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Motivated by applications to goodness of fit U-statistic testing, the jackknife empirical likelihood (JEL) for
vector U-statistics is justified with two approaches and the Wilks theorems are proved. This generalizes
empirical likelihood (EL) for general estimating equations (GEE’s) to U-statistics based GEE’s. The results
are extended to allow for the use of estimated constraints and for the number of constraints to grow with
the sample size. It is demonstrated that the JEL can be used to construct EL tests for moment based dis-
tribution characteristics (e.g., skewness, coefficient of variation) with less computational burden and more
flexibility than the usual EL. This can be done in the U-statistic representation approach and the vector
U-statistic approach which were illustrated with several examples including JEL tests for Pearson’s corre-
lation, Goodman–Kruskal’s Gamma, overdisperson, U-quantiles, variance components, and the simplicial
depth function. The JEL tests are asymptotically distribution free. Simulations were run to exhibit power
improvement of the JEL tests with incorporation of side information.

Keywords: empirical likelihood; infinitely many constraints; Kendall’s tau; linear mixed effects model;
overdisperson; side information; simplicial depth; U-statistics

1. Introduction

To construct tests and confidence sets in a nonparametric setting, Owen [12] introduced the
empirical likelihood approach. It enjoys many desirable properties and has been extended to
various areas of statistics with tremendous accomplishments. In this article, we shall develop
the theory for U-statistics based general estimating equations (UGEE’s) and apply it to construct
JEL tests for several important common cases.

Vector U-statistics are useful and each of many frequently used test statistics can be written
as a function of vector U-statistics. UGEE’s provide flexible ways to describe parameters and
their corresponding statistics. See, for example, Kowalski and Tu [7], Lee [8] and Serfling [17].
Recently, Jing et al. [6] developed an EL theory for univariate U-statistics by exploiting jackknife
pseudo values. The usual EL for a U-statistic of order 2 or higher involves nonlinearality of the
probability weights in the defining maximization for the EL. This leads to unavailability of the
usual explicit solutions for the weights. The technique of jackknife pseudo values for U-statistics
circumvents the nonlinearality. Meanwhile, it correctly estimates the variance, so that Wilks’
theorems still hold. See also Yuan et al. [19]. As in the case of EL for time series in Nordman
and Lahiri [11], independence which justifies the definition of EL as a product of probabilities is
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not directly available for a U-statistic of which the summands are not independent but correlated.
Jing et al. noticed the asymptotic independence of the jackknife pseudo values of a univariate
U-statistic and defined the JEL for it.

In justifying the asymptotic independence, Jing et al. cited a theorem from Shi [18], who
proved the asymptotic independence by an application of the zero-one law for a sequence of
exchangeable random variables. Since Shi’s result is not readily available as it was published in
Chinese, we here present two justifications of the asymptotic independence. The first justification
is based on the Hoeffding decompositions for univariate U-statistics. This naturally, in view of the
Hoeffding decompositions for vector U-statistics, leads to defining the JEL for vector U-statistics.
The second justification is to view the jackknife pseudo values as estimates of certain constraint
functions based on which the EL is well defined, see Section 2 for details. This approach is more
general than the first one and is in the spirit of EL with estimated constraints of Hjort et al. [5]
and Peng and Schick [14,15].

After presenting the two justifications, we give Wilks’ theorems for vector U-statistics and for
U-statistics with a fixed or growing number of known or estimated constraints. We demonstrate
that the EL tests for moment based distribution characteristics can be constructed using JEL for
vector U-statistics and provide two approaches to constructing such tests. We study the use of
side information to improve power of JEL tests.

Peng and Schick [14] developed the theory of the usual EL for constraints to use estimated
functions and for the number of constraints to grow with sample sizes. Viewed jackknife pseudo
values as estimated constraints, the JEL nicely fits into the setup of their theory. As a result, we
proved our theorems by applying their theory, in particular, we proved our main Theorem 1 by
applying their Theorem 6.1 while we obtained Theorem 3 by generalizing their Theorem 7.4.

The rest of the paper is structured as follows: In Section 2, the JEL is introduced with two
justifications. We demonstrate in Section 3 that moment based distribution characteristics can be
expressed as vector U-statistics. In Section 4, the Wilks theorems for vector U-statistics and for
U-statistics with a fixed or growing number of constraints are proved. Examples are given. The
asymptotic behaviors of the JEL with a growing number of estimated constraints are studied in
Section 5 with an illustrative example. Section 6 reports simulations. The notation is introduced
and the theorems and examples are proved in the Supplement found in Peng and Tan [16].

2. JEL for vector U-statistics

In this section, two justifications for JEL for vector U-statistics are given.
Let (�,A ) be a measurable space on which P is a probability measure. Let Z be a random

element taking values in a measurable space (Z,S ) with distribution Q under P . Let Z1, . . . ,Zn

be independent and identically distributed (i.i.d.) as Z. Let h : Zm �→ R be a square integrable
function which is argument-symmetric. A U-statistic with kernel h of order m is defined as

Un =: Unm(h) = m!(n − m)!
n!

∑
1≤i1<···<im≤n

h(Zi1 , . . . ,Zim), n ≥ 2.

Let δz be the point mass at z ∈Z . As in Arcones [1], we define

h∗
c (z1, . . . , zc) = (δz1 − P) · · · (δzc − P)P m−ch, c = 0,1, . . . ,m,
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where P1 · · ·Pcf = ∫ · · ·∫ f (z1, . . . , zc) dQ1(z1) · · ·dQc(zc). The Hoeffding decomposition
can now be stated as

Un − θ =
m∑

c=1

(
m

c

)
Unc

(
h∗

c

)
, (2.1)

where θ = E(h) := E(h(Z1, . . . ,Zm)). Let U
(−j)

n−1 denote the U-statistic of order m based on the
n − 1 observations Z1, . . . ,Zj−1,Zj+1, . . . ,Zn. The jackknife pseudo values of the U-statistic
Un(h) with kernel h are defined as

Vnj (h) = nUn(h) − (n − 1)U
(−j)

n−1 (h), j = 1, . . . , n.

For brevity, we drop h and write Vnj = Vnj (h) when there is no ambiguity. Let f̃ = f − E(f )

for integrable f . Obviously h∗
1 = h̃1. From (2.1), it follows

Vnj = θ + mh̃1(Zj ) + Rnj , j = 1, . . . , n, (2.2)

where Rnj is the remainder given by

Rnj =
m∑

c=2

(
m

c

)(
nUnc

(
h∗

c

) − (n − 1)U
(−j)

(n−1)c

(
h∗

c

))
, j = 1, . . . , n. (2.3)

Using (2.1) and the orthogonality of Unc(h
∗
c )’s, we can prove the following with the proof given

in the Supplement at Peng and Tan [16].

Lemma 1. The jackknife pseudo values Vnj of Un(h) satisfy

E
((

Vnj − θ − mh̃1(Zj )
)2) = O

(
n−1), j = 1, . . . , n. (2.4)

HOEFFDING DECOMPOSITION APPROACH. From (2.4), it readily follows

Vnj = θ + mh̃1(Zj ) + Op

(
n−1/2), j = 1, . . . , n. (2.5)

This shows that each jackknife pseudo value Vnj depends asymptotically on Zj so that Vnj ’s are
approximately independent for large values of n. Another nice property of the jackknife pseudo
values is that Vnj ’s satisfy

1

n

n∑
j=1

Vnj (h) = Un(h). (2.6)

Suppose now that there is available side information about Z given by

E
(
g(Z)

) = 0, (2.7)
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where g : Z �→ Rr is square-integrable. This is referred to as (r) constraints. In view of
E(Un) = θ and (2.6), we are now justified to introduce the JEL for the U-statistic Un(h) with
side information given by (2.7) as follows:

Rn(h,g) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj Vec
(
Ṽnj (h),g(Zj )

) = 0

}
, (2.8)

where Pn denotes the closed probability simplex in dimension n, that is,

Pn = {
π = (π1, . . . , πn)

� ∈ [0,1]n : π1 + · · · + πn = 1
}
.

ESTIMATED CONSTRAINTS APPROACH. If we replace the jackknife pseudo values Ṽnj (h) by
mh̃1(Zj ) in (2.8), then the resulting supremum is Rn(mh1,g), which is the usual well-defined
empirical likelihood. Now consider estimating mh̃1(Zj ) by Ṽnj (h) and work with the estimated
constraints. The resulting supremum is then (2.8). In fact, applications of Theorem 1 with h =
Vec(h,g) and h = Vec(mh1,g) respectively yield that the JEL Rn(h,g) and the EL Rn(mh1,g)

have the same asymptotic distribution.
Let us mention that, using the Hoeffding decompositions for vector U-statistics, the pre-

ceding definition of JEL for U-statistics with side information can be extended to the JEL
for vector U-statistics. Specifically, let h(k) : Zmk �→ R be a kernel for k = 1, . . . , r . Let
E(Unmk

(h(k))) = θk and Ṽnj (h
(k)) = Vnj (h

(k)) − θk . Let h = (h(1), . . . , h(mk))�, Un(h) =
(Unm1(h

(1)), . . . ,Unmr (h
(r)))� and Ṽnj (h) = (Ṽnj (h

(1)), . . . , Ṽnj (h
(mk)))�. The JEL for the vec-

tor U-statistic Un(h) is now justified to be defined by

Rn(h) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj Ṽnj (h) = 0

}
. (2.9)

One verifies Ṽnj (h) = Vnj (h̃) so that Rn(h) = Rn(h̃). In the below sections, we shall study the
asymptotic behaviors of the preceding JEL’s.

3. Two U-statistic approaches

In this section, we give two approaches to constructing JEL tests for moment based distribution
characteristics. We shall illustrate the idea using two examples.

THE U-STATISTIC REPRESENTATION APPROACH. Let Z = (X,Y ) be a r.v. with finite second
moment. Consider testing the null hypothesis that Pearson’s correlation coefficient is equal to
some specified value ρ0. In this case, the constraint for constructing the EL is

Cov2(X,Y ) − ρ2
0 Var(X)Var(Y ) = 0. (3.1)

As this equation contains the quadratic terms E2(X),E2(Y ), etc., there are no explicit formulas
available for the probability weights in the EL. Thanks to the JEL, this obstacle can be overcome
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as explained below. Let us first mention that U-statistics are quite general. Heffernan [4] showed
that a statistical functional θ = θ(Q) of a distribution Q admits an unbiased estimator if and
only if there is a function ψ of m variables such that θ(Q) = ∫ · · ·∫ ψ dQm, and derived the
U-statistic as the unique MVUE of a central moment. Moment based distribution characteristics
(e.g., Pearson’s correlation) are functions of central moments, so that the sample versions as test
statistics can be expressed as functions of U-statistics.

As Z1,Z2 are i.i.d. Z,

E
(
XaYb

)
E

(
XcYd

) = E
(
Xa

1Yb
1 Xc

2Y
d
2

)
, (3.2)

where a, b, c, d are reals for which the above expected values are defined. Using (3.2) repeatedly,
we can write (3.1) as E(ψ(Z1, . . . ,Z4)) = 0, where ψ(z1, . . . , z4) = x1x2y1y2 − x1y2x3y3 −
y1x2x3y3 − ρ2

0(x2
1y2

2 − x2
1y2y3 − y2

1x2x3) + (1 − ρ2
0)x1x2y3y4. Denote by κ the symmetrized

version of ψ . Then (3.1) can further be written as the U-statistic equation E(Un4(κ)) = 0.
In his Theorem 3.3, Owen [12] gave a method to construct confidence regions for smooth

functions of means. While Owen’s method requires to solve five equations in this case, our ap-
proach only needs to solve one equation, though the jackknife pseudo values must be computed.
It appears that our approach has less computational burden than Owen’s. In fact, it was pursued
in Li et al. [9] that the JEL technique can be used to reduce computational cost of EL. Moreover,
as the jackknife technique turns a constraint into an equation of pseudo values, it is convenient
to use our approach when there are multiple constraints. See Example 1 for more details.

THE VECTOR U-STATISTIC APPROACH. Consider Goodman and Kruskal’s Gamma: γ =
(θ1 − θ2)/(θ1 + θ2), where θ1 = P((X1 −X2)(Y1 −Y2) > 0) and θ2 = P((X1 −X2)(Y1 −Y2) <

0). Associated with it can a vector U-statistic Un2(h) of order 2 be constructed with the kernel
equal to

h(z1, z2) = Vec
(
1
[
(x1 − x2)(y1 − y2) > 0

]
,1

[
(x1 − x2)(y1 − y2) < 0

])
. (3.3)

See Example 2 below for the construction of confidence set for γ .
A more general side information than (2.7) is given by

E
(
g(Z1, . . . ,Zm)

) = 0, (3.4)

where g : Rm �→ Rr is argument-symmetric and square-integrable. Using (3.2)-like identities
and symmetrization, we can express sample moment based tests as U-statistics with kernel g in
(3.4), see Examples 1 and 4.

4. The Wilks theorems and examples

In this section, we present the theorems for vector U-statistics and for U-statistics with side
information given by a growing number of constraints and several examples.

Our first main result generalizes Owen’s vector EL and Jing et al. [6] JEL for univariate U-
statistics to vector U-statistics.
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Theorem 1. Suppose the variance–covariance matrix Var(mh1(Z)) is finite and nonsingular.
Then the JEL Rn(h) for a r-dimensional vector U-statistic Un(h) defined in (2.9) converges in
distribution to the chi-square distribution with r degrees of freedom, that is, −2 logRn(h) ⇒
χ2(r).

Often the kernel h depends on a parameter θ ∈ � ⊂ Rs , h = h(·; θ) ∈ Rr . An application of
Theorem 1 yields the following result.

Corollary 1. Suppose the variance–covariance matrix Var(mh1(Z; θ0)) is finite and nonsingu-
lar. If θ0 satisfies E(h(Z1, . . . ,Zm; θ0)) = 0, then the JEL Rn(h(; θ0)) satisfies
−2 logRn(h(; θ0)) ⇒ χ2(r).

Let τ be a measurable function on �. Under the assumptions of Corollary 1 a 100(1 − α)%
confidence set for τ (θ) is{

τ (θ) : −2 logRn

(
h(; θ)

) ≤ χ2
1−α(r), θ ∈ �

}
. (4.1)

A special case of Theorem 1 is when side information is given by the usual equation (2.7). This
is the JEL Rn(h,g) which generalizes (2.8) from a scalar kernel h to a vector kernel h. Recall the
definition of the EL ratio Rn(h,g). In the presence of side information (2.7), we naturally look at
the EL ratio, Rn(h,g) = Rn(h,g)/Rn(g), as Rn(h,g) ≥ Rn(h,g). Using Theorem 1, Cochran’s
theorem and the standard proof for parametric likelihood ratios, one shows the following result.

Corollary 2. Let h be a vector kernel and m be a vector of positive integers, both in Rs . Assume
g : Z �→ Rr satisfies (2.7). Suppose Cov(Vec(mh1,g)(Z)) is finite and nonsingular. Then

−2 logRn(h,g) ⇒ χ2(r + s). (4.2)

Hence,

−2 logRn(h,g) = −2 logRn(h,g) + 2 logRn(g) ⇒ χ2(s). (4.3)

We now study the JEL when the dimension r = rn → ∞ of a constraint function g = gn as
n → ∞. With (2.7) as side information, the JEL for U-statistic Un(h) is Rn(h,gn). We would
establish under suitable conditions,

−2 logRn(h,gn) − (rn + 1)√
2(rn + 1)

⇒ N (0,1), rn → ∞. (4.4)

One may interpret (4.4) as approximately −2 logRn(h,gn) distributed as χ2(rn + 1) whence
−2 logRn(h,gn) = −2 logRn(h,gn)+ 2 logRn(gn) is distributed as χ2(1). See related work in
Chen et al. [3], Hjort et al. [5] and Peng and Schick [14,15].

To establish (4.4), introduce λmin(Mn) (λmax(Mn)) the smallest (largest) eigenvalue of a rn ×
rn symmetric matrix Mn. Following Peng and Schick [14], a sequence of rn × rn dispersion
matrices Mn is regular if

0 < inf
n

λmin(Mn) ≤ sup
n

λmax(Mn) < ∞. (R)
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A sequence of vector functions {vn} is Lindeberg if for every ε > 0,∫
‖vn‖21

[‖vn‖ > ε
√

n
]
dQ → 0. (L)

Useful properties for Lindeberg sequences can be found in Peng and Schick [14,15]. For matrices
A, C and M of compatible dimensions, let

W (A,C,M) =
(
A C

�
C M

)
and (4.5)

Cn = E
(
mh1(Z)gn(Z)

)
, Wn = E

(
g⊗2
n (Z)

)
. (4.6)

As a special case of Theorem 3 below, the distribution of −2 logRn(h,gn) is approximately
χ2(rn + 1) as stated next. This generalizes Theorem 1 from a fixed number of constraints to a
growing number.

Theorem 2. Suppose gn : Z �→ Rrn satisfies (2.7). Suppose further the sequences rnh1 and
rn‖gn‖ satisfy (L) such that the sequence of matrices W (Var(mh1(Z1)),Cn,Wn) satisfies (R).
Then (4.4) holds as both rn and n tend to infinity such that rn = o(n1/2).

We now apply Theorems 1–2 to derive the JEL tests and confidence sets for a number of
frequently used moment based distribution characteristics.

Example 1. TESTING THE EQUALITY OF TWO MEANS. Consider testing the null hypothe-
sis of the equality E(X) = E(Y) of a r.v. Z = (X,Y ) in the presence of side information of
Var(X) = Var(Y ) and Cov(X,Y ) = 0. Let h(1)(z) = x − y. Using the U-STATISTICS REPRE-
SENTATION APPROACH given in Section 3, the equality of variances can be expressed by the
UGEE E(Un(h

(2))) = 0 with kernel h(2)(z1, z2) = 2−1(x1 − x2)
2 − 2−1(y1 − y2)

2. Let h(3) be
the kernel κ given in Section 3 and h = Vec(h(1), h(2), h(3)). Then the test can be formulated by
the JEL Rn(h) for the vector U-statistic Un4(h) of order 4. By Corollary 2 and Theorem 1, two
JEL tests of asymptotic size α are given by

T1 = 1
[−2 logRn(h) > χ2

1−α(1)
]
, T2 = 1

[−2 logRn(h) > χ2
1−α(3)

]
,

provided that Cov(h1(Z)) is nonsingular. A simulation study was conducted based on this exam-
ple, see Table 1.

Example 2. TESTING GOODMAN AND KRUSKAL’S GAMMA. The Gamma induces the vector
U-statistic Un(h) with kernel h given in (3.3) with E(h(Z1,Z2)) = θ = (θ1, θ2)

�. The JEL with
side information given by (2.7) is Rn(h(; θ),g), where h(z1, z2; θ) = h(z1, z2) − θ . Let h1(z) =
E(h(Z1,Z2)|Z1 = z). By Corollary 2, 1[−2 logRn(θ0,g) > χ2

1−α(2)] is an asymptotic test of
size α for testing the null H0 : θ = θ0 provided that the matrix W (Var(2h1(Z)),C,Var(g(Z)))

is nonsingular, where C = E(h1(Z) ⊗ g(Z)). Thus the rejection of the null at the α level of
significance implies the null γ = γ0 = (θ10 − θ20)/(θ10 + θ20) must be rejected at the same level.
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Table 1. Simulated power of the UJEL tests for the equality of two means with side information of equal
variances and zero correlation at the nominal level 0.05. Here d , ANT and UJEr denote respectively the
mean difference, asymptotic-normal test and UJEL tests with r constraints

n d T ANT UJEL0 UJEL1 UJEL2 ANT UJEL0 UJEL1 UJEL2

Exponential Lognormal
150 0 T1 0.0535 0.0550 0.0545 0.0605 0.0470 0.0665 0.0870 0.0935

T2 0.0535 0.0550 0.0870 0.1050 0.0470 0.0665 0.1600 0.1980
0.10 T1 0.1470 0.1485 0.2815 0.2965 0.0675 0.0855 0.1630 0.1645

T2 0.1470 0.1485 0.2530 0.2420 0.0675 0.0855 0.2215 0.2475
0.15 T1 0.2520 0.2500 0.5090 0.5195 0.0995 0.1230 0.2075 0.2135

T2 0.2520 0.2500 0.4260 0.4215 0.0995 0.1230 0.2625 0.3055
200 0 T1 0.0480 0.0525 0.0510 0.0580 0.0475 0.0580 0.0815 0.0890

T2 0.0480 0.0525 0.0810 0.1025 0.0475 0.0580 0.1380 0.1905
0.10 T1 0.1655 0.1690 0.3305 0.3420 0.0805 0.0950 0.1610 0.1760

T2 0.1655 0.1690 0.2800 0.2580 0.0805 0.0950 0.2245 0.2465
0.15 T1 0.3140 0.3145 0.6075 0.6250 0.1195 0.1250 0.2595 0.2790

T2 0.3140 0.3145 0.5395 0.5005 0.1195 0.1250 0.2855 0.3100

Poisson Binomial
150 0 T1 0.0490 0.0515 0.0525 0.0535 0.0475 0.0500 0.0440 0.0440

T2 0.0490 0.0515 0.0625 0.0685 0.0475 0.0500 0.0465 0.0635
0.10 T1 0.1510 0.1540 0.1820 0.1895 0.0920 0.0945 0.0960 0.1040

T2 0.1510 0.1540 0.1585 0.1495 0.0920 0.0945 0.0870 0.0845
0.15 T1 0.2530 0.2560 0.3705 0.3765 0.1290 0.1290 0.1360 0.1440

T2 0.2530 0.2560 0.3130 0.2870 0.1290 0.1290 0.1095 0.1055
200 0 T1 0.0490 0.0500 0.0515 0.0520 0.0500 0.0500 0.0550 0.0605

T2 0.0490 0.0500 0.0590 0.0615 0.0500 0.0500 0.0570 0.0620
0.10 T1 0.1800 0.1825 0.2525 0.2535 0.1120 0.1145 0.1195 0.1230

T2 0.1800 0.1825 0.2035 0.1865 0.1120 0.1145 0.1020 0.0960
0.15 T1 0.3155 0.3220 0.4560 0.4625 0.1715 0.1720 0.1830 0.1870

T2 0.3155 0.3220 0.3760 0.3285 0.1715 0.1720 0.1415 0.1300

This example illustrates the VECTOR U-STATISTICS APPROACH given in Section 3. Similarly to
the confidence set (4.1) for the JEL ratio Rn(θ ,g), a 100(1 − α)% confidence set for γ is

{
(θ1 − θ2)/(θ1 + θ2) : −2 logRn(θ ,g) ≤ χ2

1−α(2)
}
.

Example 3. JOINT CONFIDENCE SETS FOR VARIANCE COMPONENTS. JEL tests for linear
mixed effects models, binomial/Poisson overdisperson and inflated Poisson models can be for-
mulated using UGEE’s (see, e.g., Kowalski and Tu [7] for the UGEE’s of these models). Consider
now the balanced one-way random effect model, in which the response Yij , random effect ui and
error εij satisfy

Yij = μ + ui + εij , i = 1, . . . , n, j = 1, . . . , J (J ≥ 2), (4.7)
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where μ is the mean, εij ’s are i.i.d., ui ’s are i.i.d., and εij ’s and ui ’s are independent and
have mean zero and finite fourth moments. Let σ 2

ε = Var(εij ) and σ 2
u = Var(uj ). The com-

monly used confidence regions for the variances heavily depend on normality assumption of the
model. Here we relax normality and use the JEL to give confidence sets. Following Arvesen [2],
put Xi = Vec(Yi·, (J − 1)−1 ∑J

j=1(Yij − Yi·)2), i = 1, . . . , n, where Ai· = J−1 ∑J
j=1 Aij de-

notes the average of Aij over j . Clearly X1, . . . ,Xn are i.i.d. Set h = (h(1), h(2))� where
h(1)(Xi ,Xi′) = 2−1(κ(Xi ) + κ(Xi′)) and h(2)(Xi ,Xi′) = 2−1(Yi· − Yi′·)2 with κ(Xi ) = (J −
1)−1 ∑J

j=1(Yij − Yi·)2. One finds

E
(
h(1)(X1,X2)

) = σ 2
ε , E

(
h(2)(X1,X2)

) = σ 2 := σ 2
u + J−1σ 2

ε . (4.8)

Hence, the vector U-statistic Un(h) = Vec(Un(h
(1)),Un(h

(2))) is an unbiased estimate of
θ = (σ 2

ε , σ 2)�. Let h(X1,X2; θ) = h(X1,X2) − θ . The JEL for the vector U-statistic Un(h(; θ))

is Rn(θ) = Rn(h(; θ)), θ ∈ [0,∞)2. Let h1(x1; θ) = E(h(x1,X2; θ)). By Theorem 1, if
Var(h1(X1; θ0)) is nonsingular then a joint confidence set for θ at the level of 1 − α is given
by {θ ∈ R+ × R+ : −2 logRn(θ) ≤ χ2

1−α(2)}. A confidence set for ϑ = (σ 2
ε , σ 2

u )� can be ob-
tained by the transform ϑ1 = θ1, ϑ2 = θ2 − θ1/J . A confidence set for σ 2

u can be obtained by
setting J → ∞.

TESTING THE RANDOM EFFECT. Let ψ = h(2) − J−1h(1). Clearly ψ is argument-symmetric,
By (4.8), E(ψ(X1,X2)) = σ 2

u . Let ψ(X1,X2;σ 2
u ) = ψ(X1,X2)−σ 2

u . This suggests to look at the
JEL Rn(σ

2
u ) = Rn(ψ(;σ 2

u )), σ 2
u ∈ [0,∞). Let ψ1(x1;σ 2

u ) = E(ψ(x1,X2;σ 2
u )). By Theorem 1,

if Var(ψ1(X;0)) is nonsingular then an asymptotic test of size α for the null H0 : σ 2
u = 0 is

1[−2 logRn(0) > χ2
1−α(1)].

Example 4. TESTING U-QUANTILES. The theory of U-quantiles provides a unified treat-
ment of several commonly used statistics, see Arcones [1]. Let κ : Zm �→ R be argument-
symmetric. Associated with κ there induces the cumulative distribution function (c.d.f.) H(t) =
P(κ(Z1, . . . ,Zm) ≤ t). The MVUE Hnm(t) of H(t) is the U-statistic Hnm(t) = Unm(h(; t))
with kernel h(z1, . . . , zm; t) = 1[κ(z1, . . . , zm) ≤ t]. The U-quantiles include the Hodges–
Lehmann median, Gini’s mean difference, Theil’s slope estimator, and Kendall’s tau, corre-
sponding to the U-quantiles with p0 = 1/2 and the kernels κ(z1, z2) = 2−1(z1 + z2), |z1 − z2|,
(y1 − y2)/(x1 − x2), and (x1 − x2)(y1 − y2) respectively. Consider testing the null that the pth
U-quantile q is equal to a specified value q0 for some p0, i.e. H0 : q = q0. Assume there is avail-
able the side information that the coefficient of variation is constant: σ/μ = c0 with μ = E(Z)

and σ 2 = Var(Z). Using the U-STATISTICS REPRESENTATION APPROACH in Section 3, this can
be described by

E
(
Un2(κ1)

) = 0 with κ1(z1, z2) = (1/2)
(
z2

1 + z2
2

) − (
1 + c2

0

)
z1z2.

One has the JEL Rn(κ1) for Un2(κ1). Let h(z1, . . . , zm; t) = Vec(1[κ(z1, . . . , zm) ≤ t], κ1(z1,

z2)) and h1(z1; t) = E(h(z1,Z2, . . . ,Zm; t)). By Corollaries 1–2 the JEL test of size α for H0 is
1[−2 logRn(q0) > χ2

1−α(1)] provided that Var(h1(Z1;q0)) is nonsingular.
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Example 5. TESTING THE SIMPLICIAL DEPTH. Let X1, . . . ,Xn be i.i.d. r.v.’s on Rm. Liu
[10] defined the simplicial depth function (SDF) D(x) of a point x ∈ Rm w.r.t. a distribu-
tion as D(x) = P(x ∈ �(X1, . . . ,Xm+1)), where �(X1, . . . ,Xm+1) is the random simplex
with vertices X1, . . . ,Xm+1. D(x) can be estimated by the sample SDF Dn(x), the U-statistic
Dn(x) = Un,m+1(h(;x)) with kernel h(x1, . . . ,xm+1;x) = 1[x ∈ �(xi1 , . . . ,xim+1)]. When side
information about the underlying distribution is available, tests based on Dn(x) do not utilize
it. We can apply the JEL for vector U-statistics to use such information to improve power. For a
fixed number of constraints, we can construct the JEL with side information as in Example 2. Of-
ten we have partial information about the joint distribution, for example, one marginal is known.
Such information is equivalent to an infinite number of constraints. Specifically, suppose the
c.d.f. of the first component X1 of X = (X1, . . . ,Xm)� is known and equal to F10. Then∫

ak dF10 = 0, k = 1,2, . . . , (4.9)

where ak is an orthonormal basis of L2,0(F10). Assume F10 is continuous. This allows us to take
ak = φk(F10), k = 1,2, . . . , where φk is the trigonometric basis of L2,0(U ) with U the uniform
measure on [0,1] given by

φk(t) = √
2 cos(kπt), t ∈ [0,1], k = 1,2, . . . . (4.10)

This suggests us to using the first rn equations in (4.9) as constraints and construct the JEL for
the U-statistic Dn(x) with side information as follows:

Rn(D,F10) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj (Vnj − D) = 0,

n∑
j=1

πjφk

(
F10(X1j )

) = 0, k = 1, . . . , rn

}
, D ≥ 0.

Assume m ≥ 2 and at least one of the components X2, . . . ,Xm is nondegenerate, i.e. P(Xd =
c) < 1 for some d ≥ 2 and any constant c. Then by Theorem 2 for fixed D0 ≥ 0 as rn and n tend
to infinity such that r3

n/n → 0,

(−2 logRn(D0,F10) − (rn + 1)
)
/
√

2(rn + 1) ⇒ N (0,1). (4.11)

The details can be found in the Supplement at Peng and Tan [16].

5. Asymptotic behaviors of the JEL with a growing number of
estimated constraints

In this section, we shall study the case that the kernel h is known but the constraint gn must be
estimated by some measurable function ĝn. We allow the number of constraints to grow with
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the sample size. Recall Cn,Wn in (4.6) and set Ŵn = n−1 ∑n
j=1 ĝn(Zj )

⊗2. Generalizing The-
orem 7.4 of Peng and Schick [14], we have the following result with the proof given in the
Supplement at Peng and Tan [16].

Theorem 3. Suppose rnh̃1 satisfies (L). Suppose ĝn is an estimator of gn such that

rn max
1≤j≤n

∥∥ĝn(Zj )
∥∥ = op

(
n1/2), (5.1)

∥∥∥∥∥1

n

n∑
j=1

Ṽnj ĝn(Zj ) − Cn

∥∥∥∥∥ = op

(
r
−1/2
n

)
, |Ŵn −Wn|o = op

(
r
−1/2
n

)
(5.2)

for which Wn := W (m2 Var(h̃1(Z)),Cn,Wn) satisfies (R), and that

1

n

n∑
j=1

ĝn(Zj ) = 1

n

n∑
j=1

un(Zj ) + op

(
n−1/2) (5.3)

for some measurable function un : Z �→ Rrn such that
∫

un dQ = 0 and ‖un‖ satisfies (L). As-

sume further the dispersion matrix Un of W
−1/2

n vn(Z),

Un = W
−1/2

n

∫
vnv�

n dQW
−1/2

n with vn = Vec(mh̃1,un) (5.4)

satisfies |Un|o = O(1) and rn/ trace(U2
n) = O(1). Then as rn → ∞ but rn/n1/2 → 0,

(−2 logRn(h, ĝn) − trace(Un)
)
/

√
2 trace

(
U2

n

) ⇒ N (0,1).

Example 6. JOINT CONFIDENCE SETS. Consider constructing a confidence set for θ = (μ,σ 2
u )�

in the model (4.7). Let us motivate a U-statistic as test for σ 2
u . Note first that

E
(
(ε1j − ε2j )(ε1j ′ − ε2j ′)

) = 0, 1 ≤ j < j ′ ≤ J,

E
(
(u1 − u2)(ε1j ′ − ε2j ′)

) = E
(
(u1 − u2)(ε1j − ε2j )

) = 0,

so that E((Y1j − Y2j )(Y1j ′ − Y2j ′)) = 2σ 2
u ,1 ≤ j < j ′ ≤ J . Let Yi = (Yi1, . . . , YiJ )�, i =

1, . . . , n. Clearly they are i.i.d. Let

h(Y1,Y2) = 2

J (J − 1)

∑
1≤j<j ′≤J

2−1(Y1j − Y2j )(Y1j ′ − Y2j ′).

Then h is a kernel with E(h(Y1,Y2)) = σ 2
u . Thus an unbiased estimator of σ 2

u based on all the
observations is the U-statistic Un2(h) of order 2.

Normality is usually assumed for both u and ε. Here we shall relax normality to symmetry of
the sums εi = ui + εi·, i = 1, . . . , n about zero and employ the JEL to incorporate the symmetry
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assumption as side information to improve power. Notice that under this (4.7) is the usual sym-
metric location model. Let F be the c.d.f. of ε1 and L2,0(F,odd) ⊂ L2,0(F ) consisting of the
odd functions. Assume F is continuous. Symmetry of ε1 implies

E
(
ak(ε1)

) = E
(
ak(Y1· − μ0)

) = 0, k = 1,2, . . . , (5.5)

where ak’s is an orthonormal basis of L2,0(F,odd). This also implies that 2F(t) − 1 is an odd
function. As L2,0(U ,odd) has the orthonormal basis

ψk(s) = sin(kπs), s ∈ [−1,1], k = 1,2, . . . , (5.6)

where U is the uniform measure on [−1,1], the composites ψk(2F(t) − 1) is a basis of
L2,0(F,odd). This justifies that we can take ak = ψk(2F − 1). But F is unknown, we estimate
it using εi = Yi· − μ0 by the symmetrized empirical c.d.f. Fμ0(t), where

Fμ(t) = 1

n

n∑
i=1

1

2

(
1[Yi· − μ ≤ t] + 1

[−(Yi· − μ) < t
])

, t ∈R.

Again one verifies 2Fμ0(t) − 1 is odd. This suggests to utilizing the first rn equations in (5.5) as
side information to construct the JEL for U-statistic Un2(h) as follows:

Rn

(
μ,σ 2

u

) = sup

{
n∏

i=1

nπi : π ∈ Pn,

n∑
i=1

πi

(
Vni(h) − σ 2

u

) = 0,

n∑
i=1

πiψk

(
2Fμ(Yi· − μ) − 1

) = 0, k = 1, . . . , rn

}
.

We shall allow rn to grow to infinity with the sample size n such that r4
n/n tends to zero. If further

σε > 0, then by Theorem 3 one has(−2 logRn

(
μ0, σ

2
u0

) − (rn + 1)
)
/
√

2(rn + 1) ⇒ N (0,1). (5.7)

This shows under the null −2 logRn(μ0, σ
2
u0) is approximately χ2(rn + 1). The details can be

found in the Supplement at Peng and Tan [16]. A simulation study based on this example was
conducted, see Tables 2 and 3.

6. Simulations

In this section, we report some simulation results for the JEL tests for U-statistics with r con-
straints (UJELr, r = 0,1, . . . ,5) based on Examples 1 and 6. Two UJEL tests of size 0.05 for
testing the null hypothesis H0 : d =: E(X) − E(Y) = 0 are as follows:

T1 = 1
[−2 logRn(h) > χ2

0.95(1)
]
, T2 = 1

[−2 logRn(h) > χ2
0.95(r + 1)

]
.
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Table 2. Simulated power of the UJEL tests for H0 : σ 2
u = 0 in a random effect model Y = μ + u + ε with

side information of symmetry of u + ε with the size adjusted to 0.05 and data generated from (a)

J n σ 2
u ρ T F UJEL0 UJEL1 UJEL2 UJEL3 UJEL4 UJEL5

5 15 0.6 0.004 T1 0.0795 0.1135 0.1240 0.1080 0.0830 0.0730 0.0725
T2 0.0795 0.1135 0.1255 0.0985 0.0695 0.0680 0.0690

0.8 0.006 T1 0.0730 0.1150 0.1210 0.1130 0.0995 0.0820 0.0640
T2 0.0730 0.1150 0.1170 0.0975 0.0815 0.0820 0.0780

1.0 0.007 T1 0.0840 0.1525 0.1695 0.1565 0.1165 0.0860 0.0675
T2 0.0840 0.1525 0.1655 0.1220 0.0845 0.0870 0.0710

1.2 0.008 T2 0.0915 0.1430 0.1640 0.1510 0.1025 0.0825 0.0835
T2 0.0915 0.1430 0.1540 0.1250 0.0780 0.0765 0.0810

1.4 0.010 T1 0.0930 0.1540 0.1720 0.1735 0.1210 0.0770 0.0745
T2 0.0930 0.1540 0.1710 0.1525 0.0930 0.0790 0.0850

30 0.6 0.004 T1 0.0570 0.0810 0.0825 0.0840 0.0860 0.0795 0.0735
T2 0.0570 0.0810 0.0775 0.0820 0.0700 0.0670 0.0655

0.8 0.006 T1 0.0615 0.0955 0.0980 0.1020 0.1015 0.1015 0.1000
T2 0.0615 0.0955 0.1090 0.1110 0.1075 0.1030 0.0855

1.0 0.007 T1 0.0560 0.0815 0.0885 0.1000 0.0960 0.0835 0.0780
T2 0.0560 0.0815 0.0935 0.0885 0.0855 0.0740 0.0630

1.2 0.008 T1 0.0705 0.1020 0.1115 0.1140 0.1165 0.1080 0.0985
T2 0.0705 0.1020 0.1045 0.1065 0.1020 0.0870 0.0810

1.4 0.010 T1 0.0545 0.1035 0.1150 0.1165 0.1190 0.1215 0.1165
T2 0.0545 0.1035 0.1050 0.1090 0.1050 0.1050 0.0855

45 0.6 0.004 T1 0.0535 0.0655 0.0635 0.0685 0.0625 0.0630 0.0640
T2 0.0535 0.0655 0.0690 0.0690 0.0600 0.0610 0.0660

0.8 0.006 T1 0.0585 0.0790 0.0835 0.0845 0.0875 0.0850 0.0825
T2 0.0585 0.0790 0.0830 0.0780 0.0795 0.0790 0.0840

1.0 0.007 T1 0.0565 0.0760 0.0820 0.0830 0.0830 0.0815 0.0865
T2 0.0565 0.0760 0.0815 0.0795 0.0890 0.0785 0.0755

1.2 0.008 T1 0.0570 0.0990 0.1020 0.1025 0.0930 0.0940 0.0885
T2 0.0570 0.0990 0.0940 0.0900 0.0880 0.0910 0.0800

1.4 0.010 T1 0.0760 0.0850 0.0855 0.0895 0.0960 0.0870 0.0810
T2 0.0760 0.0850 0.0830 0.0790 0.0840 0.0775 0.0755

Reported on Table 1 is the simulated power of the tests for sample sizes n = 150,200, d =
0,0.10,0.15 and 2000 repetitions. For comparison, we also simulated the power of the asymp-
totic normality test (ANT). Here X was generated from the standard exponential, the standard log
normal, the standard Poisson, and the binomial with parameters (0.7,10), while Y was generated
the same way as X but with the value of d added to each generated value with the exception of
the log normal in which the parameters were adjusted so that E(X) − E(Y) = d . Our findings
are as follows: (i) Relatively larger sample sizes were needed for the significance levels of the
UJEL tests to reach the nominal level than the usual EL tests. This might be due to the use of the
jackknife technique. Thus for small sample sizes we suggest to perform size adjusted JEL tests.
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Table 3. Simulated power of the UJEL tests for H0 : σ 2
u = 0 in Y = μ + u + ε with side information of

symmetry of u + ε with the size adjusted to 0.05. Data generated with u ∼ N (0, σ 2
u )

J n σ 2
u ρ T F UJEL0 UJEL1 UJEL2 UJEL3 UJEL4 UJEL5

ε ∼ 0.005U (−100,−3) + 0.99N (0,1) + 0.005U (3,100)

3 30 0.6 0.021 T1 0.4515 0.5410 0.5295 0.5080 0.4950 0.4915 0.4485
T2 0.4515 0.5410 0.4840 0.4650 0.4080 0.3550 0.2595

0.8 0.028 T1 0.4950 0.6215 0.6155 0.6085 0.6005 0.5755 0.5570
T2 0.4950 0.6215 0.5840 0.5570 0.5215 0.4720 0.3880

1.0 0.035 T1 0.5070 0.6440 0.6370 0.6210 0.6210 0.6195 0.6100
T2 0.5070 0.6440 0.6205 0.6000 0.5745 0.5280 0.4465

1.2 0.041 T2 0.4770 0.6390 0.6295 0.6285 0.6210 0.6200 0.6125
T2 0.4770 0.6390 0.6275 0.6120 0.5995 0.5680 0.5125

1.4 0.048 T1 0.5155 0.6860 0.6795 0.6735 0.6680 0.6630 0.6575
T2 0.5155 0.6860 0.6705 0.6575 0.6490 0.6190 0.5355

60 0.6 0.021 T1 0.3900 0.4845 0.4820 0.4790 0.4800 0.4825 0.4830
T2 0.3900 0.4845 0.4750 0.4805 0.4570 0.4520 0.4510

0.8 0.028 T1 0.3855 0.5085 0.5065 0.5045 0.5015 0.5010 0.5065
T2 0.3855 0.5085 0.4985 0.4920 0.4885 0.4900 0.4800

1.0 0.035 T1 0.4085 0.5110 0.5110 0.5070 0.5075 0.5080 0.5070
T2 0.4085 0.5110 0.5035 0.4955 0.4950 0.4955 0.4965

1.2 0.041 T1 0.4660 0.5175 0.5170 0.5190 0.5190 0.5220 0.5215
T2 0.4660 0.5175 0.5150 0.5090 0.5050 0.5075 0.5080

1.4 0.048 T1 0.4610 0.5250 0.5260 0.5260 0.5235 0.5250 0.5285
T2 0.4610 0.5250 0.5200 0.5175 0.5155 0.5080 0.5110

ε ∼ 0.005N (−51.5,172.8) + 0.99N (0,1) + 0.005N (51.5,172.8)

5 15 0.6 0.021 T1 0.4950 0.4600 0.4770 0.4025 0.2530 0.1535 0.0965
T2 0.4950 0.4600 0.4390 0.3145 0.1185 0.0955 0.0905

0.8 0.028 T1 0.5275 0.5225 0.5205 0.4795 0.2780 0.1095 0.1140
T2 0.5275 0.5225 0.5020 0.3775 0.1475 0.1085 0.1005

1.0 0.035 T1 0.5630 0.6165 0.6075 0.5810 0.4690 0.2965 0.1460
T2 0.5630 0.6165 0.5810 0.4955 0.1985 0.1405 0.1430

1.2 0.041 T1 0.5785 0.6580 0.6550 0.6130 0.4460 0.2670 0.1595
T2 0.5785 0.6580 0.6500 0.5510 0.1890 0.1550 0.1515

1.4 0.048 T1 0.5625 0.6765 0.6565 0.6070 0.5065 0.3020 0.1610
T2 0.5625 0.6765 0.6340 0.5305 0.2005 0.1680 0.1545

30 0.6 0.021 T1 0.3655 0.5030 0.4900 0.4935 0.4835 0.4780 0.4520
T2 0.3655 0.5030 0.4710 0.4620 0.4240 0.3860 0.2905

0.8 0.028 T1 0.4715 0.5600 0.5540 0.5530 0.5565 0.5480 0.5370
T2 0.4715 0.5600 0.5440 0.5330 0.5125 0.4925 0.4270

1.0 0.035 T1 0.4470 0.5545 0.5490 0.5500 0.5475 0.5465 0.5435
T2 0.4470 0.5545 0.5420 0.5370 0.5335 0.5240 0.4750

1.2 0.041 T1 0.4850 0.5720 0.5680 0.5645 0.5665 0.5625 0.5600
T2 0.4850 0.5720 0.5560 0.5470 0.5430 0.5300 0.4910

1.4 0.048 T1 0.5235 0.5735 0.5750 0.5745 0.5760 0.5770 0.5795
T2 0.5235 0.5735 0.5730 0.5720 0.5620 0.5415 0.5070
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(ii) The power of most UJELr tests was substantially higher than that of ANT, and the power
of T1 was increasing with the number r of constraints. (iii) T1 was more powerful than T2 and
UJEL2 was the most powerful.

Based on Example 6, Tables 2 and 3 reports the simulated power size-adjusted to 0.05 for test-
ing the null hypothesis of no random effect H0 : σ 2

u = σ 2
u0 = 0 in the presence of side information

of symmetry of u + ε. Two JEL tests of size 0.05 are as follows:

T1 = 1
[−2 logRn

(
μ0, σ

2
u0

)
> χ2

0.95(1)
]
,

T2 = 1
[−2 logRn

(
μ0, σ

2
u0

)
> χ2

0.95(rn + 1)
]
, rn = 0,1, . . . ,5.

For comparison, the power of the F-test with df n − 1 and (J − 1)n was also simulated. The
u and ε were respectively, generated from the normal N (0, σ 2

u ) for several values of σ 2
u and

the contaminated normal (a) 0.025N (−51.5,172.8) + 0.95N (0,1) + 0.025N (51.5,172.8),
(b) 0.025U (−100,−3) + 0.95N (0,1) + 0.025U (3,100), (c) 0.005N (−51.5,35.4) +
0.99N (0,1) + 0.005N (51.5,35.4). The results on Tables 2 and 3 were based on (a) and
(b), (c) respectively. We also listed the values of ICC (interclass correlation coefficient) ρ =
σ 2

u /(σ 2
u + σ 2

ε ). One sees that the JEL tests outperformed the F test except for the cases J = 5,
n = 15 and σ 2

u = 0.6,0.8 on Table 2. The power of the JEL tests was increasing with number r

of constraints. For a given sample size, however, the increasing trend may stop as a larger sample
is needed to accommodate more constraints. To choose an optimal number r of constraints one
can use the bootstrap method. See page 21, Peng and Schick [13].

Supplementary Material

Supplement to “Jackknife empirical likelihood goodness-of-fit tests for U-statistics based
general estimating equations” (DOI: 10.3150/16-BEJ884SUPP; .zip). In this Supplement, we
introduce the notation and prove the theorems and provide the details to the examples.
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