or #(B ∩ [n,2n − M1

√
n]) ≥ M1/2; we can

assume that the first case holds, as the other can then be treated by symmetry.
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Define the events

E1 = {∃x ∈ B ∩ [M1
√

n,n] : x is β̄-insulating
}
,

E2 = {
ζ

(−∞,M1
√

n]
n/α ≡ ζZ

n/α on (−∞, n + M1
√

n/2]},
so that P(E1 ∩ E2) > 1 − ε. Let us prove that E1 ∩ E2 is contained in the event that appears in
(6.3). Let x∗ ∈ B ∩ [M1

√
n,n] be a β̄-insulating point. Fix y ∈ [n − M1

2

√
n,n + M1

2

√
n] with

ζZ

n/α(y) = 1. By the definition of E2, there exists z ≤ M1
√

n such that (z,0) ↔ (y,n/α). Since

(z,0) and (y,n/α) are on opposite sides of the line {(x∗ − β̄s, s) : s ≥ 0}, we must also have
ζ x∗
n/α(y) = 1, so ζB

n/α(y) = 1. �

Lemma 6.3. For all ε > 0 there exists M0 > 0 such that the following holds. For any A ⊂ Z with

infA = −∞, supA = 0,

there exists n0 = n0(ε,A) such that, if n ≥ n0 and B ⊂ Z satisfies

B ∩ A =∅, #
(
B ∩ [M0

√
n,2n − M0

√
n]) ≥ M0,

then

P

(
RA

n/α = R
Z

∗−
n/α, ξ

A,B
n/α ≡ ξ

Z
∗−,Z+

n/α on

[
RA

n/α − M0

4

√
n,RA

n/α + M0

4

√
n

])
> 1 − ε. (6.4)

Proof. For M > 0, n ∈ N, A,B ⊂ Z, define the events

E1(M,n) =
{
R
Z

∗−
n/α ∈

[
n − M

4

√
n,n + M

4

√
n

]}
,

E2(A,n) =
{
RA

n/α = R
Z

∗−
n/α, ζ

Z
∗−

n/α ≡ ζA
n/α on

(
−β̄ · n

α
,∞

)}
,

E3(B,M,n) =
{
ζZ

n/α ≡ ζB
n/α on

[
n − M

2

√
n,n + M

2

√
n

]}
.

Recall the definition of B(M,n) in (6.2). Given ε > 0, using (2.4) and Lemma 6.2, we choose
M0 such that, for n large enough and any B ∈ B(M0, n) we have

P
(
E1(M0, n) ∩ E3(B,M0, n)

)
> 1 − ε/2. (6.5)

Now fix A ⊂ Z with infA = −∞ and supA = 0. Choose n0 so that for n ≥ n0 the following
conditions hold:

n > M0
√

n, (6.5) holds, and P
(
E2(A,n)

)
> 1 − ε/2
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(the third condition is satisfied for n large enough due to Corollary 3.1). Now let us show that, if
E1, E2 and E3 all occur, we have

ξ
Z

∗−,Z+
n/α ≡ ξ

A,B
n/α on

[
n − M0

2

√
n,n + M0

2

√
n

]
; (6.6)

together with n − M0
4

√
n ≤ RA

n/α = R
Z

∗−
n/α ≤ n + M0

4

√
n, this guarantees that the event inside the

probability in (6.4) occurs. Fix x ∈ [n − M0
2

√
n,n + M0

2

√
n]; there are three possibilities:

1. if ξ
Z

∗−,Z+
n/α (x) = 0, then ζZ

n/α(x) = 0, so ξ
A,B
n/α (x) = 0;

2. if ξ
Z

∗−,Z+
n/α (x) = 1, then ζ

Z
∗−

n/α(x) = 1, so (using the definitions of E1 and E2) ζA
n/α(x) = 1, so

ξ
A,B
n/α (x) = 1;

3. if ξ
Z

∗−,Z+
n/α (x) = 2, then ζ

Z
∗−

n/α(x) = 0, so (by the definition E2) ζA
n/α(x) = 0. ξ

Z
∗−,Z+

n/α (x) =
2 also implies that ζZ

n/α(x) = 1, so (by the definition of E3) ζB
n/α(x) = 1. Therefore,

ξ
A,B
n/α (x) = 2. �

Corollary 6.1. The process (ξ̃
Z

∗−,Z+
t )t≥0 converges in distribution to ν̄.

Proof. By Lemma 6.3, for any infinite set A ⊂ Z with supA = 0 and any K > 0 we have

P
(
ξ̃

A,Ac

t ≡ ξ̃
Z

∗−,Z+
t on [−K,K]) t→∞−−−→ 1.

The statement of the corollary then follows from recalling that

ν̄ = lim
t→∞

(d)

ξ̃
A,Ac

t , where A ∼ ν.
�

Proof of Theorem 1.2(a), sufficiency of (�). Assume (A,B) ∈ Y0 satisfies condition (�). Then,
for all M we have #(B ∩ [M√

n,2n − M
√

n]) ≥ M if n is large enough. By Lemma 6.3, for any
K > 0 we have

P
(
ξ̃

A,B
n/α ≡ ξ̃

Z
∗−,Z+

n/α on [−K,K]) n→∞−−−→ 1.

From this, it is straightforward to show that

P
(
ξ̃

A,B
t ≡ ξ̃

Z
∗−,Z+

t on [−K,K]) t→∞−−−→ 1.

Then, by Corollary 6.1, ξ̃
A,B
t converges to ν̄ in distribution as t → ∞. �

Corollary 6.2. The measure ν is supported on the set Y ′
0 defined in (1.5).
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Proof. By Corollary 6.1, for any L > 0,

ν
({

(A,B) : B ∩ (−∞,−L] = ∅,B ∩ [−L,L] �=∅
})

= lim
t→∞P

(
ξ̃
Z

∗−,Z+
t (x) �= 2 for all x ≤ −L, ξ̃

Z
∗−,Z+

t (x) = 2 for some x ∈ [−L,L]).
By (2.10), we can make the right-hand side arbitrarily close to 1 by choosing L large. �

6.2. Convergence to ν implies condition (�)

Recall the definition of B(M,n) from (6.2).

Lemma 6.4. For all M > 0,

lim inf
n→∞ inf

B∈B(M,n)c
P
(
ζB
n/α ≡ 0 on [n − 2M

√
n,n + 2M

√
n]) > 0. (6.7)

Proof. It is easy to verify that

lim inf
n→∞ inf

B∈B(M,n)c
P
(
ζB

1 ≡ 0 on [M√
n,2n − M

√
n]) > 0.

Hence, it is enough to prove (6.7) with B(M,N)c replaced by

C(M,n) = {
B ⊂ Z : B ∩ [M√

n,2n − M
√

n] =∅
}
.

Fix M and n and let B ∈ C(M,n). Let B1 = (−∞,M
√

n]∩Z and B2 = [2n−M
√

n,∞)∩Z,
so that B ⊂ B1 ∪ B2. We then have

P
(
ζB
n/α ≡ 0 on [n − 2M

√
n,n + 2M

√
n])

≥ P
(
ζ

B1∪B2
n/α ∩ [n − 2M

√
n,n + 2M

√
n] =∅

)
≥ P

(
R

B1
n/α < n − 2M

√
n
) · P(

L
B2
n/α > n + 2M

√
n
)

= P
(
R
Z

∗−
n/α < n − 3M

√
n
)2

.

We now observe that, by (2.4), for fixed M , the right-hand side is bounded away from zero as
n → ∞. �

Lemma 6.5. For M > 0 sufficiently large there exists δ > 0 such that the following holds for n

sufficiently large. If A,B ⊂ Z are disjoint sets with

supA = 0, B ∈ B(M,n)c,

then

P
(
ξ

A,B
n/α (x) �= 2 ∀x ∈ [

RA
n/α − M

√
n,RA

n/α + M
√

n
])

> δ. (6.8)
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Proof. Using (2.4), we choose M > 0 such that, for n large enough,

P
(∣∣RZ

∗−
n/α − n

∣∣ ≤ M
√

n
)
> 1 − δ̄/2, (6.9)

where δ̄ is as in (2.7). Then choose δ > 0 smaller than the square of the left-hand side of (6.7)
and so that

δ̄/2 > δ1/2. (6.10)

Now, fix n ∈ N and A,B as in the statement of the claim. Let (ζA
t )t≥0 and (ζ̂ B

t )t≥0 be two
independent contact processes started from occupancy in A and B , respectively. By Lemma 2.1,
the desired bound (6.8) follows from

P
(
sup ζA

n/α ∈ [n − M
√

n,n + M
√

n]) > δ1/2 and (6.11)

P
(
ζ̂ B
n/α ∩ [n − 2M

√
n,n + 2M

√
n] =∅

)
> δ1/2. (6.12)

Now, (6.12) holds for n large by the choice of δ and (6.7). By (2.9), the left-hand side of (6.11)
is larger than

P
(
0 is β̄-insulating and

∣∣RZ
∗−

n/α − n
∣∣ ≤ M

√
n
)

≥ P(0 is β̄-insulating) − P
(∣∣RZ

∗−
n/α − n

∣∣ > M
√

n
) (6.9)≥ δ̄

2

(6.10)≥ δ1/2

if n is large. �

Proof of Theorem 1.2(a), necessity of (�). If (�) fails, then there exists M > 0 and an increasing
sequence (nk)k≥0 such that, for all k, #{x ∈ [M√

n,2n − M
√

n] : ξ̃0(x) = 2} ≤ M . Lemma 6.5
then implies that

lim inf
k→∞ P

(
ξ̃nk/α(x) �= 2 ∀x ∈ [−M

√
nk,M

√
nk]

)
> 0.

Together with Corollary 6.2, this shows that (ξ̃t ) cannot converge to ν̄. �

6.3. Condition (∗) implies convergence to ν

Proof of Theorem 1.2(b), sufficiency of (∗). Fix disjoint sets A,B ⊂ Z with

infA = −∞, supA = 0, supB < ∞.

By Proposition 4.1, ({
x : ξ̃A,B

t (x) = 1
})

t≥0
t→∞−−−→

(d)
ν,
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so the fact that ξ̃
A,B
t also converges in distribution to ν will follow from

∀L > 0, lim
t→∞P

(
ξ

A,B
t (x) �= 2 ∀x ∈ [

RA
t − L,RA

t + L
]) = 1. (6.13)

Letting D = (−∞, supB] ∩Z, it is straightforward to check that{
ξ

A,B
t (x) �= 2 ∀x ∈ [

RA
t − L,RA

t + L
]} ⊇ {

RA
t = RD

t , ζA
t ≡ ζD

t on
[
RA

t − L,RA
t

]}
,

so (6.13) follows from Corollary 3.1 and translation invariance. �

6.4. Convergence to ν implies condition (∗)

Proof of Theorem 1.2(b), necessity of (∗). Fix disjoint sets A,B satisfying

infA = −∞, supA = 0, supB = ∞;
let us show that ξ̃

A,B
t does not converge to ν in distribution as t → ∞.

Fix an increasing sequence (nk)k≥0 such that nk ∈ B for each k. Using (2.7), (2.4) and Corol-
lary 3.1, we can first choose M > 0 and then k0 ∈N such that, for all k ≥ k0,

P
(
R
Z

∗−
nk/α

∈ [nk − M
√

nk,nk + M
√

nk]
)
> 1 − δ̄/4,

P
(
ζ

nk

nk/α
≡ ζZ

nk/α
on [nk − β̄nk/α,nk + β̄nk/α]) > δ̄,

P
(
RA

nk/α
= R

Z
∗−

nk/α
, ζA

nk/α
≡ ζ

Z
∗−

nk/α
on

[−β̄nk/α,RA
nk/α

])
> 1 − δ̄/4,

so the probability that the three above events all occur is at least δ̄/2. Similarly to the proof of
Lemma 6.3, we can show that if these three events occur, we have

ξ̃
A,B
nk/α

≡ ξ̃
Z

∗−,Z+
nk/α

on [−M
√

nk,M
√

nk].
We then have, for any L > 0,

lim inf
k→∞ P

(∃x ∈ [−L,L] : ξ̃A,B
nk/α

(x) = 2
) ≥ δ̄

2
− lim sup

k→∞
P
(
ξ̃
Z

∗−,Z+
nk/α

(x) �= 2 ∀x ∈ [−L,L]);
by (2.10), the second term on the right-hand side can be made arbitrarily close to zero if L is
taken large enough. �

7. ν and ν are the only extremal stationary measures of GBTI

In this section, we will prove Theorem 1.1. The fact that ν is supported on X0 is obvious and
the fact that ν is supported on the set given in (1.5) was proved in Corollary 6.2. It will follow
from Lemma 7.1 below that, if ν is a stationary and extremal measure for the GBTI process
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(ξ̃t )t≥0, then either ν = ν or ν = ν. It will be useful to consider measures ν in Y0 which satisfy
the following property:

∀M > 0, lim
n→∞ν

{
(A,B) : #

(
B ∩ [M√

n,2n − M
√

n]) ≥ M
} = 1. (❖)

Lemma 7.1. Let ν be a stationary measure for (ξ̃t )t≥0.

1. If ν is extremal, then ν(X0) ∈ {0,1}.
2. If ν(X0) = 1, then ν = ν.
3. If ν does not satisfy (❖), then ν(X0) > 0.
4. If ν satisfies (❖), then ν = ν.

Proof.

1. Assume ν is stationary and ν(X0) ∈ (0,1); let us show that ν is not extremal. We can write

ν = ν(X0) · ν̂ + (
1 − ν(X0)

) · ˆ̂ν, (7.1)

where ν̂(·) = ν(·|X0) and ˆ̂ν(·) = ν(·|X c
0 ). For t ≥ 0, let ν̂t and ˆ̂νt denote the distribution of

ξ̃t when ξ̃0 is distributed as ν̂ and ˆ̂ν, respectively. Since ν is stationary, we have

ν = ν(X0) · ν̂t + (
1 − ν(X0)

) · ˆ̂νt . (7.2)

We evidently have ν̂(X0) = ν̂t (X0) = 1 and ˆ̂ν(X0) = 0; using these facts and also ν(X0) ∈
(0,1) in equations (7.1) and (7.2), we obtain ˆ̂νt (X0) = 0. This implies that, if E is any
measurable subset of X0, we have ˆ̂ν(E) = ˆ̂νt (E) = 0, so (7.1) and (7.2) yield ν̂(E) = ν̂t (E).
This shows that ν̂ = ν̂t , that is, ν̂ is stationary, from which it follows that ˆ̂ν is also stationary.
Hence, ν is not extremal.

2. This is an immediate consequence of Proposition 4.1.
3. If ν does not satisfy (❖), then there exist M > 0, κ > 0 and a sequence (nk)k≥0 such that,

for all k,

ν
{
(A,B) : #

(
B ∩ [M√

nk,2nk − M
√

nk]
)
< M

}
> κ.

We now choose δ = δ(M) and n0 = n0(M) as in Lemma 6.5. Then, taking nk ≥ n shows
that

ν
{
(A,B) : P(

ξ
A,B
nk/α

(x) �= 2 ∀x ∈ [
RA

nk/α
− M

√
nk,R

A
nk/α

+ M
√

nk

])
> δ

}
> κ

or equivalently, if (ξt )t≥0 is a grass-bushes-trees process with initial distribution ν, then
with probability larger than δ · κ , at time nk there is no 2 within distance M

√
nk of the

rightmost 1. Since ν is stationary, this shows that for any L > 0 we have

ν
{
(A,B) : B ∩ [−L,L] =∅

}
> δ · κ,

so ν(X0) ≥ δ · κ > 0.
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4. Assume (❖) holds. Given ε > 0 and K > 0, using Lemma 6.3, we can find M > 0 and then
n ∈N so that

ν
({

(A,B) : P(
ξ̃

A,B
n/α ≡ ξ̃

Z
∗−,Z+

n/α on [−K,K]) > 1 − ε
})

> 1 − ε.

The result now follows from Corollary 6.1.
�
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