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The Mallows and Generalized Mallows Models are two of the most popular probability models for distribu-
tions on permutations. In this paper, we consider both models under the Hamming distance. This models can
be seen as models for matchings instead of models for rankings. These models cannot be factorized, which
contrasts with the popular MM and GMM under Kendall’s-τ and Cayley distances. In order to overcome
the computational issues that the models involve, we introduce a novel method for computing the partition
function. By adapting this method we can compute the expectation, joint and conditional probabilities. All
these methods are the basis for three sampling algorithms, which we propose and analyze. Moreover, we
also propose a learning algorithm. All the algorithms are analyzed both theoretically and empirically, using
synthetic and real data from the context of e-learning and Massive Open Online Courses (MOOC).
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1. Introduction

Permutations appear naturally in a wide variety of domains, from Social Sciences [48] to Ma-
chine Learning [8]. Probability models over permutations are an active research topic in areas
such as preference elicitation [7], information retrieval [17], classification [9], etc. Some promi-
nent examples of these are models based on pairwise preferences [34], Placket–Luce [35,43], and
Mallows Models [36]. One can find in the recent literature on distributions on permutations both
theoretical discussions and practical applications, as well as extensions of all the aforementioned
models.

In this paper, we focus on the Mallows Model (MM), an exponential model which depends
on the definition of a distance for permutations. It is specified by the location parameter, σ0,
and a dispersion parameter, θ . There are multiple extensions of the MM. Some of the most
popular extensions are non-parametric models [38], infinite permutations [21,39] and mixture
models [14,40,42]. However, the Generalized Mallows Model (GMM) [19] is the most popular
among all these extensions. It is also an exponential model, which instead of one single spread
parameter, requires the definition of k spread parameters θj , each affecting a particular position
of the permutation. In this way, it is possible to model a distribution with more emphasis on the
consensus of certain positions of the permutation while having more uncertainty in some others.

The original definition of the MM included two different distances for permutations [36],
namely Kendall’s-τ and Spearman’s-ρ. However, in [16] this definition was extended to six
different distances, giving rise to the family of the distance-based probability models. The new
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distances considered were Hamming, Ulam, Cayley and Spearman’s-footrule. Kendall’s-τ has
become the most recurrent in both theoretical and applied studies due to its nice theoretical
properties. This attention of the community has led to several estimating and sampling processes
of the MM and GMM under the Kendall’s-τ distance [19,37].

Kendall’s-τ is a natural measure of discrepancy between permutations when they are inter-
preted as rankings and therefore, MM and GMM under the Kendall’s-τ distance are usually
found in the preference domain. Nevertheless, Kendall’s-τ is not adequate for measuring dif-
ferences between matchings, despite being possible to represent both matchings and rankings
with permutations. Moreover, other application fields, such as computer vision [30] or optimiza-
tion [5], have also encouraged the search for new efficient probabilistic models for non-ranking
permutation data. Recently, efficient algorithms for managing MM and GMM under the Cayley
distance have been proposed [25]. The MM and GMM under the Cayley distance have already
shown their utility in application problems such as the quadratic assignment problem (QAP) and
the Permutation Flowshop Scheduling Problem (PFSP) [6]

The Hamming distance is one of the most popular metrics for permutations [15,29,45]. Clearly,
it is not a natural measure of disagreement between rankings, but in the case when permutations
represent matchings of bipartite graphs, Hamming is the most reasonable choice.

In this paper, we use for the first time the GMM under the Hamming distance. For both MM
and GMM under the Hamming distance we propose efficient sampling and learning methods. In
order to reasoning over permutations, we derive expressions for the computation of the partition
function of the models, the expectation, the marginal and conditional probabilities.

This paper tries to bring MM and GMM to other domains apart from ranking so they can
be as useful for non-ranking permutation data as they are in the ranking domain. In particular,
we have focused on matchings. The differences between rankings and matchings are discussed
throughout the manuscript, including decomposition of the distance, the sufficient statistics, the
estimates, factorability, . . . In this way, the notation of permutations and matchings will be used
interchangeably. Special attention has been placed in the computational tractability of the opera-
tions, which are also empirically tested.

A good example of the applicability of the considered models is the multi-object tracking,
problem which considers (1) a set of objects moving around and (2) a vision system consisting
on some noisy sensors which are used to identify each of the objects and track them along time.
Typical domains are sport players, people in an airport or in the street or animals in a controlled
environment. In the particular context of a football match, suppose that there is a set of cameras
continuously monitoring the players. This imperfect system distinguishes the players and tries to
follow the track which each player is following along the match. In this context, a matching (rep-
resented by a permutation) σ = σ(1), . . . , σ (n) means that track 1 follows player σ(1). When
the players are not close to each others the system has no problem assigning a track to each
player. However, when two players are close to each other, the noisy system can get confused.
If there are several tracking systems, it can happen that different systems have different assign-
ments. Under this context, it is reasonable to assume that the sample of matchings of the different
sensors follow a MM of GMM for matchings. In other words, the sample is unimodal (there is
one only assignment with maximum probability) and the probability of any other assignment
different from the mode decays with its distance to the true assignment. Therefore, it is possible
to aggregate the information of all the systems by fitting a MM or GMM under the Hamming
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distance. Moreover, the dispersion parameters of the model can be interpreted as a measure of
confidence in the consensus, that is, the higher the dispersion parameter, the less probable that
the system has been confused for two players.

The full-class set problem [32] is an example of classification problem where matchings arise.
In the motivating application, a teacher who wants to automatically register the attendance at their
lessons uses a set of photographs of the students to learn a classifier. Then, for the faces detected
in a photograph of the whole classroom, the classifier individually predicts the identity of each
face knowing that no identity can be predicted twice. In other words, the classifier predicts a
matching between faces and photographs.

Another well-known example is the protein structure alignment problem [51]. For aligning
two proteins, one has to find a transformation of the features of the first protein to the features of
the second one. We can also think about it as a matching between the atoms in one protein and
atoms in the other. This problem can be posed as a weighted bipartite matching problem and a
distribution over the set of possible matchings is a way of capturing the uncertainty inherent to
the problem.

In this paper, we consider the probability distributions for matchings as those describe above.
Moreover, every domain in which permutations arise and the Hamming distance is the natural
measure of discrepancies between them, MM and GMM under the Hamming distance will be
more likely suitable than distributions designed for rankings. Throughout the paper, we include
discussion comparing the distance-based models under the Hamming and the Kendall’s-τ dis-
tances. The goal of the discussion is to support one of the main thesis of this paper, highlighting
that the differences between models are bigger than their similarities. It turns out that there is
no general method for the efficient computation of most expressions or factorization of general
MM. This means that the derivation of the computationally efficient expressions for sampling
and learning must be carefully carried out for each different distance. The algorithms to deal
with MM and GMM under Kendall’s-τ and Cayley distances are based on the possibility of
factorizing such models. Since MM and GMM cannot be factorized, we make use of different
machinery to obtain efficient sampling and learning algorithms.

The rest of the paper is organized as follows. Section 2 introduces the Hamming distance
and gives the necessary basic definitions and operations for permutations. Section 3 introduces
the probabilistic models considered. Section 3.1 gives efficient expressions for the normaliza-
tion constants of both Mallows and Generalized Mallows models under the Hamming distance,
which are the base for the sampling and learning procedures introduced in this paper. Section 4
introduces three sampling algorithms for the Mallows Model and two for the Generalized Mal-
lows. Section 5 deals with the estimation of the parameters of the distribution given a dataset of
permutations. In Section 7, the experimental evaluation is performed and Section 8 concludes the
paper.

2. Permutations: Basic definitions and preliminary results

Permutations are bijections of the set of integers {1, . . . , n} onto itself. They are usually denoted
with the Greek letters σ or π . From now on, we will use a notation where σ(i) = j means that
item j is in position i and represents the permutation σ as σ = σ(1)σ (2) · · ·σ(n). A special
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permutation which is worth mentioning is the identity permutation, e = 123 · · ·n which maps
each item j to position j .

By composing two permutations σ and π of n elements, we obtain a new permutation σ ◦ π

such that σ ◦ π(i) = σ(π(i)), which will be denoted as σπ . In general, the composition is not
commutative. Some exceptions to this general rule include the composition of a permutation σ

and its inverse σ−1, which results in the identity, σσ−1 = σ−1σ = e, and the composition with
the identity, σe = eσ = σ .

The Hamming distance between two permutations d(σ,π) counts the number of point-wise
disagreements they have, d(σ,π) = ∑n

j=1 1σ(j)�=π(j) where 1A denotes the indicator function
of a subset A. Its invariance property asserts that d(σ,π) = d(σγ,πγ ) for every permuta-
tion γ . Particularly taking γ = π−1 and since ππ−1 = e one can write, w.l.o.g., d(σ,π) =
d(σπ−1, e). The distance from any permutation to the identity is denoted as an univariate func-
tion d(σπ−1, e) = d(σπ−1) that will simplify the notation. The implications of the invariance
property are relevant since, as we will later explain, from now on we can w.l.o.g. assume that the
reference permutation is the identity.

A recurrent concept in the permutation literature is that of fixed point, namely a position of
the permutation in which σ(j) = j . In the same way, iff σ(j) �= j then j is an unfixed point.
Therefore, the Hamming distance between a permutation σ and the identity, d(σ ), counts the
number of unfixed points of σ , d(σ ) = ∑n

j=1 1σ(j)�=j .
Rather than the distance d(σ ), we will sometimes be interested in the sets of fixed and unfixed

points of σ . This information is encoded on H (σ ) = (H1(σ ), . . . ,Hn(σ )), a binary vector in
which Hj(σ ) = 0 iff σ(j) = j .

The H (σ ) vector is referred to as the distance decomposition since d(σ ) = ∑n
j=1 Hj(σ ). We

will use the expressions “σ has a fixed point at j”, σ(j) = j and Hj(σ ) = 0 interchangeably
throughout the paper. The concept of derangement is also relevant for the understanding of this
manuscript. A derangement is a permutation in which there are no fixed points.

Rankings and matchings. It is usually the case that both concepts are represented by permuta-
tions. However, the ranking involves the idea of an ordering among the items while the matching
is a sequence of assignments. Along this paper, we will notice the differences between both
concepts since the probability models for then behave very differently.

Let G = (V ,E) be a bipartite graph with 2 × n vertices. A matching is a bijection between
the items of the first set to the items of the second. The Hamming distance between the matching
σ and the identity matching counts the number of edges which differ in σ and e. Note that for
the edge from node j there is one such “correct” assignment and n − 1 “incorrect” assignments.
This binary behaviour is captured by the terms of the distance decomposition vector.

In order to compare the Hamming and the Kendall’s-τ distance decomposition vectors, let us
introduce a classical process for ranking a set of n items. This method is carried out as a sequence
of n stages. Let wi be the probability of item i of being selected as the favourite. The process
begins by randomly (proportionally to wi ) selecting the most preferred item for rank 1 in a first
stage, then randomly (proportionally to wi of the items not already selected) selecting the best
among the remaining items for rank 2 in the second stage and so on. We can define a vector
V(σ ) = (V1(σ ), . . . , Vn−1(σ )) where Vj (σ ) can be understood as a measure of how accurate the
decision at stage j of the ranking process was [11]. In this way, Vj (σ ) ranges from 0 (correct
decision, the most preferred item among the remaining ones was selected) to n − j (the worst
decision possible). The vector V(σ ) is also known as inversion vector.
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It is worth highlighting the following property for both distance decomposition vectors.

Property 1. While the terms of Hj(σ ) are not independent for a uniformly random permuta-
tion σ , the terms of the inversion vector Vj (σ ) are.

2.1. Results on enumerative combinatorics

Most results in this paper are based on combinatorial arguments. For example, it is recurrent the
case of counting the number of different derangements of n items, S(n). This expression [46,47]
is

S(d) = (d − 1) ∗ S(d − 1) + (d − 1) ∗ S(d − 2)

with S(0) = 1 and S(1) = 0. It follows that the number of permutations of n items at Hamming
distance d (in which d items are deranged) is

S(n, d) =
(

n

d

)
S(d).

The sequence S(n, d) for every d can be computed in time O(n).
Some results of the paper rely on the random generation of permutations at a given distance.

The fact that recursive descriptions of combinatorial objects can be translated into algorithms of
random generation is classical [18]. Several generators can also be found in the literature [26].
We refer the reader interested on more details to [25].

Note that the number of permutations that have fixed points at positions 1 ≤ i1 < i2 < · · · <

ik ≤ n is the same as the number of permutations that have fixed points at positions 1,2, . . . , k.
This count is denoted as f (n, k) and it is easy to see that f (n, k) = (n − k)!.

The same situation happens when we are counting the permutations with unfixed positions,
that is, the number of permutations such that have at least k unfixed points at positions 1 ≤ i1 <

i2 < · · · < ik ≤ n is the same as the number of permutations that have unfixed points at positions
1,2, . . . , k (being positions k + 1, . . . , n either fixed or unfixed). This count is denoted as g(n, k)

and can be computed using an inclusion-exclusion approach [47].

g(n, k) = n! +
k∑

i=1

(−1)i
(

k

i

)
f (n, i) = n! +

k∑
i=1

(−1)i
k!(n − i)!
i!(k − i)! . (2.1)

Equation (2.1) counts the number of permutations with at least k unfixed points in time O(n).
A detailed derivation of this expression can be found in [25].

2.2. Frequency matrix

The frequency matrix, F , is a summary of a sample of permutations {σ1, . . . , σm}. This matrix
is defined as an n × n-dimensional matrix where Fi,j counts the number of permutations in the
sample such that have item j at position i, that is, Fi,j = ∑m

s=1 1σs(i)=j . Matrix F contains the
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sufficient of the MM and GMM as we will show later. Moreover, it can be used to compute
d(σs, σ0) for every σs in the sample efficiently as follows.

Lemma 1. The sum of the distances from σ0 to each of the permutations in the sample
{σ1, . . . , σm} can be computed by means of the frequency matrix F as follows.

m∑
s=1

d(σs, σ0) =
m∑

s=1

n∑
j=1

Hj

(
σsσ

−1
0

) =
n∑

j=1

(m − F
σ−1

0 (j),j
).

The proof of Lemma 1 is given in the supplemental article [27].

2.3. Algebraic results

The efficient computation of several statistical quantities considered in this paper are based on the
calculation of the Elementary Symmetric Polynomials (ESP) on the parameters of the distribu-
tion, θ = (θ1, . . . , θn). In this section, we introduce the notion of ESP and show how to compute
them efficiently. Moreover, we will give an expression for their derivatives.

First of all, let us define the set Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 < · · · < ik ≤ n} as the set of all
the different groups of k ordered indices out of the n total indices {1, . . . , n}. The ESP of degree
k on a set of n variables, γk(X1, . . . ,Xn), is defined as follows:

γk(X1, . . . ,Xn) =
∑
r∈Rk

∏
j∈r

Xj .

By abusing notation, γk will be used to denote the ESP of degree k, γk = γk(X1, . . . ,Xn). The
ESP γk can be efficiently computed with the following recursion [2]:

γk(X1, . . . ,Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = 0,
n∑

j=1

Xj if k = 1,

γk(X1, . . . ,Xn−1) + γk−1(X1, . . . ,Xn−1)Xn otherwise.

(2.2)

By using the above formula, the computational complexity for computing the ESP γk(X1, . . . ,

Xn) is O(n2). Note that a naive computation will require time O(2n).
Splitting the ESP. In both learning and sampling processes, it is necessary to compute the

ESP on all the subgroups of n − 1 variables. The naive approach is to take each of the n possible
subgroups of n−1 variables and compute the ESP of every subgroup as shown in Equation (2.2).
This will require O(n3) time. We introduce a method for computing the ESP on all the subgroups
of n − 1 variables in O(n2).
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In the following lines, there is an example of the elementary symmetric polynomial on 4
variables. Each γk is computed by adding up every product inside the braces.

γ1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ 1
1 =

{
X1

γ̄ 1
1 =

⎧⎪⎨
⎪⎩

X2

X3

X4

γ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ 1
2 =

⎧⎪⎨
⎪⎩

X1X2

X1X3

X1X4

γ̄ 1
2 =

⎧⎪⎨
⎪⎩

X2X3

X2X4

X3X4

γ3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ 1
3 =

⎧⎪⎨
⎪⎩

X1X2X3

X1X2X4

X1X3X4

γ̄ 1
3 =

{
X2X3X4

γ4 =
⎧⎨
⎩

γ 1
4 =

{
X1X2X3X4

γ̄ 1
4 =

{
0.

As we can see, the terms are divided into two groups. By γ i
k we denote the subset of the terms

in γk that include the term Xi , and by γ̄ i
k the terms in γk that do not include Xi . Recall that

Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 < · · · < ik ≤ n}. We can now state that:

γ i
k =

∑
r∈A

∏
j∈r

Xj where A = {R ⊆ Rk|i ∈ R},

γ̄ i
k =

∑
r∈A

∏
j∈r

Xj where A = {R ⊆ Rk|i /∈ R}.

We introduce a recursion for computing γ i
k and γ̄ i

k for every 1 ≤ i, k ≤ n given γk in time
O(n2). It is based on the following two relations:

γ i
k = γ̄ i

k−1Xi ∀i ∈ {1, . . . , n}, (2.3)

γ̄ i
k = γk − γ i

k ∀i ∈ {1, . . . , n}. (2.4)

The recursive algorithm for computing γ i
k and γ̄ i

k for every 1 ≤ i, k ≤ n given γk is as follows.
Let the base cases be γ i

0 = γ̄ i
0 = 1 and let γk for 1 ≤ k ≤ n be computed as shown in Equa-

tion (2.2). Equations (2.3) and (2.4) define a recursive procedure to compute γ i
k and γ̄ i

k for all
1 ≤ i, k ≤ n in O(n2).

Derivatives. In the case of our probabilistic models, the variables in the ESP are exponential
functions of the form Xi = (exp(θi) − 1). Thus, the techniques for computing the derivatives
explained in [2] are not valid here. We give here an efficient expression for the first derivatives
with respect to θi which can be obtained by the chain rule:

∂γk

∂θi

= ∂γk

∂Xi

· ∂Xi

∂θi

= γ̄ i
k−1 exp(θi). (2.5)
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3. Mallows and generalized Mallows model

The Mallows Model (MM) is an exponential model for permutations based on distances. The
MM can be expressed as follows:

p(σ) = exp(−θd(σ,σ0))

ψ(θ)
where ψ(θ) =

∑
σ

exp
(−θd(σ,σ0)

)
. (3.1)

Here θ ∈R is a spread parameter, σ0 is the central permutation, d(σ,σ0) represents a distance
between σ and σ0 and ψ(θ) is the partition function. For a probability model on matchings, the
central permutation can be denoted as central matching. Note that when the dispersion parameter
θ is greater than 0, then σ0 is the mode, and the closer a permutation σ is to σ0, the larger p(σ).
On the other hand, with θ = 0, we obtain the uniform distribution and when θ < 0, then σ0 is the
anti-mode.

One can easily find situations in which the disagreement between permutations depend, not
only in the number of discrepancies, but also in the positions of those discrepancies. Consider the
example in the Introduction in which the matchings provided by several sensor systems is to be
aggregated into a single, consensus matching. Suppose that player 1 has not crossed with other
player along the match and therefore, most systems agree in the track associated to player 1.
However, players 2 and 3 have been very close to each other most of the time, so there is a larger
uncertainty regarding their tracks. Such situation can be modelled under the Generalized Mallows
Model (GMM), an extension of the MM. This is done by defining different spread parameter to
the track of each player. As far as the authors know, this is the first time that the GMM has been
considered under the Hamming distance.

In the same way as MM, the GMM is an exponential model and relies on a distance for permu-
tations. The main difference between both is that, while the MM uses a single spread parameter,
the GMM uses k spread parameters, each affecting a particular position of the permutation.
Moreover, in order to base the GMM on a particular distance, this distance must be decomposed
as a sum on k terms. In the case of the Hamming distance, the distance decomposition vector,
defined in Section 2.1, has dimension n. It follows that we can use the GMM under the Ham-
ming distance by defining an n-dimensional dispersion parameter, θ = (θ1, . . . , θn). It is defines
as follows:

p(σ) = exp(−∑n
j=1 θjHj (σσ−1

0 ))

ψ(θ)
where ψ(θ) =

∑
σ

exp

(
−

n∑
j=1

θjHj (σ )

)
.

The efficient management of the MM and GMM under Cayley and Kendall’s-τ distances rely
in the factorization of the distributions. Unfortunately, neither MM nor GMM under the Ham-
ming distance cannot be factorized since the Hamming distance cannot be posed as a sum of n

independent terms, as shown in Property 1 (page 1164) [19]. Moreover, even the naive compu-
tation of the partitioning function of MM and GMM is intractable for n > 10 in a reasonable
time regardless of the distance considered. This means that, in order to handle distributions of
permutations of medium-big size, it is necessary to rely in other alternatives.

Recall that the frequency matrix F defined in Section 2.2 contains the sufficient statistics of
the MM and GMM.
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Rankings and matchings. The GMM has been used so far under the Kendall’s-τ and Cayley
distances. In both cases, due to Property 1, the distributions are factorable and have tractable
expressions. Moreover, all the machinery employed for obtaining the expressions of the former
models are not valid for the MM and GMM under the Hamming distance.

It is also worth noticing how each θj can be interpreted. If a matching σ comes from a dis-
tribution with central matching σ0 where σ0(i) = j , the larger θj the more likely that σ(i) = j .
This contrasts with the intuition behind the GMM under the Kendall’s-τ distance, with parame-
ters θ and central ranking σ0, where σ0(j) = i. In this context, the larger θj , the more likely that
σ(j) ≤ i (or, in other words, the larger the probability that item j is ranked in the first i positions
in σ ).

In the ranking domain, the matrix F is generally denoted as rank marginal matrix. Curiously,
for the MM under the Kendall’s-τ distance, the classical model for the ranking domain, the rank
marginal matrix does not contain the sufficient statistics. It turns out that in that context it is the
precedence matrix which contains the sufficient statistic, that is, a square matrix M such that
Mij counts the number of permutations σ in which σ(i) < σ(j) (meaning that item i is ranked
before j ).

3.1. Partition function for the Mallows model

The naive computation of the partition functions in the MM and GMM sums over n! permuta-
tions. Clearly, this sum is an important bottle-neck. Fortunately, a closed form for the partition
function for the MM under the Hamming distance is given in [19] which is as follows:

ψ(θ) = n! exp(−θn)

n∑
k=0

(exp(θ) − 1)k

k! . (3.2)

The computational complexity of Equation (3.2) is O(n) which highly improves the naive
complexity of O(n!).

3.2. Normalization constant for the generalized Mallows model

An efficient expression for the normalization constant for the GMM can be found by relating the
normalization constant to the moment generating function of the distance decomposition vector.

In particular, the process of finding the efficient expression for the normalization starts by
expressing it as a function of the moment generating function (MGF) of H(σ ) = (H1(σ ), . . . ,

Hn(σ )) under the uniform distribution. Then, we will find an computationally cheap expression
for the probability generating function (PGF) by making use of a Taylor expansion. Finally, we
will relate both PGF and MGF.

The notation used is as follows. Let ε(σ ) = (ε1(σ ), . . . , εn(σ )) be a binary vector such that
εj (σ ) = 1 − Hj(σ ). Assuming that σ comes from the uniform distribution, then both H(σ ) and
ε(σ ) are binary random vectors. We denote by P0(ε(σ ) = ε) the probability under the uniform
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distribution of a permutation σ of having the distance decomposition 1 − ε. Being the multivari-
ate (joint) MGF of the random vector X defined as MX(t) = E[∏n

j=1 exp(tjXj )], the normaliza-
tion constant, ψ(θ), can be posed as a function of the MGF of ε(σ ) coming from the uniform
distribution:

ψ(θ) = n!
∑

H∈{0,1}n
P0

(
H(σ ) = H

)
exp

(
−

∑
j

θjHj (σ )

)

= n!
∑

ε∈{0,1}n
P0

(
ε(σ ) = (ε1, . . . , εn)

)
exp

(
−

∑
j

θj (1 − εj )

)

= n!
∑

ε∈{0,1}n
P0

(
ε(σ ) = (ε1, . . . , εn)

)
exp

(
−

∑
j

θj

)
exp

(∑
j

θj εj

)

= n! exp

(
−

∑
j

θj

) ∑
ε∈{0,1}n

P0
(
ε(σ ) = (ε1, . . . , εn)

)
exp

(∑
j

θj εj

)

= n! exp

(
−

∑
j

θj

)
Mε(θ).

Note that there cannot be any H(σ ) such that
∑n

j=1 Hj(σ ) = 1. Therefore, the probability of
such a vector is zero.

We consider the multivariate case of the PGF of ε(σ ) under the uniform distribution, which is
defined as follows:

fε(t) = fε(t1, . . . , tn) = E
[
t
ε1
1 · · · tεn

n

] =
∑

(ε1,...,εn)

P0
(
ε(σ ) = (ε1, . . . , εn)

)
t
ε1
1 · · · tεn

n .

The Taylor expansion of a multivariate function f (t) at t = 1 is:

fε(t) =
∞∑

k=0

1

k!
∑

x1+···+xn=k

(
k

x1 · · ·xn

)
∂kfε

∂t
x1
1 · · · ∂t

xn
n

∣∣∣
t=1

(t1 − 1)x1 · · · (tn − 1)xn .

In order to give the Taylor expansion for fε , we need to know its derivative for variable ti :

∂fε

∂ti
=

∑
(ε1,...,εn)

P0
(
ε(σ ) = (ε1, . . . , εn)

)
t
ε1
1 · · · εi t

εi−1
i · · · tεn

n

=
∑

(ε1,...,εn)|εi=0

P0
(
ε(σ ) = (ε1, . . . , εn)

)
t
ε1
1 · · ·0t0−1

i · · · tεn
n

+
∑

(ε1,...,εn)|εi=1

P0
(
ε(σ ) = (ε1, . . . , εn)

)
t
ε1
1 · · ·1t1−1

i · · · tεn
n

= 0 +
∑

(ε1,...,εn)|εi=1

P0
(
ε(σ ) = (ε1, . . . , εn)

)∏
j �=i

t
εj

j .
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Its evaluation around t = (1, . . . ,1) is:

∂fε

∂ti

∣∣∣
t=1

=
∑

(ε1,...,εn)|εi=1

P0
(
ε(σ ) = (ε1, . . . , εn)

)
1ε1 · · ·1 · 11−1 · · ·1εn

=
∑

(ε1,...,εn)|εi=1

P0
(
ε(σ ) = (ε1, . . . , εn)

)
1.

Note that this is equivalent to the probability under the uniform distribution of a permutation
with a fixed point at position i, that is, the number of permutations of n − 1 items divided by n!,
(n−1)!/n!. The second order derivative with respect to ti equals 1. The second order cross partial
derivatives equal the probability under the uniform distribution of a permutation σ in which i1
and i2 are fixed points, that is, the number of permutations of n items with fixed points in i1 and
i2 divided by n!

∂2fε

∂ti1∂ti2

∣∣∣
t=1

=
∑

(ε1,...,εn)|εi1 =1,εi2 =1

P0
(
ε(σ ) = (ε1, . . . , εn)

)
1ε1 · · ·1 · 11−1 · · ·1εn .

Then, in general, the kth order cross partial derivatives equal:

∂kfε

∂ti1 · · · ∂tik

∣∣∣
t=1

= (n − k)!
n! .

Since (ε1, . . . , εn) ∈ {0,1}n, then
(

k
ε1···εn

) = k! and since ∂kfε/∂tki = 0 for k > 1, the Taylor
series cannot be expanded more than n + 1 terms. Therefore, the Taylor expansion around 1 can
be equivalently written as (recall that Rk = {(i1, . . . , ik)|1 ≤ i1 < i2 < · · · < ik ≤ n}):

fε(t) =
n∑

k=0

1

k!
∑
r∈Rk

(
k

εi1 · · · εin

)
∂kfε

∂ti1 · · · ∂tik

∣∣∣
t=1

∏
i∈r

(ti − 1)

=
n∑

k=0

1

k!
∑
r∈Rk

k!(n − k)!
n!

∏
i∈r

(ti − 1)

=
n∑

k=0

(n − k)!
n!

∑
r∈Rk

∏
i∈r

(ti − 1).

If γk denotes the Elementary Symmetric Polynomial (ESP) of degree k, then γk((t1 −
1), . . . , (tn − 1)) = ∑

r∈Rk

∏
i∈r (ti − 1) and therefore:

fε(t) =
n∑

k=0

(n − k)!
n! γk

(
(t1 − 1), . . . , (tn − 1)

)
.
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An efficient formulation for the computation of ESP, γk((t1 − 1), . . . , (tn − 1)) is given in Sec-
tion 2.3. Note that Mε(t) = E[∏n

j=1 exp(tj εj )] = E[∏n
j=1 exp(tj )

εj ] and fε(t) = E[∏n
j=1 tj

εj ].
It follows that Mε(t) = fε(exp(t)).

Thus, the probability generating function can be given as follows.

Mε(t) =
n∑

k=0

(n − k)!
n! γk

((
exp(t1) − 1

)
, . . . ,

(
exp(tn) − 1

))
. (3.3)

Finally, the normalization constant can thus be given as follows:

ψ(θ) = n! exp

(
−

∑
j

θj

)
Mε(θ)

(3.4)

= exp

(
−

∑
j

θj

) n∑
k=0

(n − k)!γk

((
exp(θ1) − 1

)
, . . . ,

(
exp(θn) − 1

))
.

The computational complexity of Equation (3.5) is O(n3), n times the complexity of the com-
putation of the ESP.

3.3. Expected value, marginal and conditional probabilities

In this section, we deal with the expressions for the expected value of the distance in MM and
the expected value of the distance decomposition vector in GMM. We also consider the marginal
and conditional probabilities for the GMM under the Hamming distance based on Equation (3.3).
Since the MM is a particular case of the GMM in which every θj has equal value, the results of
the GMM model can be applied for both.

The following two theorems deal with the expected value of the distance and distance decom-
position vector.

Theorem 1. The expected value of the distance under the MM with the Hamming distance and
dispersion parameter θ is as follows:

Eθ [d] = n
∑n

k=0
(exp(θ)−1)k

k! − exp(θ)
∑n−1

k=0
(exp(θ)−1)k

k!∑n
k=0

(exp(θ)−1)k

k!
.

Theorem 2. The expected value of the distance decomposition vector H(σ ) under the GMM
with the Hamming distance and dispersion parameter θ is as follows:

Eθ [H] =
(

1 −
∑n

k=1(n − k)! exp(θ1)γ̄
1
k−1∑n

k=0(n − k)!γk

, . . . ,1 −
∑n

k=1(n − k)! exp(θn)γ̄
n
k−1∑n

k=0(n − k)!γk

)
,

where γk = γk((exp(θ1)− 1), . . . , (exp(θn)− 1)) and γ̄ i
k = γ̄ i

k ((exp(θ1)− 1), . . . , (exp(θn)− 1))

denotes the ESP of degree k of the previous set of variables except for (exp(θi) − 1).
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Proof. The expected distance under the an exponential model can be derived from the MGF in
the following way [19].

Eθ [D] = ∂ LnMD(t)

∂t

∣∣∣
t=−θ

.

The expected distance decomposition vector is then as follows.

Eθ [H] =
∑

b

P(H = b)b = Eθ [1 − ε] = 1 − Eθ [ε]

= 1 −
(

∂ LnMε(t)
∂t1

∣∣∣
t=θ

, . . . ,
∂ LnMε(t)

∂tn

∣∣∣
t=θ

)
. �

Due to the factorial size of permutation spaces, the naive computation of the marginal distribu-
tion of a GMM under the Hamming distance is infeasible. We introduce a method for computing
such marginal distributions by adapting the reasoning used in Equation (3.5) to sum over the
subset of permutations of interest.

We consider two disjoint sets of items, A and B , and two sets of permutations, fix(A) and
unfix(B). The set fix(A) includes every permutation in which j is a fixed point for every j ∈ A.
We define the set unfix(B) in the same way, as the set of permutations that have an unfixed point
at position j ∈ B . Recall that by g(n, k) we denote the number of permutations of n items in
which there are at least k unfixed points and a recursion to compute it is given in Equation (2.1).

Theorem 3. Let a = |A| and b = |B|. The marginal distribution of the set of permutations in
which every i ∈ A is a fixed point and every j ∈ B is an unfixed point – the permutations in the
intersection fix(A) ∩ unfix(B) – is as follows:

∑
σ∈fix(A)∩unfix(B)

p(σ ) =
∑

σ∈fix(A)∩unfix(B) exp(
∑n

j=1 −θjHj (σ ))

ψ(θ)

(3.5)

= exp(−∑
j /∈A θj )

∑n−a−b
k=0 g(n − a − k, b)γ̄ AB

k (T1, . . . , Tn)

exp(−∑
j θj )

∑n
k=0(n − k)!γk(T1, . . . , Tn)

,

where Ti = (exp(θi) − 1). Note that by γ̄ AB
k ((exp(θ1) − 1), . . . , (exp(θn) − 1)) we denote the

ESP of degree k of the set of variables {(exp(θj ) − 1)|j /∈ A ∪ B}.

Proof in the supplemental article [27].
Regarding the computational complexity of this calculation, two different aspects must be

considered. On the one hand, the complexity of computing g(n − a, k + b) is O(n − a). On the
other hand, the complexity of computing γ̄ AB

k is O((n − a − b)2). Therefore, the complexity of
the calculation of the marginal

∑
σ∈fix(A)∩unfix(B) p(σ ) is O(max{(n − a), (n − a − b)2}).

It is well known that the conditional distribution can posed in terms of the joint distribution as
follows:

p(X|Y) = p(X ∩ Y)

p(Y )
.
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This definition can be easily translated to the GMM under the Hamming distance as stated in
the following lemma.

Corollary 1. Let A, A′, B and B ′ be four disjoint sets of items. The probability of the permuta-
tions having fixed points at positions j ∈ A′ and unfixed points at positions j ∈ B ′, given that the
items j ∈ A are fixed points and the items j ∈ B are unfixed points, is as follows.

p
(
fix

(
A′) ∩ unfix

(
B ′)|fix(A) ∩ unfix(B)

)
(3.6)

=
∑

σ∈fix(A∪A′)∩unfix(B∪B ′) p(σ )∑
σ∈fix(A)∩unfix(B) p(σ )

.

The computational complexity in this case is thus the same as the complexity of the marginal
computation.

4. Sampling

In this section, we show how to generate permutations from both MM and GMM. We introduce
here three sampling algorithms: The first one generates samples from an approximate distribution
of MM and GMM, the second one generates samples from both MM and GMM while the last
one generates only from the MM.

The three algorithms generate samples assuming that the mode is the identity, σ0 = e. In case
σ0 �= e, one can move a sample centered around e to be centered around σ0 as follows. Let
{π1, . . . , πm} be a sample of permutations centered around the identity. A sample {σ1, . . . , σm}
centered around σ0 can be obtained from the previous one by composing each permutation with
σ0, that is, σi = πiσ0 for every 1 ≤ i ≤ m.

4.1. Gibbs sampling algorithm

We have adapted the Gibbs sampler to generate samples from the MM and GMM. This algo-
rithms samples a distribution which gets closer to the original one at each step, so in the limit the
target distribution is sampled. The Gibbs algorithm proceeds as follows:

1. Generate a permutation σ u.a.r.
2. Build a new permutation σ ′ equal to σ in all but two positions chosen u.a.r. These two

positions are swapped.
3. Let β = min{1,p(σ ′)/p(σ )}. With probability β the algorithm accepts the candidate per-

mutation moving the chain to σ ′, σ = σ ′, and goes back to step (2). Otherwise, it discards
σ ′ and goes back to step (2).

The initial samples are discarded (burn-in period) until the Markov chain approaches its sta-
tionary distribution and so samples from the chain are samples from the distribution of interest.
Then, the above process in repeated until the algorithm generates a given number of permuta-
tions.
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Algorithm 1: Random generation of H (σ ) from the MM or GMM
Input: θ (resp. θ ) dispersion parameters in MM (resp. GMM)
Output: H (σ ) random distance decomposition vector
A = B =∅;
for i ← 1 to n do

prob = p(fix(i)|fix(A) ∩ unfix(B)) as shown in Corollary 1;
with probability prob /* j is fixed */

hi(σ ) = 0;
A = A ∪ {i}

otherwise /* i is unfixed */
hi(σ ) = 1;
B = B ∪ {i};

end
end

The computation of each permutation has complexity O(n). It is thus a quick algorithm. How-
ever, we should remark that this is an approximate algorithm.

4.2. Chain sampling algorithm

We propose a method for generating permutations from a MM or a GMM based on the chain
rule. The process of generating each permutation can be divided in two stages. In the first stage, it
randomly generates a distance decomposition vector, H (σ ). The sampling finishes by uniformly
at random generating a permutation σ consistent with the given H (σ ).

The generation of the random distance decomposition vector H (σ ) is carried out with the well
known chain rule for probability distributions. The chain rule expresses the joint distribution as
a product of conditional distributions.

In this way, the Chain sampling algorithm uses the conditional probabilities of the GMM given
in Equation (3.6) to sample each of the terms in the decomposition vector H (σ ).

The complete process for the generation of H (σ ) can be found in Algorithm 1. The process
of randomly generating a permutation finishes by generating uniformly at random a permutation
σ consistent with H (σ ). Some discussion on the topic can be found in Section 2.1. A careful
implementation of the Chain algorithm leads to a computational complexity of O(n2). Details
can be found in the supplemental article [27].

4.3. Distances sampling algorithm

The Distances sampler can be used for generating from the MM under the Hamming distance
but not for generating from the GMM.
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The probability under the MM of a permutation at distance d is as follows:

p(d) =
∑

σ |dh(σ,σ−1
0 )=d

p(σ ) = Sh(n, d)
exp(−θd)

ψ(θ)
, (4.1)

where Sh(n, d) denotes the number of permutations at distance d . Note that the normalization
constant ψ(θ) = ∑

σ exp(−θdh(σ )) can be expressed as the sum of n terms in the following
way:

ψ(θ) =
n∑

d=0

Sh(n, d) exp(−θd). (4.2)

Therefore, the Distances sampling process divides the process of generating a permutation
from a given MM in two different stages as follows:

1. Randomly select the distance d considering the probabilities of Equation (4.1).
2. Uniformly at random generate one permutation among those at distance d from the iden-

tity. For a discussion on the random generation of permutations at a prescribed Hamming
distance see Section 2.1.

Therefore, the time complexity of the generation of each permutation using this method is
O(n) given the sequence Sh(n, d). Summarizing, this is a fast algorithm for the generation of
exact samples from the MM model. Unfortunately, this algorithm cannot generate samples from
the GMM model.

5. Learning

The parameters of a probability distribution are traditionally fitted via maximum likelihood es-
timation. In [13], it is stated that the maximum likelihood estimate of the parameters of a L-
decomposable distribution, such as the MM, can be done by iterative scaling. Unfortunately, this
only includes the dispersion parameters.

For a sample of m i.i.d. permutations {σ1, . . . , σm} the MLE for the parameters of the distri-
bution are those which maximize the likelihood function. Even though the MM is a particular
case of the GMM, the MLE for the parameters of the distribution are different for each model.
Therefore, we focus on each model separately.

5.1. Mallows model

The log-likelihood expression for the MM model is as follows:

LnL
({σ1, σ2, . . . , σm}|σ0, θ

) = −mθd̄ − mLnψ(θ), (5.1)

where d̄ = ∑m
i=1 d(σiσ

−1
0 )/m. By looking at Equation (5.1), we can see that calculating the

value of σ0 that maximizes the equation is independent of θ . Therefore the MLE estimation
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problem can be posed as a two step process in which first the central matching is obtained and
then the dispersion parameter for the given σ̂0 is computed.

Central matching. The MLE for the central matching is given by the permutation that mini-
mizes the sum of the Hamming distances to the sample. Let us pose the problem in a different
way. Let F be the frequency matrix of the sample – the sufficient statistics – and consider the
bipartite graph interpretation of the sample, both of which are defined in Section 2.2.

The problem of finding the permutation that minimizes the Hamming distance to the sample is
equivalent to finding the maximum weighted bipartite matching. Finding that matching is known
as the linear assignment problem (LAP) [3], and it is solved by selecting one entry of F per
row and column in such a way that their sum is maximum. We denote this MLE for the central
matching as σLAP. The Hungarian algorithm [31] solves this problem in O(n3).

Dispersion parameter. Once the central matching is known, the MLE for the dispersion pa-
rameter is obtained by taking the derivative in Equation (5.1) respect θ and equaling to zero.

d(−mθd̄ − mLnψ(θ))

dθ
= 0 → −md̄ − m

dψ(θ)/dθ

ψ(θ)
= 0.

The MLE for θ is then given by the θ that satisfies the next equation:

exp(θ)
∑n−1

k=0
(exp(θ)−1)k

k! − n
∑n

k=0
(exp(θ)−1)k

k!∑n
k=0

(exp(θ)−1)k

k!
+ d̄ = 0. (5.2)

Although no closed form for θ in Equation (5.2) exists, root finding algorithms such as
Newton–Raphson can efficiently recover θ .

To sum up, the maximum likelihood parameters of a MM model can be done in polynomial
time.

5.2. Generalized Mallows model

In this section, we describe the maximum likelihood estimation process of a given sample coming
from a GMM model. The log-likelihood can be expressed as follows:

LnL
({σ1, σ2, . . . , σm}|σ0, θ

) =
m∑

i=1

Lnp(σi |σ0, θ)

=
m∑

i=1

(
n∑

j=1

−θjHj

(
σiσ

−1
0

) − Lnψ(θ)

)
(5.3)

= m

n∑
j=1

−θj H̄j − mLnψ(θ),

where H̄j = ∑m
i=1 Hj(σiσ

−1
0 )/m. Note that the permutation that maximizes the likelihood does

need to be the same as the permutation that minimizes the sum of the distances to the permu-
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tations in the sample, that is, the central permutation for the MM may not be the same for the
GMM.

In contrast to the MM estimation process, learning the GMM cannot be divided into different
stages for the estimation of the different parameters θj and σ0. Therefore, an exact algorithm
needs to search for every parameter at the same time. However, it is interesting to show how to
compute the dispersion parameters, θj , given the central matching, σ0.

Let us bear in mind that the frequency matrix F is a sufficient statistic for σ0. Moreover, the
vector (H̄1, . . . , H̄n) is the sufficient statistic for θ for a given σ0, whose expression is given
by equaling to zero the derivative of the likelihood with respect to θi . In other words, given a
permutation σ0, the MLE for θ is that which satisfies the following system of equations:∑n

k=1(n − k)! exp(θi)γ̄
i
k−1∑n

k=0(n − k)!γk

+ H̄i = 0, 1 ≤ i ≤ n. (5.4)

Recall that γk denotes the ESP γk((exp(θ1) − 1), . . . , (exp(θn) − 1)), and γ̄ i
k−1 denotes the

ESP of all variables except for (exp(θi) − 1), which is the ESP of degree k − 1 of the set of
variables {(exp(θ1) − 1), . . . , (exp(θn) − 1)} \ {(exp(θi) − 1)}. The efficient computation of γk

and a fast algorithm for obtaining γ̄ i
k given γ i

k can be found in Section 2.3. Note that there is no
closed-form expression for the dispersion parameters in Equation (5.4), the system of equations
must be solved with numerical methods such as the multidimensional Newton–Raphson.

Summarizing, by expressing θ as a function of σ0 with Equation (5.4), we have posed the
learning of a GMM as a combinatorial problem of finding the permutation σ0 that maximizes
Equation (5.3).

Although the computational complexity of estimating the parameters of a GMM under the
Hamming distance is not known, the authors conjecture that it is NP-hard. We propose an ap-
proximate algorithm for fitting a GMM which is based on its asymptotic properties.

Rankings and matchings. Opposite to the case of the GMM under Kendall’s-τ or Cayley dis-
tances, there likelihood cannot be factorized (as a consequence of Property 1), page 1164.

5.3. Approximate MLE for the GMM

We propose an approximate algorithm for obtaining the MLE for the parameters from a sample of
permutations generated from a GMM under the Hamming distance, {σ1, . . . , σm}. This algorithm
is based on the asymptotic properties of the model. The problem statement is as follows. Let F

be the frequency matrix on a sample {σ1, . . . , σm} and let σm
LAP be the solution to the LAP in F .

The rest of the section is based on the following theorem.

Theorem 4. The permutation σm
LAP is an asymptotically unbiased estimator for the central

matching of {σ1, . . . , σm}.

The proof can be found in the supplemental article [27].
Based on Theorem 4 we propose using σm

LAP as an approximate MLE for the consensus per-
mutation. As we have stated, LAP can be solved in polynomial time [31]. There also exist several
implementations for the LAP such as [28].
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The MLE for the dispersion parameters are obtained by solving the system of equations
in (5.4). A multidimensional Newton–Raphson implementation is provided in [44].

Rankings and matchings. Learning the central ranking is known as the Kemeny problem [1],
which happens to be NP-hard (in contrast to the polynomial complexity of learning the maxi-
mum weighted bipartite matching). There exists an approximation to the Kemeny ranking by the
name of Borda which offers a factor 5 approximation of the optimal ranking [10] and also an
asymptotically optimal estimator of the real central ranking [19]. It can be computed with the
preference matrix and it is based on averaging the rankings of each item and ordering the items
according to those averages. This contrasts with the idea behind the Hungarian algorithm, which
iterates looking for the largest entry in the columns and rows of F .

The fact that the MLE for the central matching is equivalent to the maximum weighted bipar-
tite matching (to a linear assignment) confirms the intuition that the MM and GMM under the
Hamming distance is indeed a model for matchings.

6. Conditional independence, partial permutations and
Bayesian interpretation

Independence for distributions on permutations has been stated in several ways [12,13,23,24]. We
focus on the conditional independence that naturally arise from the L-decomposability property
which was shown in [12]. For any σ resulting from the ranking process introduced in page 2,
the L-decomposability [11] is satisfied iff the probability of selecting an item at stage k depends
solely on the items remaining at that stage, not on the order of the already selected items.

p(σ) =
n−1∏
k=1

p{ik,...,in}
(
σ(k)

)
.

The L-decomposability property induces the following conditional independence relation
among items: For all k, given the set of items receiving the first k ranks, the ordering of these
items and the ordering of the remaining items are independent.

p
(
σ−1(k) = ik|σ−1(1) = i1, . . . , σ

−1
k−1(k − 1) = ik−1

) = p{ik,...,in}(ik).

Let σ be a random permutation. The probability model p is TL-decomposability [12] if the
following holds:

p(σπ) is L-decomposable for every π.

Both MM and GMM under the Hamming distance are TL-decomposable.
Partial permutations are among the most referred extensions of general permutations, partic-

ularly when n rockets. Among the sampling algorithms presented in this paper, the Multistage
sampler can generate partial permutations. Fitting a model consisting on partial permutation is
also possible with the algorithms presented in this paper.

The most natural way of introducing prior information about the parameters of the model is
the Bayesian framework. The MM and GMM under the Bayesian perspective have already been
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considered [20,22,39–41]. In [50], the Bayesian approach is analyzed in the case of the Kendall’s-
τ distance, although most of their study is applicable for any right invariant distance such as
Hamming. They define two non-uniform prior distributions, one for the central permutation and
other for the dispersion parameter. Then, assuming independence among both distributions, they
calculate the posterior joint distribution. They also propose computationally tractable methods
for Bayesian inference and their approach could be adapted for the Hamming distance.

7. Experiments

This section is devoted to show the efficiency of the proposed algorithms in terms of compu-
tational time and accuracy. We will first deal with the sampling algorithms and then with the
learning algorithms. The code used to run the experiments has been made public in the CRAN
repository by the name of PerMallows. A manuscript introducing it can be found in [26]. More-
over, the supplemental article [27] shows how easy it is to fit and sample distributions a GMM
with it.

7.1. Sampling

In this paper, we propose three different learning algorithms. The Distances algorithm generates
samples from the MM, the Chain algorithm from the MM and GMM while the Gibbs algorithm,
on the other hand, generates samples from approximations of both MM and GMM. The sampling
experiments are designed to compare the performance of the algorithms with three different
criteria.

1. The evolution of the error as the sample size, m, increases.
2. The evolution of the error as the computational time increases.

The error in the MM is measured as the sum of the differences between the expected distance,
E[D], and the actual distances of the permutations in the samples. In the GMM the error is
measured as the sum of the differences between the expected Hj , E[Hj ], and the actual H̄j . The
expression of the expectations are given in Theorems 1 and 2.

For each of the different evaluation criteria, the following procedure has been carried out.

1. For each particular setting of n and θ (resp. θ ) generate several samples of size m =
200,400,600, . . . ,19 800,20 000 with each of the sampling algorithms. Measure the er-
ror of each sample and plot the results.

2. For each particular setting of n and θ (resp. θ ) generate several samples for t =
1,2,3, . . . ,14,15 seconds with each of the sampling algorithms. Measure the error of
each sample and plot the results.

The parameter setting is as follows. The number of items in the permutations considered are
n ∈ {5,50,100,150}. The dispersion parameters in the MM case are θ ∈ {0.1,0.5,1,2,3}. In the
GMM case, the first of the dispersion parameters is θ1 ∈ {0.1,0.5,1,2,3} while the rest are set
such that θj = θ1 − (j − 1)(θ1/2(n − 1)) for j > 1, that is, θ1 is the largest parameter while the
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Figure 1. Error (as the sum of the differences between the expected distance, E[D], and the actual distance
of the sample, in the Y -axis) of each algorithm as the sample size (X-axis) grows for different θ and n in
MM. Average of 10 repetitions.

value of the rest decrease linearly to θn = θ1/2. For each parameter configuration 10 experiments
are run and the average results of them are given. The central permutation is the identity. The
Gibbs algorithm discards the first n2 permutations as part of the burning-period.

Due to the lack of space we have only introduced in this paper a representative selection of the
experiments. However, the complete results can be found in https://github.com/isg-ehu/ekhine.
irurozki/blob/master/hamming_full_results.pdf. In particular, we include in this paper the results
of the values of n ∈ {50,150} and the dispersion parameters θ ∈ {0.1,2} in MM (θ1 ∈ {0.1,2} in
GMM).

Results for MM. By looking at Figure 1, we can see the evolution of the error as the size
of the generated sample grows. Note that the error of the Distances and Chain algorithms are
similar and almost overlap. The error of the Gibbs is always larger than the error of the other two
algorithms, and these differences between the errors increase with θ . However, the Gibbs is a
very fast algorithm. The computational time required for the generation of the samples increases
linearly with m, but the time required by the Gibbs is insignificant with respect to the time
required by the other two. Gibbs required less than 50 milliseconds for each of the instances
considered here, the Distances required around 100 milliseconds and Multistage around 600 ms
for the instances of n = 50 and around 5 seconds for the instances of n = 150. Therefore, the
question that naturally arises is – what happens if all the algorithms are run for the same time?

By looking at Figure 2, we can see the evolution of the error as the computational time given
grows. The distances sampling algorithm has the best trade-off between error and computational
time. The Chain and Gibbs sampling algorithms have a similar performance when the distribution
to sample is almost uniform. However, as θ grows and the sample becomes more peaked, the
Chain algorithm is clearly more accurate than the Gibbs.

Consequently, we can state that the method with the best trade-off between computational time
and accuracy is the Distances sampling algorithm. On the other hand, the Chain is as accurate
as the Distances method but slower. The reason to keep it in consideration is that the Distances
sampling algorithm cannot generate samples from the GMM, while the Chain can.

Results for GMM. The results relative to the evolution of the error of the generated sample
(from a GMM) as m grows are given in Figure 3. Recall that for the GMM only Chain and Gibbs
algorithms can be applied. Similar conclusions can be drawn from the results of the MM and
GMM. As the sample size grows, the error slowly decreases for the Gibbs while being stable and
close to zero for the Chain sampler. Again, the Chain sampling algorithm is much slower than

https://github.com/isg-ehu/ekhine.irurozki/blob/master/hamming_full_results.pdf
https://github.com/isg-ehu/ekhine.irurozki/blob/master/hamming_full_results.pdf
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Figure 2. Error (as the sum of the differences between the expected Hj , E[Hj ], and the actual H̄j , in the
Y -axis) of each algorithm as the computational time (X-axis) grows for different θ and n in MM. Average
of 10 repetitions.

Figure 3. Error (as the sum of the differences between the expected distance, E[D], and the actual dis-
tances, in the Y-axis) of each algorithm as the computational time (X-axis) grows for different θ and n in
GMM. Average of 10 repetitions.

the Gibbs but, at the same time, much more accurate. The running times are similar to the MM
distribution.

Figure 4 shows the result of running both algorithms for the same computational time. Again,
when the GMM is close to the uniform distribution the error results are similar, but the Chain al-
gorithm outperforms the Gibbs for non-uniform distributions. Moreover, this difference increases
as θ increases.

Figure 4. Error (as the sum of the differences between the expected distance, E[D], and the actual dis-
tances, in the Y-axis) of each algorithm as the computational time (X-axis) grows for different θ and n in
GMM. Average of 10 repetitions.
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7.2. Learning

Recall that the MLE for the central permutation of the MM can be obtained in polynomial time
with the well-known Hungarian algorithm and the dispersion parameter, θ , for a given σ0 can
be computed with a Newton–Raphson algorithm. Therefore, we omit the MM from the learning
experiments and focus thus on the GMM.

We have previously shown that the σLAP is an asymptotically unbiased estimator for the con-
sensus permutation of a sample from a GMM. Therefore, this experimental section is designed to
show how the quality of the estimated parameters evolve as the sample size, m, increases. Given
that no efficient exact method for the MLE for the central permutation is known, the evaluation
process will consist of generating a sample from the model centered around σ0, learning the pa-
rameters and evaluating them w.r.t. σ0. W.l.o.g. the consensus permutation is the identity, σ0 = e.
Among the proposed sampling algorithms the Chain is the most accurate and thus the one we
will use. The evaluation criteria can be defined in different ways, we have chosen the following:

1. Compare the estimated central permutation and that which generated the sample
2. Compare the likelihood of the sample given the parameters that generated the sample with

the likelihood of the sample with those estimated.

The evaluation procedure for each particular setting of n and θ is as follows: Generate several
samples of size m = 1000,2000,3000, . . . ,9000,10 000 with the Chain sampling algorithm.
Estimate σLAP and then:

1. Measure the Hamming distance between the actual and the estimated central permutations,
d(σLAP, σ0).

2. Obtain the associated dispersion parameters for σLAP and compute the likelihood of the
sample given σLAP, denoted as LLAP. Compute the likelihood of the sample given the
parameters that generated the distribution, L0. The relative error of LLAP is given by

LLAP −L0

mLLAP
. (7.1)

The sample size m in the denominator is aimed to put in the same scale the likelihood
for different samples sizes.

The parameter setting is as follows. The number of items in the permutations considered are
n ∈ {5,50,100,150}. The first of the dispersion parameters is θ1 ∈ {0.1,0.5,1,2,3} while the
rest are set such that θj = θ1 − (j − 1)(θ1/2(n − 1)) for j > 1, that is, θ1 is the largest parameter
while the value of the rest decrease linearly to θn = θ1/2. For each parameter configuration 10
experiments are run and the average results of them are given. W.l.o.g. the central permutation is
the identity.

Results for GMM. Figure 5 shows the evolution of the likelihood as the sample size grows,
where the error is measured as shown in Equation (7.1). Each plot includes the results of every
dispersion parameter of a given n. The plots clearly show that as m increases the error in the
likelihood decreases. Even in the cases where the estimated central permutation is correct, the
estimated dispersion parameters are better estimated with larger sample sizes, resulting in a better
likelihood.
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Figure 5. Evolution of the error of the estimated parameters for GMM as m grows.

It is important to note that the results are only comparable for the instances of the same n

and θ . This means that even though the results of an instance of parameters n and m have smaller
error for small values of θ than for large values of θ , we cannot state that the former results are
better than the latter.

7.3. Real data experiments

In order to demonstrate the applicability of the GMM under the Hamming distance, we propose
an example of the context of e-learning and Massive Open Online Courses (MOOC), which have
become very popular lately.

The evaluation of the student is part of every course, including those referred to. One of the
types of exercises that a student can be presented with is a matching question, in which the
student is given two columns of items and the objective is to match each item in the left column
with an item in the right columns. We illustrate the use of the GMM with the results of a matching
question in which a group of people is given a set of six countries in South-East Asia and six
cities (or provinces) of the same area and they are asked to match each city with the country in
which it is situated in less than one minute. The question is detailed in Table 1. An answer for this
test can be written as a permutation σ where σ(i) = j means that city j is matched to country i.
This question has been answered by 37 people of similar age, geographic location and education
level and the results can be accessed in https://github.com/isg-ehu/ekhine.irurozki.

The analysis of the results starts by counting how many people match each country with each
city. This summary is given by the frequency matrix, Table 2, in which entry Mi,j represents how
many people matched country i with city j .

Let us now fit a GMM under Hamming to the given sample with the PerMallows pack-
age, which is freely available online, see the supplemental article [27]. The resulting model has
parameters σ0 = 365124 and θ = (1.3898382,0.1666533,2.6922244,0.7526361,0.3282186,

2.3546746).
Note that the consensus matching of the distribution, σ0, is also the most frequent matching

in the sample with 9 repetitions. Moreover, σ0 is also the correct answer. The dispersion param-
eters can be interpreted as a measure of the agreement of the population in matching each item.
In particular, for a consensus permutation such that σ0(i) = j , the higher θj , the more people
situated city j in country i. Note that the largest dispersion parameter is θ3, meaning that the

https://github.com/isg-ehu/ekhine.irurozki
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Table 1. Matching question: assign every city in the left
column with the country of the right column in which it
is situated

Countries Cities and regions

A: Indonesia 1: Ho Chin Min
B: Thailand 2: Vientian
C: Cambodia 3: Bali
D: Vietnam 4: Penang
E: Laos 5: Phnom Penh
F: Malaysia 6: Phuket

assignment of Indonesia–Bali (A-3) is the most frequent in the sample among those assignments
in the central matching.

A more detailed analysis of the dispersion parameters consists of checking whether there is
any relation between the amount the people in the population that correctly matched the pair
city-country with the importance of the country as a touristic destination. For this last measure
we have considered the number of tourist arrivals in 2015. This data is provided by the World
Tourism Organization (UNWTO), the United Nations agency responsible for tourism [49], in its
yearly publication UNWTO Tourism Highlights 2016 Edition.

The parameters θ3 and θ6 are the highest in θ , which means that there is a strong belief in the
population that Bali and Phuket belong to Indonesia and Thailand respectively. This is supported
by the fact that Indonesia and Thailand are the third and first destinations among the six consid-
ered. On the other hand, θ5 and θ2 are the smallest in θ , which means that the pairs Cambodia–
Phnom Penh and Laos–Vientian are those which a smallest fraction of people guessed. Again,
this is supported by the fact that Cambodia and Laos are also the two least visited countries
among the six considered.

Having a distribution over the results of the matching question allows us to calculate, for
example, the probability that a respondent does not guess the matching of any item. Also, we
could be interested in knowing if a respondent has answered uniformly at random, that is, if
the respondent’s matching is more likely to come from the uniform distribution than from the
distribution of the population.

Table 2. Frequency matrix, Mi,j counts the number of
permutations in the sample σ in which σ(i) = j

0.02 0.00 0.81 0.08 0.08 0.00
0.00 0.08 0.08 0.02 0.05 0.75
0.16 0.16 0.00 0.24 0.35 0.08
0.56 0.21 0.05 0.13 0.02 0.00
0.10 0.32 0.02 0.08 0.35 0.10
0.13 0.21 0.02 0.43 0.13 0.05
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We have stated that the population that answered this matching question is homogeneous in the
sense that they have similar age, education level, etc. However, the distributions introduced in this
paper could be the basis for developing methods to find the different clusters in the population,
similarly to [4], where a clustering method for rank data – using the MM and GMM under the
Kendall’s-τ distance – is proposed. Other examples can be found in the literature, among which
we highlight [33] and [42].

8. Conclusions

The MM under the Hamming distance can be thus thought as a probability model on matchings.
In this situation, there is a “correct” matching and any other matching is less probable as its
similarities with the correct one decrease. The GMM models situations in which the correct
matching of certain items is more important than the matching of others.

The computation of the partition function is usually the bottleneck of the MM and GMM. The
first result presented in this paper is an efficient expression of the partition function for the GMM
under the Hamming distance. This expression is the key to efficiently compute the expected
distance, the expected number of fixed points and the marginal and conditional probabilities.

We propose three different sampling algorithms. The Gibbs sampler is an adaptation of the
well known Monte Carlo algorithm. It is very fast but it generates samples from approximations
to the MM and GMM of interest. The Chain sampling algorithm, which can generate samples
from MM and GMM, makes use of the well known chain rule for probability. The chain rule
computes the joint distribution using conditional probabilities. Therefore, our proposed method
to compute conditional probabilities is crucial for this sampling algorithm. The last proposed
sampling algorithm is the Distances, which is based on counting and u.a.r. generating permuta-
tions at a given distance. Thus, it has a very strong combinatorial basis. It is a fast and accurate
algorithm which can only generate samples from a MM. Summarizing, the experimental eval-
uation we strongly recommend the Distances sampler for the generation from the MM and the
Chain sampler for the generation from the GMM.

Regarding the learning process, we show how to estimate the parameters of a sample from a
MM in polynomial time. Despite the complexity of the estimation of GMM not being known, we
conjecture that it is NP-complete. We propose a very efficient learning algorithm and we show
that the estimated parameters are asymptotically unbiased estimators of the real ones.

Given that the popularity of the MM and GMM is due to its use in the ranking domain – and
under the Kendall’s-τ distance, we have discussed the similarities and differences of rankings
and matchings or Kendall’s-τ and Hamming throughout the paper.

We have tried to take a step towards the popularization of the Hamming distance-based prob-
ability models for permutations by providing diverse, efficient and accurate algorithms for the
most critical operations for distributions: calculating the probability, marginalizing, conditioning,
computing the expectation and, probably most important, sampling and learning.
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