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We consider two statistical problems at the intersection of functional and non-Euclidean data analysis: the
determination of a Fréchet mean in the Wasserstein space of multivariate distributions; and the optimal
registration of deformed random measures and point processes. We elucidate how the two problems are
linked, each being in a sense dual to the other. We first study the finite sample version of the problem in the
continuum. Exploiting the tangent bundle structure of Wasserstein space, we deduce the Fréchet mean via
gradient descent. We show that this is equivalent to a Procrustes analysis for the registration maps, thus only
requiring successive solutions to pairwise optimal coupling problems. We then study the population version
of the problem, focussing on inference and stability: in practice, the data are i.i.d. realisations from a law
on Wasserstein space, and indeed their observation is discrete, where one observes a proxy finite sample
or point process. We construct regularised nonparametric estimators, and prove their consistency for the
population mean, and uniform consistency for the population Procrustes registration maps.

Keywords: functional data analysis; manifold statistics; Monge–Kantorovich problem; multimarginal
transportation; optimal transportation; phase variation; point process; random measure; registration; shape
theory; warping

1. Introduction

Functional data analysis (e.g., Hsing and Eubank [40]) and non-Euclidean statistics (e.g., Pa-
trangenaru and Ellingson [60]) represent modern areas of statistical research, whose key chal-
lenges arise from the intrinsic complexity of the data and the peculiarities of their ambient space.
In the first case, the data are random elements in a separable Hilbert space of functions (typically
L2[0,1]), and resulting challenges are linked to infinite dimensionality (e.g., ill-posed studenti-
sation, Munk et al. [55], and discrete measurements of continuum random objects, Zhang and
Wang [73]). In the second case, the data are seen as random elements of a finite-dimensional
Riemannian manifold (often a shape space), and resulting challenges are linked to the non-linear
structure of the space (e.g., existence/uniqueness of Fréchet means, Le [48] and Kendall [45],
and analysis of manifold variation, Huckemann, Munk and Hotz [41]).

At the intersection of these two domains, with manifestations in neurophysiology, imaging,
and environmetrics, one finds data objects that are best modelled as distributions over Rd , that
is, random measures (Stoyan, Kendall and Mecke [24], Kallenberg [43]). Such random mea-
sures carry the infinite dimensional traits of functional data, but at the same time are charac-
terised by intrinsic non-linearities due to their positivity and integrability constraints, requiring a
non-Euclidean point of view. Indeed, despite their functional nature, their dominating variational
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feature is not due to additive amplitude fluctuations (as can be seen in the Karhunen–Loève ex-
pansion of functional data), but rather to random deformation of a structural mean (as in Freitag
and Munk [33]) or template (as in morphometrics, Bookstein [20]). Still, being infinite dimen-
sional, their observation is typically done discretely, for example, noisily over a grid (e.g., Amit
et al. [8], Allassonnière et al. [4]) or via random sampling (e.g., Panaretos and Zemel [58]),
requiring tools and techniques from nonparametric statistics, as used in functional data analysis.

In this setting, the typical statistical objective is to estimate the underlying template that gives
rise to the data by random deformation. This can often be modelled as a Fréchet mean with
respect to some metric structure; dual to this problem is the recovery the deformation maps
themselves, in order to register the individual realisations in a common coordinate system, given
by registration maps. These problems are interwoven in shape theory, where the template and
registration maps are the two ingredients of Procrustes analysis (Gower [37]; Dryden and Mar-
dia [29]) and non-Euclidean PCA (Huckemann, Munk and Hotz [41]; Huckemann and Ziezold
[42]). Obviously, the methods and algorithms for estimating a mean and carrying out a regis-
tration/Procrustes analysis are inextricably linked with the geometry of the sample space, which
can be a matter of modelling choice or of first principles.

In this paper, we choose to study the problem of Fréchet averaging and Procrustes registration
when the data are viewed as elements of the L2-Wasserstein space of multivariate measures
on R

d . We choose this setting since it has a long history in assessing compatibility and fit of
distributions related via deformations (Munk and Czado [54]; Freitag and Munk [33]), and as it
can be seen to be a natural analogue of using L2, in the case of measures1 (Panaretos and Zemel
[58]; Bigot and Klein [14]). We work at both a sample level and a population level, as well as
both at the level of continuum and discrete observation: our object of study is the determination
of the Fréchet mean and registration maps at the level of a sample, as well as at their estimation
when the observed measures are discretely observed realisations from a population of random
measures. When d = 1, the problem is well understood, owing to the flat geometry of Wasserstein
space (Panaretos and Zemel [58]). When d > 1, however, the Wasserstein space has non-negative
curvature, and one encounters the classical difficulties of non-Euclidean statistics, augmented by
the infinite dimensionality and discrete measurement of the problem (see Anderes et al. [9],
Sommerfeld and Munk [67] and Tameling et al. [69] for challenges involved in the discrete
setting).

In more detail, our contributions are:

(A) At the sample level: we illustrate how knowledge of the Fréchet mean (template) gives an
explicit solution to the optimal registration/multicoupling problem (Section 3.1, Proposition 2).
We study the tangent space geometry, using it to determine the gradient of the Fréchet functional
(Section 3.2.2, Theorem 1), and characterise Karcher means via its zeroes (Corollary 1, Sec-
tion 3.2.3). We give criteria for determining when a Karcher mean (local optimum) is a Fréchet
mean (global optimum; Theorem 2). We construct a gradient descent algorithm (Algorithm 1),
and find its optimal stepsize (Lemma 2) illustrating the algorithm structurally equivalent to a
Procrustes algorithm (Section 3.3), reducing the determination of the mean to the successive so-
lution of pairwise optimal transport problems. We prove that the gradient iterate converges to a

1In the sense that the Wasserstein space is topologically homeomorphic to a convex subset of L2([0,1]d ); when d = 1,
this homeomorphism is an isometry, whereas for d > 1, it is a local isometry.
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Karcher mean in the Wasserstein metric (Section 3.3.2, Theorem 3); and that the induced trans-
portation maps converge uniformly to the Procrustes maps (required for optimal mutlicoupling;
Theorem 4, Section 3.3.3). The latter is particularly involved and requires techniques from the
geometry of monotone operators on R

d . As a noteworthy corollary, we deduce convergence of
the multicouplings (Corollary 3).

(B) At the population level: we consider a population level model linking Fréchet means
and optimal registration and give conditions for model identifiability (Section 4.1, Theorem 5);
We then tackle the problem of point estimation of the population mean and registration maps
in a functional data analysis setup, where instead of observing an i.i.d. sample {μ1, . . . ,μN }
from the population, we observe samples or point processes with these measures as distribu-
tions/intensities. In this setting, we construct regularised nonparametric estimators of the Fréchet
means and Procrustes maps, and prove that they are consistent in Wasserstein distance and uni-
form norm, respectively (Theorems 6 and 7).

Before presenting our main results, we first provide a short introduction to Wasserstein space in
Section 2. Section 5 gathers the main proofs, for the sake of tidiness, and Section 6 presents sev-
eral interesting special examples as an illustration. An online Supplement [72] provides further
technical details omitted from the main paper, including some important measurability issues.

In reviewing an earlier version of our paper, a referee brought to our attention independent
parallel work by Álvarez-Esteban et al., that has since been published in [6]. Their work over-
laps with part of ours in (A) above (Sections 3.3.1 and 3.3.2). In particular, they too arrive at
a (structurally) same algorithm (Algorithm 1). Their motivation, construction, and convergence
proof differ substantially from ours (theirs is a fixed point iteration heuristically motivated by
the Gaussian case, while their proof uses almost sure representations). Indeed, our geometrical
framework and proof techniques is what allows us to study the problem of optimal registration
(Procrustes analysis), requiring a careful study of the stochastic convergence of monotone oper-
ators on R

d (Section 5.5).

2. Optimal transportation and Wasserstein space

The reason the Wasserstein space arises as the natural space to capture deformation-based varia-
tion of random measures lies in its deep connection with the problem of optimal transportation
of measure. This consists in solving the Monge problem (Villani [70]): given a pair of measures
(μ, ν), find a mapping tνμ : Rd �→R

d such that tνμ#μ = ν, and∫
Rd

‖tνμ(x) − x‖2 dμ(x) ≤
∫
Rd

∥∥q(x) − x
∥∥2 dμ(x),

for any other q such that q#μ = ν. Here, “#” denotes the push-forward operation, where
[t#μ](A) = μ(t−1(A)) for all Borel sets A of R

d . The map tνμ is called an optimal transport
plan, and a solution to this problem yields an optimal deformation of μ into ν with respect to the
transport cost given by squared Euclidean distance.

An optimal transport map may fail to exist, and instead, one may need to solve the relaxed
Monge problem, known as the Kantorovich problem (Villani [70]). Here instead of seeking a
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map tνμ#μ = ν, one seeks a distribution ξ on R
d × R

d with marginals μ and ν, minimising the
functional ∫

Rd×Rd

‖x − y‖2 dξ(x, y)

over all measures ξ on R
d × R

d with marginals μ and ν. In probabilistic terms, ξ yields a
coupling of random variables X ∼ μ and Y ∼ ν that minimises the quantity

E‖X − Y‖2,

over all possible couplings of X and Y . It can be shown that when the measure μ is regular
(absolutely continuous with respect to Lebesgue measure), the Kantorovich problem reduces to
the Monge problem, and the optimal coupling ξ is supported on the graph of the function. That
is, the optimal coupling exists, is unique, and can be realised by a proper transport map tνμ.

One may consider the space P2(R
2) of all probability measures μ on R

d with finite variance
(that is,

∫
Rd ‖x‖2 dμ(x) < ∞) as a metric space, endowed with the L2-Wasserstein distance

d(μ, ν) = inf
ξ∈�(μ,ν)

√∫
Rd×Rd

‖x − y‖2 dξ(x, y),

where �(μ,ν) is the set of probability measures on R
d × R

d with marginals μ and ν. The
induced metric space is colloquially called Wasserstein space and will form the geometrical
context for our study of deformation-based variation of random measures. This space has been
used extensively in statistics, as it metrises the topology of weak convergence, and convergence
with respect to the metric yields both convergence in law, as well as convergence of the first two
moments (for instance, in applications to the bootstrap, e.g., Bickel and Freedman [12], and to
goodness-of-fit, e.g., Rippl, Munk and Sturm [62]).

The appropriateness of this distance when modeling deformations of measures becomes clear
based on our previous remark concerning regularity: one can imagine an initial regular template
μ, that is deformed according to maps qi to yield new measures μi = (qi )#μ. It is then natural to
quantify the distance of the template to its perturbations by means of the minimal transportation
(or deformation) cost

d
(
μ,μi

) =
√∫

Rd

∥∥tμ
i

μ (x) − x
∥∥2

dμ(x).

That the distance can be expressed via a proper map, is due to the assumed regularity of μ. Note
that the maps qi themselves will, in general, not be identifiable (many Borel maps can push μ

forward to μi ). But they can be assumed to be exactly optimal, that is, qi = tμ
i

μ as a matter of
parsimony, and in any case without loss of generality, leading to identifiability. These maps will

also solve the registration problem: a map of the form tμ
i

μ − i, with i the identity mapping, shows
how the coordinate system of μ should be deformed to be registered to the coordinate system
of μi .
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This raises the question of how to characterise the optimal transportation maps. For instance,
in the one-dimensional case, if μ and ν are probability measures on R, and μ is diffuse we may
write

tνμ = G−1
ν ◦ Gμ, (2.1)

where Gμ(t) = ∫ t

−∞ dμ(x), Gν(t) = ∫ t

−∞ dν(x) are their distribution functions and G−1
ν is the

quantile function of ν. This characterises optimal maps in one dimension as non-decreasing
functions. More generally, when one has measures on R

d , the class of optimal maps can be seen
to be that of monotone maps (see Section 5.5), defined as fields t :Rd → R

d that are obtained as
gradients of convex functions ϕ : Rd → R,

t = ∇ϕ.

This is known as Brenier’s characterisation (Villani [70], Theorem 2.12). With these basic defini-
tions in place, we are now ready to consider the problem of finding a Fréchet mean of a collection
of measures – the latter viewed as the common template measure that was deformed to give rise
to these measures.

3. Sample setting

3.1. Fréchet means and optimal registration

The notion of a Fréchet mean (Fréchet [31]) generalises that of the mean in a normed vector
space to a general metric space. Though it has primarily been studied on Riemannian manifolds,
the generality of its definition allows it to be used very broadly: it replaces the usual “sum of
squares”, with a “sum of squared distances”, the Fréchet functional. A closely related notion is
that of a Karcher mean (Karcher [44]; Le [50]), a term that describes stationary points of the sum
of squares functional, when the latter is differentiable. See Kendall [45], and Kendall and Le [46]
for an overview and a detailed review, respectively. In the context of Wasserstein space, a Fréchet
mean of a collection of measures {μ1, . . . ,μN }, is a minimiser of the Fréchet functional

F(γ ) := 1

2N

N∑
i=1

d2(μi, γ
)

(3.1)

over elements γ in the Wasserstein space P2(R
d), and a Karcher mean is a stationary point

of F . The functional will be finite for any γ ∈ P2(R
d), provided that it is so for some γ0. Pop-

ulation versions, assuming P2(R
d) is endowed with a probability measure, can also be defined,

replacing summation by expectation with respect to that law. Interestingly, Fréchet himself [32]
considered the Wasserstein metric between probability measures on R, and some refer to this as
the Fréchet distance (e.g., Dowson and Landau [28]). In general, existence and uniqueness of a
sample Fréchet mean can be subtle, but Agueh and Carlier [2] have shown that it will uniquely
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exist in the Wasserstein space, provided that some regularity is asserted.2 Here and in the follow-
ing, we call a measure regular if it is absolutely continuous with respect to Lebesgue measure
(this condition can be slightly weakened [2]).

Proposition 1 (Agueh and Carlier [2]). Let {μ1, . . . ,μN } be a collection in the Wasserstein
space of measures P2(R

d). If at least one of the measures is regular with bounded density, then
their Fréchet mean exists, is unique, and is regular.

We will now show that, once the Fréchet mean μ̄ of {μ1, . . . ,μN } has been determined, it may
be used to optimally multi-couple the measures {μ1, . . . ,μn} in R

d×N , in terms of pairwise mean
square distances, thus providing a solution to the multidimensional Monge–Kantorovich problem
considered by Gangbo and Świȩch [35]. That is, μ̄ can be used to construct a random vector
whose marginals are as concentrated as possible in terms of pairwise mean-square distance,
subject to the constraint of having laws {μ1, . . . ,μN }.

Our first result combines results of [2] and [35] to illustrate precisely how (also see Pass [59],
Theorem 4.2.2, for an analogous result when considering continuous flows of measures).

Proposition 2 (Optimal multicoupling via Fréchet means). Let {μ1, . . . ,μN } be regular prob-
ability measures in P2(R

d), one with bounded density, and let μ̄ be their (unique) Fréchet mean
with respect to the Wasserstein metric. Let Z ∼ μ̄ and define

X = (X1, . . . ,XN), Xi = tμ
i

μ̄ (Z), i = 1 . . . ,N,

where tμ
i

μ̄ is the optimal transport plan pushing μ̄ forward to μi . Then Xi ∼ μi for i = 1, . . . ,N

and furthermore,

N∑
i=1

N∑
j=i+1

E‖Xi − Xj‖2 ≤
N∑

i=1

N∑
j=i+1

E‖Yi − Yj‖2

for any other Y = (Y1, . . . , YN) such that Yi ∼ μi , i = 1, . . . ,N .

In the language of shape theory, the Fréchet mean μ̄ may be used as a template to jointly
register the collection of measures, just as Euclidean configurations can be registered to their
Procrustes mean by a Procrustes analysis (Goodall [36]). Only in this case, instead of the sim-
ilarity group of shape theory, registration is deformation based, by means of the collection of

maps {tμi

μ̄ }Ni=1, where tμ
i

μ̄ is the optimal transport map

tμ
i

μ̄ #μ̄ = μi.

By analogy to shape theory, we shall refer to these as Procrustes maps. These yield a common
coordinate system (corresponding to μ̄) where one can best compare samples from each measure,

2For a population version, one needs to tackle measurability and identifiability issues, see Section 4.1.
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similarly to “quantile renormalisation” in one dimension, for example, Bolstad et al. [17], Gallon
et al. [34]. The Procrustes maps can also be used in order to produce a Principal Component
Analysis, capturing the main modes of deformation-based variation (Bigot et al. [13], Panaretos
and Zemel [58]; Huckemann, Munk and Hotz [41], Wang et al. [71]).

3.2. Wasserstein geometry and the gradient of the Fréchet functional

In this section, we determine the conditions for the Fréchet derivative of the Fréchet functional
(3.1) to be well defined, and determine its functional form. Furthermore, we characterise Karcher
means and give criteria for their optimality, opening the way for the determination of the Fréchet
mean. The key to our analysis will be to exploit the tangent bundle over the Wasserstein space of
regular measures.

3.2.1. The tangent bundle

Let P2(R
d) be the Wasserstein space of probability measures μ on R

d such that
∫
Rd ‖x‖2 dμ(x)

is finite, as defined in Section 2. An absolutely continuous measure on R
d will be called regular.

When μ0 ∈ P2(R
d) is regular and μ1 ∈ P2(R

d), the transportation map tμ
1

μ0 uniquely exists, in

which case there is a unique geodesic curve between μ0 and μ1. Using again the notation i for
the identity map, this geodesic is given by

μt = [
i + t

(
tμ

1

μ0 − i
)]

#μ0, t ∈ [0,1].

This curve is known as McCann’s interpolation (McCann [52], Villani [70]). The tangent space
at an arbitrary μ ∈P2(R

d) is then (Ambrosio et al. [7], Definition 8.4.1, p. 189)

Tanμ = Tanμ P2
(
R

d
) = {∇ϕ : ϕ ∈ C∞

c

(
Rd

)}L2(μ)
,

where C∞
c (Rd) denotes infinitely differentiable functions ϕ : Rd →R with compact support, and

the closure operation is taken with respect to the space L2(μ). Note the interesting fact that the
closure operation is the only aspect of the tangent space that directly involves the measure μ. An
equivalent definition, which is more useful to us, is given by Ambrosio et al. [7], Definition 8.5.1,
p. 195:

Tanμ = {
λ(r − i) : r optimal between μ and r#μ;λ > 0

}L2(μ)
,

that is, we take the collection of r’s that are optimal maps from μ to r#μ; i.e. the gradients of
convex functions. This is a linear space (not just a cone) by the first definition, even though it is
not obvious from the second. The definitions are equivalent by Theorem 8.5.1 of Ambrosio et al.
[7], p. 195. As was mentioned above, when μ0 ∈P2(R

d) is regular, every measure μ1 ∈ P2(R
d)

admits a unique optimal map tμ
1

μ0 that pushes μ0 forward to μ1. Thus, the exponential map

expμ0(r − i) = r#μ0
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is surjective, and its inverse, the log map

logμ0

(
μ1) = tμ

1

μ0 − i,

is well-defined throughout P2(R
d). In particular, the geodesic [i + t (tμ

1

μ0 − i)]#μ0 is mapped

bijectively to the line segment t (tμ
1

μ0 − i) ∈ Tanμ0 through the log map.

3.2.2. Gradient of the Fréchet functional

We will now exploit the tangent bundle structure described in the previous section in order to
determine the gradient of the empirical Fréchet functional. Fix μ0 ∈ P2(R

d) and consider the
function

F0 :P2
(
R

d
) →R, F0(μ) = 1

2
d2(μ,μ0).

When μ is regular, we have that ([7], Corollary 10.2.7, p. 239), for any μ0

lim
ν→μ

F0(ν) − F0(μ) + ∫
Rd 〈tμ0

μ (x) − x, tνμ(x) − x〉dμ(x)

d(ν,μ)
= 0,

where the convergence ν → μ is with respect to the Wasserstein distance. The integral above can
be seen as the inner product 〈

tμ
0

μ − i, tνμ − i
〉

in the space L2(μ) that includes as a (closed) subspace the tangent space Tanμ. In terms of this
inner product and the log map, we can write

F0(ν) − F0(μ) = −〈
logμ

(
μ0), logμ(ν)

〉 + o
(
d(ν,μ)

)
, ν → μ,

so that F0 is Fréchet-differentiable at μ with derivative

F ′
0(μ) = − logμ

(
μ0) = −(

tμ
0

μ − i
) ∈ Tanμ .

We have proven:

Theorem 1 (Gradient of the Fréchet functional). Fix a collection of measures μ1, . . . ,μN ∈
P2(R

d). When γ is regular, the Fréchet functional

F(γ ) = 1

2N

N∑
i=1

d2(γ,μi
)
, γ ∈ P2

(
R

d
)

(3.2)

is Fréchet-differentiable, and its gradient satisfies

F ′(γ ) = − 1

N

N∑
i=1

logγ

(
μi

) = − 1

N

N∑
i=1

(
tμ

i

γ − i
)
. (3.3)
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3.2.3. Karcher and Fréchet means

We can now characterise Karcher means, and also show that the empirical Fréchet mean must be
sought amongst them, by an immediate corollary to Theorem 1:

Corollary 1. Let μ1, . . . ,μN ∈P2(R
d) be regular measures, one of which with bounded density.

A measure μ is a Karcher mean of {μi} if and only if

1

N

N∑
i=1

(
tμ

i

μ − i
) = 0, μ-almost everywhere.

Furthermore, the Fréchet mean of {μi} is itself a Karcher mean.

In fact, the corollary suggests that a Karcher mean is “almost” a Fréchet mean: Agueh and

Carlier [2] show by convex optimisation methods that if
∑N

i=1(t
μi

μ − i) = 0 everywhere on R
d

(rather than just μ-almost everywhere), then μ is in fact the unique Fréchet mean. Thus one hopes
that this “gap of measure zero” can be bridged: that a sufficiently regular Karcher mean should
in fact be a Fréchet mean. We now show that this is indeed the case; if μ1, . . . ,μN ∈ P2(R

d) are
smooth measures with convex support, then a smooth Karcher mean of same support must be the
unique Fréchet mean:

Theorem 2 (Optimality criterion for Karcher means). Let μi for i = 1, . . . ,N be probability
measures on an open convex X ⊆ R

d whose densities gi are bounded and strictly positive on X

and let μ be a regular Karcher mean of {μi} with density f . Then μ is the unique Fréchet mean
of {μi}, provided one of the following holds:

1. X =R
d , f is bounded and strictly positive, and the densities f,g1, . . . , gN are of class C1;

2. X is bounded, μ(X) = 1, f is bounded, and the densities f,g1, . . . , gN are bounded from
below on X.

Remark 1. In the first condition, the C1 assumption can be weakened to Hölder continuity of
the densities for some exponent α ∈ (0,1].

Remark 2. We conjecture that a stronger result should be valid: specifically, if μ1, . . . ,μN sat-
isfy the conditions of Theorem 2, then we conjecture the Fréchet functional F to in fact have a
unique Karcher mean, coinciding with the Fréchet mean.

3.3. Gradient descent and Procrustes analysis

3.3.1. Elements of the algorithm

Let μ1, . . . ,μN ∈ P2(R
d) be regular and let γj ∈P2(R

d) be a regular measure, representing our
current estimate of the Fréchet mean of μ1, . . . ,μN at step j . Following the discussion above, it
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makes sense to introduce a step size τj > 0, and to carry out a steepest descent in the space of
measures (e.g. Molchanov and Zuyev [53]), following the negative of the gradient:

γj+1 = expγj

(−τjF
′(γj )

) =
[

i + τj

1

N

N∑
i=1

logγ

(
μi

)]
#γj =

[
i + τj

1

N

N∑
i=1

(
tμ

i

γj
− i

)]
#γj .

In order to guarantee that the descent is well-defined, we must make sure that the gradient itself
will remain well-defined as we iterate over j . In view of Theorem 1, this requires showing that
γj+1 remains regular whenever γj is regular. This is indeed the case, at least if the step size is
contained in [0,1]:

Lemma 1 (Regularity of the iterates). If γ0 is regular and τ0 ∈ [0,1], then so is γ1.

Lemma 1 suggests that the step size must be restricted to [0,1]. The next result suggests
that the objective function essentially tells us that the optimal step size, achieving the maximal
reduction of the objective function (thus corresponding to an approximate line search), is exactly
equal to 1:

Lemma 2 (Optimal stepsize). If γ0 ∈ P2(R
d) is regular then

F(γ1) − F(γ0) ≤ −∥∥F ′(γ0)
∥∥2

[
τ − τ 2

2

]
and the bound on the right-hand side of the last display is minimised when τ = 1.

In light of the results in Lemmas 1 and 2, one needs only concentrate on the case τj = 1. This
has an interesting ramification: when τ = 1, the gradient descent iteration is structurally equiv-
alent to a Procrustes analysis. Specifically, the gradient descent algorithm proceeds by iterating
the two steps of a Procrustes analysis (Gower [37]; Dryden and Mardia [29], p. 90):

(1) Registration: Each of the measures {μ1, . . . ,μN } is registered to the current template γj ,

via the optimal transportation (registration) maps tμ
i

γj
. In geometrical terms, the measures

{μ1, . . . ,μN } are lifted to the tangent space at γj (via the log map), and their linear rep-
resentation on the tangent space is expressed in local coordinates which coincide with

the maps tμ
i

γj
− i = logγj

(μi). These can be seen as a common coordinate system for

{μ1, . . . ,μN }, that is, a registration.
(2) Averaging: The registered measures are averaged coordinate-wise, using the common co-

ordinates system by the registration step (1). In geometrical terms, the linear representation

of {μ1, . . . ,μN } afforded by their local coordinates tμ
i

γj
− i = logγj

(μi) is averaged lin-
early. The linear average is then retracted back onto the manifold via the exponential map
to yield the estimate at the (j + 1)-step.

That the gradient descent reduces to Procrustes analysis is not simply of aesthetic value. It is of
the essence, as it shows that the algorithm relies entirely on solving a succession of pairwise op-
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Algorithm 1 Gradient Descent via Procrustes Analysis
(A) Set a tolerance threshold ε > 0.
(B) For j = 0, let γj be an arbitrary regular measure.
(C) For i = 1, . . . ,N solve the (pairwise) Monge problem and find the optimal transport map

tμ
i

γj
from γj to μi .

(D) Define the map Tj = N−1 ∑N
i=1 tμ

i

γj
.

(E) Set γj+1 = Tj #γj , that is, push-forward γj via Tj to obtain γj+1.

(F) If ‖F ′(γj+1)‖ < ε, stop, and output γj+1 as the approximation of μ̄ and tμ
i

γj+1 as the

approximation of tμ
i

μ̄ , i = 1, . . . ,N . Otherwise, return to step (C).

timal transportation problems, thus reducing the determination of the Fréchet mean to the classi-
cal Monge problem of optimal transportation (e.g., Benamou and Brenier [10], Haber et al. [39],
Chartrand et al. [23]). After all, this is precisely the point of a Procrustes algorithm: exploiting
the (easier) problem of pairwise registration to solve the (harder problem) of multi-registration.
We note that, further to requiring the ability to solve the pairwise optimal transportation prob-
lem, and the regularity conditions on the measures, the algorithm does not require additional
structural assumptions/workarounds to reduce the problem to the one-dimensional case (as in,
for example the “admissibility” approach of Boissard et al. [16]). An additional practical advan-
tage is that Procrustes algorithms are easily parallelisable, since one can distribute the solution
of the pairwise transport problems at each step j . Any regular measure can serve as an initial
point for the algorithm, for instance one of the μi . We should mention at this point that, if one
is content with obtaining an approximate or regularised Fréchet mean, then there are several
numerical strategies available, and there is a rapidly growing literature for the efficient computa-
tion of such schemes – we briefly summarise some such approaches in the concluding remarks
section (Section 7).

The gradient/Procrustes iteration is presented succinctly as Algorithm 1.

3.3.2. Convergence of the algorithm

In order to tackle the issue of convergence, we will use an approach that is specific to the na-
ture of optimal transportation. The reason is that Hessian type arguments that are used to prove
similar convergence results for gradient descent on Riemmanian manifolds (Afsari et al. [1]) or
Procrustes algorithms (Le [49], Groisser [38]) do not apply here, since the Fréchet functional
may very well fail to be twice differentiable. Still, this specific geometry of Wasserstein space
affords some advantages; for instance, we will place no restriction on the starting point for the
iteration, except that it be regular.

Theorem 3 (Limit points are Karcher means). Let μ1, . . . ,μN ∈ P2(R
d) be absolutely con-

tinuous probability measures, one of which with bounded density. Then, the sequence generated
by Algorithm 1 stays in a compact set of the Wasserstein space P2(R

d), and any limit point of
the sequence is a Karcher mean of (μ1, . . . ,μN).
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In view of Corollary 1, this immediately implies the following.

Corollary 2 (Wasserstein convergence of gradient descent). Under the conditions of Theo-
rem 3, if F has a unique stationary point, then the sequence {γj } generated by Algorithm 1
converges to the Fréchet mean of {μ1, . . . ,μN } in the Wasserstein metric,

d(γj , μ̄)
j→∞−→ 0.

Of course, combining Theorem 3 with Theorem 2 shows that the conclusion of Corollary 2
holds when the appropriate assumptions on {μi} and the Karcher mean μ are satisfied. The
proof of Theorem 3 is elaborate, and is constructed via a series of intermediate results in a
separate section (Section 5.3.1) in the interest of tidiness. The main challenge is that the standard
condition used for convergence of gradient descent algorithms, that gradients be Lipschitz, fails
to hold in this setup. Indeed, F is not differentiable on discrete measures, and these constitute a
dense subset of the Wasserstein space.

3.3.3. Uniform convergence of Procrustes maps and multicoupling

We conclude our analysis of the algorithm by turning to the Procrustes maps tμ̄
μi , which optimally

couple each sample observation μi to their Fréchet mean μ̄. These are the key objects required
for the solution of the multicoupling problem (as established in Proposition 2), and one would
use the limit of t

γj

μi in j as their approximation. However, the fact that d(γj , μ̄) → 0 does not

immediately imply the convergence of t
γj

μi to tμ̄
μi : the Wasserstein convergence only means that

certain integrals of the warp maps converge. Still, convergence of the warp maps does hold,
indeed uniformly so on compacta, μ̄-almost everywhere:

Theorem 4 (Uniform convergence of Procrustes maps). Under the conditions of Corollary 2,
there exist sets A,B1, . . . ,BN ⊆R

d such that μ̄(A) = 1 = μ1(B1) = · · · = μN(BN) and

sup
�1

∥∥tμ
i

γj
− tμ

i

μ̄

∥∥ j→∞−→ 0, sup
�2

∥∥t
γj

μi − tμ̄
μi

∥∥ j→∞−→ 0, i = 1, . . . ,N,

for any pair of compacta �1 ⊆ A, �2 ⊆ Bi , where the sequence t
γj

μi and tμ
i

γj
= (t

γj

μi )
−1 are the

Procrustes maps generated by Algorithm 1. If in addition all the measures {μ1, . . . ,μN } have
the same support, then one can choose the sets so that B1 = · · · = BN .

With both ingredients of the registration problem in hand, we deduce a solution to the latter:

Corollary 3 (Convergence of multicouplings). Under the conditions of Corollary 2, the se-
quence of multicouplings (

tμ
1

γj
, . . . , tμ

n

γj

)
#γj
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of {μ1, . . . ,μN } converges (in Wasserstein distance on (Rd)N ) to the optimal multicoupling

(tμ
1

μ̄ , . . . , tμ
n

μ̄ )#μ̄.

4. Population setting

In order to carry out inference, we must relate the sample collection of measures to a population,
and show that the relevant quantities are identifiable parameters. Furthermore, in practice the
sample measures will only be discretely observed, and this must be taken into account. We now
formulate such a model, and study its nonparametric estimation from discrete observations.

4.1. Deformation models and discrete observation

Let λ be a regular probability measure with a strictly positive density on a convex compact
K ⊂ R

d of positive Lebesgue measure,3 and let {�1, . . . ,�N } be i.i.d. point processes with
intensity measure λ,

E
[
�i(A)

] = λ(A),

for all Borel subsets A ⊆ K . Instead of observing the true processes {�1, . . . ,�N }, we are able
to observe warped versions

�̃i := Ti#�i, i = 1, . . . ,N,

with conditional warped mean measures

E[�̃i |Ti] = E[Ti#�i |Ti] = 
i = Ti#λ,

where the {Ti : Rd → R
d} are i.i.d. random homeomorphisms on K , satisfying the properties of

1. Unbiasedness: the Fréchet mean of 
i = Ti#λ is λ.
2. Regularity: Ti is a gradient of a convex function on K .

The conditional mean measures {
i = Ti#λ}Ni=1 play the role of the unobservable sample of ran-
dom measures generated from a population law constructed via random deformations of the tem-
plate λ. The processes {�̃i}Ni=1 play the role of the discretely observed versions of the {
i}Ni=1.
Conditions (1) and (2) state that the deformations {Ti} are identifiable. They can also be mo-
tivated from first principles: (1) states that the maps do not deform the template λ on average
(otherwise this “average deformation” would be by definition the template); and (2) states that
among all possible deformations that could have mapped λ to 
i , we take the parsimonious
choice of the optimal deformation. The importance and canonicity of these two assumptions has
been discussed in depth in Panaretos and Zemel [58], Section 3.3, who study a one-dimensional

3In applied settings, the point processes will be observed on a bounded observation window K . For this reason as well
as the sake of simplicity, we restrict our discussion to a given compact set (but remark that it could be extended to
unbounded observation windows subject to further conditions).
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version of the above problems (which is qualitatively very different, given the flat nature of 1d
Wasserstein space, and the availability of explicit closed form expressions).

The connection of this deformation model to Fréchet means, via the optimal maps, is now
given as follows (in a general setup, encompassing our model setup). Let Cb(K,Rd) be the
space of continuous bounded functions f : K → R

d endowed with the supremum norm ‖f ‖∞ =
supx∈K ‖f (x)‖.

Theorem 5 (Mean identity warp functions and Fréchet means). Let K ⊂ R
d be a compact

convex set of positive Lebesgue measure, and let λ ∈ P2(K) be regular. Consider the random
measure 
 = T #λ, where T : K → K is a random deformation (viewed as a random element in
Cb(K,Rd)), almost surely injective, and satisfying

1. almost surely there exists a convex function φ such that T = ∇φ on the interior of K ;
2. E[T (x)] = x for all x ∈ K (or on a dense subset of K);
3. almost surely T is differentiable with a nonsingular derivative for almost all x ∈ K .

Then λ is the unique Fréchet mean of 
, that is, the unique minimiser of the population Fréchet
functional γ �→ Ed2(
,γ ).

An important requirement for the statement and proof of Theorem 5 is that φ, φ∗ and 
 are
measurable as random elements in the appropriate spaces; this is not a priori obvious, but is
established as part of the proof.

The statistical problem will now be to estimate the unknown structural mean measure λ,
and the registration maps Ti non-parametrically, by smoothing the observed point processes
{�̃1, . . . , �̃N }. Once λ and {Ti} have been estimated, the processes {�̃1, . . . , �̃N } can be regis-
tered by applying the inverses of the estimated maps Ti , allowing for further analysis of the point
processes in a functional data context. Theorem 5 guarantees that the estimands considered are
identifiable.

4.2. Regularised nonparametric estimation

In order to estimate the λ and the {
i,Ti}, we will follow the steps below:

1. Regularisation: Estimate 
i = Ti#λ by a regular kernel estimator 
̂i restricted on K ,


̂i = 1

m

m∑
j=1

δ{xj } ∗ ψσ

[δ{xj } ∗ ψσ ](K)

∣∣∣
K

, (4.1)

where ψ : Rd → (0,∞) is a unit-variance isotropic density function, ψσ (x) = σ−dψ(x/σ)

for σ > 0 (more generally, ψ could be non-isotropic, having a bandwidth matrix, but we
focus on the isotropic case for simplicity), and �̃i is the sum of dirac masses

∑m
j=1 δ{xi}. If

�̃i contains no points (that is, m = 0), define 
̂i to be the (normalised) Lebesgue measure
on K .

2. Fréchet Mean Estimation: Estimate λ by the empirical Fréchet mean λ̂ of 
̂1, . . . , 
̂N ,
using the Procrustes Algorithm 1.



946 Y. Zemel and V.M. Panaretos

3. Procrustes Analysis: Estimate Ti by the optimal transportation map of λ̂ onto 
̂i , as given

by the final step in the iteration of Algorithm 1. Estimate the map T −1
i by T̂ −1

i = T̂ −1
i .

4. Registration: Register the observed point processes to a common coordinate system by

defining �̂i = T̂ −1
i #�̃i .

In the next section, we will prove that our estimates are consistent for their population version,
as the number of observed processes, and the number of points per process diverge.

4.3. Asymptotic theory

To establish consistency, we will use the dense asymptotics regime of functional data analysis,
adapted to the current setting. We will consider a setup where the number of observed point
processes n diverges, and the (mean) number of points in each observed process, E[�̃i(K)],
diverge too. Here we use the index notation “n” rather than “N” to emphasize that the index
is no longer held fixed. Specifically, let (�

(n)
1 ,�

(n)
2 , . . . ,�

(n)
n )∞n=1 be a triangular array of row-

independent and identically distributed point processes on K following the same infinitely di-
visible distribution and having mean measure τnλ, where τn > 0 are constants. Let T1, . . . , Tn

be independent and identically distributed realisations of a random homeomorphism T of K

satisfying the unbiasedness and regularity assumptions of Section 4.1. Let �̃
(n)
i = Ti#�

(n)
i and

set 
i = Ti#λ = τ−1
n E[�̃(n)

i |Ti]. Suppose that 
̂i is an estimator of 
i , constructed by kernel

smoothing of �
(n)
i using a (possibly random) bandwidth σ

(n)
i , as described in the previous sec-

tion. Correspondingly, let �̃
(N)
i = Ti#�

(n)
i and set 
i = Ti#λ = τ−1

n E[�̃(n)
i |Ti].

Theorem 6 (Consistency of the regularised Fréchet mean). If τn/ logn → ∞ and σn =
maxi σ

(n)
i

p→ 0 then

1. For any i,

d(
̂i,
i)
p→ 0;

2. The estimator λ̂n is strongly consistent

d(̂λn,λ)
as→ 0.

If the smoothing is carried out independently across trains, that is, σ
(n)
i depends only on �̃

(n)
i ,

then the result still holds if merely τn → ∞.
If E[�(1)

1 ]4 < ∞,
∑

n τ−2
n < ∞ and σn

as→ 0 then convergence almost surely holds.

Remark 3. There is no lower bound on σn, and it can vanish at any rate, provided it is strictly
positive. In practice, however, if σn is very small, then the densities of 
̂i will have very high
peaks, and the constant Cμ in Proposition 4 (with μi = 
̂i ) will be large (essentially propor-
tional to 1/σn). The proof of Proposition 3 suggests that this may slow down the convergence of
Algorithm 1.
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Remark 4. It is worth remarking that Le Gouic and Loubes [51], Theorem 3, consider the stabil-
ity of Fréchet means in a rather general setting; verification of their assumptions in our particular
setting, however, is quite involved and in fact essentially amounts to directly proving Theorem 6.

Our next two results concern the (uniform) consistency of the Procrustes registration proce-
dure. Though the results themselves parallel their one-dimensional counterparts (see Panaretos
and Zemel [58]), their proofs are entirely different, and substantially more involved (because the
geometry of monotone mappings in R

d is far more rich than the geometry of monotone maps on
R). In particular, we have the following theorem.

Theorem 7 (Consistency of Procrustes maps). Under the same conditions of Theorem 6, for
any i and any compact set � ⊆ int(K),

sup
x∈�

∥∥T̂ −1
i (x) − T −1

i (x)
∥∥ p→ 0, sup

x∈�

∥∥T̂i (x) − Ti(x)
∥∥ p→ 0.

The same remarks at the end of the statement of Theorem 6 apply here as well.

Corollary 4 (Consistency of Procrustes Registration). Under the same conditions of Theo-
rem 6, the registration procedure is consistent: for any i

d

(
�̂i

�̂i(K)
,

�i

�i(K)

)
p→ 0, n → ∞,

provided one of the following conditions holds:

1. Every point of the boundary of K is exposed, that is, for any y ∈ ∂K there exists α ∈ R
d

such that

〈y,α〉 >
〈
y′, α

〉
, y′ ∈ K \ {y}.

2. The warp map Ti is strictly monotone〈
Ti

(
x′) − Ti(x), x′ − x

〉
> 0, x, x′ ∈ int(K), x �= x′.

The first condition is satisfied by any ellipsoid in R
d and more generally if the boundary of K

can be written as ∂K = {x : ϕK(x) = 0}, for a strictly convex function ϕK . Indeed, if α creates
a supporting hyperplane to K at y and 〈α,y〉 = 〈α,y′〉 for y �= y′, then as ϕK is strictly convex
on the line segment [y, y′], it is impossible that y′ ∈ K without the hyperplane intersecting the
interior of K . Although this condition excludes some interesting cases, perhaps most prominently
polyhedral sets such as K = [0,1]d , such sets can be approximated by convex sets that do satisfy
it (Krantz [47], Proposition 1.12).

As for the second condition, in general it will hold almost surely. Indeed, as Ti#λ = 
i and
both measures are absolutely continuous, there exists a λ-null set N such that Ti is strictly
monotone outside N [7], Proposition 6.2.12. By assumption λ has a strictly positive density
on K , so that λ-null subsets of K are precisely the Lebesgue null subsets of K . In that sense, this
condition is not overly restrictive, and will most likely be satisfied under additional regularity
assumptions on the warp maps Ti and, possibly, K .
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5. Proofs of formal statements

Our proofs will require us to establish some analytical results that are intrinsic to the optimal
transportation problem. These are essential for the proofs, especially of our main results, and
some are nontrivial. For tidiness, we will state and prove these results separately at the end of this
section (Section 5.5), developing our main results first, and referring to the analytical background
when necessary.

5.1. Proofs of statements in Section 3.1

Proof of Proposition 2. The optimisation problem

min
Yi∼μi

E

N∑
i=1

N∑
j=i+1

‖Yi − Yj‖2 = min
ξ∈�(μ1,...,μN )

∫
RNd

N∑
i=1

N∑
j=i+1

‖ti − tj‖2 dξ(t1, . . . , tN )

is equivalent to minimising

G(ξ) = 1

2N

∫
RNd

N∑
i=1

∥∥∥∥∥ti − 1

N

N∑
j=1

tj

∥∥∥∥∥
2

dξ(t1, . . . , tN ), ξ ∈ �
(
μ1, . . . ,μN

)
,

and Agueh and Carlier [2], Proposition 4.2, show that minμ F(μ) = minξ G(ξ).
Since μ̄ is regular ([2], Proposition 5.1), X is well defined and has joint distribution

ξ ′ = h#μ̄, h : Rd → R
Nd, h = (

tμ
1

μ̄ , . . . , tμ
N

μ̄

)
.

Since the coordinates of h have mean identity (see [2] or Corollary 1, Equation (3.9)),

G
(
ξ ′) = 1

2N

∫
Rd

N∑
i=1

∥∥tμ
i

μ̄ − i
∥∥2 dμ̄ = 1

2N

N∑
i=1

d2(μ̄,μi
) = F(μ̄) = inf

μ
F(μ).

Thus ξ ′ is optimal. �

5.2. Proofs of statements in Section 3.2

Proof of Corollary 1. The characterisation of Karcher means is immediate from Theorem 1.

The fact that the Fréchet mean μ satisfies
∑N

i=1(t
μi

μ − i) = 0 μ-almost everywhere follows by
a result of Agueh and Carlier [2]. For an alternative proof using the tangent bundle, see the
supplementary material [72]. �

Proof of Theorem 2. The result exploits Caffarelli’s regularity theory for Monge–Ampère equa-
tions. In the first case, by Theorem 4.14(iii) in Villani [70] there exist C1 (in fact, C2,α) con-

vex potentials ϕi on R
d with tμ

i

μ = ∇ϕi , so that tμ
i

μ (x) is a singleton for all x ∈ R
d . The set
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{x ∈ R
d : ∑

tμ
i

μ (x)/N �= x} is μ-negligible (and hence Lebesgue-negligible) and open by con-
tinuity. It is therefore empty, so F ′(μ) = 0 everywhere, and μ is the Fréchet mean (see the
discussion after Corollary 1).

In the second case, by the main theorem in Caffarelli [21], p. 99, and the same argument, we

have
∑

tμ
i

μ (x)/N = x for all x ∈ X. Since X is convex, there must exist a constant C such that∑
ϕi(x) = C + N‖x‖2/2 for all x ∈ X. Hence, Equation (3.9) in [2] holds with R

d replaced
by X. Repeating the proof of Proposition 3.8 in [2], we see that μ minimises F on P2(X), the
set of measures supported on X. (All the integrals that appear in the proof can be taken on X,
where we know the inequality holds.) Again by convexity of X, the minimiser of F must be4 in
P2(X) (see the existence proof at the beginning of the proof of Theorem 5 in the supplementary
material [72]). �

5.3. Proofs of statements in Section 3.3

Proof of Lemma 1. By [7], Proposition 6.2.12, there exists a γ0-null set Ai such that on R
d \Ai ,

tμ
i

γ0 is differentiable, ∇tμ
i

γ0 > 0 (positive definite), and tμ
i

γ0 is strictly monotone〈
tμ

i

γ0
(x) − tμ

i

γ0

(
x′), x − x′〉 > 0, x, x′ /∈ Ai, x �= x′.

Since tγ1
γ0 = (1 − τ)i + τN−1 ∑N

i=1 tμ
i

γ0 , it stays strictly monotone (hence injective) and ∇tγ1
γ0 > 0

outside A = ⋃
Ai , which is a γ0-null set.

Let h0 denote the density of γ0 and set � = R
d \ A. Then tγ1

γ0 |� is injective and {h0 > 0} \ �

is Lebesgue negligible because

0 = γ0(A) = γ0
(
R

d \ �
) =

∫
Rd\�

h0(x)dx =
∫

{h0>0}\�
h0(x)dx,

and the integrand is strictly positive. Since |det∇tμ
i

γ0 | > 0 on � we obtain that γ1 = tμ
i

γ0 #γ0 is
absolutely continuous by [7], Lemma 5.5.3. �

Proof of Lemma 2. Let Si = tμ
i

γ0 be the optimal map from γ0 to μi , and set Wi = Si − i. Then

2NF(γ0) =
N∑

i=1

d2(γ0,μ
i
) =

N∑
i=1

∫
Rd

‖Si − i‖2 dγ0 =
N∑

i=1

〈Wi,Wi〉 =
N∑

i=1

‖Wi‖2, (5.1)

with the inner product being in L2(γ0). By definition

γ1 =
[
(1 − τ)i + τ

N

N∑
j=1

Sj

]
#γ0 =

[
(1 − τ)S−1

i + τ

N

N∑
j=1

Sj ◦ S−1
i

]
#μi.

4We know that the minimiser must be in P2(X), but minimising on P2(X) suffices by continuity of F .
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This is a map that pushes forward μi to γ1 (not necessarily optimally). Hence,

d2(γ1,μ
i
) ≤

∫
Rd

∥∥∥∥∥
[
(1 − τ)S−1

i + τ

N

N∑
j=1

Sj ◦ S−1
i

]
− i

∥∥∥∥∥
2

Rd

dμi.

Now μi = Si#γ0, which means that
∫

f dμi = ∫
(f ◦ Si)dγ0 for any measurable f . This change

of variables gives

d2(γ1,μ
i
) ≤

∫
Rd

∥∥∥∥∥
[
(1 − τ)i + τ

N

N∑
j=1

Sj

]
− Si

∥∥∥∥∥
2

Rd

dγ0 =
∥∥∥∥∥−Wi + τ

N

N∑
j=1

Wj

∥∥∥∥∥
2

L2(γ0)

.

The norm is always in L2(γ0), regardless of i. Developing the squares, summing over i =
1, . . . ,N and using (5.1) gives

2NF(γ1) ≤
N∑

i=1

‖Wi‖2 − 2
τ

N

N∑
i,j=1

〈Wi,Wj 〉 + τ 2

N2

N∑
i,j,k=1

〈Wj,Wk〉

= 2NF(γ0) − 2Nτ

∥∥∥∥∥
N∑

i=1

1

N
Wi

∥∥∥∥∥
2

+ Nτ 2

∥∥∥∥∥
N∑

i=1

1

N
Wi

∥∥∥∥∥
2

,

and recalling that Wi = Si − i yields

F(γ1) − F(γ0) ≤ τ 2 − 2τ

2

∥∥∥∥∥ 1

N

N∑
i=1

Wi

∥∥∥∥∥
2

= −∥∥F ′(γ0)
∥∥2

[
τ − τ 2

2

]
.

Since τ − τ 2/2 is clearly maximised at τ = 1, the proof is complete. �

5.3.1. Proof of Theorem 3

We will prove the theorem by establishing the following facts:

1. The sequence ‖F ′(γj )‖ converge to zero as j → ∞.
2. The sequence {γj } is stays in a compact subset of P2(R

d).
3. The mapping γ �→ ‖F ′(γ )‖2 is continuous.

The first two are relatively straightforward, and are proven in the form of the following two
lemmas.

Lemma 3. The objective value of the Fréchet functional decreases at each step of Algorithm 1,
and ‖F ′(γj )‖ vanishes as j → ∞.
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Proof. The first statement is clear from Lemma 2, from which it also follows that

1

2

k∑
j=0

∥∥F ′(γj )
∥∥2 ≤

k∑
j=0

F(γj ) − F(γj+1) = F(γ0) − F(γk+1) ≤ F(γ0).

Consequently, the series at the left-hand side converges whence ‖F ′(γj )‖2 → 0. �

Lemma 4. The sequence generated by Algorithm 1 stays in a compact subset of the Wasserstein
space P2(R

d).

Proof. For any ε > 0 there exists a compact convex set Kε such that μi(Kε) > 1 − ε/N for i =
1, . . . ,N . Let Ai = (tμ

i

γj
)−1(Kε), A = ⋂N

i=1 Ai . Then γj (A
i) > 1 − ε/N , so that γj (A) > 1 − ε.

Since Kε is convex, Tj (x) ∈ Kε for any x ∈ A, so that

γj+1(Kε) = γj

(
T −1

j (Kε)
) ≥ γj (A) > 1 − ε, j = 0,1, . . . .

We shall now show that any weakly convergent subsequence of {γj } is in fact convergent in the
Wasserstein space. By Theorem 7.12 in Villani [70], it suffices to show that

lim
R→∞ sup

j∈N

∫
{x:‖x‖>R}

‖x‖2 dγj (x) = 0. (5.2)

For simplicity, we shall show this under the stronger assumption that the measures μ1, . . . ,μN

have a finite third moment∫
Rd

‖x‖3 dμi(x) ≤ M(3), i = 1, . . . ,N. (5.3)

In Section 2 of the supplementary material [72], we show that (5.2) holds even if (5.3) does not.
For any j ≥ 1, it holds that

∫
Rd

‖x‖3 dγj (x) =
∫
Rd

∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γj−1
(x)

∥∥∥∥∥
3

dγj−1(x) ≤ 1

N

N∑
i=1

∫
Rd

∥∥tμ
i

γj−1
(x)

∥∥3 dγj−1(x)

= 1

N

N∑
i=1

∫
Rd

‖x‖3 dμi(x) ≤ M(3).

This implies that for any R > 0 and any j > 0,∫
{x:‖x‖>R}

‖x‖2 dγj (x) ≤ 1

R

∫
{x:‖x‖>R}

‖x‖3 dγj (x) ≤ 1

R
M(3),

and (5.2) follows. �
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The third statement (continuity of the gradient) is much more subtle to establish. We will prove
it in two steps: first we establish a proposition, giving sufficient conditions for the third statement
to hold true. Then, we will verify that the conditions of the proposition are satisfied in the setting
of Theorem 3.3, in the form of a lemma and a corollary. We start with the proposition.

Proposition 3 (Continuity of F ′). Let μ1, . . . ,μN ∈ P2(R
d) be given regular measures, and

consider a sequence γn of regular measures that converges in P2(R
d) to a regular measure γ . If

the densities of γn are uniformly bounded, then ‖F ′(γn)‖2 → ‖F ′(γ )‖2.

Proof. The regularity of γn and γ implies that F is indeed differentiable there, and so it needs
to be shown that∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γn
− i

∥∥∥∥∥
2

L2(γn)

−→
∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γ − i

∥∥∥∥∥
2

L2(γ )

, n → ∞.

Denote the integrands by gn and g respectively. At a given x ∈ R
d , gn(x) can be undefined,

either because some tμ
i

γn (x) is empty, or because they can be multivalued. Redefine gn(x) at such
points by setting it to 0 in the former case and choosing an arbitrary representative otherwise.
Since the set of these ambiguity points is a γn-null set (because γn is absolutely continuous), this
modification does not affect the value of the integral

∫
gn dγn. Apply the same procedure to g.

Then gn and g are finite and nonnegative throughout Rd . Absolute continuity of γ , Remark 2.3
in [3] and Proposition 5 imply together that the set of points where g is not continuous is a γ -null
set.

Next, we approximate gn and g by bounded functions as follows. Since γn converge in the
Wasserstein space, they satisfy (5.2) by [70], Theorem 7.12. It is easy to see that this implies the
uniform absolute continuity

∀ε > 0 ∃δ > 0 ∀j ≥ 1 ∀A ⊆R
d Borel : γj (A) ≤ δ =⇒

∫
A

‖x‖2 dγj (x) < ε. (5.4)

The δ’s can be chosen in such a way that (5.4) holds true for the finite collection {μ1, . . . ,μN } as
well. Fix ε > 0, set δ = δε as in (5.4), and let An = {x : gn(x) ≥ 4R}, where R = Rε ≥ 1 is such
that (using (5.2))

∀i ∀n :
∫

{‖x‖2>R}
‖x‖2 dγn(x) +

∫
{‖x‖2>R}

‖x‖2 dμi(x) <
δ

2N
.

The bound

gn(x) ≤ 2‖x‖2 + 2

N

N∑
i=1

∥∥tμ
i

γn
(x)

∥∥2
,
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implies that

An ⊆ {
x : ‖x‖2 > R

} ∪
N⋃

i=1

{
x : ∥∥tμ

i

γn
(x)

∥∥2
> R

}
.

To deal with the sets in the union observe that (since tμ
i

γn is γn-almost surely injective),

γn

({
x : ∥∥tμ

i

γn
(x)

∥∥2
> R

}) = μi
({

x : ‖x‖2 > R
})

<
δ

2N
,

so that γn(An) < δ. We use this in conjunction with (5.4) to bound∫
An

gn(x)dγn(x) ≤ 2
∫

An

‖x‖2 dγn(x) + 2

N

N∑
i=1

∫
An

∥∥tμ
i

γn
(x)

∥∥2 dγn(x)

≤ 2ε + 2

N

N∑
i=1

∫
tμ

i

γn (An)

‖x‖2 dμi(x) ≤ 4ε,

where we have used the measure-preservation property μi(tμ
i

γn (An)) = γn(An) < δ.
Define the truncation gn,R(x) = min(gn(x),4R). Then 0 ≤ gn − gn,R ≤ gn1{gn > 4R}, so∫ [

gn(x) − gn,R(x)
]

dγn(x) ≤
∫

An

gn(x)dγn(x) ≤ 4ε, n = 1,2, . . . .

The analogous truncated function gR satisfies

0 ≤ gR(x) ≤ 4R ∀x ∈ R
d and {x : gR is continuous} is of γ -full measure. (5.5)

Let E = supp(γ ). Proposition 6 (Section 5.5) implies pointwise convergence of tμ
i

γn (x) to

tμ
i

γ (x) for any i = 1, . . . ,N and any x ∈ E \N , where N = ⋃N
i=1 N i and

N i = (
E \ Eden) ∪ {

x : tμ
i

γ (x) contains more than one element
}
.

Thus, gn and g are univalued functions defined throughout Rd , and gn → g pointwise on x ∈
E \ N (for whatever choice of representatives selected to define gn); consequently, gn,R → gR

on E \N .
In order to restrict the integrands to a bounded set we invoke the tightness of the sequence (γn)

and introduce a compact set Kε such that γn(R
d \ Kε) < ε/R for all n. Clearly, gn,R → gR on

E′ = Kε ∩ E \ N , and by Egorov’s theorem (valid as Leb(E′) ≤ Leb(Kε) < ∞), there exists a
Borel set � = �ε ⊆ E′ on which the convergence is uniform, and Leb(E′ \ �) < ε/R. Let us
write∫

gn,R dγn −
∫

gR dγ =
∫

gR d(γn − γ ) +
∫

�

(gn,R − gR)dγn +
∫
Rd\�

(gn,R − gR)dγn,

and bound each of the three integrals at the right-hand side as n → ∞.
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The first integral vanishes as n → ∞, by (5.5) and the Portmanteau lemma (Lemma 9,
Section 5.5). For a given �, the second integral vanishes as n → ∞, since gn,R converge to
gR uniformly. The third integral is bounded by 8Rγn(R

d \ �). The latter set is a subset of
N ∪ (E′ \ �) ∪ (Rd \ E) ∪ (Rd \ Kε), where the first set is Lebesgue-negligible and the sec-
ond has Lebesgue measure smaller than ε/R. The hypothesis of the densities of γn implies
that γn(A) ≤ C Leb(A) for any Borel set A ⊆ R

d and any n ∈ N; it follows from this and
γn(R

d \ Kε) < ε/R that∣∣∣∣∫
Rd\�

(gn,R − gR)dγn

∣∣∣∣ ≤ 8R
(
Cε/R + γn

(
R

d \ E
) + ε/R

) = 8
(
Rγn

(
R

d \ E
) + Cε + ε

)
.

Write the open set E1 =R
d \E as a countable union of closed sets Ak with Leb(E1 \Ak) < 1/k,

and conclude that

lim sup
n→∞

γn(E1) ≤ lim sup
n→∞

γn(Ak) + lim sup
n→∞

γn(E1 \ Ak) ≤ γ (Ak) + C

k
= C

k
,

where we have used the Portmanteau lemma again, Ak ∩ supp(γ ) = ∅ and γn(A) ≤ C Leb(A).
Consequently, for all k

lim sup
n→∞

∣∣∣∣∫ gn,R dγn −
∫

gR dγ

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∫
Rd\�

(gn,R − gR)dγn

∣∣∣∣ ≤ 8RεC

k
+ 8(C + 1)ε.

Letting k → ∞, then incorporating the truncation error yields

lim sup
n→∞

∣∣∣∣∫ gn dγn −
∫

g dγ

∣∣∣∣ ≤ 8(C + 1)ε + 8ε.

The proof is complete upon noticing that ε is arbitrary. �

Our proof will now be complete if we show that the sequence γk generated by the algorithm
satisfies the assumptions of the last proposition. First, we show that limits of the sequence are
indeed regular.

Proposition 4 (Sequence has bounded density). Let μi have density gi for i = 1, . . . ,N and
let γ0 be a regular probability measure. Then the density of γ1 is bounded by a constant Cμ =
min{Nd−1 maxi ‖gi‖∞,Nd mini ‖gi‖∞} that depends only on {μ1, . . . ,μN }.
Proof. Let hi be the density of γi . By the change of variables formula, for γ0-almost any x

h1
(
tγ1
γ0

(x)
) = h0(x)

det∇tγ1
γ0(x)

; gi
(
tμ

i

γ0
(x)

) = h0(x)

det∇tμ
i

γ0 (x)
.

Fiedler [30] shows that if B1 and B2 are d × d positive semidefinite matrices with eigenvalues
0 ≤ αi,βi , then

det(B1 + B2) ≥
d∏

i=1

(αi + βi).
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The right-hand side contains 2d nonnegative summands of which two are detB1 and detB2,
and so we see that det(B1 + B2) ≥ detB1 + detB2. (One can show the stronger result
d
√

det(B1 + B2) ≥ d
√

detB1 + d
√

detB2.) Since ∇tγ1
γ0 is an average of N d ×d positive semidefinite

matrices, we obtain

h1
(
tγ1
γ0

(x)
) = Ndh0(x)

det
∑∇tμ

i

γ0 (x)
≤ Ndh0(x)∑

det∇tμ
i

γ0 (x)
= Nd

[
N∑

i=1

1

gi(tμ
i

γ0 (x))

]−1

≤ Nd

[
N∑

i=1

1

‖gi‖∞

]−1

.

Let � be the set of points where this inequality holds; then γ0(�) = 1. Hence,

γ1
(
tγ1
γ0

(�)
) = γ0

[(
tγ1
γ0

)−1(tγ1
γ0

(�)
)] ≥ γ0(�) = 1.

Thus γ1-almost surely,

h1 ≤ Nd

[
N∑

i=1

1

‖gi‖∞

]−1

≤ min
{
Nd−1 max

i

∥∥gi
∥∥∞,Nd min

i

∥∥gi
∥∥∞

}
= Cμ.

For Cμ to be finite it suffices that ‖gi‖∞ be finite for some i. �

Our task is now essentially complete. All that remains is to show:

Corollary 5 (Limits are regular). Every limit of the sequence generated by Algorithm 1 is
absolutely continuous provided the density of μi is bounded for some i.

Proof. Each γk (k = 1,2, . . . ) has a density that is bounded by the finite constant Cμ. For
any open set O , lim infγk(O) ≤ Cμ Leb(O), so any limit point γ of (γk) is such that γ (O) ≤
Cμ Leb(O) by the Portmanteau lemma. It follows that γ is absolutely continuous with density
bounded by Cμ. We note that Agueh and Carlier [2] show that the density of the Fréchet mean is
bounded by Nd mini ‖gi‖∞ ≥ Cμ, a slightly weaker bound. �

Proof of Theorem 4. Let E = supp(μ̄) and set Ai = Eden ∩ {x : tμ
i

μ̄ (x) is multivalued}. By

Corollary 6 μ̄(Ai) = 1. Choose A = ⋂N
i=1 Ai and apply Proposition 6. This proves the first

assertion.
Now let Ei = supp(μi) and set Bi = (Ei)den ∩ {x : tμ̄

μi (x) is univalued}. Since μi is regular,

μi(Bi) = 1. Apply Proposition 6. If in addition E1 = · · · = EN , then μi(B) = 1 for B = ∩Bi . �

Proof of Corollary 3. The proof is very similar to that of Proposition 3. Define ηj , η ∈
P2((R

d)N+1) by

ηj = (
tμ

1

γj
, . . . , tμ

n

γj
, i

)
#γj , η = (

tμ
1

γ , . . . , tμ
n

γ , i
)
#γ.
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We establish convergence of ηj to η. Since the optimal multicouplings are marginals of ηj and
η their convergence follow. Let h : (Rd)N+1 → R be any continuous function such that

∣∣h(t1, . . . , tN , y)
∣∣ ≤ 1

N

N∑
i=1

‖ti‖2 + ‖y‖2.

Define gj : Rd → R by gj (x) = h(tμ
1

γj
, . . . , tμ

n

γj
, x) and analogously define g. By [70], Theo-

rem 7.12, it suffices to show that (if this holds for h, it also holds for a + bh with a, b scalars)∫
Rd(N+1)

hdηj =
∫
Rd

gj dγj (x) →
∫
Rd

g dγ (x) =
∫
RdN

hdη.

(In Proposition 3, we had h = ‖y − t̄‖2.) Since h is continuous, we can modify gn and g to
be well-defined, finite and so that g be continuous γ -almost surely. Define R as in the proof
of Proposition 3, Aj = {x : |gj (x)| ≥ 4R}, invoke (5.4) and translate the bound on h to a
bound on |gj | to conclude that

∫
Aj

|gj |dγj ≤ 4ε. Carry out the same (now two-sided) trunca-
tion gj,R(x) = max(−4R,min(gj (x),4R)) to obtain |gj − gj,R| ≤ |gj |1{|gj | > 4R}, |gR| ≤ 4R

and gR is continuous γ -almost surely (see (5.5)). The rest can be done as in the proof of Propo-
sition 3, since it did not depend on the precise form of g. �

5.4. Proofs of statements in Section 4.1

Proof of Theorem 5. Since λ is regular and T is injective with nonsingular derivative, 
 = T #λ

is also regular by Lemma 5.5.3 in [7]. Moreover, 
 is supported on K because T takes values
there. Consequently, the Fréchet mean of 
 is unique and supported itself on K ; this is essentially
a consequence of Corollary 2.9 in [5]. For tidiness, we provide the full details in Section 4 of the
supplementary material [72].

In view of the preceding paragraph, it suffices to show that

Ed2(λ,
) ≤ Ed2(θ,
), θ ∈ P2(K).

As a gradient of a convex function, T = t
λ is optimal. Let φ be the convex potential of T , and
define φ∗ its Legendre transform. Then the pair (‖x‖2/2 − φ,‖y‖2/2 − φ∗) is dual optimal.
Invoking strong duality for λ and weak duality for θ , we find

d2(λ,
) =
∫
Rd

(
1

2
‖x‖2 − φ(x)

)
dλ(x) +

∫
Rd

(
1

2
‖y‖2 − φ∗(y)

)
d
(y);

d2(θ,
) ≥
∫
Rd

(
1

2
‖x‖2 − φ(x)

)
dθ(x) +

∫
Rd

(
1

2
‖y‖2 − φ∗(y)

)
d
(y).

By Fubini’s theorem (see the supplementary material for a justification), we have

Ed2(λ,
) =
∫
Rd

(
1

2
‖x‖2 −Eφ(x)

)
dλ(x) +E

∫
Rd

(
1

2
‖y‖2 − φ∗(y)

)
d
(y);
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Ed2(θ,
) ≥
∫
Rd

(
1

2
‖x‖2 −Eφ(x)

)
dθ(x) +E

∫
Rd

(
1

2
‖y‖2 − φ∗(y)

)
d
(y).

The function ET is continuous (by the bounded convergence theorem and boundedness of K),
so equals the identity for all x ∈ K . Again by Fubini’s theorem (see the supplementary material),
it follows that Eφ(x) = ‖x‖2/2 for all x ∈ K , perhaps up to an additive constant. Since θ and
λ are both supported on K , the integrals with respect to λ and θ vanish, and this completes the
proof. �

As part of our proofs, we will need to control the Wasserstein distance between the regularised
measures and their true counterparts:

Lemma 5. The smooth measure 
̂i defined by (4.1) satisfies

d2
(


̂i,
�̃i

�̃i(K)

)
≤ Cψ,Kσ 2 if σ ≤ 1 and �̃i(K) > 0, (5.6)

where Cψ,K is a (finite) constant that depends only on ψ and K .

We prove the lemma in the supplementary material [72], Section 4.

Remark 5. There is no need for ψ to be isotropic: it is sufficient that merely

δψ(r) = inf‖x‖≤r
ψ(x) > 0, r > 0,

which is satisfied as long as ψ is continuous and strictly positive.

We now remark that a trivial extension of [58], Lemma 3, yields:

Lemma 6 (Number of points per process is O(τn)). If τn/ logn → ∞, then there exists a
constant C� > 0, depending only on the distribution of the �’s, such that

lim inf
n→∞

min1≤i≤n �
(n)
i (K)

τn

≥ C� almost surely.

In particular, there are no empty point processes, so the normalisation is well-defined.

Proof of Theorem 6. The proof is very similar to that of Theorem 1 in Panaretos and Zemel
[58], and we give the details in the supplementary material [72]. �

Proof of Theorem 7. The argument is considerably different than the case d = 1 considered in
[58], and brings into play the geometry of convex functions in R

d . Let i be a fixed integer and
for n ≥ i set

μn = 
̂i; νn = λ̂n; μ = 
i; ν = λ; un = T̂ −1
i ; u = T −1

i .
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We wish to show that un → u uniformly on compact sets, using our knowledge that{
μn → μ;
νn → ν; un#μn = νn; u#μ = ν; un,u optimal.

This follows from Proposition 6 below. To verify the conditions, notice that all the measures
are supported on K = E, a compact and convex set. Furthermore μn, μ and ν all have strictly
positive densities there, so their support is exactly K . Continuity of u on int(K) follows from the
assumptions that Ti and T −1

i are continuous. The finiteness in (5.7) follows from the compactness
of K , and the uniqueness follows from the regularity of μ.

The same proposition can be applied to show convergence of T̂i to Ti uniformly on � ⊆
int(K): one needs to reverse the roles of μn and νn and of μ to ν, and notice that ν too is regular,
which guarantees the uniqueness in (5.7). �

Proof of Corollary 4. The square of the distance is∫
K

∥∥T̂ −1
i

(
Ti(x)

) − x
∥∥2 d

�i

�i(K)
,

and this is well-defined (that is, �i(K) > 0) almost surely for n large enough by Lemma 6. Since
λ(∂K) = 0, almost surely there are no points on the boundary and the integral can be taken on
the interior of K . Let � ⊆ int(K) be compact and split the integral to � and its complement.
Then∫

int(K)\�
∥∥T̂ −1

i

(
Ti(x)

) − x
∥∥2 d

�i

�i(K)
≤ d2

K

�i(int(K) \ �)

τn

τn

�i(K)

as→ d2
Kλ

(
int(K) \ �

)
,

by the law of large numbers. Since the interior of K can be written as a countable union of
compact sets, the right-hand side can be made arbitrarily small by selection of �.

Let us now consider the integral on �. Since∫
�

∥∥T̂ −1
i

(
Ti(x)

) − x
∥∥2 d

�i

�i(K)
≤ sup

x∈�

∥∥T̂ −1
i

(
Ti(x)

) − x
∥∥2 = sup

y∈Ti(�)

∥∥T̂ −1
i (y) − T −1

i (y)
∥∥2

and Ti(�) is compact, we only need to show that it is included in int(K) in order to apply
Theorem 7. Suppose towards contradiction that y = Ti(x) ∈ ∂K for x ∈ int(K). Let α ∈ R

d \ {0}
with 〈y,α〉 ≥ sup〈K,α〉. Let x′ = x + tα for t > 0 small enough such that x′ ∈ int(K). Then
y′ = Ti(x

′) ∈ K , so that

0 ≤ 〈
y′ − y, x′ − x

〉 = t
〈
y′ − y,α

〉
.

Either condition in the statement of the corollary imply that y′ = y, in contradiction to Ti being
injective. �
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5.5. Monotone operators, optimal transportation, stochastic convergence

This section contains the statements and proofs of analytical results needed in our proofs, cul-
minating in Proposition 6. The latter is the backbone result needed for the proofs of Theorem 7,
Theorem 3 (more precisely, Proposition 3) and Theorem 4. Rather than start with all the back-
ground definitions, we will define the necessary objects en route.

We shall follow the notation and terminology of Alberti and Ambrosio [3]. Let u be a set-
valued function (or multifunction) on R

d , that is, u : Rd → 2R
d
. It is said that u is monotone

if

〈y2 − y1, x2 − x1〉 ≥ 0 whenever yi ∈ u(xi) (i = 1,2).

When d = 1, the definition reduces to u being a nondecreasing (set-valued) function. It is said
that u is maximal if no points can be added to its graph while preserving monotonicity:{〈

y′ − y, x′ − x
〉 ≥ 0 whenever y ∈ u(x)

} =⇒ y′ ∈ u
(
x′).

We sometimes use the notation (x, y) ∈ u to mean y ∈ u(x). Note that u(x) can be empty, even
when u is maximal.

The relevance of monotonicity stems from the fact that subdifferentials of convex functions are
monotone. That is, if ϕ :Rd → R∪{∞} is lower semicontinuous and convex (and not identically
infinite), then u = ∂ϕ is maximally monotone [3], Section 7, where

∂ϕ(x) = {
y : ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 for any z

}
is the subdifferential of ϕ at x. Here u(x) =∅ if ϕ(x) = ∞.

We will use extensively the continuity of u at points where it is univalued.

Proposition 5 (Continuity at singletons). Let u be a maximal monotone function, and sup-
pose that u(x) = {y} is a singleton. Then u is nonempty on some neighbourhood of x and it is
continuous at x: if xn → x and yn ∈ u(xn), then yn → y.

Proof. See [3], Corollary 1.3(4). Notice that this result implies that differentiable convex func-
tions are continuously differentiable ([63], Corollary 25.5.1). �

It turns out that when u is univalued, monotonicity is a local property. To state the result in the
general form that we shall use, we need to introduce the notion of points of Lebesgue density.

Let Br(y) = {x : ‖x − y‖ < r} for r ≥ 0 and y ∈ R
d . A point x0 is of Lebesgue density of a

measurable set G ⊆R
d if for any ε > 0 there exists tε > 0 such that

Leb(Bt (x0) ∩ G)

Leb(Bt (x0))
> 1 − ε, 0 < t < tε.

We denote the set of points of Lebesgue density of G by Gden. Clearly, Gden lies between int(G)

and G. Stein and Shakarchi [68], Chapter 3, Corollary 1.5, show that almost any point of G is in
Gden. By the Hahn–Banach theorem, Gden ⊆ int(conv(G)).
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Lemma 7 (Density points and distance). Let x0 be a point of Lebesgue density of a measurable
set G ⊆ R

d . Then

δ(z) = inf
x∈G

‖z − x‖ = o
(‖z − x0‖

)
as z → x0.

This result was given as an exercise in [68]; for completeness we provide a full proof in the
supplementary material [72].

Lemma 8 (Local monotonicity). Let u be a maximal monotone function such that u(x0) = {y0}.
Suppose that x0 is a point of Lebesgue density of a set G satisfying〈

y − y∗, x − x0
〉 ≥ 0 ∀x ∈ G ∀y ∈ u(x).

Then y∗ = y0. In particular, the result is true if the inequality holds on G = O \N with ∅ �= O

open and N Lebesgue negligible.

Proof. Set zt = x0 + t (y∗ − y0) for t > 0 small. It may be that zt /∈ G; but Lemma 7 guarantees
existence of xt ∈ G with ‖xt − zt‖/t → 0. By Proposition 5 u(xt ) is nonempty for t small
enough. For yt ∈ u(xt ),

0 ≤ 〈
yt − y∗, xt − x0

〉 = 〈
yt − y∗, xt − zt

〉 + 〈
yt − y∗, zt − x0

〉
= 〈

yt − y∗, xt − zt

〉 + t
〈
yt − y0, y

∗ − y0
〉 − t

∥∥y∗ − y0
∥∥2

.

Rearrangement, division by t > 0 and application of the Cauchy–Schwarz inequality gives∥∥y∗ − y0
∥∥2 ≤ ‖yt − y0‖

∥∥y∗ − y0
∥∥ + t−1‖xt − zt‖

(‖yt − y0‖ + ∥∥y∗ − y0
∥∥)

.

As t ↘ 0 the right-hand side vanishes, since yt → y0 (Proposition 5) and ‖xt − zt‖/t → 0. It
follows that y∗ = y0. �

This concludes the necessary discussion on monotone operators. We will now state some nec-
essary results on optimal transportation maps, and specifically their convergence properties. Con-
sider the following setting: let {μn}, {νn} be two sequences of probability measures on R

d that
converge weakly to μ and ν respectively. Let πn be an optimal coupling between μn and νn

having finite cost, which is supported on the graph of a subdifferential of a proper (not identi-
cally infinite) convex lower semicontinuous function ϕn [70], Chapter 2. The set-valued function
un = ∂ϕn that maps x to the subdifferential of ϕn at x is maximally monotone [3], Section 7. The
appropriate functions for μ and ν will be denoted by ϕ and u = ∂ϕ and the optimal coupling by
π . This setting will be succinctly referred to by the equation

μn → μ

νn → ν

πn finite optimal for μn, νn(un = ∂ϕn)#μn = νn,

π unique optimal for μ,ν(u = ∂ϕ)#μ = ν.
(5.7)

We notice now that uniqueness of π and the stability of optimal transportation imply that πn

converge weakly to π (even if πn is not unique); see Schachermayer and Teichmann [65], The-
orem 3, or Cuesta-Albertos et al. [25], Theorem 3.2. This weak convergence will be used in the
following form.
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Lemma 9 (Portmanteau). Weak convergence of Borel probability measures μk to μ on R
d is

equivalent to any of the following conditions:

(I) for any open set G, lim infμk(G) ≥ μ(G);
(II) for any closed set F , lim supμk(F ) ≤ μ(F);

(III)
∫

hdμk → ∫
hdμ for any bounded measurable h whose set of discontinuity points is a

μ-null set.

Proof. The equivalence with the first two conditions is classical and can be found in Billings-
ley [15], Theorem 2.1; for the third, see Pollard [61], Section III.2. �

We shall now translate this into convergence of un to u under certain regularity conditions.

Proposition 6 (Uniform convergence of optimal maps). In the setting of Display (5.7), denote
E = supp(μ).

Let � be a compact subset of Eden on which u is univalued, where Eden is the set of points of
Lebesgue density of E. Then un converges to u uniformly on �: un(x) is nonempty for all x ∈ �

and all n > N�, and

sup
x∈�

sup
y∈un(x)

∥∥y − u(x)
∥∥ → 0, n → ∞.

In particular, if u is univalued throughout int(E) (so that ϕ ∈ C1 there), then uniform conver-
gence holds for any compact � ⊂ int(E).

Corollary 6 (Pointwise convergence μ-almost surely). If in addition μ is absolutely continu-
ous then un(x) → u(x) μ-almost surely.

Proof. The set of points x ∈ E for which � = {x} fails to satisfy the conditions of Proposition 6
is included in(

E \ Eden) ∪ {
x ∈ int

(
conv(E)

) : u(x) contains more than one point
}
.

(Since u is nonempty on int(conv(E)) by [3], Corollary 1.3(2).) Both sets are Lebesgue-
negligible (see [3], Remark 2.3, for the latter), and μ is absolutely continuous. �

Remark 6. In the setting of Theorem 7, E is convex, μ is absolutely continuous, and u is
univalued on int(E), so one can take any � ⊆ int(E), without the need to introduce Lebesgue
density. The more general statement of the proposition is used in the proof of Proposition 3,
where we have no control on the support of γ or the regularity of the transport maps.

We split the proof of Proposition 6 into two steps: (1) Limit points of the graphs of un are in
the graph of u (Lemma 11); (2) Points in the graphs of un stay in a bounded set (Proposition 7).
Each of these points will be proven using one intermediate lemma.
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Lemma 10 (Points in the limit graph are limit points). Assume (5.7). For any x0 ∈ supp(μ)

such that u(x0) = {y0} is a singleton there exists a subsequence (xnk
, ynk

) ∈ unk
that converges

to (x0, y0).

Proof. Since u = ∂ϕ is a maximal monotone function [3], Section 7, that is univalued at x0, it
is continuous there (Proposition 5). This means that for any ε > 0 there exists δ > 0 such that if
x ∈ Bδ(x0) = {x : ‖x − x0‖ < δ} then u(x) is nonempty and if y ∈ u(x), then ‖y − y0‖ < ε. Take
εk → 0 and corresponding δk → 0, and set Bk = Bδk

(x0), Vk = Bεk
(y0). Then u(Bk) ⊆ Vk , so

π(Bk × Vk) = π
{
(x, y) : x ∈ Bk, y ∈ u(x) ∩ Vk

} = π
{
(x, y) : x ∈ Bk, y ∈ u(x)

} = μ(Bk) > 0,

because Bk is a neighbourhood of x0 ∈ supp(μ). Since Bk × Vk is open, we have by the Port-
manteau lemma that πn(Bk × Vk) > 0 for n large. Consequently, there exists nk such that

πnk
(Bk × Vk) > 0 and nk → ∞ as k → ∞.

Since πnk
is concentrated on the graph of unk

, it follows that there exist (xnk
, ynk

) ∈ unk
with

‖xnk
− x0‖ < δk and ‖ynk

− y0‖ < εk . Hence (xnk
, ynk

) → (x0, y0). �

Lemma 11 (Limit points are in the limit graph). Assume that (5.7) holds and denote E =
supp(μ). If a subsequence (xnk

, ynk
) ∈ unk

converges to (x0, y
∗), where x0 is a point of Lebesgue

density of E, and u(x0) is a singleton, then y∗ = u(x0). In particular, the statement is true if
x0 ∈ int(E) and u(x0) is a singleton.

Proof. The set N ⊆R
d of points where u contains more than one element is Lebesgue negligible

[3], Remark 2.3. There exists a neighbourhood V of x0 on which u is nonempty (Proposition 5).
Thus, x0 is a point of Lebesgue density of G = (E ∩ V ) \ N , and u(x) is a singleton for every
x ∈ G. Fix such an x and set y = u(x). By Lemma 10 (applied to {unk

}∞k=1 at x) there exist
sequences x′

nkl
→ x and y′

nkl
→ y with (x′

nkl
, y′

nkl
) ∈ unkl

. Consequently,〈
y − y∗, x − x0

〉 = lim
l→∞

〈
y′
nkl

− ynkl
, x′

nkl
− xnkl

〉 ≥ 0.

This holds for any (x, y) ∈ u such that x ∈ G. Since x0 is a point of Lebesgue density of G (and
u is maximal), it follows from Lemma 8 that y∗ = u(x0). �

Let B∞
ε (x0) = {x : ‖x − x0‖∞ < ε} be the �∞ ball around x0 and B

∞
ε (x0) its closure.

Lemma 12 (Continuity of convex hulls). Let Z = {zi} ⊆ R
d be a set of points whose convex

hull, conv(Z), includes B∞
ρ (x0) and let Z̃ = {z̃i} be a set of points such that ‖z̃i − zi‖∞ ≤ ε.

Then the convex hull of Z̃ includes B∞
ρ−ε(x0).

For a proof, see the supplementary material [72].

Proposition 7 (Boundedness). Suppose that (5.7) holds, and fix a compact � ⊆
int(conv(supp(μ))). Then for n > N(�) sufficiently large, un(x) is nonempty for all x ∈ �

and un(�) is bounded uniformly.
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Proof. Denote E = supp(μ) and its convex hull by F = conv(E). There exists δ = δ(�) > 0
such that the closed �∞-ball, B

∞
3δ (�), is included in int(F ). Cover � by a finite union of B∞

δ (ωj ),
and denote by Q be the finite set of vertices of

⋃
j B

∞
3δ (ωj ). Since Q is included in the convex

hull of E, each point in Q can be written as a convex combination of elements of E. We conclude
that there exists a finite set Z = {z1, . . . , zm} of points in E whose convex hull includes B∞

3δ (ωj )

for any j .
Let Bi = B∞

δ (zi). Since Bi is an open neighbourhood of zi ∈ E = supp(μ), the Portmanteau
lemma implies that when n is large, μn(Bi) > εi = μ(Bi)/2 for any i = 1, . . . ,m. Let ε =
mini εi > 0. Since {νn} is a tight sequence, there exists a compact set Kε such that νn(Kε) >

1 − ε for any integer n. In particular, there exist xni ∈ Bi and yni ∈ un(xni) such that yni ∈ Kε .
Application of Lemma 12 to

Z̃ = Xn = {xn1, . . . , xnm}
and noticing that by definition ‖xni − zi‖∞ ≤ δ yields

conv(Xn) = conv
({xn1, . . . , xnm}) ⊇ B∞

3δ−δ(ωj ) = B∞
2δ (ωj ) for all j.

For each ω ∈ � there exists j such that ‖ω − ωj‖∞ ≤ δ, so that conv(Xn) ⊇ B∞
δ (ω) ⊇ Bδ(ω),

since �2-balls are smaller than �∞-balls. Summarising: conv(Xn) ⊇ Bδ(�).
By [3], Lemma 1.2(4), it follows that for any ω ∈ � and any y0 ∈ un(ω),

‖y0‖ ≤ [supx,z∈Xn
‖x − z‖][maxx∈Xn infy∈un(x) ‖y‖]
d(ω,Rd \ conv(Xn))

≤ 1

δ

[
sup
k,l

‖xnk − xnl‖
][

max
i

inf
y∈un(xni )

‖y‖
]
.

Now observe that the infimum at the right-hand side is bounded by ‖yni‖ ≤ supy∈Kε
‖y‖. Fur-

thermore, ‖xnk − xnl‖ ≤ 2
√

dδ + ‖zk − zl‖. Hence,

∀ω ∈ � ∀y0 ∈ un(ω) : ‖y0‖ ≤ 1

δ

(
2
√

dδ + max
k,l

‖zk − zl‖
)

sup
y∈Kε

‖y‖,

and the right-hand side is independent of n. We may therefore conclude that for n large enough,
un(�) stays in a compact set; it is nonempty by [3], Corollary 1.3(2). �

Proof of Proposition 6. By Proposition 7 when n > N� is large, un(x) �=∅ for all x ∈ � and

sup
x∈�

sup
y∈un(x)

‖y‖ ≤ C�,d < ∞, n > N�,

where C�,d is a constant that depends only on � (and the dimension d).
Suppose that the converse is true, and uniform convergence does not hold. Then there exist

ε > 0 and subsequences ynk
∈ unk

(xnk
) such that xnk

∈ � and∥∥ynk
− u(xnk

)
∥∥ > ε, k = 1,2, . . . .

The xnk
’s lie in the compact set �, whereas by Proposition 7 the ynk

’s lie in the ball of radius C�,d

centred at the origin. Therefore, up to the extraction of a subsequence, we have xnk
→ x ∈ � and
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Figure 1. Densities of bimodal Gaussian mixtures (left) and Gaussian-gamma mixtures (right), with the
corresponding Fréchet mean densities.

ynk
→ y. By Lemma 11, y = u(x). But u is continuous at x (Proposition 5), whence

ε <
∥∥ynk

− u(xnk
)
∥∥ ≤ ‖ynk

− y‖ + ∥∥y − u(x)
∥∥ + ∥∥u(x) − u(xnk

)
∥∥ → 0, k → ∞,

a contradiction. �

6. Some examples

As an illustration, we implement Algorithm 1 in several settings for which pairwise optimal
maps can be calculated explicitly at every iteration, allowing for fast computation without error
propagation. Indeed, these settings allow for stronger convergence statements to be made on a
case-by-case basis. More details on the calculations and properties of each individual scenario
can be found in Section 3 of the supplement [72].

6.1. The case d = 1

When the measures are supported on the real line, the optimal maps have the explicit expression
given in Equation (2.1) and one may apply Algorithm 1 starting from one of these measures.
Figure 1 plots N = 4 univariate densities and the Fréchet mean yielded by the algorithm in two
different scenarios. At the left, the densities were generated as

f i(x) = 1

2
φ

(
x − mi

1

σ i
1

)
+ 1

2
φ

(
x − mi

2

σ i
2

)
, (6.1)
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with φ the standard normal density, and the parameters generated independently as

mi
1 ∼ U [−13,−3], mi

2 ∼ U [3,13], σ i
1, σ

i
2 ∼ Gamma(4,4).

At the right of Figure 1, we used a mixture of a shifted gamma and a Gaussian:

f i(x) = 3

5

β3
i

�(3)

(
x − mi

3

)2
e−βi(x−3) + 2

5
φ
(
x − mi

4

)
, (6.2)

with

βi ∼ Gamma(4,1), mi
3 ∼ U [1,4], mi

4 ∼ U [−4,−1].
The resulting Fréchet mean density for both settings is shown in thick light blue, and can be seen
to capture the bimodal nature of the data. Even though the Fréchet mean of Gaussian mixtures
is not a Gaussian mixture itself, it is approximately so, provided that the peaks are separated
enough. Figure 8(a) shows the Procrustes maps pushing the Fréchet mean μ̄ to the measures
μ1, . . . ,μN in each case. If one ignores the “middle part” of the x axis, the maps appear (ap-
proximately) affine for small values of x and for large values of x, indicating how the peaks are
shifted. In the middle region, the maps need to “bridge the gap” between the different slopes and
intercepts of these affine maps.

6.2. Independence

We next take measures μi on R
2, having independent marginal densities f i

X as in (6.1), and f i
Y

as in (6.2). Figure 2 shows the density plot of N = 4 such measures, constructed as the product
of the measures from Figure 1. One can distinguish the independence by the “parallel” structure
of the figures: for every pair (y1, y2), the ratio g(x, y1)/g(x, y2) does not depend on x (and
vice versa, interchanging x and y). Figure 3 plots the density of the resulting Fréchet mean.
We observe that the Fréchet mean captures the four peaks, and their location. Furthermore, the
parallel nature of the figure is preserved in the Fréchet mean. Indeed, we prove in the supplement
[72] that, unsurprisingly, the Fréchet mean is a product measure.

6.3. Common copulas

Let μi be a measure on R
2 with density

gi(x, y) = c
(
F i

X(x),F i
Y (y)

)
f i

X(x)f i
Y (y),

where f i
X and f i

Y are random densities on the real line with distribution functions F i
X and F i

Y ,
and c is a copula density. Figure 4 shows the density plot of N = 4 such measures, with f i

X

generated as in (6.1), f i
Y as in (6.2), and c is the Frank(−8) copula density, while Figure 5 plots

the density of the Fréchet mean obtained. (For ease of comparison, we use the same realisations
of the densities that appear in Figure 1.) The Fréchet mean can be seen to preserve the shape of the
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Figure 2. Density plots of the four product measures of the measures in Figure 1.

Figure 3. Density plot of the Fréchet mean of the measures in Figure 2.
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Figure 4. Density plots of four measures in R
2 with Frank copula of parameter −8.

density, having four clearly distinguished peaks. Figure 8(b), depicting the resulting Procrustes
maps, allows for a clearer interpretation: for instance the leftmost plot (in black) shows more
clearly that the map splits the mass around x = −2 to a much wider interval; and conversely a
very large amount mass is sent to x ≈ 2. This rather extreme behaviour matches the peak of the
density of μ1 located at x = 2.

The first three scenarios are examples of situations where the measures {μi} are compatible

with each other in the sense that tμ
k

μj ◦ tμ
j

μi = tμ
k

μi . Boissard et al. [16] tackle the problem of
finding the Fréchet mean in such a setting, by means of the iterated barycentre. In the supple-
mentary material [72] we show that Algorithm 1 will always converges to the Fréchet mean,
provided the initial point γ0 is compatible with {μi} (for instance, if γ0 = μi ). In fact, we show
that convergence is established after a single iteration of the algorithm. Since optimal maps are
gradients of convex potentials, they must have positive definite derivatives. Under regularity
conditions, compatibility is essentially equivalent to the commutativity of the d × d matrices

∇tμ
k

μj (t
μj

μi (x)) and ∇tμ
j

μi (x) for μi -almost any x. We next discuss examples where this condition
fails.
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Figure 5. Density plot of the Fréchet mean of the measures in Figure 4.

6.4. Gaussian measures

Suppose that each μi follows a non-degenerate multivariate Gaussian distribution with mean 0
and covariance matrix Si . The optimal maps are known to be linear and admit the explicit formula
(Dowson and Landau [28]; Olkin and Pukelsheim [57])

tji = S
1/2
j

[
S

1/2
j SiS

1/2
j

]−1/2
S

1/2
j .

If the initial point γ0 is another Gaussian measure with covariance matrix �0, then by the linearity
of the maps one sees that γk ∼ N (0,�k) for some positive definite �k . Thus, one can calculate
the optimal maps at each iteration; in the supplement [72] we prove that γk must converge to
the unique Fréchet mean, which is also a Gaussian measure. This example is also studied inde-
pendently in Álvarez-Esteban et al. [6], Section 4, where an alternative proof can be found. Our
proof is shorter and arguably simpler, but the proof in [6] shows the additional property that the
traces of the matrix iterates are monotonically increasing.

Notice that the Gaussian measures {μi} will be compatible if SiSj = SjSi , but they might
well fail to be. Thus, the algorithm does not converge in one step. We observed, however, rapid
convergence of the iterates of Algorithm 1 to the Fréchet mean, even for rather large values
of N and d . Figure 6 shows density plots of N = 4 centred Gaussian measures on R

2 with
covariances Si ∼ Wishart(I2,2), and Figure 7 shows the density of the resulting Fréchet mean.
In this particular example, the algorithm needed 11 iterations starting from the identity matrix.
The corresponding Procrustes registration maps are displayed in Figure 8(c). It is apparent from
the figure that these maps are linear, and after a more careful reflection one can be convinced that
their average is the identity. The four plots in the figure are remarkably different, in accordance
with the measures themselves having widely varying condition numbers and orientations; μ3 and
more so μ4 are very concentrated, so the registration maps “sweep” the mass towards zero. In
contrast, the registration maps to μ1 and μ2 spread the mass out away from the origin.
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Figure 6. Density plot of four Gaussian measures in R
2.

Figure 7. Density plot of the Fréchet mean of the measures in Figure 6.
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Figure 8. Procrustes registration maps for the one-dimensional, common copula, and Gaussian examples.
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Figure 9. The set {v ∈ R
3 : gi(v) = 0.0003} for i = 1 (top left), the Fréchet mean (top middle), i = 2,3,4

(top right, bottom left and bottom right respectively).

6.5. Partially Gaussian trivariate measures

We now apply Algorithm 1 in a situation that entangles two of the previous settings. Let U be a
3 × 3 real orthogonal matrix with columns U1, U2, U3 and let μi have density

gi(y1, y2, y3) = gi(y) = f i
(
Ut

3y
) 1

2π
√

detSi
exp

[
−

(Ut
1y,Ut

2y)(Si)−1
(Ut

1y

Ut
2y

)
2

]
,

with f i bounded density on the real line and Si ∈ R
2×2 positive definite. We simulated N = 4

such densities with f i as in (6.1) and Si ∼ Wishart(I2,2). We apply Algorithm 1 to this collec-
tion of measures and find their Fréchet mean (in Section 3 of the supplementary material [72]
we provide precise details on how the optimal maps were calculated). Figure 9 shows level set of
the resulting densities for some specific values. The bimodal nature of f i implies that for most
values of a, {x : f i(x) = a} has four elements. Hence the level sets in the figures are unions of
four separate parts, with each peak of f i contributing two parts that form together the boundary
of an ellipsoid in R

3 (see Figure 10). The principal axes of these ellipsoids and their position in
R

3 differ between the measures, but the Fréchet mean can be viewed as an average of those in
some sense.

In terms of orientation (principal axes) of the ellipsoids, the Fréchet mean is most similar to
μ1 and μ2, whose orientations are similar to one another.

In the most general examples, one might not be able to analytically obtain the optimal maps
at each iteration. In such situations, one needs to resort to numerical schemes such as Benamou
and Brenier [10], Haber et al. [39] or Chartrand et al. [23] to obtain the N optimal maps at each
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Figure 10. The set {v ∈R
3 : gi(v) = 0.0003} for i = 3 (left) and i = 4 (right).

iteration (see the concluding remarks for further discussion about numerical issues). Usually
such schemes are iterative themselves, so one must take care in managing propagation of errors
resulting from using approximate rather than exact transport maps.

7. Concluding remarks

While the algorithm and the convergence analysis in this work were discussed in the context of
absolutely continuous measures, it is worth mentioning the possibility of applying it to discrete
measures in some special cases. Specifically, suppose that each measure μi is uniform on a set
of M distinct points, {xi

m}Mm=1. Define as in Anderes et al. [9] the set

S = 1

N

{
x1
m1

+ · · · + xN
mN

: 1 ≤ mi ≤ M, i = 1, . . . ,N
}

of averages of choices of points from the supports of {μi}. Let γ0 be an initial measure, uniform
on M distinct points as well. There exist optimal maps (not necessarily unique) from γ0 to each
μi , and they can be averaged to yield γ1. If |S| = MN (that is, the collection {xi

m} satisfies
a general-position-type condition), then γ1 will be concentrated on M points as well, and one
may carry out further iterations. A conceptual problem with this application is that the Fréchet
functional is not differentiable at discrete measures, so Algorithm 1 can no longer be viewed as
gradient descent (but can still be seen as Procrustes averaging). Also, the Fréchet mean itself
may fail to be unique. In simulations, we observed very rapid convergence of this iteration to a
Karcher mean, but the specific limit depended quite heavily on the initial point, and was usually
not a Fréchet mean. For problems of moderate size, one can recast the problem of minimising
the Fréchet functional as a linear program [9] and find an exact Fréchet mean. In fact, Anderes et
al. [9] treat the more general problem where the measures are supported on a different number
of points and are not constrained to be uniform on their supports.

An important issue more generally is that of efficient approximate numerical schemes for
calculating Fréchet means in Wasserstein space. This is a very active field of research with a
rapidly-growing literature (both in numerical analysis and in computer science), and a detailed
survey is far beyond the scope of this paper. If one is content with an approximate solution, then
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there are several approaches suggested in the literature. Indicatively, let us mention Bonneel et
al. [19] who use a tomographic perspective to reduce the problem to 1-dimensional computa-
tions; Carlier, Oberman and Oudet [22] who use nonsmooth optimisation techniques to solve a
discretised version of the dual problem; Oberman and Ruan [56] exploit the sparsity of optimal
plans to reduce the size of the linear program to a tractable one.

Another line of research involves entropic regularisation, where one adds an entropy term to
the definition of the Wasserstein distance. This leads to a strictly convex problem that is far better
behaved than the original problem. Though its solution no longer yields the actual mean, it can
be thought of as a regularised surrogate Fréchet mean. In this direction, Cuturi and Doucet [26]
employ differentiability properties and carry out what could be thought of as a “gradient descent”,
a discrete analogue of Algorithm 1; Benamou et al. [11] exploit the structure of the constraints
as an intersection of convex sets by means of iterating Bregman projections that can be evaluated
efficiently. Solomon et al. [66] extend this idea to the manifold setup, by convoluting with a
heat kernel; and Cuturi and Peyré [27] employ the regularisation at the level of the dual, rather
than the primal, problem. Recently, Rolet, Cuturi and Peyré [64] employed this technique in the
context of dictionary learning; and Bonneel, Peyré and Cuturi [18] define a sort of “barycentric
convex hull” of given histograms and show how to project a new histogram onto that convex hull.
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