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In the first part of this paper, we show that the small-ball condition, recently introduced by (J. ACM 62
(2015) Art. 21, 25), may behave poorly for important classes of localized functions such as wavelets, piece-
wise polynomials or for trigonometric polynomials, in particular leading to suboptimal estimates of the rate
of convergence of ERM for the linear aggregation problem. In a second part, we recover optimal rates of
convergence for the excess risk of ERM when the dictionary is made of trigonometric functions. Consid-
ering the bounded case, we derive the concentration of the excess risk around a single point, which is an
information far more precise than the rate of convergence. In the general setting of a L2 noise, we finally
refine the small ball argument by rightly selecting the directions we are looking at, in such a way that we
obtain optimal rates of aggregation for the Fourier dictionary.
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1. Introduction

Consider the following general regression framework: (X ,TX ) is a measurable space, (X,Y ) ∈
X ×R is a pair of random variables of joint distribution P – the marginal of X being denoted
P X – and it holds

Y = s∗(X) + σ(X)ε, (1.1)

where s∗ is the regression function of the response variable Y with respect to the random design
X, σ(X) ≥ 0 is the heteroscedastic noise level and ε is the conditionally standardized noise,
satisfying E[ε|X] = 0 and E[ε2|X] = 1. Relation (1.1) is very general and is indeed satisfied as
soon as E[Y 2] < +∞. In this case, s∗ ∈ L2(P

X) is the orthogonal projection of Y onto the space
of X-measurable functions. In particular, no restriction is made on the structure of dependence
between Y and X.

We thus face a typical learning problem, where the statistical modelling is minimal, and the
goal will be, given a sample (Xi, Yi)

n
i=1 of law P ⊗n and a new covariate Xn+1, to predict the

value of the associated response variable Yn+1. More precisely, we want to construct a function ŝ,
depending on the data (Xi, Yi)

n
i=1, such that the least-squares risk R(ŝ) = E[(Yn+1 − ŝ(Xn+1))

2]
is as small as possible, the pair (Xn+1, Yn+1) being independent of the sample (Xi, Yi)

n
i=1.

In this paper, we focus on the technique of linear aggregation via Empirical Risk Minimization
(ERM). This means that we are given a dictionary S = {s1, . . . , sD} and that we produce the least-
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squares estimator ŝm on its linear span m = Span(S),

ŝm ∈ arg min
s∈m

Rn(s), where Rn(s) = 1

n

n∑
i=1

(
Yi − s(Xi)

)2
. (1.2)

The quantity Rn(s) is called the empirical risk of the function s. The accuracy of the method is
tackled through an oracle inequality, where the risk of the estimator R(ŝm) is compared – on an
event of probability close to one – to the risk of the best possible function within the linear model
m. The latter function is denoted sm and is called the oracle, or the (orthogonal) projection of the
regression function s∗ onto m,

sm ∈ arg min
s∈m

R(s).

An oracle inequality then writes, on an event �0 of probability close to one,

R(ŝm) ≤ R(sm) + rn(D), (1.3)

for a positive residual term rn(D). An easy and classical computation gives that the excess risk
satisfies R(ŝm) − R(sm) = ‖̂s − sm‖2

2, where ‖ · ‖2 is the natural quadratic norm in L2(P
X),

associated with the scalar product 〈f,g〉 = ∫
f (x)g(x) dP X(x). Hence, inequality (1.3) can be

rewritten as ‖ŝm−sm‖2
2 ≤ rn(D) and the quantity rn(D) thus corresponds to the rate of estimation

of the projection sm by the least-squares estimator ŝm in terms of excess risk, corresponding here
to the squared quadratic norm.

The linear aggregation problem has been well studied in various settings linked to nonpara-
metric regression [2,7,26,31] and density estimation [27]. It has been consequently understood
that the optimal rate rn(D) of linear aggregation is of the order of D/n, where D is the size
of the dictionary. Recently, [19] have shown that ERM is suboptimal for the linear aggregation
problem in general, in the sense that there exist a dictionary S and a pair (X,Y ) of random vari-
ables for which the rate of ERM (drastically) deteriorates, even in the case where the response
variable Y and the dictionary are uniformly bounded.

On the positive side, [19] also made a breakthrough by showing that if a so-called small-
ball condition is achieved with absolute constants, uniformly over the functions in the linear
model m, then the optimal rate is recovered by ERM. We recall and discuss in details the small-
ball condition in Section 2, but it is worth mentioning here that one of the main advantages
of the small-ball method developed in a series of papers, [15,17,19,21–23] is that it enables to
prove sharp bounds under very weak moment conditions and thus to derive results that were
unachievable with more standard concentration arguments.

In Section 2, we contribute to the growing understanding of this very recent approach by
looking at the behavior of the small-ball condition when the dictionary is made of elements of
some classical orthonormal bases, such as histograms, piecewise polynomials, wavelets and the
Fourier basis. These examples are indeed central in various methods of nonparametric statistics.

It appears that with such functions, the small-ball condition can’t be satisfied with absolute
constants and the resulting bounds obtained in [19] are far from optimal. This lack of accuracy of
the small-ball approach seems rather natural for dictionaries that are made of localized functions,
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such as wavelets for instance, since these functions are very “picky” and thus hardly identifiable –
see Section 2 for a more thorough discussion around these terms.

However, it seems more surprising that the Fourier dictionary also leads to suboptimal rates of
linear aggregation when analyzed via the small ball method. In fact, the behavior of the small-ball
condition on the span of some trigonometric functions is essentially unknown in the literature and
this type of information, in the related context of Fourier measurements in compressed sensing,
has a potentially significant impact on the theory of Fourier measurements [17].

Nevertheless, we show in Section 3 that ERM achieves optimal rates of linear aggregation,
both in the bounded setting and for L2-noise. Our result in particular outperforms previously
obtained bounds [2].

More precisely, when the response variable Y is bounded, we derive concentration inequalities
for the excess risk, which is an information far more precise than the rate of convergence. Our
proofs are based on empirical process theory and substantially simplify our previous approach to
concentration inequalities for the excess risk on models spanned by localized bases [25,29].

When the noise is only assumed to have a second moment, we prove optimal rates of linear ag-
gregation for the Fourier dictionary by using a refined small-ball argument. Indeed, by imposing
a light and natural smoothness condition on the regression function, we localize the analysis by
only looking at some directions in the model that satisfy a uniform small-ball condition. It is im-
portant to note that such approach was suggested – but not achieved – by Lecué and Mendelson
[17] for the study of Fourier measurements in compressed sensing.

Finally, complete proofs are dispatched in Sections 4 and 5, at the end of the paper.

2. The small-ball method for classical functional bases

We recall in Section 2.1 one of the main results of [19], linking the small-ball condition to the rate
of convergence of ERM in linear aggregation. Then, we show in Section 2.2 that the constants
involved in the small-ball condition behave poorly for dictionaries made of localized bases and
also for the Fourier basis.

2.1. The small-ball condition and the rate of ERM in linear aggregation

Let us first recall the definition of the small-ball condition for a linear span, as exposed in [19].

Definition 1. A linear span m ⊂ L2(P
X) is said to satisfy the small-ball condition for some

positive constants κ0 and β0 if for every s ∈ m,

P
(∣∣s(X)

∣∣≥ κ0‖s‖2
)≥ β0. (2.1)

The small-ball condition thus ensures that the functions of the model m do not put too much
weight around zero. From a statistical perspective, it is also explained in [19] that the small-ball
condition can be viewed as a quantified version of identifiability of the model m. A more general
small-ball condition – that reduces to the previous definition for linear models – is also available
when the model isn’t necessary linear [23].
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Under the small-ball condition, [19] derive the following result, describing the rate of conver-
gence of ERM in linear aggregation.

Theorem 2 ([19]). Let S = {s1, . . . , sD} ⊂ L2(P
X) be a dictionary and assume that m =

Span(S) satisfies the small-ball condition with constants κ0 and β0 (see Definition 1 above). Let
n ≥ (400)2D/β2

0 and set ζ = Y − sm(X), where sm is the projection of the regression function
s∗ onto m. Assume further that one of the following two conditions holds:

1. ζ is independent of X and Eζ 2 ≤ σ 2, or
2. |ζ | ≤ σ almost surely.

Then the least-squares estimator ŝm on m, defined in (1.2), satisfies for every x > 0, with
probability at least 1 − exp(−β2

0n/4) − (1/x),

‖ŝm − sm‖2
2 ≤

(
16

β0κ
2
0

)2
σ 2Dx

n
. (2.2)

Notice that Alternative 1 in Theorem 2 is equivalent to assuming that the regression function
belongs to m – that is s∗ = sm – and that the noise is independent from the design – that is
σ(X) ≡ σ is homoscedastic and ε is independent of X in relation (1.1).

The main feature of Theorem 2 is that if the small-ball condition is achieved with absolute
constants κ0 and β0 not depending on the dimension D nor the sample size n, then optimal
linear aggregation rates of order D/n are recovered by ERM. If moreover the regression function
belongs to m (Alternative 1), then the only moment assumption required is that the noise is in
L2. Otherwise, Alternative 2 asks for a uniformly bounded noise. Some variants of Theorem 2
are also presented in [19], showing for instance, that optimal rates can be also derived for ERM
when the noise as a fourth moment.

In the analysis of optimal rates in linear aggregation, it is thus worth understanding when the
small ball condition stated in Definition 1 is achieved with absolute constants.

One such typical situation is for linear measurements, that is when the functions of the dictio-
nary are of the form fi(x) = xT ti , ti ∈R

d . Indeed, very weak conditions are asked on the design
X in this case to ensure the small-ball property: for instance, it suffices to assume that X has
independent coordinates that are absolutely continuous with respect to the Lebesgue measure,
with a density almost surely bounded (see [17] and [23], Section 6, for more details). As shown
in [17] and [18], this implies that the small-ball property has important consequences in sparse
recovery and analysis of regularized linear regression.

The constants (κ0, β0) of the small-ball condition influence the rate of convergence exposed
in Theorem 2 above through the term V0 := β−2

0 κ−4
0 and therefore, we will provide upper and

lower bounds for V0 in the following section for various functional dictionaries.

2.2. The constants in the small-ball condition for general linear bases

Besides linear measurements discussed in Section 2.1 above, an important class of dictionaries
for the linear aggregation problem consists in expansions along orthonormal bases of L2(P

X),
which typically correspond to nonparametric estimation.
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Our goal in this section is thus to investigate the behavior of the small-ball condition for
some classical orthonormal bases such as piecewise polynomial functions, including histograms,
wavelets or the Fourier basis.

2.2.1. Some generic limits for the small-ball method

Let us begin with a general proposition, describing some upper bounds for the constants κ0 and
β0 appearing in the small-ball condition (1). This will enable us to deduce lower bounds for the
parameter V0 = β−2

0 κ−4
0 appearing in the rate (2.2) of Theorem 2 above and therefore, we will

have some insights on the limits of the small-ball method for linear aggregation.
One can easily see from its definition that the small-ball condition is more difficult to ensure,

at a heuristic level, when the model at hand contains some “picky” functions. The following
proposition provides some quantifications of this fact.

Proposition 3. Assume that a model m satisfies the small-ball condition (1) with constants
(β0, κ0). Then, it holds

β0 ≤ inf
f ∈m\{0}P

(
f (X) = 0

)
, (2.3)

κ0 ≤ inf
f ∈m\{0}

‖f ‖∞
‖f ‖2

(2.4)

and, for any q > 0,

β0κ
q

0 ≤ inf
f ∈m\{0}

(‖f ‖q

‖f ‖2

)q

. (2.5)

In particular, we always have β0κ
2
0 ≤ 1 and if m contains the constant functions, then κ0 ≤ 1.

It is interesting to note that Inequalities (2.3) and (2.4) are two limiting cases of (2.5), respec-
tively when q → 0 and when q → +∞. The proof of Proposition 7, which is elementary, is given
in Section 4 below.

It is also worth noticing that the inequality β0κ
2
0 ≤ 1 implies that the upper bound of Theo-

rem 2 – obtained in [19] – is always greater than 256σ 2Dx/n.
Furthermore, consider a model of histograms on a regular partition � of X = [0,1]d made of

D pieces, X being uniformly distributed on X . More precisely, for any I ∈ �, set

sI = 1I√
P X(I)

= √
D1I

and take a dictionary S = {sI ; I ∈ �}, associated to the model m = Span(S).
Then by Inequality (2.3), one directly gets β0 ≤ D−1 and as m contains the constants, it holds

V0 = β−2
0 κ−4

0 ≥ D2 and the upper bound (2.2) of Theorem 2 is greater than 256σ 2D3x/n.
Hence, the rate of convergence exhibited by the small-ball method in the case of regular his-
tograms is D3/n, which is suboptimal since it has been proved in [1,29] that the excess risk
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concentrates in this case, under Alternative 2 of Theorem 2 above, around a value exactly equal
to E[ζ 2]D/n.

More generally, when considering the case of a linear model made of piecewise polynomial
functions of degrees bounded by a constant r on a regular partition, we easily deduce from the
previous results on histograms – that is polynomials of degree zero – that β0 ≤ rD−1 for any
κ0 ∈ (0,1). We thus have V0 ≥ r−2D2 and the rate of convergence ensured by Theorem 2 in this
case is again proportional to D3/n. It is again suboptimal, since it is also proved in [29] that for
such models of piecewise polynomial functions, the excess risk concentrates around E[ζ 2]D/n,
under Alternative 2 of Theorem 2 above.

Let us now discuss the case of a dictionary made of compactly supported wavelets.
To fix ideas, let us more precisely state some notations (for more details about wavelets, see

for instance [11]). We consider in this case that X =[0,1] and X is uniformly distributed on X .
Set φ0 the father wavelet and ψ0 the mother wavelet. For every integers j ≥ 0, 1 ≤ k ≤ 2j , define

ψj,k : x �→ 2j/2ψ0
(
2j x − k + 1

)
. (2.6)

As explained in [9], there exists several ways to consider wavelets on the interval. We apply
here one of the most classical construction, that consists in using “periodized” wavelets. To this
aim, we associate to a function ρ on R, the 1-periodic function

ρper(x) =
∑
p∈Z

ρ(x + p).

Notice that if ψ has a compact support, then the sum at the right-hand side of the latter inequality
is finite for any x.

We set for every integer j ≥ 0, �(j) = {(j, k);1 ≤ k ≤ 2j }. Moreover, we set ψ−1,1(x) =
φ0(x), �(−1) = {(−1,1)} and for any integer l ≥ 0, �l =⋃l

j=−1 �(j). Then we consider the

dictionary S = {ψper
λ ;λ ∈ �l} associated to the model m = Span(S).

Now, it is easily seen from (2.6), that for any (l, k) ∈ �(l), P(|ψl,k(X)| = 0) � 2−l � D−1,
where D is the linear dimension of m. Consequently, as for histograms and piecewise poly-
nomials on regular partitions, dictionaries made of compactly supported wavelets are handled
through the small-ball method with a bound proportional to D3/n. This rate is again suboptimal,
as shown quite recently by Navarro and Saumard [25], who proved that for such models, the
excess risk of the least-squares estimator concentrates, under Alternative 2 of Theorem 2 above,
around E[ζ 2]D/n.

It is worth noting that more general multidimensional wavelets could also be considered at the
price of more technicalities.

Wavelets, histograms and piecewise polynomials are models that are formed from “picky”
functions, it is thus quite legitimate that the small-ball method implies suboptimal rates for these
models. What happens when the dictionary is formed from spatially unlocalized functions such
as the Fourier basis?

Proposition 4. Assume that X =[−π,π] and that the design X is uniformly distributed on X .
Then Fourier expansions (i.e., the set of trigonometric polynomials) can not satisfy the small
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ball condition (2.1) with some absolute constants (β0, κ0). More precisely, let us set ϕ0 ≡ 1,
ϕ2k(x) = √

2 cos(kx) and ϕ2k+1(x) = √
2 sin(kx) for k ≥ 1, and take for some l ∈ N, l ≥ 2,

the model mD = Span{ϕj ; j = 0, . . . ,2l}, of linear dimension D = 2l + 1. If mD satisfies the

small ball condition with constants (β0, κ0), then it holds β0 ≤ Cκ
−1/2
0 D−3/4 for some numerical

constant C > 0.

Corollary 5. When the design is uniform on X =[−π,π], the dictionary is made of the first
D elements of the Fourier basis, the bound given in the right-hand side of Inequality (2.2) in
Theorem 2 above (i.e., Theorem A of [19]) is bounded from below as follows,(

16

β0κ
2
0

)2
σ 2Dx

n
≥ 256

σ 2D5/2x

n
.

Corollary 5 shows that the rate of convergence provided by the small ball method (Theorem A
of [19]) is at most D5/2/n in the case of the Fourier dictionary. Therefore, we will show in
Section 3 that, under Alternative 2 of Theorem 2 above, the excess risk of the least-squares
estimator concentrates around E[ζ 2]D/n, just as for localized bases such as wavelets, histograms
and piecewise polynomials. Hence, the small-ball method as developed in [19] gives suboptimal
results for the linear aggregation of the Fourier dictionary.

The proof of Proposition 4 is based on the use of a “picky” trigonometric polynomial and can
be found in Section 4. In Section 2.2.2 below, we will derive a quite general lower bound of
the order D−1 for β0. This bound is in particular valid for the Fourier dictionary, but does not
match with the upper bound decaying like D−3/4 of Proposition 4. Therefore, an interesting open
question is to determine what is the exact rate of β0 with respect to D in the Fourier case (at a
fixed value of κ0)? This question remains open.

Finally, it is important to note that Proposition 4 above is a new result, that may be of some
informal interest in the related context of Fourier measurement matrices for compressed sensing,
where a small-ball condition (or a slightly modified version of it) would yield optimal recovery
rates, as noted by Lecué and Mendelson in [17], Remark 1.5:

One may wonder if the small-ball condition is satisfied for more structured matrices, as the argument we use here
does not extend immediately to such cases. And, indeed, for structured ensembles one may encounter a different
situation: a small-ball condition that is not uniform, in the sense that the constants [. . . ] are direction-dependent.

Concerning instances of “more structured matrices”, Lecué and Mendelson add that “one no-
table example is a random Fourier measurement matrix”, which is designed by randomly select-
ing rows of a complete discrete Fourier measurement matrix.

In our setting, also dealing with the Fourier basis but in the “continuous” setting rather than
discrete, we show that indeed, the small-ball condition cannot be satisfied for constants (κ0, β0)

that are absolute, in the sense that they would be independent of the dimension. But, we also
prove in Section 2.2.2 below that the small-ball condition is achieved, for some constants that
indeed depend on the dimension.

To recover better estimates, it seems reasonable then to look at a more refined property and
searching for “direction-dependent” estimates as proposed in [17] seems a good option. Indeed,
it is clear that in the directions of functions in the dictionary for instance, that is for trigonometric
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functions, the constants are absolute. We follow this lead in Section 3.2 below, where we indeed
prove optimal rates of convergence for aggregation on the Fourier dictionary.

2.2.2. Lower bounds for the small-ball coefficients

The following assumption, that states the equivalence between the L∞ and L2 norms for func-
tions in the linear model m, is satisfied by many classical functional bases:

(A1) Take S = {s1, . . . , sD} ⊂ L2(P
X) a dictionary and consider its linear span m = Span(S).

Assume that there exists a positive constant L0 such that, for every s ∈ m,

‖s‖∞ ≤ L0
√

D‖s‖2. (2.7)

Remark 6. As soon as we are given a finite dimensional vector space of functions m, then it
holds

Rm := sup
s∈m,s ={0}

‖s‖∞
‖s‖2

< +∞,

since the sup-norm and the quadratic norm are equivalent on the finite dimensional space m. In
other words, Assumption (A1) is satisfied as soon as m is of finite dimension, with a parameter
L0 that may depend on the dimension D. Therefore, the strength of Assumption (A1) arises when
L0 can be chosen independent of the dimension.

Examples of linear models m satisfying Assumption (A1) with an absolute constant L0 are
given for instance in [4] and include many classical nonparametric models for functional estima-
tion, such as histograms and piecewise polynomials on a regular partition, compactly supported
wavelets and the Fourier basis.

It appears that when a model m satisfies Assumption (A1), the small-ball condition is verified,
but with constants that may depend on the dimension of the model.

Proposition 7. If a linear model m is of finite linear dimension, then it achieves the small ball
condition (with parameters (κ0, β0) that may depend on the dimension). More precisely, for any
κ0 ∈ (0,1), m achieves in that case the small ball condition with parameter β0 achieving the
following constraint,

β0 ≥ 1 − κ2
0

R2
m

> 0, (2.8)

where Rm = sups∈m,s =0 ‖s‖∞/‖s‖2 is defined in Remark 6 above. Consequently, if m satisfies
Assumption (A1) then inequality (2.1) of the small-ball condition given in Definition 1 is verified
for any κ0 ∈ (0,1) with β0 = (1 − κ2

0 )L−2
0 D−1.

The proof of Proposition 7, detailed in Section 4, is a direct application of Paley–Zygmund’s
inequality (see [10]). [19] also noticed that more generally, Paley–Zygmund’s inequality could be
used to prove the small-ball property when for some p > 2, the Lp and L2 norms are equivalent,
or also for subgaussian classes, where the Orlicz ψ2 norm is controlled by the L2 norm, see [16].
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These conditions are weaker than the control of the L∞ norm by the L2 norm, however, as
proved in the comments of Proposition 4 – see Section 2.2.1 –, the dependence in D for β0 given
in Proposition 7 above is sharp for localized bases such as histograms, piecewise polynomials
and wavelets. Hence, the control of the L∞ norm by the L2 norm is in some way optimal in these
cases, and weaker assumptions could not imply some improvements on the behavior of the small
ball property for these models.

As for the Fourier basis, the conjunction of Propositions 4 and 7 gives that for such a basis, for
any κ0 ∈ (0,1),

1 − κ2
0

2D
≤ β0 ≤ 31/4

√
2√

κ0D3/4
,

since, for the lower bound, Assumption (A1) is satisfied with L0 = √
2 (see, for instance, [4]). As

detailed in Section 2.2.1 above, it is an open question to find the right dependence in the dimen-
sion for β0. Moreover, some related questions have a potential impact on compressed sensing
theory as developed in [17].

3. Optimal excess risks bounds for Fourier expansions

We have shown in Section 2 that the small-ball condition is satisfied for linear models such as
histograms, piecewise polynomials, compactly supported wavelets or the Fourier basis, but with
constants that depend on the dimension of the model in such a way that using this condition to
analyze the rate of convergence of ERM on these models may lead to suboptimal bounds.

Our aim in this section is to show that optimal rates of linear aggregation can indeed be attained
by ERM in the Fourier case, that is when the model m is spanned by the D first elements of the
Fourier basis. We consider two different settings.

In the bounded setting, exposed in Section 3.1, we prove sharp upper and lower bounds for the
excess risk that more precisely ensure its concentration around a single deterministic point.

In the general setting treated in Section 3.2, we refine the small-ball arguments developed in
[19] by focusing on certain directions where the small-ball is uniform and we also obtain optimal
rates of linear aggregation when the noise is only assumed to have a second moment.

3.1. Excess risk’s concentration

We focus in this section on the bounded setting. Let us precisely detail our assumptions. Assume
that the design X is uniformly distributed on X =[0,2π ] and that the regression function s∗ sat-
isfies s∗(0) = s∗(2π). Then the Fourier basis is orthonormal in L2(P

X) and we consider a model
m of dimension D (assumed to be odd) corresponding to the linear vector space spanned by the
first D elements of the Fourier basis. More precisely, if we set ϕ1 ≡ 1, ϕ2k(x) = √

2 cos(kx)

and ϕ2k+1(x) = √
2 sin(kx) for k ≥ 1, then (ϕj )

D
j=1 is an orthonormal basis of (m,‖ · ‖2), for an

integer l satisfying 2l + 1 = D. Assume also:
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• (H1) The data and the linear projection of the target onto m are bounded by a positive finite
constant A:

|Y | ≤ A a.s. (3.1)

and

‖sm‖∞ ≤ A. (3.2)

Hence, from (H1) we deduce that

‖s∗‖∞ = ∥∥E[Y |X = ·]∥∥∞ ≤ A (3.3)

and that there exists a constant σmax > 0 such that

σ 2(Xi) ≤ σ 2
max ≤ A2 a.s. (3.4)

• (H2) The heteroscedastic noise level σ is not reduced to zero:

‖σ‖2 =
√
E
[
σ 2(X)

]
> 0.

We are now in position to state our result.

Theorem 8. Let A+,A−, α > 0 and let m be a linear vector space spanned by a dictionary
made of the first D elements of the Fourier basis. Assume (H1)–(H2) and take ϕ = (ϕk)

D
k=1 the

Fourier basis of m. If it holds

A−(lnn)2 ≤ D ≤ A+
n1/2

lnn
, (3.5)

then there exists a constant A0 > 0, only depending on α,A−,A+ and on the constants A,‖σ‖2
defined in assumptions (H1)–(H2), such that by setting

εn = A0 max

{√
lnn

D
,

D√
n

}
, (3.6)

we have for all n ≥ n0(α),

P

[
(1 − εn)

D

n
C2

m ≤ ‖ŝm − sm‖2
2 ≤ (1 + εn)

D

n
C2

m

]
≥ 1 − 3n−α, (3.7)

where ŝm is the least-squares estimator on m, defined in (1.2), and

C2
m = E

[
σ 2(X)

]+ ‖s∗ − sm‖2
2. (3.8)

The rate of convergence of ERM for linear aggregation with a Fourier dictionary exhibited by
Theorem 8 is thus of the order D/n, which is the optimal rate of linear aggregation. In particular,
this outperforms the bounds obtained in Theorem 2.2 of [2] under same assumption as Assump-
tion (A1), that is satisfied in the Fourier case, but also under more general moment assumptions
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on the noise. Indeed, as noticed in [19], the bounds obtained by [2] are in this case of the order
D3/n, for models of dimension lower than n1/4. In Theorem 8, our condition on the permitted
dimension is less restrictive, since models with dimension close to n1/2 are allowed.

Concerning the assumptions, uniform boundedness of the projection of the target onto the
model, as described in (3.2), is not so restrictive and is guaranteed as soon as the regression
function belongs to a broad class of functions named the Wiener algebra, that is whenever the
Fourier coefficients of the regression function are summable (in other words when the Fourier
series of the regression function is absolutely convergent). For instance, functions that are Hölder
continuous with index greater than 1/2 belong to the Wiener algebra [12]. For more on the
Wiener algebra, see Section 3.2 below.

Furthermore, Theorem 8 gives an information that is far more precise than the rate of conver-
gence of the least-squares estimator. Indeed, Inequality (3.7) of Theorem 8 actually proves the
concentration of the excess risk of the least-squares estimator around one precise value, which is
DC2

m/n.
There are only very few and recent such concentration results for the excess risk of a M-

estimator in the literature and this question constitutes an exiting new line of research in learning
theory. Considering the same regression framework as ours, [29] has shown concentration bounds
for the excess risk of the least-squares estimator on models of piecewise polynomial functions.
Furthermore, these results have been recently extended in [25] to strongly localized bases, a class
of dictionaries containing in particular compactly supported wavelets.

In a slightly different context of least-squares estimation under convex constraint, [8] also
proved the concentration in L2 norm, with fixed design and Gaussian noise. Under the latter
assumptions, [24] have shown the excess risk’s concentration for the penalized least-squares
estimator. Finally, [32] recently proved some concentration results for some regularized M-
estimators. They also give an application of their results to a linearized regression context with
random design and independent Gaussian noise.

The proof of Theorem 8 is developed in Section 3. We make a recurrent use along our proofs
of classical Talagrand’s type concentration inequalities for suprema of the empirical process
with bounded arguments. We also make use of other tools from empirical process theory, such
as a control of variance of the empirical process with bounded arguments – see the proof of
Theorem 17 in Section 5.1.1.

3.2. A refined small-ball argument

As proved in Section 2 above, a direct application of results of [19] can not lead to the optimal rate
of convergence for linear aggregation via empirical risk minimization on the Fourier dictionary.

To recover better estimates, it seems reasonable then to look at a more refined property and
searching for “direction-dependent” estimates as proposed in [17] – see the quotation in Sec-
tion 2.2.1 above – seems a good option. Indeed, it is clear that in the directions of functions in
the dictionary for instance, that is for trigonometric functions, the constants are absolute. We fol-
low here this lead and this enables us to prove optimal rates of convergence for linear aggregation
on the Fourier dictionary.

As explained in the comments following Theorem 8 above, the assumptions needed for Theo-
rem 8 and especially Assumption (3.2) of uniform boundedness of the projection of the regression
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function, are ensured if the target belongs to the Wiener algebra, that is if Fourier coefficients are
summable. In this case of course, the projection of the target on a Fourier dictionary (with any
cardinality) is again in the Wiener algebra. We now denote A(T) the Wiener algebra. It holds, by
definition,

A(T) =
{
f =

∑
k≥1

βkϕk;
∑
k≥1

|βk| < +∞
}
.

We look here at some subsets of the Wiener algebra.

Definition 9. Let us take ν > 0 and denote, for a function f 2π -periodic, βk(f ) = 〈f,ϕk〉. We
define the set

�ν(L1,L2) =
{
f ∈ L∞(T);

∑
k≥1

kν
∣∣βk(f )

∣∣≤ L1 & ‖f ‖∞ ≥ L2

}
.

In the perspective of the small-ball approach, the interest of the set �ν(L1,L2) lies in the fol-
lowing proposition, ensuring that the small-ball condition (1) is fulfilled uniformly on �(L1,L2)

whenever ν > 1/2 and L2 > 0, for some constants (κ0, β0) that only depend on ν,L1 and L2.

Proposition 10. Fix ν > 1/2 and L1,L2 > 0. Take some function f ∈ �ν(L1,L2). Then for any
κ0 ∈ (0,1), it holds

P
(∣∣f (X)

∣∣≥ κ0‖f ‖2
)≥ (1 − κ2

0 )

4C2
ν

L2
2

L2
1

> 0,

with Cν =∑
k≥1 k−2ν < +∞. In other words, the small-ball condition (1) is satisfied uniformly

over �ν(L1,L2) with constants (κ0, β0), for κ0 ∈ (0,1) and β0 = C−2
ν L2

2L
−2
1 (1 − κ2

0 )/4.

It is clear from Definition 9 that for any ν > 0, �ν(L1,L2) ⊂ A(T). Furthermore, any function
of sup-norm greater than the constant L2 and belonging to a (periodic) Sobolev space Wγ of
parameter γ belongs to �ν(L1,L2), for some constant L1 and ν < γ − 1/2.

Recall that periodic Sobolev spaces Wγ := ⋃
L>0 W(γ,L) are defined as follows (see for

instance [30], Section 1.10), for any γ ∈ N∗,

W(γ,L) :=
{
f ∈ L2(T);f (γ−1) is absolutely continuous,

1

2π

∫ 2π

0

(
f (γ )(x)

)2
dx ≤ L & f (j)(0) = f (j)(1), j = 0,1, . . . , γ − 1

}
.

In addition, the regularity of periodic functions in Sobolev spaces can be directly read on
the order of magnitude of their Fourier coefficients. More precisely, for any γ ∈ N∗, Wγ =
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Q>0 W̃ (γ,Q), where

W̃ (γ,Q) :=
{
f ∈ L2(T);f =

∑
k≥1

βkϕk &
∑
k≥1

k2γ β2
k ≤ Q

}
.

This second characterization of Sobolev spaces Wγ allow to extend their definition to any γ > 0
and not only to integer valued γ . Thus, this is the definition we use in the following proposition.

Proposition 11. With the previous notations, it holds for any ν > 0,[ ⋃
{γ :1/2+ν<γ }

W̃ (γ,Q) ∩ {f ∈ L∞(T); ‖f ‖∞ ≥ L2
}]⊂ �ν(L1,L2),

whenever Q ≤ L2
1(
∑

k≥1 k2(ν−γ ))−1 < +∞.

Proposition 11 is appealing since the Fourier dictionary is known to achieve minimax rates of
convergences for the estimation of a regression function, whenever it lies in a Sobolev space Wγ

of parameter γ > 1 ([30]). Indeed, by Proposition 10, we are interested by the sets �ν(L1,L2)

for ν > 1/2 and Proposition 11 implies that such sets contain function of Sobolev regularity
γ > ν + 1/2 > 1. This latter fact thus legitimate the focus on the sets �ν(L1,L2), ν > 1/2, to
deal with the performance of linear aggregation from the Fourier dictionary.

Let us turn now to the main result of this section.

Theorem 12. Fix ν > 1/2, L1,L2 > 0 and assume that s∗ ∈ �ν(L1,L2). Let S = {ϕ1, . . . , ϕD}
be a dictionary made of the D first elements of the Fourier basis. Set ζ = Y − sm(X), where
sm is the projection of the regression function s∗ onto m. Assume that ζ is independent of X

and Eζ 2 ≤ σ 2. Then there exists three constants Lv,LL1,L2,σ,ν , Cν,L1,L2 > 0 and an integer
n0(ν,L1,L2) such that, if

0 <
(
2
√

2L1L
−1
2

)1/ν ≤ D ≤ Lν(n/ lnn)
1

2(ν+1) (3.9)

and x ∈ (0,LL1,L2,σ,νn/D2(ν+1)), the least-squares estimator ŝm on m, defined in (1.2), satisfies
for any n ≥ n0(ν,L1,L2), on an event of probability at least 1 − exp(−β2

0n/4) − n−2 − (2/x),

‖ŝm − sm‖2
2 ≤ Cν,L1,L2

σ 2Dx

n
. (3.10)

The bound (3.10) obtained in Theorem 12 is optimal in the sense that it achieves the optimal
rate D/n of linear aggregation. Moreover, the only moment needed on the noise term ζ is a
second moment, which is a minimal assumption. The proof, exposed in Section 5.2, is based on
a localization of the least-squares estimator on directions of uniform small-ball property.

Compared to Theorem 8, where we also derived optimal rates of aggregation, but in the
bounded setting, we have a stronger assumption on the regularity of the target. Indeed, in Theo-
rem 12 s∗ is assumed to belong to some �ν(L1,L2), ν > 1/2, whereas in Theorem 8, we only
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assume that the projection sm of the target onto the model m is uniformly bounded by a constant
independent of the dimension, which is achieved as soon as s∗ belongs to the Wiener algebra
A(T). It appears to be the price to pay to deal with a general noise term, but as explained earlier
in this section, the sets �ν(L1,L2), ν > 1/2, are natural when dealing with the performance of
the Fourier dictionary.

Finally, the range of considered dimensions in (3.9) is fairy reasonable, the upper bound being
polynomial in n. In addition, the lower bound, of the order of a constant, is very mild and ensures
that the projection of the regression function onto the model does not vanish in sup-norm.

4. Proofs related to Section 2

Proof of Proposition 3. Take f ∈ m\{0}. Then, it holds

β0 ≤ P
(∣∣f (X)

∣∣≥ κ0‖f ‖2
)≤ P

(
f (X) = 0

)
which readily gives (2.3). Furthermore, as P(|f (X)| ≥ κ‖f ‖2) = 0 for κ > ‖f ‖∞/‖f ‖2, it holds
κ0 ≤ ‖f ‖∞/‖f ‖2, which implies (2.4) by minimizing the latter bound over all f ∈ m\{0}. Now,

β0 ≤ P
(∣∣f (X)

∣∣≥ κ0‖f ‖2
)= P

( |f (X)|
κ0‖f ‖2

≥ 1

)
≤
∫
X

( |f (x)|
κ0‖f ‖2

)q

dP X(x) =
( ‖f ‖q

κ0‖f ‖2

)q

,

and by taking the infimum over f ∈ m\{0}, this thus proves (2.5) and imply β0κ
2
0 ≤ 1 for q = 2.

Finally, when m contains the function identically equal to one, then inff ∈m\{0} ‖f ‖∞‖f ‖−1
2 = 1,

which implies κ0 ≤ 1. �

Proof of Proposition 4. Recall that D = 2l + 1 is the linear dimension of mD and take (β0, κ0)

satisfying the small ball condition on mD . Define the lth Fejér kernel Fl as follows,

Fl(t) =

⎧⎪⎨⎪⎩
sin2((l + 1)t/2)

(l + 1) sin2(t/2)
, t ∈ [−π,π]\{0},

l + 1, t = 0.

Properties of Fl are well-known, see, for instance, [3], Section 4.15. In particular, Fl ∈ mD ,
Fl ≥ 0, ‖Fl‖∞ ≤ l + 1 = (D + 1)/2. Furthermore,

∫ π

−π
Fl(t) dt = 2π which by positivity of Fl

gives ‖Fl‖1 = 1. We also have, for all t ∈ [−π,π],

Fl(t) =
l−1∑

k=−l+1

(
1 − |k|

l

)
eikt .



2190 A. Saumard

Using this formula, one easily computes the quadratic norm of the Fejér kernel, for any l ≥ 2,

‖Fl‖2
2 = 1 + 2

l−1∑
k=1

(
1 − k

l

)2

= 1 + 2

l2

l−1∑
j=1

j2 ≥ l

6
.

Now, since for any ε ∈ (0,π],

sup
ε≤|t |≤π

Fl(t) ≤ 1

l + 1

1

sin2(ε/2)
≤ 1

l + 1

(
π

ε

)2

,

it holds

P
(∣∣Fl(X)

∣∣≥ κ0‖Fl‖2
)≤ (

κ0‖Fl‖2(l + 1)
)−1/2 .

Consequently, β0 ≤ (κ0‖Fl‖2(l + 1))−1/2 ≤ Cκ
−1/2
0 D−3/4, which gives the result. �

Proof of Corollary 5. From Proposition 4, it holds

β0κ
1/2
0 ≤ CD−3/4.

Furthermore, as the model contains the constants, we have κ0 ≤ 1 and by combining the two
inequalities, β0κ

2
0 ≤ CD−3/4, which gives the result. �

Proof of Proposition 7. Take s ∈ m\{0} and κ0 ∈ (0,1). Set �κ0(s) = {|s(X)| ≥ κ0‖s‖2}. By
Paley–Zygmund’s inequality (Corollary 3.3.2 in [10]), it holds

P
(
�κ0(s)

)≥(1 − κ2
0

) ‖s‖2
2

‖s‖2∞
≥ 1 − κ2

0

R2
m

,

which gives (2.8). The rest of Proposition 7 follows from the latter bound via a simple application
of assumption (A1) to bound from above the term Rm. �

5. Proofs related to Section 3

5.1. Proof of Theorem 8

Aiming at clarifying the proofs, we generalize a little bit the Fourier framework by invoking the
following assumption, that is satisfied for Fourier expansions. From now on, m ⊂ L2(P

X) is
considered to be a linear model of dimension D, not necessarily built from the Fourier basis.

• (H3) Uniformly bounded basis: there exists an orthonormal basis ϕ = (ϕk)
D
k=1 in (m,‖ · ‖2)

that satisfies, for a positive constant um,

‖ϕk‖∞ ≤ um.
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Notice that in the Fourier case, (H3) is valid by taking um ≤ √
2.

Remark 13. By Cauchy–Schwarz inequality, we also see that when (H3) is valid, it holds

sup
s∈m,‖s‖2≤1

‖s‖∞ ≤ um

√
D. (5.1)

Let us denote ψm(x, y) = y − sm(x). Then, if (ϕk)
D
k=1 is formed by the first D elements of the

Fourier basis, the quantity Cm defined in (3.8) satisfies

C2
m = 1

D

D∑
k=1

Var(ψm · ϕk). (5.2)

We will thus prove a slightly more general version than Theorem 8, assuming that (H3) holds
and proving Inequality (3.7) with the term Cm given by (5.2).

We are now in position to prove Theorem 8.

Proof of Theorem 8. Take s =∑D
k=1 βkϕk ∈ m. The empirical risk on s writes

Pn

(
γ (s)

)= Pn

[(
y −

(
D∑

k=1

βkϕk(x)

))2]

= Pny
2 − 2

D∑
k=1

βkPn

(
yϕk(x)

)+
D∑

k,l=1

βkβlPn(ϕkϕl).

By taking the derivative with respect to βl in the last quantity, we get

1

2

∂

∂βl

Pn

[(
y −

(
D∑

k=1

βkϕk(x)

))2]
(5.3)

= −Pn

(
yϕl(x)

)+
D∑

k=1

βkPn(ϕkϕl).

Hence, we see that if β̂m = (β̂k)
D
k=1 ∈ R

D is a critical point of the empirical risk (seen as a
function on R

D), then it satisfies the following random linear system,

(ID + An,D)β̂m = Ey,n, (5.4)

where Ey,n = (Pn(yϕk(x)))Dk=1 ∈ R
D , ID is the identity matrix of dimension D and An,D =

((Pn − P)(ϕkϕl))k,l=1,...,D is a D × D matrix. Now, by Inequality (5.11) in Lemma 14 below,
a positive integer n0(um,α) can be found such that for all n ≥ n0, we have on an event �n of
probability at least 1 − n−α , ∣∣‖An,D‖∣∣≤ LA−,um,α

D√
n

≤ 1

2
, (5.5)
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where for a D × D matrix A, the operator norm |‖ · ‖| associated to the quadratic norm | · |2 on
vectors is ∣∣‖A‖∣∣= sup

x =0

|Ax|2
|x|2 .

We restrict now on analysis on the event �n. Then we deduce from (5.5) that (ID + An,D) is a
non-singular D × D matrix and, as a consequence, that the linear system (5.4) admits a unique
solution β̂m for any n ≥ n0(um,α). Moreover, since Pn(y − (

∑D
k=1 βkϕk(x)))2 is a nonnegative

quadratic functional with respect to (βk)
D
k=1 ∈ R

D we deduce that for any n ≥ n0(um,α), β̂m

achieves on �n the unique minimum of Pn(y−(
∑D

k=1 βkϕk(x)))2 on R
D , thus ŝm =∑D

k=1 β̂kϕk .
Now, if we denote βm = (β∗,k)

D
k=1 the vector such that sm =∑D

k=1 β∗,kϕk , then from (5.4) we
obtain

(ID + An,D)(β̂m − βm) = Fy,n,

where Fy,n := Ey,n − (ID + An,D)βm ∈ R
D . Furthermore, straightforward computations give,

Fy,n = (
(Pn − P)(ψ1,mϕk)

)D
k=1, (5.6)

where ψ1,m(x, y) = y − sm(x), (x, y) ∈ X ×R. Finally, for any n ≥ n0(um,α) we get that,

β̂m − βm = (ID + An,D)−1Fy,n (5.7)

and

‖ŝm − sm‖2
2 = |β̂m − βm|22 = ∣∣(ID + An,D)−1Fy,n

∣∣2
2. (5.8)

By setting Bn,D = (ID + An,D)−1 − ID , it thus holds,∣∣‖ŝm − sm‖2
2 − |Fy,n|22

∣∣ = ∣∣∣∣(ID + Bn,D)Fy,n

∣∣2
2 − |Fy,n|22

∣∣
= ∣∣|Bn,DFy,n|22 + 2〈Fy,n,Bn,DFy,n〉

∣∣ (5.9)

≤ (∣∣‖Bn,D‖∣∣2 + 2
∣∣‖Bn,D‖∣∣)|Fy,n|22

and for any n ≥ n0(um,α),

∣∣‖Bn,D‖∣∣≤ |‖An,D‖|
1 − |‖An,D‖| ≤ 2

∣∣‖An,D‖∣∣≤ LA−,um,α

D√
n

. (5.10)

Combining (5.8) and (5.10) implies that, for any n ≥ n0(um,α),

∣∣‖ŝm − sm‖2
2 − |Fy,n|22

∣∣≤ LA−,um,α

D√
n
|Fy,n|22,

and the proof simply follows by using Lemma 15 together with the latter inequality. �



Optimality of ERM in linear aggregation 2193

Lemma 14. Recall that An,D = ((Pn − P)(ϕkϕl))k,l=1,...,D is a D × D matrix and that for a
D × D matrix A, the operator norm |‖ · ‖| associated to the quadratic norm on the vectors is

∣∣‖A‖∣∣= sup
x =0

|Ax|2
|x|2 .

Then, under Assumption (H3), the following inequalities hold on an event of probability at least
1 − n−α ,

∣∣‖An,D‖∣∣≤ Lum,α

D√
n

(
1 +

√
lnn

D

)
≤ 1

2
. (5.11)

Proof. Let us denote B2 the unit ball of (m,‖ · ‖2). It holds,∣∣‖An,D‖∣∣2 = sup
|x|2=1

|An,Dx|22

= sup
|x|2=1

D∑
k=1

(
D∑

l=1

xl(Pn − P)(ϕkϕl)

)2

= sup
s∈B2

D∑
k=1

(
(Pn − P)(ϕks)

)2
= sup

s,t∈B2

(
(Pn − P)(s · t))2.

Hence, ∣∣‖An,D‖∣∣= sup
s,t∈B2

(Pn − P)(st). (5.12)

We will now apply Bousquet’s concentration inequality (5.19) to control the deviations of the
supremum of the empirical process (5.12). We have,

E
[∣∣‖An,D‖∣∣] ≤ E

1/2[∣∣‖An,D‖∣∣2]≤ E
1/2

[
D∑

k,l=1

(Pn − P)2(ϕkϕl)

]

≤
√∑D

k,l=1 E[ϕ2
kϕ2

l ]
n

≤ umD√
n

,

where we used Assumption (H3) in the last inequality. Furthermore, using (H3) and Remark 13,

sup
s,t∈B2

V(st) ≤ sup
s∈B2

‖s‖2∞ ≤ u2
mD and sup

s,t∈B2

‖st‖∞ ≤ sup
s∈B2

‖s‖2∞ ≤ u2
mD.
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Hence, Bousquet’s concentration inequality (5.19) gives (by taking F = {st; s, t ∈ B2} and ε =
1), for any x ≥ 0,

P

[∣∣‖An,D‖∣∣≥ umD√
n

+ um

√
2Dx

n
+ u2

mDx

3n

]
≤ exp(−x).

Now, we get (5.11) by taking x = α lnn in the latter inequality. �

Lemma 15. Let us denote ψm(x, y) = y − sm(x). Assume that (H1)–(H3) and recall that Fy,n =
((Pn − P)(ψmϕk))

D
k=1 ∈ R

D . Then

P

((
1 − LA,A+,A−,um,‖σ‖2,α

√
lnn

D

)
D

n
C2

m ≤ ‖Fy,n‖2
2

)
≥ 1 − n−α (5.13)

and

P

(
‖Fy,n‖2

2 ≤
(

1 + LA,A+,A−,um,‖σ‖2,α

√
lnn

D

)
D

n
C2

m

)
≥ 1 − n−α, (5.14)

where

C2
m = 1

D

D∑
k=1

Var(ψm · ϕk).

Proof. It holds

‖Fy,n‖2 =
√√√√ D∑

k=1

(
(Pn − P)(ψmϕk)

)2 = sup
s∈B2

(Pn − P)(ψms).

We are thus reduced to the study of the supremum of an empirical process. We have, by the
hypotheses (H1), (H3) and Remark 13,

σ 2 := sup
s∈B2

Var(ψms) ≤ ‖ψm‖2∞ ≤ 4A2 and b := sup
s∈B2

‖ψms‖∞ ≤ 2Aum

√
D. (5.15)

Furthermore, it holds

E
[‖Fy,n‖2

2

]= D

n
C2

m,

which gives that for κn = 2AC−1
m D−1/2 max{1;√A+um}, the two following inequalities are

satisfied,

κ
2
nE
[‖Fy,n‖2

2

]≥ σ 2

n

and

κ
2
n

√
E
[‖Fy,n‖2

2

]≥ b

n
.
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Hence, by Theorem 17 applied with F = B2, we have(
1 − LA,A+,um,‖σ‖2√

D

)
Cm

√
D

n
≤ E

[‖Fy,n‖2
]
. (5.16)

We also have

E
[‖Fy,n‖2

]≤
√
E
[‖Fy,n‖2

2

]= Cm

√
D

n
. (5.17)

Now, by combining the bounds obtained in (5.17) and (5.16) with Inequality (5.21) applied with
F = B2, ε = n−1/4

√
lnn and x = α lnn, we get that on an event of probability at least 1 − n−α ,

‖Fy,n‖2 ≥ −
√

2σ 2α lnn

n
+ (1 − ε)E

[‖Fy,n‖2
]−(

1

ε
+ 1

)
bα lnn

n

≥
(

1 − LA,A+,um,‖σ‖2,α

√
lnn

D

)√
D

n
Cm.

Then easy calculations allow to derive Inequality (5.14) from the latter lower bound.
Finally, combining the bounds obtained in (5.17) and (5.16) with Inequality (5.19) applied

with F = B2, ε = n−1/4
√

lnn and x = α lnn, we also get that on an event of probability at least
1 − n−α ,

‖Fy,n‖2 ≤
√

2σ 2α lnn

n
+ (1 + ε)E

[‖Fy,n‖2
]+(

1

ε
+ 1

3

)
bα lnn

n

≤
(

1 + LA,A+,um,‖σ‖2,α

√
lnn

D

)√
D

n
Cm,

which readily gives (5.13). �

5.1.1. Probabilistic tools

We recall here the main probabilistic results that are instrumental in the proof of Theorem 8
above.

Denote by

Pn = 1

n

n∑
i=1

δξi

the empirical measure associated to the sample (ξ1, . . . , ξn) and by

‖Pn − P‖F = sup
f ∈F

∣∣(Pn − P)(f )
∣∣

the supremum of the empirical process over F .
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We turn now to concentration inequalities for the empirical process around its mean. Bous-
quet’s inequality [6] provides optimal constants for the deviations at the right. Klein–Rio’s in-
equality [14] gives sharp constants for the deviations at the left, that slightly improves Klein’s
inequality [13].

Theorem 16. Let (ξ1, . . . , ξn) be n i.i.d. random variables having common law P and taking
values in a measurable space Z . If F is a class of measurable functions from Z to R satisfying∣∣f (ξi) − Pf

∣∣≤ b a.s., for all f ∈F, i ≤ n,

then, by setting

σ 2
F = sup

f ∈F
{
P
(
f 2)− (Pf )2},

we have, for all x ≥ 0,
Bousquet’s inequality:

P

[
‖Pn − P‖F −E

[‖Pn − P‖F
]≥

√
2
(
σ 2
F + 2bE

[‖Pn − P‖F
])x

n
+ bx

3n

]
(5.18)

≤ exp(−x)

and we can deduce that, for all ε, x > 0, it holds

P

[
‖Pn − P‖F −E

[‖Pn − P‖F
]≥

√
2σ 2

F
x

n
+ εE

[‖Pn − P‖F
]+(

1

ε
+ 1

3

)
bx

n

]
(5.19)

≤ exp(−x).

Klein–Rio’s inequality:

P

[
E
[‖Pn − P‖F

]− ‖Pn − P‖F ≥
√

2
(
σ 2
F + 2bE

[‖Pn − P‖F
])x

n
+ bx

n

]
(5.20)

≤ exp(−x)

and again, we can deduce that, for all ε, x > 0, it holds

P

[
E
[‖Pn − P‖F

]− ‖Pn − P‖F ≥
√

2σ 2
F

x

n
+ εE

[‖Pn − P‖F
]+(

1

ε
+ 1

)
bx

n

]
(5.21)

≤ exp(−x).

The following theorem is proved in [29], Corollary 25. It can be derived from a Theorem by
Rio [28], improving on previous results by Ledoux, and controlling the variance of the supremum
of an empirical process with bounded arguments (see also Theorem 11.10 in [5]).
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Theorem 17. Under notations of Theorem 16, if some κn ∈ (0,1) exists such that

κ
2
nE
[‖Pn − P‖2

F
]≥ σ 2

n

and

κ
2
n

√
E
[‖Pn − P‖2

F
]≥ b

n

then we have, for a numerical constant A1,−,

(1 −κnA1,−)

√
E
[‖Pn − P‖2

F
]≤ E

[‖Pn − P‖F
]
.

5.2. Proofs related to Section 3.2

Proof of Proposition 10. Take f ∈ �ν(L1,L2) and κ0 ∈ (0,1). Then,

‖f ‖∞ ≤ √
2
∑
k∈N∗

∣∣βk(f )
∣∣

(5.22)

≤ √
2
√

L1

√√√√∑
k∈N∗

|βk(f )|
kν

,

where the second inequality follows from Cauchy–Schwarz inequality. Furthermore, by Cauchy–
Schwarz inequality again,

∑
k∈N∗

|βk(f )|
kν

≤
(∑

k∈N∗

1

k2ν

)1/2(∑
k∈N∗

β2
k (f )

)1/2

=√
Cν‖f ‖2, (5.23)

with Cν := ∑
k∈N∗ k−2ν < +∞ since ν > 1/2. Combining (5.22), (5.23) and the fact that

‖f ‖∞ ≥ L2 > 0, we get

‖f ‖∞ ≤ ‖f ‖2∞
L2

≤ 2Cν

L1

L2
‖f ‖2.

The conclusion then follows from Paley–Zygmund’s inequality (Corollary 3.3.2 in [10]), since it
holds

P
(∣∣f (X)

∣∣≥ κ0‖f ‖2
)≥(1 − κ2

0

) ‖f ‖2
2

‖f ‖2∞
≥ (1 − κ2

0 )

4C2
ν

L2
2

L2
1

> 0. �

We turn now to the proof of Theorem 12. The idea is to localize the calculations on a subset
of the model m, containing the estimator ŝm w.h.p. and achieving the small-ball condition with
some absolute constants. Therefore, we first need the following result, which is a direct extension
of Theorem A in [19].
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Theorem 18. Let S = {s1, . . . , sD} ⊂ L2(P
X) be a dictionary. Assume that a set m0 ⊂ m :=

Span(S) satisfies the small-ball condition with constants κ0 and β0 (see Definition 1 above)
and contains, on an event �0, the least-squares estimator ŝm on m, defined in (1.2). Let n ≥
(400)2D/β2

0 and set ζ = Y − sm(X), where sm is the projection of the regression function s∗
onto m. Assume further that one of the following two conditions holds:

1. ζ is independent of X and Eζ 2 ≤ σ 2, or
2. |ζ | ≤ σ almost surely.

Then the estimator ŝm satisfies for every x > 0, with probability at least 1 − P(�c
0) −

exp(−β2
0n/4) − (1/x),

‖ŝm − sm‖2
2 ≤

(
16

β0κ
2
0

)2
σ 2Dx

n
.

Theorem 18 ensures that if an information is available w.h.p. on the location of the estimator
on the model m, then it may be used to derive better rates by taking advantage of better small-ball
constants achieved on the restricted set containing the estimator.

The proof is omitted, since a careful reading of the proof of Theorem A in [19] allows to
conclude that using a localization of the estimator ŝm does not change the reasoning, neither the
validity of the arguments.

The following proposition states that indeed, when the regression function s∗ is sufficiently
regular, then so is the least-squares estimator on the first elements of the Fourier basis.

Proposition 19. Take v,L1,L2, z > 0 and assume that s∗ ∈ �ν(L1,L2). For a dimension D

satisfying

0 <
(
2
√

2L1L
−1
2

)1/ν ≤ D ≤ Lν(n/ lnn)
1

2(ν+1)

and for z ≤ LL1,L2,σ,νn/D2(ν+1), it holds

P

(
ŝm ∈ �ν

(
2L1,

L2

4

))
≥ 1 − n−2 − 1/z.

We are now in a position to prove Theorem 12. The proof of Proposition 19 is thus postponed
after the proof of Theorem 12.

Proof of Theorem 12. Apply Theorem 18 with

�0 =
{
ŝm ∈ �ν

(
2L1,

L2

4

)}
and x = z. Then Proposition 10 ensures that on �0 the small-ball is achieved with parameters
κ0 = 2−1/2 and β0 = C−2

ν L2
2L

−2
1 /8. Hence, the condition n ≥ (400)2D/β2

0 is satisfied for D ≤
Lν(n/ lnn)

1
2(ν+1) whenever n ≥ n0(ν,L1,L2). Theorem 12 then follows from Proposition 19 and

straightforward computations. �
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Before proving Proposition 19, let us denote, for any ν > 0,

�ν =
⋃

L1,L2>0

�ν(L1,L2) =
{
f =

∑
k≥1

βkϕk;
∑
k≥1

kν |βk| < +∞
}
.

For any f ∈ �ν , let us write ‖f ‖�,ν =∑
k≥1 kν |〈f,ϕk〉|. It is easily seen that ‖ · ‖�,ν is a norm

on the space �ν .
For a sequence β = (βk)k≥1 ∈R

N, we denote |β|�,ν =∑
k≥1 kν |βk| ∈R+ ∪{+∞} and �̃ν :=

{β = (βk)k≥1 ∈ R
N;∑k≥1 kν |βk| < +∞}. Furthermore, for a D × D matrix A, the operator

norm |‖ ·‖|�,ν associated to the norm | · |�,ν on the vectors (seen as sequences with finite support)
is ∣∣‖A‖∣∣

�,ν
:= sup

x∈RD,x =0

|Ax|�,ν

|x|�,ν

.

By simple computations it holds, for any matrix A = (Ak,l)1≤k,l≤D ,

∣∣‖A‖∣∣
�,ν

= sup

{∑
k=1

kν

∣∣∣∣∣
D∑

l=1

Ak,lxl

∣∣∣∣∣;x ∈ R
D &

D∑
k=1

kν |xk| = 1

}
(5.24)

=
∑
k=1

kν max
l=1,...,D

∣∣∣∣Ak,l

lν

∣∣∣∣.
Proof of Proposition 19. Let us write s∗ =∑

k≥1 βkϕk . Thus sm =∑D
k=1 βkϕk and since s∗ ∈

�ν(L1,L2), it holds
∑

k≥1 kν |βk| ≤ L1. Hence, it holds in particular
∑D

k=1 kν |βk| ≤ L1 and

‖s∗ − sm‖∞ ≤ √
2
∑

k≥D+1

|βk| ≤
√

2

Dν

∑
k≥D+1

kν |βk| ≤
√

2L1

Dν
.

Consequently, we have ‖s∗ − sm‖∞ ≤ L2/2 and so ‖sm‖∞ ≥ ‖s∗‖∞ − ‖s∗ − sm‖∞ ≥ L2/2
whenever D ≥ (2

√
2L1L

−1
2 )1/ν . Therefore, for such dimension D, we get sm ∈ �ν(L1,L2/2).

Now, we write ŝm =∑D
k=1 β̂kϕk , β̂m = (β̂k)

D
k=1 and we define the following set,

�� =
{∣∣‖An,D‖∣∣

�,ν
≤ 4(D + 1)ν+1

ν + 1

√
3 lnn

n
≤ 1

2

}

∩
{
|Fy,n|�,ν ≤ (D + 1)ν+1

ν + 1

√
2σ 2z

n

}
,

where the matrix An,D and the vector Fy,n are defined respectively in (5.4) and (5.6), where
(ϕk)

D
k=1 should stand for the first D elements of the Fourier basis this time. On ��, the matrix

ID + An,D is invertible and it holds β̂m − βm = (ID + An,D)−1Fy,n.
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From Lemmas 20 and 21, there exists an integer n0(ν) such that for any n ≥ n0(ν), P(��) ≥
1 − n−2 − 1/z. Furthermore, on ��, we have,

‖ŝm − sm‖�,ν = |β̂m − βm|�,ν ≤ ∣∣∥∥(ID + An,D)−1
∥∥∣∣|Fy,n|�,ν

(5.25)

≤ (
1 + 2

∣∣‖An,D‖∣∣
�,ν

)|Fy,n|�,ν ≤ 2(D + 1)ν+1

ν + 1

√
σ 2z

n

and

‖ŝm − sm‖∞ ≤ √
2

D∑
k=1

|β̂k − βk| ≤
√

2|β̂m − βm|�,ν ≤ 2
√

2(D + 1)ν+1

ν + 1

√
σ 2z

n
. (5.26)

Finally, it is easily seen from (5.25) and (5.26) that there exists a constant LL1,L2,σ,ν such that if
z ≤ LL1,L2,σ,νn/D2(ν+1), then ‖ŝm − sm‖�,ν ≤ L1 and ‖ŝm − sm‖∞ ≤ L2/4. �

Lemma 20. Recall that An,D = ((Pn −P)(ϕkϕl))k,l=1,...,D is a D ×D matrix. Then the follow-
ing inequalities hold on an event of probability at least 1 − D2n−α ,

∣∣‖An,D‖∣∣
�,ν

≤ 2(D + 1)ν+1

ν + 1

√
α lnn

n

(
1 +

√
α lnn

n

)
. (5.27)

Consequently, there exists a constant Lν > 0 such that for D ≤ Lν(n/ lnn)
1

2(ν+1) , it holds for any
n ≥ n0(ν), with probability at least 1 − n−2,

∣∣‖An,D‖∣∣
�,ν

≤ 4(D + 1)ν+1

ν + 1

√
3 lnn

n
≤ 1

2
. (5.28)

Proof. By (5.24) we have,

∣∣‖An,D‖∣∣
�,ν

=
D∑

k=1

kν max
l=1,...,D

∣∣∣∣ (Pn − P)(ϕkϕl)

lν

∣∣∣∣. (5.29)

Furthermore, for any k, l = 1, . . . ,D, it holds

V(ϕkϕl) ≤ ‖ϕk‖2∞E
[
ϕ2

l

]≤ 2 and ‖ϕkϕl‖∞ ≤ 2.

Hence, for any x > 0, we get by Bernstein’s inequality (see, for instance, [20]), that on an event
�k,l(x) of probability at least 1 − 2 exp(−x),

∣∣(Pn − P)(ϕkϕl)
∣∣≤ 2

√
x

n
+ 2x

n
.
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Then Identity (5.29) implies that, for any α > 0, on the event �D =⋂
1≤l≤k≤D �k,l(α lnn) of

probability greater than 1 − D2/nα ,

∣∣‖An,D‖∣∣
�,ν

≤ 2

(√
α lnn

n
+ α lnn

n

) D∑
k=1

kν

(5.30)

≤ 2(D + 1)ν+1

ν + 1

√
α lnn

n

(
1 +

√
α lnn

n

)
.

Thus (5.27) is proved and Inequality (5.28) can be deduced from it by simply taking α = 3. �

Lemma 21. Let us denote ψm(x, y) = y − sm(x). Recall that Fy,n = ((Pn − P)(ψmϕk))
D
k=1 ∈

R
D . Then, for any z > 0,

P

(
|Fy,n|�,ν ≤ (D + 1)ν+1

ν + 1

√
2σ 2z

n

)
≥ 1 − 1

z
. (5.31)

Proof. It holds

√
E
[|Fy,n|2�,ν

] =

√√√√√E

[(
D∑

k=1

kν
∣∣(Pn − P)(ψmϕk)

∣∣)2]

≤
D∑

k=1

kν
√
E
[
(Pn − P)2(ψmϕk)

]

≤ max
k=1,...,D

√
E[ψ2

mϕ2
k ]

n

D∑
k=1

kν

≤ (D + 1)ν+1

ν + 1

√
2σ 2

n
.

Then Lemma 21 follows from Markov’s inequality. �
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