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Large deviations for stochastic heat equation
with rough dependence in space
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In this paper, we establish a large deviation principle for the nonlinear one-dimensional stochastic heat
equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional
Brownian motion with Hurst parameter H € (%, %) in the space variable.
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1. Introduction

In this paper, we consider the one-dimensional stochastic partial differential equations

Jut 82 & .
8_”t:§a_é+\/§o(u8)w, te[0,T],x €R, (1.1)

where W is a zero-mean Gaussian process with covariance given by

1
E[W(s, )W, )] = §(|x|”’ +yP ==y A, (1.2)

with % < H < % and ¢ > 0. That is, W is a standard Brownian motion in time and a fractional

2w

Brownian motion with Hurst parameter H in the space variable and W = ETETE

The covariance of the noise W is given by
E[W(s, )Wt »)] = A = y)so(t — ),

where A is a distribution, whose Fourier transform is the measure w(d&) = c1.y|&|' 2" dg,
with ¢, g given in (2.2). Because A (that can be formally written as A(x —y) = H2H — 1) x
|x — y|?=2) is not a locally integrable function, the classical approach developed, among oth-
ers, by Da Prato and Zabczyk [9], Peszat and Zabczyk [14], Dalang in [7,8] and Dalang and
Quer-Sardanyons [6], cannot be applied to such rough covariance. In [1], Balan, Jolis and Quer-
Sardanyons proved the existence and uniqueness of a mild solution to equation (1.1) in the par-
ticular case o (#) = au + b, and assuming that the initial condition uq is bounded and Holder
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continuous of order H. The stochastic integral is understood in the It6 sense. The case of a
general nonlinear coefficient o, which has a Lipschitz derivative and satisfies o (0) = 0, has been
considered by Hu, Huang, L&, Nualart and Tindel in [13]. In that paper, the existence and unique-
ness of a mild solution whose trajectories belong to a suitable space of trajectories is proved by
using techniques inspired by the works of Gyongy [11] and Gyongy and Nualart [12]. The initial
condition u( satisfies some restrictive conditions (see Theorem 2.7).

The purpose of this paper is to establish a large deviation principle for the laws of the solutions
u® to equation (1.1). For this, we use the weak convergence approach to large deviations based on
the Laplace principle, developed by P. Dupuis and R. Ellis [10]. This approach has proved to be
successful in a wide range of infinite-dimensional equations (see, for instance, Sritharan and Sun-
dar [16], Chueshov and Millet [5], Chenal and Millet [4], Budhiraja and Dupuis [2], Budhiraja,
Dupuis and Maraoulas [3] and Xu and Zhang [17]). In our case, we use the weak convergence of

1
probability measures in the space of trajectories X %_H introduced in Definition 2.6.

The paper is organized as follows. A section of preliminaries contains the definition of stochas-
tic integral, the notion of solution for equation (1.1) and the functional spaces introduced in [13].
In Section 3, we recall a general criteria for large deviations based on weak convergence in [3].
Section 4 is devoted to show the existence and uniqueness of a solution to the skeleton equation
associated to equation (1.1) and the stability with respect to perturbations of the skeleton. Finally,
in Section 5, we prove the large deviation principle for equation (1.1).

2. Preliminaries

Let D(R) denote the space of real-valued infinitely differentiable functions with compact support
on R. The noise W can be represented (see [13,15]) as a zero-mean Gaussian family {W;(¢), ¢ €
[0, T1, ¢ € D(R)} defined on a complete probability space (€2, F, P), whose covariance structure
is given by

E[W (@) Ws(¥)] =c1,u(t As) /R Fo@&Fy@E)lg|' 2 dg, 2.1)
where F¢, Fy stand for the Fourier transforms of ¢, ¢ and
1
ci,n=—IQH+ 1)sin(wH). 2.2)
27

The inner product appearing in (2.1) can be expressed in terms of fractional derivatives. One
has

cummf Fo®©Fo@E| 2 d
R (2.3)

=cy(t As) /R /R(go(x +3) —o@) (Y +y) — )y 2 dx dy,

where cy is an appropriate constant, see [15].
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Let H denote the Hilbert space obtained by completing D(R) under the inner product

(0, ¥)p i=ciu / Fo@&Fy@)g' 21 dg
R (2.4)

= CH/IRA(¢(X+Y)—<p(x))(1//(x—|—y)_¢(x))|y|2H—2dxdy.

Then the Gaussian family {W;(¢), t € [0, T], ¢ € H} can be regarded as an H-cylindrical Brow-
nian motion. Let us now recall the stochastic integral presented in [13].

Definition 2.1. For any ¢ > 0, let ; be the o -algebra generated by W up to time ¢. An elemen-
tary process g is a process given by

n m
85, X) =Y > Xi il 51 1;1(),
i=1 j=1

where n and m are finite positive integers, 0 <a; <by <---<a, <b, <T, h; <l; and X; ;
are J,,-measurable random variables fori =1, ..., n. The integral of such a process with respect
to W is defined as

T
/ / g(s,x)W(ds, dx)
0 R

n m
=Y > Xi W (Lb) ® 1iny.1;) (2.5)

i=1j=1
n m

=Y "> Xij[Wbi 1) — Wai 1j) = W(bi, hj) + Wiai, hj)].
i=1j=1

One can now extend the notion of integral with respect to W to a broad class of adapted
processes.

Proposition 2.2 (1). Let Ay be the space of predictable processes g defined on [0, T] x R such
that almost surely g € Lz([O, T, H) and E[fOT ||g(s)||%_L ds] < 00. Then, we have:

(i) The space of elementary processes defined in Definition 2.1 is dense in Ay .
(ii) For g € Ay, the stochastic integral fOT flR g(s, x)W(ds, dx) is defined as the L*(2)-limit
of Riemann sums along elementary processes approximating g, and we have

T 2 T
E[(fo L (S”‘)W(ds’d”) } =E[ / ||g(s>||§tds] 26)

We recall the definition of the solution to equation (1.1) from [13].
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Definition 2.3. Suppose ug is a bounded function on R. Let u® = {u®(t,x),0 <t < T,x € R}
be a real-valued predictable stochastic process such that for all ¢ € [0, T] and x € R the pro-
cess {pr— A(x — y)o (s, y)1jo,(s),0 <s <t,y € R} is an element of Ay, where p;(x) =

1

\/_e 2Kr is the heat kernel on the real line related to 5 A. We say that «® is a mild solution of
(1.1)if forall r € [0, T] and x € R we have

t
u®(t, x) = pug(x) + x/E/O prH(x —yo(u®(s,y))Wds,dy) as, (2.7

where the stochastic integral is understood in the sense of Proposition 2.2 and
piuo(x) = /sz (x = y)uo(y)dy.

Now let us recall some of the spaces introduced in [13]. Let (B, || - ||) be a Banach space
equipped with the norm || - ||, and let 8 € (0, 1), § € (0, oo] be fixed numbers. For every function
f :R — B, we introduce the functions N/f £ Nf’(a)f :R — [0, oc] defined by

1
NG fx) = ([R | £ +h) = Foo |11~ dh)2 2.8)

and

1
NE® o) = ( /m Jretm- F@[m= dh)z- 29)

When B =R, we abbreviate the notations N gg fasNgfand N, 5 @ £as N, é‘s) f. Notice that for
8 = 0o, the above two quantities defined by (2.8) and (2.9) coincide: N, ﬁB +(0) f=N, ﬁB f.

Definition 2.4. Let %’; (B) be the space of all continuous functions f : [0, 7] x R — B such
that

||f||3€,;(B) ;=te[0sup |fa, x|+ sup fo(t,x) < 00.

T],xeR t€[0,T],xeR

It was shown in [13] that %ﬁ (B) is a Banach space. Throughout this paper, we write 3€p

for .’{ﬂ (B) with B =LP(Q2), B = 5 — H. For 0 > 0, define the following seminorm for f :
[0, T] xR — LP(Q):

— _ P(Q
Ifler = sup e fe0]+ s NP, @10)
T8 tel0,T] xeR 1€[0,T],xeR 2

For the uniqueness of the solution to (1.1), we need another space.
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Definition 2.5. Z}’ is defined as the space of all random field f : [0, T] x R x € — R such that

Ifllzz = sup | f(,-) + sup NY_ f(1) <oo, (2.11)
27 te[O,T]H ”LP(QXR) 1e[0.T] %7H,p
where p > 2 and
3
2 2H-2
N;‘_H’,,fm:( /R £ = f@ -+ D] aum ] dh) . (2.12)

Denote by C([0, T] x R) the space of all real-valued continuous functions on [0, 7] x R
equipped with the topology of uniform convergence over compact sets. For every & € R, let 75,
be the translation map in the spatial variable, that is t; f (¢, x) = f(¢,x — h).

Definition 2.6. Let X g be the space of all functions f € C([0, T'] x R) such that

G (t,x)—~ Nfgl)f(t, x) is finite and continuous on [0, 7] x R.
(i) limp 0 SUP [0, 7].xe[—R. R] Nél)(l'hf — f) (¢, x) =0 for every positive R.

It turns out that X g is a complete separable metric space equipped with the following topol-
ogy. A sequence {f,} in X? converges to f in X‘; if for all R > 0, the sequences {f,} and
N, ﬁ(,l)( fa — f)} converge uniformly on [0, T'] x [—R, R] to f and 0, respectively. We define a

metric on X ’; as follows

> If — glln.p
dg(f,g)=)» 27"— "8 (2.13)
g ; L1 = glnp
where || - ||, 8 is the seminorm
1
Iflnp:= sup  |[fe.0|+  sup N f@x).
t€l0,T],xe[—n,n] tel0,T],xe[—n,n]

The following theorem was proved in [13].

Theorem 2.7. Assume that for equation (1.1) the following conditions hold:

(1) The initial condition ug is bounded and locally Holder continuous of order H. Further-
more, for some p > W6—1’ ug is in LP(R) and

/RHMO(.) —uo(-+h) ||ip(R)|h|2H*2 dh < . (2.14)

(2) o is differentiable, its derivative is Lipschitz and o (0) = 0.
Then there exists a unique solution u® to (1.1) in Z¥ N %[T? In addition, the solution has sample

1
i-H
: 2
paths in the space X ;
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Condition (2.14) together with ug € L? (R) for some p > %, are required for the unique-

ness of the solution in the space Zi. On the other hand, the boundedness and local Holder
continuity of order H are slightly stronger than the conditions imposed in Theorem 4.25 of [13]

for the existence because they imply that g ug is bounded for any By < H and we can take

Bo > % — H. The Holder continuity of u( will be a useful ingredient in the proof of Theorem 4.3.

Throughout the paper, C will denote a generic constant whose value may change from line to
line.

3. A criteria for large deviations

Let H be the Hilbert space introduced in Section 1. Define the following space of stochastic
processes:

T
Ly = {W :Q x [0, T] — H is predictable and / ||1ﬁ(s)||3_tds < 00, a.s.-P}. 3.1
0

Define L7(f) := %fOT ||f(s)||%_[ ds for f € L. Let U be a Polish space. Set V =
C(0,T]; H) € C([0, T] x R). Let {G®}¢~0 be a family of measurable maps from V to U. We
present below a sufficient condition for large deviation principle (LDP in abbreviation) to hold
for the family Z¢ = G°(\/eW), as ¢ — 0, where and throughout this section W is the Gaussian
process identified as an H-cylindrical Brownian motion.

For N > 1, define

SN ={f:L*(10, T H) : L7 (f) < N}. 3.2)

SN will be equipped with the topology of weak convergence in L2([0, T']; ).
SetS = UNzl SV and

UV ={fels: fw) eSS, Pas. ).

The following condition will be sufficient to establish a LDP for a family {Z¢},.¢ defined by
Z¢ = GE(JEW).

Assumption A. There exists a measurable map G° : V — U such that the following hold.

(a) For N e N, let f,, f € S be such that f, — f weakly as n — oco. Then

of [ of [ .
G (fo fn(s)ds)—>g (/0 f(s)ds) inT.

(b) For N € N, let ¥, ¥ € UV be such that v, converges in distribution to ¥ as ¢ — 0. Then

G° (W + L / ' Ve (s)ds) =g° ( / ' W (s) ds> in distribution.
\/E 0 0
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For¢p e U, define Sy ={f €S:¢ = go(fo' f(s)ds)}. Let I : U — [0, oo] be defined by

1¢)= inf {L7()}, el (33)
f€§¢

By convention, I (¢) = o0 if Sy = @.
The following criteria was established in [3].
Theorem 3.1. For & > 0, let Z° be defined by Z° = G*(/eW), and suppose that Assumption A

holds. Then I (¢) defined by (3.3) is a rate function on U and the family {Z¢}.~( satisfies a large
deviation principle with rate function I .

4. Skeleton equations
In this section, we will study the corresponding skeleton equation of the stochastic heat equation

(1.1). Let {ex, k > 1} be an orthonormal basis of the Hilbert space /. The fractional sheet W
admits a representation:

W=Y" e,

k=1

where {Br(t),k > 1} is a family of independent Brownian motions. The stochastic integral
against W can be expressed as

T 0 T
/ f g(s, )W (ds,dx) =) / (g5, ), ex)yy dBi(s).
0o JR 1”0

For f €S, consider the skeleton equation:

t
ul (1, x) = pruo(x) +/(; (pl,S(x — ')cr(uf(s, .)), fGs, ')>H ds, tel0, Tl,xeR. 4.1)

Before we state the result on the existence and uniqueness of the solution of the above equation,
let us first give the following lemma which will be used several times in the rest of the paper.

Lemma 4.1. The following estimates hold:

(1) Forany0<s <t,

/ IZIZH_de/ |(Pe—s(z+21 — 22) — Pr—s(z1 — 22))
R R2

2 _
— (Pr=s (@ +21) — pr—s(@D)| 122?72 dz1 d 2o (4.2)

<C(t—s5)"3+2H
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(2) Forany g €(0,1) and s > 0,
/2|ps(z +21) = psa)| Izl PP dzy dz < CsT1P. (4.3)
R

Proof. (4.3) is contained in Lemma 3.1 in [13]. We only prove (4.2). Invoking Plancherel’s
identity, we have

/R (s G 21 =22) = prms(a1 = 22)) = (Pr—s(e 4 20) = pims@D) P2 P dzr 22
= /R 2 U |piE ) _ ik _ pifz 4 122y 2H2 g gz (4.4)
= /Rz eTHUE | piE 1 P|oi8n 1P| PH 2 dE dzy.
Consequently,

/ IZIZH_de/ |(pr—s (@421 — 22) — Pi—s(21 — 22))
R R2
— (prosG +20) = pros @) (1222 dzy dza

< / eTU=E e (/ |65 — 1?7652 — 1]z P12 22 dZdZ2) (4.5)
R R

2
:/ e—K(l—S)SZ d&- <[ |ei§Z _ 1|2|Z|2H_2dz>
R R

< Ae—K(t—S)SZ|E|2—4H dE <C(t _S)—%—FZH. 0

The next theorem is the existence and uniqueness of the solution of the skeleton equation.

Theorem 4.2. Assume

(1) the initial condition u satisfies
sup|uo(x)| + sup N1 uo(x) < oo, 4.6)
xeR xeR 2

(2) o is differentiable, its derivative is Lipschitz and o (0) = 0.

Then, there exists a unique solution u’ to equation (4.1). Moreover, the solution u’ belongs to

1—H
the space X ;
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1
. . . . L 1—H
Proof. We will solve the equation using a successive iteration in the space X7 . Let 8 :=
% — H in the proof to simplify the presentation. Recall

1Zllzp = sup |Z@t,x)|+  sup R|NﬂZ([,x)|.

0<t<T,xeR 0<t<T,xe

We will also use the notation ||g|lco = sup, |g(x)| for a real-valued function g on R.
Define ug(t, x) = pruo(x) and

t
u;{+1(t,x) = PtUO(x) +/; (pt—s(-x - ')O‘(My{(S, ))1 f(ss ))’H ds. (47)

From the assumptions on u it follows that ||u(]; | xf <00 First, we will provide a uniform bound
T

””r{+1 ||x,;. From the equation (4.7), we have

T t
lu/ 1 @0 < Clluol2, + C(/o | £Gs. ->||ilds) /0 | prsc = o (uih (5.)) |5, ds. (4.8)
Moreover,
| Pr—s = o (uil 5.)[13,

=cyH /Rz|Pz—s(x —(+2)0 (u 5,y +2)) = prey(x — ) (1] (s, y))|2|Z|2H—2 dydz
= C/Rz (Pr—s(x = +2)) = Pr—s(x — y))2|0(u;f(s, y+2) |2|z|2H_2 dydz (4.9)

’ 2 -
+ C/Rz Pis (e =)o (i s,y +2)) =0 (uh 5. ) 2P dy dz
=0L(t,s,x)+ L(t,s,x).

The term I; (¢, s, x) can be bounded as

L1, 5,x%) < Cllud s, )] / (Pr—s(x = 0 +2) = prosx = )12 2 dydz
RZ
5 4.10)
< Cllui s, |2, — )7,

where the Lipschitz property of o, 0 (0) =0, and Lemma 4.1 have been used. For I, we have
I 2 _ f o 2, 2H-2
2t,8,) <C | iy = un s,y +2) = ui (s, )| |2 dy dz
R
2
< C/ P2 (x — Y[ Npui (s, )" dy @.11)
R

< C|Npuh (s, |2t —5)72.
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Putting together (4.8)—(4.11), we get

t
Jut 1 1) = ClluolZ + c/ [ (5. |2t — )+ d
' ’ (4.12)
1
+C/HNwhan@a_@7d&
0

Next, we want to establish a bound for N ﬁu,{ 41 (s, x). Set

t
<I>(I,X)=/O (Prs(x = )0 (1 (5. ). £ (5. )y, ds.

We have
Npu! (5,07 < CINB (piuo) > + CINp @2, )|, (4.13)

where
N, x)|

Z/ O, x +2) — (1, x)| 1212 dz
R

-,

T 2
< C/O [5G, )5 ds

! 2
/0 ((prs et 2=) = prs e = N)o (i (5.)). £5. )y ds| P2 de

4.14)

t
x /R/O (s 2= ) = prosc =)o (i (5, )) | 5,121 2 ds dz

< C/R/ot | (Prs O+ 2= ) = pres(ac =)o (i (5, )) | 5,121 2 ds dz.
The integrand in the above integral can be estimated as follows
[(prs (e 42 =) = pr—sx = ) (1 (5.) 3
=cH [W[(pz—s (x 42— 1 4122) = pros(x = @1 +22))o (] (5, 21 + 22))
— (Pr=s G+ 2= 21) = Py — 2))0 (it (5. 20)) Ple2 2 dzy dza
= C/RZ|(Pt—s(x +2— (21 +22) = prs(x — (21 +22)))

(4.15)
— (s +z—21) = prosx — 2D lo (i (s, 21 + 20) 122?72 dzy dza
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2
+C/2|pz_s(x+z—z1) — Pr—s(x —21)|
R

2 _
x | (s, 21 + 22) — i (5. 20) |22 P2 dzy dzo

=18, 8,x,2) + Ja(t, s, x, 2).
Observe that
Ji(t,s,x,2)
< Clluf 5.0~ /Rzy(p,,s (r 42— @1 +22) = prs(x — (1 +22)))
— (Prosx + 2= 21) = pros(a — 20) |22 P 2 dzy dza (4.16)
= C|luj s, -)H;fRJ(ptfs(zm —22) = pr—s(21 — 22))
—(pr—s@+z1) — 1Dt—s(Z1))|2|12|2H_2 dzidz.
Consequently, by Lemma 4.1 we have
/Rfla,s,x,znzﬁ’f—zdz5c||u,’{(s, D7, @ =), (4.17)
For J,, we have

/ Jo(t, s, x,2)|z|*1 2 dz
R

_ 2
< C/ i 2a’z/ |pi—s(x +2—21) = pr—s(x — 21)|
R R2
i 2 _
x |wn (5,21 +22) — i (5, 20| |22 2 dz1 dza (4.18)
2 2 _
< C| Npui, s, ~>||OofRz|p,_s(x tz—z21) = ps(x —z0)| 2P dzdz
2 _
< C|Npuj, (s, )2, 0 — )71+,
where Lemma 4.1 has been used. Combining (4.13)—(4.18) together, we obtain
f 2
“Nﬁun+1(l’ )“oo

t
§C+C/ | (s, |2 (1 — )32 dis (4.19)
0

t
+c/0 | Npuil (s, |2, (¢ — )1+ ds.



Multiplicative stochastic heat equation 365

Define
An(e) =l 2,92, + [Nt 2,0,

Estimates (4.12), (4.19), together with the condition H € (Z’ i)’ imply that we can find By < 1
such that

t
App1(t) <C + c/ (t —s)P0A,(s)ds.
0
By Lemma 4.26 in [13], we conclude that

sup sup A (t)_sup sup {||u,, (, )|| +||J\/'ﬁun (, )H } < oo (4.20)

n 0<t<T

1
. . . 1-H
Next, we are going to show that {u,{ ,n > 0} constitutes a Cauchy sequence in the space X7

To this end, we bound [[u, (1, ) — ) (t, )% and [N, (¢, ) — u (t, )| separately.
Recall

u,{H(I,x) —u] (1, %)

t 4.21)
= /0 (Pr—s =)o (uih (5, ) = prsx = Yo (u)_ (5, )), £(5,)),, ds
Hence,
/ f, — ,{ t, 2
|Mn+1(Tx) p (1, %) t @2
< [ reolds [ 1pmt = (o (o 6.9) = oy 5.) [,
Now,
| pe—s e = (o (1 (5. ) — o (u]_,5.) 5
=i [ pimsle =0+ D)ol 0y +9) =l 65 +2)
— prs e = W) (o (u (s, ) — o (u!_ (5, )PP 2 dy dz
< C/ (pr—s(x — (7 +2) = pros(x — )’
(4.23)

x (0 (i 5.y +2)) =0 (] _ 5.y +2))) 122 dydz
+C/ ptz—s(x_y)[( (Mn(s y+Z))_U( l(s y+Z)))

— (0w (s.3) =0 (u)_, 5. ) I dydz
=K(t,s,x)+ Ko(t, s, x).
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Invoking the Lipschitz continuity of o and (2) in Lemma 4.1, we have

Ki(t,s, x)
=< Clu s, —ul_y (.|,
(4.24)
« fRz(pz_s (x = +2) = prosx = ) [z 2dy dz
= Clluf (5,9 = ul_ 5,9 |26 = )7+,

From the inequality (see [13])

|(o(a) — (b)) — (o(c) — o (d))]

(4.25)
<Cl@a=b)—(c—d)|+Cla—bl(la—c|+|b—d]),

we have
K>(t,s,x)
= C/Rz prs(x —)’)|(u‘nf(S,y+z) —u,{_l(s,y+z))
— @l sy —ul_ (s )12 2 dydz
+CAzp3_s(x—y)|uI(s,y+z) —u)_ sy + )
x [u s,y +2) —uf (s ) IzPH 2 dy dz
+ C/Rz P =Pl s,y +2—ul_ s,y +2| (4.26)
s ul_ s y+2—ul_ 5. PP 2 dydz

< C|Np(ui (5. ) —u)_ s.9) |2, /Hé P2 (x —y)dy
€l 6.9 =l 6 Vsl 6 ) [ = ay
+Cluf 509 =l 6 L Ns (6. [ p =y

< € =) 2 [N o (5 ) = )y s ) 2 o o G50 = ]y s )| 2]
where we have used the fact (see (4.20))

sup sup ||N,3(Mr{(5))“c2>o < oo

n 0<s<T
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Putting (4.22)—(4.26) together we get
ey 4 =i @ |
< [[u—o Nl . — a6, @2

ik 5,y = )y s, |2 ) ds.

By definition,

N ()@, 0) = uf 2, 0))?
t
/0 ((Pz—s(x +z- ~)(o (u,{(s, ~)) — o(ur{_l (s, ))) fs, .))H

Z/R |

~(pr—s@ =)o (uh (5. )) =0 (u]_ (5.)). Fs5.)y,) ds| 122 dz (4.28)

T t
< ([ 1reoleas) [ as [1pmtx 420 piste =)
0 0 R

o] (5.9) =0 (4 () [P 2z

Furthermore,
[(pr—s e 2 =) = prmsr =) (0 (wh (5. ) = 0 (], 5. 9)) |3

=cy /Rz|(p,_s (x+2z— (214 22) — pi—s(x — (21 + 22)))
x (o (u] (s, 21+ 22)) — o (1] _ (5,21 +22)))
— (Pres O+ 2= 20) = s — 2D (o (h (s, 20) — o (u!_, (5, 20)) P22 P2 dzy dzo

< C/Rz|(p,_s (x+2z— (214 22) — pi—s(x — (21 + 22)))
— (s +z—20) = prs@ —2)|* (4.29)
x (o (uf (s, 21+ 22)) — o (1! _ (5,21 + 20))) 1222 dzy dza
+C/RZ|Pz—s(x +z—21) = prostx — 20|’

X [(0(14;{(& z1+22) — U(M;{;l(& 21 +22)) — (a(u,{(s, 1))

—o (! (5, 20)Plz2P 2 dzy dz

=M(t,s,x,2) + Ms(t,s,x,2).



368 Y. Hu, D. Nualart and T. Zhang

By a change of variable and Lemma 4.1, we have
[ s P2
R
2 -
< Cluf (s, ) —ul_ G, ~>||00/R|z|”’ 2dz

X /RZI(Pz—s (x +z— (21 +22) = pr—s(x — (21 +22))) (4.30)
2 _
— (Pr—sO +2=21) = prosx — 20) [ 22 2 dz1 dz
2 _3
< Cluf (s, ) —ul_ (s, )2 @ =) 22,
Invoking the inequality (4.25), we have
Ma(t,s,x,2)
2
< C/15§2|szs(x +z—21) = prs(x —21)|
2 _
x [(uf (s 21+ 22) — !l (5. 21 +22)) = (uf] (5. 20) — ) (5. 20)) Pl 2 dzy dzo
2
+ C/Rz’])tfs(x +z2—21) = pros(x —z1)|
2
><[|u,’:(s,zl+22)—u’{_1(s,z1+zz)| 431
, ) .
X |u,{(s,11 +20) —u,’;(s,zl)| 2?2 dz1 dzs
2
+ C/2|Pt—s(x +z2—21) = pros(x —z1)]
R
2

X [|M}{(S»Zl +22) — M,{,l(s, 21+ 22)|

' : 2 _
x Jul_ (5,21 +22) —ul_ (s, 20|12 2 dzy dza

=My (t,s,x,2) + M(t, s, x,2) + M2 (1,5, x, 2).
Integrating against |z|># =2 dz and using Lemma 4.1 we have
/le(t,s,x,Z)|Z|2H_2dZ
R
2
< CNp (un (5. = )y 5,)|
! " > 4.32)

2 _
X/2|Pt—s(X+Z—Zl)_Pt—s(X—Zl)| 2?2 dzdzy
R

<C@t—s)HH ||Nﬁ(u;{(sv )= ”}{71(& ')) ||c2>o’
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and

f Mn(t, s, x,2)|z|*1 2 dz
R

< Clluf (5. —ul_ (5,92, /R 212 dz /Rz|p,_s(x tz—z) = prs@— 2|’

x uf (5,21 +22) —uf (s, 20) P22 2 dzy dza

= Cllu 5. = uf_y s, ) |2 NG e (5. 9) 1, (4.33)
x /H;Jpl—s(x +z—21) — pr—s(x — z1)|2|zI2H*2 dzdzy

< Clluf (s, —ul_ (s, ) |2 N (i (5, ) |2 = )7+

< CHu,{(s, D) — u,{_l(s, ~)Hio(f — 571

Notice that (4.20) was used in the last step. Similarly, the following holds true:
/ Mos(t,s,x, DIz 2 dz < Clluf (s,) —ul_ s, 0|2 —)7 . (4.34)
R
Then, (4.32), (4.33) and (4.34) together gives

/ Mat,s,x, 2|22 dz < C|luf (s, ) —ul_ (s, )|, (¢ — )71
R

, 439
+ Clt =) NG s, ) = )y (s,9) [
Substitute (4.29), (4.30), (4.35) back into (4.28) to obtain
[N a1 0 ) =l ) |
t
< c/ s,y —ul (s, )]0 =) ds
0 (4.36)

t
e / (t =) Ny (ud (5, ) — ! (5,9) |2, ds
0

t
2 _3
+ch |t 5. —ul_ (5.2, (0 — )72 2 ds.
Setting

2 2
Ru(t) = [y (1) =i (1) |2 4 [N () 1) = i 2.9) |
it follows from (4.27) and (4.36) that there exists a f9 < 1 such that

t
Rpt1(0) §C/ (t —5) PR, (s) ds. (4.37)
0
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1
Applying Lemma 4.26 in [13], we conclude from (4.37) that ) ,° R, converges uniformly

in [0, T'] for all 1 < p < oco. In particular, this implies that u,’: ,n >0 is a Cauchy sequence in
the %’; Denote by u’ the limit of {u',’: }. Letting n — oo in (4.7), it follows easily that

t
wl (¢, x) = puo(x) + /0 (Prs(x =)o (ul (5,4), f(s,));, ds. (4.38)

1
. . . 1-H
We have proved the existence of the solution of equation (4.1). The statement, u/ € X I

follows from the Holder continuity of u/ (see the proof of Theorem 4.3 below) and Lemma 4.12
in [13]. Suppose u/, v/ both are solutions to equation (4.1). By the similar estimates as for

Uy, — u,{ we can show that

n+
wl (1, = vl (1, )2+ [Ne (! @, ) — o @) |2
0wt + I .
=C /0 (0 =97l (5. ) =07 (5, + [Wp (! s, ) = v/ (5.0) |3, } s
for some By < 1. This implies
[ .y =0 @2+ [N @) =0 )2 =0
for ¢ € [0, T'], proving the uniqueness. O

For f €, define a mapping G° by

go(/()f(s)ds) —ul (),

where u/ is the solution to equation (4.1).

Theorem 4.3. Suppose that the following conditions hold:

(1) The initial condition uq is bounded and locally Holder continuous of order H .
(2) o is differentiable, its derivative is Lipschitz and o (0) = 0.

For N €N, let f,, f € SN be such that f, — f weakly as n — 0o. Let uf* denote the solution
of equation (4.1) replacing f by f,. Then

QO(‘/O.fn(s)ds> =uln — go</0.f(s)ds> =u'

1—H
in the space X ;

Proof. Recall

t
uln (t, x) = puo(x) + /0 (Piosx = o (ul(s.2). fuls. )y, ds. (4.40)
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Since the norm { fOT Il fin (s) ||%{ ds,n > 1} is bounded by a constant N, invoking similar arguments
as in the proof of Theorem 4.2, we can show that

sup sup {[uf" 2, |2 + [Ny (w0 )2} < oc. (4.41)
n 0<t<T
Next, we prove that the family {u fnon> 1} is equi-Holder continuous. Let

t
v/t x) = /0 (Pr—sxc =)o (Ul (s.9). fuls, )y, ds.

It is sufficient to show that {v/*, n > 1} are Holder continuous with Holder constant and Holder
exponent being independent of n. For 0 <7 < < T, we have
: 2
v (12, x) — v/ (11, )|

2
<C

n
/ (Prr—s(x = Vo (5, ). fuls, )y, ds
n

2

n .
+C /0 (Pr—sx =) = pry—s(x = )0 (u (5, ), fuls, )y, ds (4.42)

5]
< [ te ol s ) i
4

1
+ C/O ” (pn_s(x =)= py—s(x — '))U(“f" (s, ')) ”itds‘
Using the similar arguments as in the proof of (4.9), (4.10) and (4.11), we have
[P = Do (w5, ) |3,

= CfJul @2 + [Ny () 3 e =7 (4.43)

<Cly—s)"'H,
where (4.41) has been used. Hence,

t 2 15)
/ | Po—s e = o (" (s, ) [5,ds < € / -9 as=cr—m".  @44)
151 1
On the other hand,
[ (Pra—s (=) = pr—s (x = ))o (ufr (s, ) |13,

<€ [ [(pumsls = 0+ 2) = pusls =+ 2)
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— (Pry—s(x = ) = py—s(x — y))]2|0(uf" (s,y+ z))|2|z|2H*2 dydz

(4.45)
+C /1;2 (Pra=s (06 = ¥) = Pri—s (x = 1)
x |o(ufr(s,y +2)) — o (uh (s, y))|2|z|2H*2 dydz
= A1(, 11,5, x) + Ax(tr, 11, 5, X).
Applying the Plancherel’s identity and (4.41), we have
Aq(tr, 11,8, Xx)
= Clut s, /R [(Pasx = 0 +2) = pyslr = v +2))
- (pt2—s(x — ) = Pry—s(x — )1))]2|Z|2H_2 dydz
=l 6 [ [(nnstr = 2) = preso = 2)
(4.46)

- (ptz—S(y) - ptl—s(Y))]2|Z|2H_2dydz

<C |(e_%(’2_s)éze_igz - 6_%(tl_s)sze_isz)
=C .
B (efg(zzfs)sz _ e*%(l]*S)§2)|2|Z|2H72 dédz
—c / e 9 | o= 5 - tE |2 ik |71 2H2 g g7,
R2

Through a change of variables, it follows that

14
/ A2, 11,5, x)ds
0
h 2 K 2 20 s 2
SC/ f e =08 gg|em 2 (mIET 1)o7 1|2 PH 2 g dz (4.47)
RrR2 Jo
<Ct—m)".

Similarly, we have

Aoz, 11,5,%) = CINY_y (w5, ) | / (Pr—s () — Pr—s(0) dy
R (4.48)
< Cf e—K(tl—s)§2|e—§(tz—t1)§2 _ 1|2d5,
R
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which yields that

131
/ Az(tz,h,s,X)dSSC(tz—tl)%- (4.49)
0

Putting together (4.42), (4.44), (4.45),(4.47) and (4.49), we see that there exists a constant C
(independent of n) such that

v/ (1, x) — v/ (z],x)\z <Cln—n|", forallt;,t, €[0,T], x € R. (4.50)
Let x1, xp € R and consider
v (1, x1) — v/ (2, x0) = /0 t((pt_sm — ) = pies(2 =)o (W (s, ), fuls, )y, ds.
We have
o (e, x) — v, x0)P < € /O o1t = = prsr =)o (5. ) |3, ds.  (@.51)
Now,
| (pr—s 1 =) = prms (2 = 9)or (w5, ) 3,
=cy /Rzl(pz—s (X1 = +2) = pr—s(x2 = 0 +2)))o (" (s, y + 2))
— (Pr—s 1 = ¥) = pr—s (2 — M))o (uh (5. ) P22 dy dz
<C fR N(ps (1 = +2) = pres (2 = 0 +2)) (4.52)
— (s 1 = ¥) = pr—s 2 — W) |o (@ (s, y + 2) 122 dy dz
+ C/Rz|pz_s(x1 ) = prsC2 = ) [o (s, y +2) — o (ulr (s, ) P12 dy dz
= Bi(t,s,x1,x2) + Ba2(t, s, x1, x2).

In view of (4.41) and invoking Plancherel’s identity, we have

Bi(t,s,x1,x2)
<Cllul (s, )], /R Nps(x1 = +2) = prs (2 = (v +2))

— (pros(x1 = ¥) = pr_s(x2 — )12 2 dy dz (4.53)

IA

C/2e—K(I—S)gz|e—i$(X1—X2—Z) _e—lISZ _e—iE(xl—xz) + 1‘2|Z|2H_2d§ dZ
R

C/ e—K(t—s)§2|e—iE(x1—X2) _ 1|2‘e—i§z — 1|2|Z|2H—2 dédz.
R2
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Integrating against ds and using a change of variables, we deduce that

t 1 ‘ )
Bi(t,s,x1,x)ds < C/ — |eHni—x) _ de
/0 R |.§|1+2H| |

(4.54)
< Clxi —x .
For B>, we have
2 2
Ba(t.s.x1,x2) < C N _py (u” . -))Hoo/ |Pres (i1 = ) = prs (2 = )| dy
* (4.55)
< C/ e—K(t—S)Sz‘e—ig(Xl—Xz) _ 1‘261'5,
- R
which yields that
t t ) ) )
/ Ba(t.5.x1,:2)ds < C / / e HUIE G|t _ 1|2 g
0 R JO
1 .
< c/ S (4.56)
RE
< Clx1 — x2|.
Collecting the inequalities in (4.51), (4.52), (4.54) and (4.56) we arrive at
2
o7t x1) = v/ (6, x) [ < C(Ix1 — xal + [x1 — x2 ). (4.57)

As uln(t,x) = piuo(x) + v/ (¢, x), it follows from (4.50), (4.57) that there exists an independent
constant C such that

2
|uln (11, x1) —u (12, x2)|” < C{Ix1 = xal + |31 — 02 + |t — 1117} (4.58)

forall ¢, € [0, T], x1, xo € R. The above uniform estimate along with the Arzela—Ascoli theo-
rem yields that there exists a subsequence {nj, k > 1} and a uniform continuous function u(¢, x)
such that

sup  sup |ue (e, x) —u(t, x> =0 (4.59)
0<t<T x€[—R.R]

for every R > 0 as k — oo. First, we will show u = u/. By the uniqueness of the equation, it is
sufficient to show that u is a solution to equation (4.1). Applying Fatou lemma and taking into
account (4.41), (4.58) it is easy to see that

sup {2+ [Ny e, ) 2] < (40
=I=

and

2
|u(tr, x1) — utz, x2)|” < C{lx1 — x2| + |x1 — x2*" + |1 — 1117} 4.61)
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forallt1,1 €[0, T], x1, x € R. Recall that

t
wlne (2, x) = puo(x) + /0 (Pr—sCx =)o (uh (s, ), fui (s, )y ds. (4.62)

To pass to the limit in the above equation as k — oo, we need to prove

i [ =9 60) = st = ot s =0, @)
In fact,
[ s = (o (19 (5. ) — 0 (uts. 1)) |
< c/Rz(pt,s(x — (Y +2) = prosx =)’

< (o (un (s, y +2)) — o (uls,y +2))) 12?2 dyd
(o™ (s,y+2) —o(uls,y+2)) 7z ydz o

+C [ =l sy +9) o luty +2)
— (o (u (5. ) — o (uls. ) 1P 2 dy dz
:= DX, 5, x) + D52, 5, x).
For every y, z, clearly (o (u/" (s, y +2)) — o (u(s, y +z)))> — 0 as k — co. On the other hand,
(Pr—s(x = (0 +2)) = pr—s (x = ) (0 (W (5. y +2)) — 0 (uls, y +2))) |27 2
< Cllul(s, ) = uls, )2 (Prms (x = 3 +2)) = Py — 1)) |22 (4.65)
<C(pi—s(x = +2) — pr—s(x — y))ZIZIZH_Z,

where the right-hand side is dy dz-integrable. Applying the dominated convergence theorem, we
deduce that

lim D¥(t,5,x) =0. (4.66)
k— 00
Moreover, by a change of variable and Lemma 4.1 we have
2 -
Dk, s,x) < C/Z(pH(x —(V+2) = prs(x = 0)) 12* 2 dydz
R (4.67)

<C(t—s) ',

which further implies, by the dominated convergence theorem, that

k—o00

t
lim i DX(t,5,x)ds =0. (4.68)
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Now let us look at D’z‘ (t, s, x). For fixed y, z, it holds that
2
[(a (uf”k (s,y+ z)) — a(u(s, y+ z))) — (U (uf”k (s, y)) — U(u(s, y)))] —0 (4.69)
as k — oo. In view of (4.58), (4.61) the following bound holds true:

[(o (uf"k (s, y+2) —o(us,y+2))— (o (uf"k (s,¥)) — o (uls, y)))]2

< C[|ulm (s, y +2) — uln (s, )|+ |ucs, y +2) — us, )]
(4.70)

< C([Jut (s, )12 + [uts, 2 xzi=1) + ClzP gz«

< Clxqz=n + ClzlP xqz1<1y}-

As p?_ (x — D xqzi=1) + Clzl* x(jz1<1y} is integrable w.r.t. |z|*# =2 dy dz, it follows from the
dominated convergence theorem that

lim D(z,s,x)=0. 4.71)
k—o00

Moreover,

Di(t,5,x) < C/Rz Pr_y (= WXz + ClzP xqz1<1y} dy dz

| (4.72)
<C(t—s) 2.
Apply the dominated convergence theorem for the second time to get
1
lim [ Dit,s,x)ds=0. (4.73)
k—o00 Jo

Combining (4.64), (4.68) and (4.73) together, we prove (4.63). Since f,, converges weakly to f,
using (4.63) we have

t

lim A (p,_s(x — -)a(uf”k (s, ')), S (s, '))H ds

k—o00

t

= lim A (Pr—sx = Yo (/e (s,)) = pros(x = Yo (uls, ). fa, (5. )y, ds

(4.74)

t

+ lim | (Pr—s(x =)o (u(s, ), fu (s, ), ds

k— 00

t
= /0 (pt—S(x - ')U(M(S, ))7 f(S, ))’H ds.
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Now let k — o0 in (4.62) to get

t
u(t, x) = prug(x) +/0 (Pr—sCx =)o (u(s, ), fs, ), ds, (4.75)

which implies u = u/. To conclude that u/» — u/ in X; 1- it suffices to show that the family
{ufn, n > 1} is relatively compact. According to Pr0p051t10n 4 18 in [13], one only need to check
the following three conditions (i) sup,, lun (0, 0] is finite. (ii) For every x € R, (uln(-,x),n>1}
is equicontinuous in time. (iii) For every R > 0,

S lulnt, x +y) —uln(t, x)?
lim sup sup oy dy =0.
8=0 1 1€[0,T],xe[—R,R]J—5 [yl
(i) Is clear. (ii) and (iii) follow easily from (4.58). [l
5. Large deviation principle
1_
Foru e X7 H, set
S"={feL*([0, T H); ul =u},
where u/ stands for the solution to equation (4.1). Define
I(u) = 1nf{ / ||f(s)||Hds} (5.1

Theorem 5.1. Assume that the assumptions of Theorem 2.7 hold. Then, the laws u. of

1

i-H
{u®(-,-), & > 0} satisfy a large deviation principle on X ~ with the good rate function I (-).
More precisely, we have

1
. 1-H
(i) For any closed subset C C X}

limsupelog u.(C) < —frnf I1(f).

e—0

1
.. 1 H
(ii) For any opensetG C X7

liminfel G) > — inf I(f).
lam_)l(r)lsogug( ) > }Ielc f)

Proof. By Theorem 2.7, there exists a unique strong (in the probabilistic sense) solution to the
stochastic heat equation (1.1) in the space X 1= Therefore for every ¢ > 0, there exists a

measurable mappings G° from V= C([0, T],H) to U := X% " such that

u® =Ge(w),
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where W is the Gaussian process considered as an #-valued cylindrical Brownian motion. Let
GO be defined as in Section 4 (just before Theorem 4.3). To prove the large deviation principle,
we will verify the Assumption A in Section 3. The part (a) of the assumption is already proved
in Theorem 4.3. Next, we will prove the part (b). Now fix N > 0, and let ¥, ¥ € U" be such
that . converges in distribution to ¥ as ¢ — 0, where /" is defined in Section 3. It is easy to
see that v® := G5(W + ﬁ fo Ye(s)ds) is the solution of the stochastic heat equation:

v K 92v°
ar 2 ox2

+Veo (V)W +0o(v°) -y,  120,x€R, (5.2)

equivalently in a mild form

t
vé(r, x) = pruo(x) + \/5/ / pi—s(x — y)o (v°(s, y))W(ds, dy)
0 IR (5.3)

t
+ /0 (Pros (6 = )0 (V5 (5, ), W (5))y, ds.

Our aim is to show that v® converges in distribution to v := G9( fo Y (s)ds), the unique solution
of the equation

t
V(t, %) = prt(x) + /O (Prs(x = )0 (v(s, ), Y (5)), ds. (5.4)

First, we claim that there exists & > 0 such that

supH v® pr < 00, (5.5)
e T,0
where || - || X, is defined by (2.10). Let us now prove the claim. Write

vE(t, x) = prup(x) + CD‘T(I, x)+ CDE(I, x), (5.6)

where
t
i (t, x) = «/5/0 Aptfs(x — o (v (s, y))Wds, dy),
t
5 (t, x) ::/0 (Pr—s(x =)o (v° (5, ), Ye (5))y, ds.
Applying Proposition 3.6 in [13] with 8 = % — H, it holds that

|91y, = Covalo g, (5207 % umtoms o), )
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where C is a constant depending only on H and the Lipschitz constant of o. We can get a similar
bound for ®,. Since . € UN we have

, L, 1
@30.0] = ([ et =900 6N Bas) ([ o las)

t
sc’HN%(//Ipts(x—y—Z)o(vS(s,yﬂLz))
0 JR?

2
— pros(x = o (v (s, ) P12 2 dy dz ds)

! (5.8)
: 2
SCN2<f / }pl—S(x_y_Z)_Pz—s(X—y”
0o Jr2
3
x [v° (s, y +Z)|2|Z|2H2dydz>
([ ; %
0o Jr
By Minkovski inequality it follows from (5.8) that
|| q>§(t’x)HLp(Q)
i (" )
B N
0 Jr2
5.9

1
2
x [v(s,y+2) ||i,,(9)|z|2H_2 dydz>

L CN? </Ot /RZ pry(x — W||vE (s, y +2) — v (s, y)||ip(9)|z|2H_2dydzds) 2.
Similar estimates can be obtained for
| @50, x +h) — E(I’X)HLP(Q)’
which are needed to control the norm in the space %IT)’ - We have

| @5, x+h) — q>§(t’x)’|LP(Q)

t
SC'(/ / |(pr—s(x+h—y—=2)— pis(x —y —2))
0 JR?

1

2
— (Prs A h =) = pros = )P[0 5.y + 2 ] [P 2y dz) (5.10)



380 Y. Hu, D. Nualart and T. Zhang

t
+C(ffIpt_s<x+h—y>—pt_s(x—y>|2
0 JR2

x |vf (s, y +2) — v (s, y) HiP(Q)IZIZH_2 dydzds) )

1

Due to the above estimates (5.9), (5.10), we can now follow exactly the same proof as Proposi-
tion 3.6 in [13] to obtain

[ @50, < CLlo" [y, (6% 7267 % k5075 4 kH 19371, (5.11)

where C7 is a constant depending only on H, N and the Lipschitz constant of o. Now combining
(5.7), (5.11) and (5.6) we get

[0z, = C+Culo? ||x;9(k%_79_% +kmT07T 4 kM agH)
H

B

+Covplv* |y (6440
Now choosing 6 > 0 sufficiently large so that
(Coy/P+C(KT™2077 + k4673 +kH—3gsH) <1,
it follows from (5.12) that
sup|[v* ] ¢, <00,

which is the claim.
To prove our theorem, we need a stronger conclusion. For any § < H and p > 2, it holds that

Slep” Ve ||xfT;s < 00, (5.13)

where

_ —0t y LP(Q
I fllgpp:= sup e or [ vs(t,x)”Lp(Q) + sup e GIJ\/}S e, x).
T.0 te[0,T],xeR te[0,T],xeR

In fact, let @7, @ be defined as above. By Proposition 3.6 in [13], we have, for large enough 6,

sup9f g1y = Cilo ()] g, = C I g, .14

Then (5.13) follows from (5.5), (5.6) and (5.14).
Applying Proposition 3.8 in [13] to &, ®f we get that

v (12, x2) = v* (11, x| L ) = C”O(”E)Hx’;_(,{'tz — 17 +1x—x) 1}
SC||U€H3€¢_9{|t2_f1|%‘H)Cz—)ClIH} (5.15)

H
5 H
<C{ln—1l? +lx2 —x1|"},
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where (5.5) was used and C is an independent constant. By (5.13), (5.15) and Proposition 4.24
1

in [13] we conclude that the laws of the family {v®, ¢ > 0} is tight on the space X %7H. Hence,
the family {(v®, W (-, -), ¥¢), & > 0} is tight on the space

1

x27" % (10, T1 x R) x L2([0, T; H).

Recall that the topology of weak convergence is used for L>([0, T']; ). Choosing a subsequence
if necessary, by Skorokhod’s embedding theorem, there exists a probability space (£2, F, P)
carrying a family of random fields (v¢, We(-, -), ¥,) such that

(5. W ) = (o7 W. )

in law and P-almost surely, (¢, We(-, -), ¥¢) converges to some random fields (v, W (-, -), ¥)
in the space

X271 % ([0, 71 x R) x L2([0, T: #).

In particular, the following stochastic heat equation is held for (v°, 1}8, we ):
vé(t, x) = pruo(x)

t
+ «/5/ /Rpt—s(x — y)o (0°(s, y))W*(ds, dy) (5.16)
0
t -
+/0 (prosx =)0 (V°(s, ), Ve (5))y, ds.
Next we want to pass to the limit in (5.16) as ¢ — 0. First of all, we have
- t -
EHx/E/O /Rprfs(x — o (V°(s, y))W*(ds,dy)

t
=eE[ﬁ;Mppﬂu=—aaufufnnids]

]

(5.17)

where E stands for the expectation under the probability measure P. By the Lipschitz continuity
of o it is easy to see that

| pres e = 0 (6. )) |3,

= C/Rz(pf*s(x —(+2) = pros@ = )76y + ) P12P 2 dydz (5.18)

— — 2 _
+Cf217;2_s(x—y)|v‘9(s,y+z)—v8(s,y)| 2?2 dy dz.
R
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Thus, we have
B 2
gl |

t
<Cs /0 fR (prs(x = (0 42) = prosr = )50y + D) 2 g 1P P dy d

t -
\/E/é Apt—s(x — y)o‘({)e(s, y))Ws(ds, dy)

t
_ _ 2 _
+Cs[/ pi—y & = N[5,y +2) = 0°(s, ) |2 |21 2 dy dz
0 Jire (5.19)

t
§C8/ ds/ (Pr—s(x = 0 +2) = pros & = ) |7 32 122 dydz
0 R2 T.0

t
e [Cas [ 2 el

t
< Cs/ [t —s)~1HH +(t—s)*%}ds -0
0

as ¢ = 0, where we have used Lemma 3.1 and the fact sup, ||v° ||§€2 < 00. Next, we will prove
T.,60
t _ t _
lim fo (Pr—s (x = )0 (2°(5. ). D)) ds = fo (s (x = )0 (065, ), ¥ )]y ds.  (5.20)
Since ¥, — ¥ weakly in L2([0, T]: ) and since fOT Ve ||%{ ds < N, to prove (5.20) it suffices
to show

i [ Elpimst = o (57(5.9) — o (565, )] 3, 5] =0 .21
Now,
E[|pimsx =) (0/(0°(5. ) =0 (565, )) [3,]
<c fR (s = 4 9) = prsr =)
x E[(0(5°(s, y +2)) — o (005, y + 2))) ]Iz 2 dy dz
(5.22)

w0 [ = DE([( 6y +9) o160,y +)

— (0. ) — o (56, ) P NP2 dy dz
= Glf(t, s, x) + Glzc(t, s, X).
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For every y, z, clearly (o (v°(s,y +2)) — o (v(s, y + 2)))2 — 0 as k — oo. On the other hand,
for p> 2,

_ ~e _ = p =&l P 1P
Sng[IU(v (s.y+2) —o(is.y+2)]"] < C[sngv H%;;ﬁ + IIUIIX%] < o0.
Hence, we have E[(o (9°(s, y 4+ 2)) — o (i(s, y 4+ 2)))*] — 0. Note that
(Pr—s(x = 6 +2)) = pros (e = ) E[(0/(° s, y + ) — 0 (35, y +2)) ]2 2

< c[sgpn 0° ||§% + ||6||§€%0](p,_s (x = (v +2) = prosx — ) 122 (5.23)

< C(pros(x = G +2) = prsx — )7 12PH 2,

where the right-hand side is dy dz-integrable. Applying the dominated convergence theorem, we
deduce that

lim G4z, s,x)=0. (5.24)
k—00

Furthermore, by Lemma 3.1 we have

GX(t,s,x)<C fR i (Prs(x = O +2) = prosx — )12 2 dy dz

(5.25)
<C—s~""H,
which further implies, by the dominated convergence theorem, that
t
lim | GY,s5,x)ds =0. (5.26)
k—o00 Jo
Now let us look at G’;(t, s, x). For fixed y, z, similarly we have
E[(0(8°(s, y+2)) — 0 (i(s, y +2))) = (0 (5° (5, ) — o (85, 1)) = 0 (5.27)
as k — oo. In view of (5.5), (5.15) we also have
E[[(c(3°(s.y+2) =0 (0(s,y +2))) — (o (2°Cs, y)) — o (V°Cs, y)))]z]
< CIE[|5°(s, y +2) = (s, 0[]+ E[[56s, y + 2) = 55, »)[*]] (528)
< C([suplo* I3, + 190 ) xten + I sy

< C{xga=1) + Clzl xqz1<1y }-

As ptz_s(x —WX{z=1y + C|z|2Hx{|Z|<1}} is integrable w.r.t. |z|?# =2 dy dz, it follows from the
dominated convergence theorem that

lim GA(z,s,x)=0. (5.29)
k—o00
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Moreover,

Gt.s.x) = C/Rz P = Xz + ClP X<y a2 dy dz

1 (5.30)
<C@t—s) 1.
Apply the dominated convergence theorem the second time to get
t
lim [ Gi@t,s,x)ds =0 (5.31)
k—o0 Jo

(5.31) and (5.26) yield (5.21), and hence (5.20). Now let ¢ — 0 in (5.16) and use (5.19), (5.20)
to conclude that

t
50, ) = prug () + /O (Pros (& = )0 (365, ), P (5))gy ds. (5.32)

Since ¥ —  in distribution and /¢ has the same law as ¥¢, ¥ must have the same law as V.
It follows from the uniqueness of the solution of equation (5.32) that v(-, -), the solution of the
equation (5.4), and v(-, -) will have the same law. We finally can conclude

V¥ >

in distribution, completing the proof of the theorem. ]
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