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We consider a semi-parametric model for recurrent events. The model consists of an unknown hazard rate
function, the infinite-dimensional parameter of the model, and a parametrically specified effective age func-
tion. We will present a condition on the family of effective age functions under which the profile likelihood
function evaluated at the parameter vector θ , say, exceeds the profile likelihood function evaluated at the
parameter vector θ̃ , say, with probability p. From this we derive a condition under which profile likeli-
hood inference for the finite-dimensional parameter of the model leads to inconsistent estimates. Examples
will be presented. In particular, we will provide an example where the profile likelihood function is mono-
tone with probability one regardless of the true data generating process. We also discuss the relation of
our results to other semi-parametric models like the accelerated failure time model and Cox’s proportional
hazards model.

Keywords: accelerated failure time model; Cox’s proportional hazards model; effective age process; profile
likelihood inference; recurrent event data; semi-parametric statistical model; virtual age process

1. Introduction

Recurrent event data arise from the study of processes that generate events repeatedly over time.
Such processes occur in many settings such as biomedicine, clinical trials and engineering to
mention a few. For a list of references and some examples of recurrent event data see, for instance,
Nelson [30], Cook and Lawless [10] and Aalen et al. [1]. In this article, our starting point is a
semi-parametric model for recurrent events that was introduced by Peña and Hollander [33]; see
also equation (2.1) below. Among other things, the model incorporates the effects of interventions
after each event occurrence through an effective age process (or virtual age process). Probably
the best known effective age process is the one arising from a renewal process where, after each
event occurrence, the effective age is set back to zero. For further information on effective age
processes, see also Hollander and Sethuramam [19], Last and Szekli [25], Lindqvist [27], and
Peña [31]. Statistical results for the model introduced in Peña and Hollander [33] can be found
in Peña et al. [34] as well as in Dorado et al. [12] and Adekpedjou and Stocker [2] who consider
sub-models for which they prove consistency and derive weak convergence results. See also
Gärtner [15] who considers a slightly different data collection process. The most general results
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on consistency and weak convergence were obtained very recently by Peña [32] who restricts
the general model given in equation (2.1) below only by considering the case without frailties.
In these articles it is assumed that the effective age function is entirely known. This implies that
the way the interventions influence the effective age must be known by the statistician. Here we
question whether this assumption can be weakened in a semi-parametric model. More precisely,
we analyse whether the profile likelihood function can be used to derive consistent estimators
when the effective age process is not assumed to be known but parametrically specified.

Inference based on the likelihood function and its variants has a long history; for general
accounts and a recent review see, for instance, Barndorff-Nielsen [5], Barndorff-Nielsen and
Cox [6], Davison [11], Severini [40] and Reid [36]. When the parameter is of the form (ζ, η)

with η being a nuisance parameter, inference for ζ is often based on the profile likelihood func-
tion or modifications and adjustments to it. This approach has been applied in both parametric
and semi-parametric problems; see, for example, Barndorff-Nielsen [5], Barndorff-Nielsen and
Cox [6], Davison [11], Fraser [14], McCullagh and Tibshirani [28], Reid [36], Scott and Wild
[37], Severini [40], Severini and Wong [41], and Slud and Vonta [42]. For some semi-parametric
models like Cox’s proportional hazards model, asymptotic normality of the profile (partial) like-
lihood estimator has been known for awhile; see, for instance, Andersen et al. [3] and Huang et
al. [20] for some recent extension. A general result in the semi-parametric context was proved
by Murphy and van der Vaart [29] who showed that profile likelihood inference for the finite-
dimensional parameter behaves like ordinary likelihood inference whenever some functional-
analytic conditions are satisfied; see also Hirosi [18] who gave a weaker set of conditions. The
result by Murphy and van der Vaart [29] implies, for example, asymptotic normality of the profile
likelihood estimator, and it was successfully applied by many authors and in different settings;
see, for example, Breslow et al. [8], Braekers and Veraverbeke [7], Claeskens and Carroll [9],
Xu et al. [43], and Zeng and Lin [45]. However, it is worth recalling that the standard approach,
that is, profiling out the infinite-dimensional parameter through a right-continuous step function,
may lead to an inconsistent estimator for the finite-dimensional parameter of the model. For a
single event model with covariates (accelerated failure time model) this can be easily seen; see,
for instance, Zeng and Lin [44].

As mentioned above, we address the following question: Suppose we profile out the infinite-
dimensional parameter by using a right-continuous step function. Can we use the resulting profile
likelihood function of the above mentioned semi-parametric model for recurrent events if the ef-
fective age process is parametrically specified? Here infinite-dimensional parameter refers to the
integrated λ that is used in Model 2.1 below, that is, by the infinite-dimensional parameter we
mean the integrated hazard rate function. Denote the set in which the finite dimensional param-
eter lies by �, and let θ ∈ � and θ̃ ∈ �. We shall give a condition on the family of effective
age processes under which the profile likelihood function at θ is with probability p, say, not less
than at θ̃ . Additionally, we shall present an extension of this condition under which the profile
likelihood function at θ exceeds the profile likelihood function at θ̃ with probability p′, say.
From this, one can easily derive a corollary providing conditions that rule out the possibility
to obtain a consistent estimator based on the profile likelihood function. Examples will be pre-
sented to which the conditions given in our main results can be easily applied. In particular, we
provide an example where p equals one regardless of the true probability measure and of the
sample size. In the same example, we find a lower bound for p′ that does not depend on the
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true probability measure or on the sample size. Still for the same example, we will infer from
our main results that the profile likelihood function is monotonically decreasing with probability
one whatever the true probability measure and the sample size. Furthermore, we present statisti-
cal models containing the renewal process and the non-homogeneous Poisson process as special
cases for which it will turn out that the profile likelihood function at the parameter correspond-
ing to the non-homogeneous Poisson process is never less than at the parameter corresponding
to the renewal process regardless of whether the data come from a renewal process or an non-
homogeneous Poisson process. The rest of this article is organized as follows. In Section 2, we
define the model for recurrent events that we consider, explain its relation to the model introduced
by Peña and Hollander [33], detail how the profile likelihood is derived, and present our main
results as well as examples to which they apply. Following the standard procedure, the derivation
of the profile likelihood is based on a formula valid if the true model is continuous, whereas pro-
filing out the infinite-dimensional parameter is done w.r.t. a jump function see Section 2.2 and
in particular Remark 2.1. In the literature, this technique to profile out the infinite-dimensional
parameter is often compared to a technique that profiles out the infinite-dimensional parameter
using a formula valid for a “discrete model”. We study this technique for the model considered
in this article through a simulation study in Section 3. The theoretical derivations of this tech-
nique for the model considered here are carried out in Appendix B. Additional simulation results
illustrating the conditions imposed in our main result are also presented in Section 3. Moreover,
the results shown there will illustrate the decrease in the above mentioned example. All proofs
are given in Appendix A. Appendix C contains results on the identifiability of the examples
presented below.

2. Main result

Throughout, we shall use the following conventions: N := {1,2, . . .}, N0 := N∪ {0}, R+ := {x ∈
R|x ≥ 0}, the subscript 0 indicates the true, but unknown parameter, x∧y stands for the minimum
of x and y, and for a function f we denote by f (x−) and f (x+) the left-hand and right-hand

limit of f at x, respectively. Convergence in probability is denoted by
P→ and

P
� means that

convergence in probability does not take place. For a simple counting process N , we denote by
0 = S0 < S1 < S2 < · · · the sequence of jump times. In the next section, we define the model
we analyse, then in Section 2.2 we explain the estimators and show that the estimator for the
cumulative hazard rate can be considered to be a non-parametric maximum likelihood estimator
(NPMLE), and in Section 2.3 we give our main results.

2.1. The model

We will consider the following statistical model.

Model 2.1. Let N = {N(s),0 ≤ s ≤ s∗}, s∗ ∈ R+, be a (simple) counting process on some
measurable space (�,F) endowed with a filtration F = {Fs ,0 ≤ s ≤ s∗} satisfying the usual
conditions. Let P(λ,θ), λ ∈ �, θ ∈ �, where � denotes the set of all hazard rate functions and
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� ⊂ Rd , be a set of probability measures on (�,F) such that under P(λ,θ) the F-compensator
A = {A(s),0 ≤ s ≤ s∗} of N is given by

A(s) =
∫ s

0
Y(u)λ

(
εθ (u)

)
du,

where the process Y = {Y(s),0 ≤ s ≤ s∗} is predictable, non-increasing and fulfils Y(s) ∈ {0,1},
∀s ∈ [0, s∗]. For every θ ∈ � we have that εθ = {εθ (s),0 ≤ s ≤ s∗} is a predictable process with
the following additional properties:

(a) εθ (0,ω) = c0 P(λ,θ)-a.s. for some c0 ∈R+;
(b) s → εθ (s,ω) is P(λ,θ)-a.s. non-negative;
(c) We have P(λ,θ)-a.s. that s → εθ (s,ω) is continuous on (Sk−1(ω), Sk(ω)], k ∈ N, and dif-

ferentiable on (Sk−1(ω), Sk(ω)), k ∈ N, with positive derivatives. The restriction of εθ to the
random time interval (Sk−1(ω), Sk(ω)] is denoted by εθ

k−1, k ∈N.

Examples for the Model 2.1 will be given below; see Examples 2.1, 2.2, and 2.3. Notice that,
as usual, N(s) denotes the number of events over the period (0, s] for an observable unit, and
the time of the ith recurrent event is denoted by Si . The interpretation of the predictable process
Y is as follows: the unit is still under observation, that is, at risk, if and only if Y(s) = 1. In the
following we assume that Y is of the form Y = {Y(s),0 ≤ s ≤ s∗} with Y(s) = 1{τ≥s}, where τ

is some positive (random) variable so that [0, τ ] is the (random) observation interval. Here and
in the following, 1 denotes the indicator function. Further, we refer to εθ , θ ∈ �, as the effective
age process and to θ as the effective age parameter. It describes the effect of interventions applied
to the observational unit after experiencing a recurrent event. Notice that we do not require that
εθ (s,ω) ≤ s. This means that the effective age might be larger than the current time s and that we
do not exclude harmful interventions, that is, interventions that increase the effective age instead
of reducing it. To clarify the meaning of the effective age process, let us consider two well-known
processes:

1. Renewal process: Replacing the observational unit by a new one results in a renewal process
with effective age process that equals s − Sk−1(ω) on (Sk−1(ω), Sk(ω)] at time s;

2. Non-homogeneous Poisson process: Somehow on the other side of the spectrum is the non-
homogeneous Poisson process with intensity function λ, because its effective age process at time
s equals just s.

Model 2.1 is in the same spirit as the model introduced by Peña and Hollander [33]; see also
Peña [31] and Peña et al. [34]. In their model, the compensator is assumed to be of the form

A
(
s|Z,X(u),0 ≤ u ≤ s

) =
∫ s

0
ZY(u)ρ

(
N(u−),α

)
ψ

(
βT X(u)

)
λ
(
ε(u)

)
du, (2.1)

where Z is a frailty variable, ρ is a mapping from N0 to R+ of known functional form depending
on some unknown parameter vector α ∈ A ⊂ Rp with ρ(0;α) = 1, for all α ∈ A, ψ is a known
mapping from R to R+ with β ∈ B ⊂ Rq an unknown parameter vector and X = {X(s),0 ≤
s ≤ s∗} is an Rq -valued stochastic process interpreted as the possibly time-varying covariates.
The superscript T denotes the transpose. The predictable process ε = {ε(s),0 ≤ s ≤ s∗} fulfils
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the properties (a)–(c) mentioned in Model 2.1. The parameter of interest for the model defined
by equation (2.1) is thus (α0,β0, λ0). As mentioned in the Introduction statistical results on this
model or sub-models of it can be found in Dorado et al. [12], Peña et al. [34], Adekpedjou and
Stocker [2], and Peña [32]. Thus, on one hand the statistical model introduced in Peña and Hol-
lander [33] is more general than Model 2.1, because Model 2.1 takes the functions ρ and ψ to
be identically equal to one. On the other hand Model 2.1 is more general than the one introduced
by Peña and Hollander, because it allows for a class of predictable processes εθ , θ ∈ �, whereas
Peña and Hollander and the above references assume that the process ε = {ε(s),0 ≤ s ≤ s∗} is
entirely known. Clearly, Model 2.1 could be extended to contain the model defined by equa-
tion (2.1). However, as our focus here is on the extent to which profile likelihood inference for
effective age models is possible we restrict ourselves to Model 2.1. At this point, it is worth men-
tioning that the model given by equation (2.1) contains, for instance, Cox’s proportional hazards
model (with Z ≡ 1, ρ(N(s−),α) ≡ 1,X(s) = constant,ψ(βT X) = exp(βT X), and ε(s) = s)
for which profile likelihood inference for β leads to a consistent and asymptotically normally
distributed estimator; see, for instance, Andersen and Gill [4].

We now present some examples for Model 2.1.

Example 2.1 (ARA1 or Kijima I with non-random repair). For an ARA1 model we have
εθ
k−1(s,ω) = s − θ · Sk−1(ω) with � = [0,1]. This is the same model as a Kijima I model with

non-random repair; see, for instance, Kijima et al. [24], Kijima [23] and Dorado et al. [12].
Notice that this model contains renewal processes with θ = 1 and non-homogeneous Poisson
processes with θ = 0.

Example 2.2 (ARA∞ or Kijima II with non-random repair). For an ARA∞ model, we have:
εθ
k−1(s,ω) = s−θ

∑k−1
l=1 (1−θ)k−1−lSl(ω) with � = [0,1]. This is the same model as a Kijima II

model with non-random repair; see again Kijima et al. [24], Kijima [23] and Dorado et al. [12].
Clearly, as in Example 2.1 we see that for θ = 1 we get renewal processes and taking θ = 0
results in non-homogeneous Poisson processes.

Example 2.3. Gonzáles et al. [17] fitted a sub-model of the one given in Example 2.2 taking into
account covariates via the equation as given in (2.1) to the data of 63 patients having a subtype
of indolent non-Hodgkin’s lymphomas. They restricted � = [0,1] in Example 2.2 to the discrete
set {0,0.5,1}. Then a 0 stands for no response to the therapy/intervention, 0.5 means a partial
remission, and 1 indicates a perfect intervention.

The notion of ARA (Arithmetic Reduction of Age) has been introduced in Doyen and Gaudoin
[13]. Further examples for effective age processes can be found in Doyen and Gaudoin [13],
Lindqvist [27], and Peña et al. [34].

2.2. The estimators and NPMLE

We now begin by introducing a profile likelihood method for estimating the unknown param-
eter vector θ . Let N1, . . . ,Nm be m independent copies of a counting process as described in
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Model 2.1. For each counting process denote by Yi , 1 ≤ i ≤ m, the process as introduced in
Model 2.1 and let 0 = Si,0 < Si,1 < · · · be the jump times of the process Ni . By εθ

i we denote
the predictable process arising in the definition of Ni , 1 ≤ i ≤ m, and by εθ

i,j−1 its restriction to
the time interval (Si,j−1, Si,j ]. Following Jacod [21] (see also Andersen et al. [3], II.7, and Peña
et al. [34]) the full likelihood process equals

Lm,F

(
s|λ, εθ ,Dm(s)

) =
m∏

i=1

s∏
u=0

[
Yi(u)λ

(
εθ
i (u)

)]Ni(�u)

(2.2)

× exp

[
−

m∑
i=1

∫ s

0
Yi(u)λ

(
εθ
i (u)

)
du

]
,

where at time s the data Dm(s) equal Dm(s) := {N1(u), . . . ,Nm(u),Y1(u), . . . , Ym(u),0 ≤ u ≤
s}. To obtain the profile likelihood function from (2.2), we first introduce an estimator for �0
the cumulative hazard rate of λ0. In doing so, following a technique of Peña et al. [35] who
extended an idea of Gill [16] and Sellke [38], we define double indexed processes; see also
Sellke and Siegmund [39] who seem to be the first to consider double indexed processes in
survival analysis. Below we demonstrate that the resulting estimator may be considered to be a
NPMLE. First, define the double indexed process N θ

i , 1 ≤ i ≤ m, by

N θ
i (s, t) :=

∫ s

0
Zθ

i (u, t) dNi(u), 0 ≤ s ≤ s∗,0 ≤ t < ∞,

with Zθ
i (u, t) := 1{εθ

i (u)≤t},1 ≤ i ≤ m. N θ
i (s, t) denotes the number of events over the period

(0, s] for the ith unit whose effective age at time of occurrence was at most t . Thus, the first time
variable s of Nθ

i stands for the observation time and the second time variable t for the effective
age time. Notice that Nθ

i depends on the effective age parameter θ in contrast to Ni . Second,
we define what has been called the adjusted at risk process (or generalized at risk process) Y θ

i =
{Y θ

i (s, t),0 ≤ s ≤ s∗,0 ≤ t < ∞} by

Y θ
i (s, t) :=

Ni(s−)∑
j=1

γ θ
i,j−1(t) · 1(εθ

i,j−1(Si,j−1+),εθ
i,j−1(Si,j )](t)

(2.3)
+ γ θ

i,Ni(s−)(t) · 1(εθ
i,Ni (s−)

(Si,Ni (s−)+),εθ
i,Ni (s−)

(s∧τi )](t),

where the functions γ θ
i,j−1 are defined by

γ θ
i,j−1(t) := 1

(εθ
i,j−1)

′((εθ
i,j−1)

−1(t))

with (εθ
i,j−1)

′ denoting the derivative of εθ
i,j−1 w.r.t. observational time s and (εθ

i,j−1)
−1 denoting

the inverse w.r.t. observational time. With the help of Y θ
i one can rewrite the integral arising in

the full likelihood (cf. equation (2.2)) in terms of λ evaluated at the observational time s instead
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of at the effective age time εi(s); see equation (2.6) below. Notice that the j th event of the ith
unit contributes to the risk set at the time pair (s, t) if it fulfils three conditions: First, it occurred
during the observation period [0, s), secondly the effective age of the j th event of the ith unit
is larger than or equal to t , and thirdly the effective age of the ith unit immediately after the
intervention succeeding the (j − 1)th event is less than t . For further information on the adjusted
at-risk process, see Peña [32]. We define

Sθ
m(s, t) :=

m∑
i=1

Y θ
i (s, t). (2.4)

For fixed θ, we define the following method-of-moments estimator �̂m for �0:

�̂m(s, t |θ) :=
∫ t

0

J θ
m(s,u)

Sθ
m(s,u)

[
m∑

i=1

Nθ
i (s, du)

]
, (2.5)

where J θ
m(s,u) := 1{Sθ

m(s,u)>0}. A justification for calling �̂m a method-of-moment estimator
can be found in Peña et al. [34] after their Proposition 1. Moreover, for θ known and s fixed
this estimator is consistent and converges, after being suitably normalized, to a Gaussian process
(cf. Peña [32]).

We now demonstrate that for observational time s and effective age parameter θ fixed the
estimator �̂m(s, t |θ) can be seen to be a NPMLE. For this, notice first of all that the substitution
rule ∫ b

a

f (x) dx =
∫ φ(b)

φ(a)

f
(
φ−1(x)

)(
φ−1(x)

)′
dx

implies (with f = λ ◦ εθ and φ = εθ ) that the full likelihood (2.2) can be written as

Lm,F

(
s|λ, εθ ,Dm(s)

) =
m∏

i=1

s∏
u=0

[
Yi(u)λ

(
εθ
i (u)

)]Ni(�u) exp

[
−

∫ ∞

0
Sθ

m(s,u) d�(u)

]
. (2.6)

Now if we take � to be a jump function with jumps at εθ
k,�−1(Sk,�), 1 ≤ k ≤ m, 1 ≤ � ≤ Nk(s),

that is, the effective age of the kth unit at the time of the �th event, and if we denote these jumps
by λθ

k,� the log of the full likelihood becomes

log
(
Lm,F

(
s|λθ , εθ ,Dm(s)

)) =
m∑

k=1

Nk(s)∑
�=1

log
(
λθ

k,�

)

−
m∑

k=1

Nk(s)∑
�=1

λθ
k,�

[ ∑
(i,j)∈I θ

k,�

γ θ
i,j−1

(
εθ
k,�−1(Sk,�)

)]
(2.7)

−
m∑

k=1

Nk(s)∑
�=1

λθ
k,�

[ ∑
i∈I

θ,τk
k

γ θ
i,Ni(s−)

(
εθ
k,�−1(Sk,�)

)]
,
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where for every pair (k, �), 1 ≤ k ≤ m,1 ≤ � ≤ Nk(s), the sets I θ
k,� are defined by

I θ
k,� := {

(i, j),1 ≤ i ≤ m,1 ≤ j ≤ Ni(s−)|εθ
i,j−1(Si,j−1+) < εθ

k,�−1(Sk,�) ≤ εθ
i,j−1(Si,j )

}
and for every k, 1 ≤ k ≤ m, the sets I

θ ,τk

k are defined by

I
θ ,τk

k := {
i,1 ≤ i ≤ m|εθ

i,Ni(s−)(Si,Ni(s−)+) < εθ
k,�−1(Sk,�) ≤ εθ

i,Ni(s−)(s ∧ τi)
}
.

Clearly, maximizing (2.7) with respect to λθ
k,� has solution given by

λθ
k,� = 1∑

(i,j)∈I θ
k,�

γ θ
i,j−1(ε

θ
k,�−1(Sk,�)) + ∑

i∈I
θ,τk
k

γ θ
i,Ni(s−)(ε

θ
k,�−1(Sk,�))

. (2.8)

Hence, upon substituting the NPMLE �̂m for � in the full likelihood we obtain from equation
(2.6) that for every fixed θ the resulting log profile likelihood function �m,P , up to a constant,
equals

�m,P

(
s|θ , �̂m,Dm(s)

) = −
∫ s

0

m∑
i=1

log
(
Sθ

m

(
s, εθ

i (w)
))

dNi(w), (2.9)

because replacing � by �̂m in the argument of the exponential function in the full likelihood (cf.
equation (2.2)), we obtain

exp

[
−

∫ ∞

0
Sθ

m(s,u) d�̂(u)

]
= exp

[
−

m∑
i=1

Ni(s)

]
.

It is worth mentioning that the argument of exp being free of the finite-dimensional parameter
is not a peculiarity of the model we consider here. For instance, for Cox’s proportional hazards
model, when plugging in the NPMLE into the full likelihood the argument of the exponential
function is free of the regression parameter; see, for instance, Johansen [22], Section 5.

Remark 2.1. As mentioned in the Introduction, we followed the standard procedure to derive a
NPMLE to profile out the infinite-dimensional component that is to say our NPMLE was taken
to be a jump function whereas formula (2.2) is valid only in the continuous case. It is, therefore,
common to additionally study the profile likelihood function if instead of formula (2.2) the cor-
responding formula for the discrete case is used. We shall do the same here. In Appendix B, we
derive all relevant formulas as well as the resulting profile likelihood function and in Section 3
this profile likelihood function is studied through a simulation study.

Remark 2.2. Notice that (2.8) boils down to well-known NPMLEs in special cases. Recall that
the model in Example 2.1 contains, for instance, the renewal process (corresponding to θ = 1)
with effective age process s − Sk−1(ω) and the non-homogeneous Poisson process (correspond-
ing to θ = 0) whose effective age process equals s during the observation period. In these cases
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noting that γi,j−1 ≡ 1, we obtain from (2.8) with Ti,j := Si,j − Si,j−1 and τ(i) the ith smallest
value among the τ1, . . . , τm the well-known NPMLEs

λθ=1
k,� = 1∑m

i=1
∑Ni(s−)

j=1 1{Tk,�≤Ti,j } + ∑m
i=1 1{Tk,�≤(s∧τi )−Si,Ni (s−)}

and

λθ=0
k,� = 1

m − i + 1
whener τ(i−1) < sk,� ≤ τ(i)

with τ(0) := 0; see, for instance, Peña et al. [35] and Lawless [26], respectively.

2.3. Main result

In this section, we present our main result. We first state an assumption that is needed in the
theorem and provide examples when the assumption is satisfied. We further analyse this assump-
tion in the simulation study in Section 3. The other assumptions made in our main result are
illustrated below Theorem 2.1.

Assumption 2.1. For Y θ
i , 1 ≤ i ≤ m, as defined in (2.3) we have for every θ ∈ � with probabil-

ity 1

Y θ
i

(
s∗, t

) =
Ji(s

∗)∑
j=1

γ θ
i,j−1(t) · 1(εθ

i,j−1(Si,j−1+),εθ
i,j−1(Si,j )](t), 0 ≤ t < ∞,

where Ji(s
∗), 1 ≤ i ≤ m, are random variables taking values in N0.

Assumption 2.1 means that γ θ
i,j−1(t) · 1(εθ

iNi (s−)
(SiNi (s−)+),εθ

iNi (s−)
(s∗∧τi )](t) is either of no rel-

evance for Y θ
i (s∗, t) or of the form γ θ

i,j−1(t) · 1(εθ
i,j−1(Si,j−1+),εθ

i,j−1(Si,j )](t). We now give two

examples that fulfill Assumption 2.1.

Example 2.4 (Type-II censoring). Let τi = Si,ni
with ni ∈ N, 1 ≤ i ≤ m, and s∗ ≥ maxi τi . In

this case we have s∗∧τi = s∗∧Si,ni
= Si,ni

. Moreover, if s∗ > Si,ni
, then (εθ

i,Ni (s
∗−)(Si,Ni(s

∗−)+),

εθ
i,Ni(s

∗−)(s
∗ ∧ τi)] equals the empty set and the representation in Assumption 2.1 holds with

Ji(s
∗) = Ni(s

∗−) = Ni(s
∗). Finally, if s∗ = Si,ni

, then we have(
εθ
i,Ni(s

∗−)(Si,Ni(s
∗−)+), εθ

i,Ni(s
∗−)

(
s∗ ∧ τi

)] = (
εθ
i,Ni(s

∗−)(Si,Ni(s
∗−)+), εθ

i,Ni(s
∗−)(Si,Ni(s

∗))
]
,

and the representation in Assumption 2.1 holds with Ji(s
∗) = Ni(s

∗−) + 1 = Ni(s
∗).

Example 2.5 (Compact support and finite number of interventions). Let λ0 be such that∫ v

0 λ0(u) du = ∞ for some v ∈ R+. Additionally, suppose that we consider the model of Ex-
ample 2.1 with τi = s∗ ∧ Si2, where s∗ > 2v. By definition of τi we observe at most two events
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for the ith unit. Moreover, in the model of Example 2.1, the largest value we can observe for
Si2 equals v + [v − v(1 − θ)] = v + θv which is maximal for θ = 1. Hence, since s∗ > 2v and∫ v

0 λ0(u) du = ∞, we have τi = Si2, 1 ≤ i ≤ m, so that(
εθ
i,Ni(s

∗−)(Si,Ni(s
∗−)+), εθ

i,Ni(s
∗−)

(
s∗ ∧ τi

)] = (
εθ
i,2(Si,2+), εθ

i,2(Si,2)
]

equals the empty set, and the representation in Assumption 2.1 holds with Ji(s
∗) = Ni(s

∗−).

We now state our main result whose proof, as mentioned in the Introduction, is given in Ap-
pendix A.

Theorem 2.1. Let Assumption 2.1 be satisfied, Ni , 1 ≤ i ≤ m, etc. be as above, and denote
by (Pλ0,θ0)m the m-fold product measure of Pλ0,θ0 . Moreover, let θ and θ̃ be such that there
exists a c > 0 with the following property: For every t ≥ 0 we have that (Pλ0,θ0)m(γ θ

i,j−1(t) ≤
c, γ θ̃

i,j−1(t) ≥ c,1 ≤ i ≤ m,1 ≤ j ≤ Ji(s
∗),0 ≤ t < ∞) = 1. Then

(a) Denote by A
m,θ ,θ̃ the set of all ω’s such that for all pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ Ji(s

∗),
and all pairs (k, �), 1 ≤ k ≤ m, 1 ≤ � ≤ Jk(s

∗), we have that

εθ
i,j−1

(
Si,j−1(ω)

)
< εθ

k,�−1

(
Sk,�(ω)

)
implies that

εθ̃
i,j−1

(
Si,j−1(ω)

)
< εθ̃

k,�−1

(
Sk,�(ω)

)
.

Then we have(
Pλ0,θ0

)m(
�P,m

(
s∗|θ , �̂m,Dm(s)

) ≥ �P,m

(
s∗|θ̃ , �̂m,Dm(s)

)) ≥ (
Pλ0,θ0

)m
(A

m,θ ,θ̃ ).

(b) Denote by B
m,θ ,θ̃ the set of all ω ∈ A

m,θ ,θ̃ for which we additionally have that there are
at least two pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ Ji(s

∗), and (k, �), 1 ≤ k ≤ m, 1 ≤ � ≤ Jk(s
∗), such

that

εθ̃
i,j−1

(
Si,j−1(ω)

)
< εθ̃

k,�−1

(
Sk,�(ω)

)
but

εθ
i,j−1

(
Si,j−1(ω)

) ≥ εθ
k,�−1

(
Sk,�(ω)

)
.

Then we have(
Pλ0,θ0

)m(
�P,m

(
s∗|θ , �̂m,Dm(s)

)
> �P,m

(
s∗|θ̃ , �̂m,Dm(s)

)) ≥ (
Pλ0,θ0

)m
(B

m,θ ,θ̃ ).

From Theorem 2.1, one can easily derive a criterion for inconsistency of the maximizer of the
log-likelihood function denoted by θ̂m. We state the result as a corollary whose proof is omitted.
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Corollary 2.1. Denote by B(θ0, ε) an ε-ball around θ0 and assume that θ is such that for some
m′ ∈ N we have for all m ≥ m′ that (Pλ0,θ0)m(B

m,θ ,θ̃ ) ≥ c, c > 0, ∀θ̃ ∈ B(θ0, ε). Then

θ̂m
P
� θ0 as m → ∞.

Before giving examples to which Theorem 2.1 and Corollary 2.1 apply we present the follow-
ing example that makes Theorem 2.1 and Corollary 2.1 plausible in a simplified setting.

Example 2.6. Consider the model of Example 2.1 (the same reasoning applies to the model
of Example 2.2), take m = 2, let both samples be Type-II censored and take arbitrary event
times s1,1, . . . , s1,n1 and s2,1, . . . , s2,n2 . Then with s = max{s1,n1 , s2,n2} the function S0

2 (s, ·) (see
equation (2.4)) equals:

1(0,s1,1](·) + 1(s1,1,s1,2](·) + · · · + 1(s1,n1−1,s1,n1 ](·) + · · · + 1(s2,n2−1,s2,n2 ](·),
whereas the function S1

2 (s, ·) equals

1(0,s1,1](·) + 1(0,s1,2−s1,1](·) + · · · + 1(0,s1,n1 −s1,n1−1](·) + · · · + 1(0,s2,n2 −s2,n2−1](·).
When we calculate �P,2(s

∗|0, �̂2,D2(s)) we evaluate S0
2 at s1,1, . . . , s2,n2 (cf. Formula (2.9)).

Because plugging in an arbitrary t ≥ 0 into S0
2 there are at most two intervals that contain t (this

is because the intervals coming from the first and the second sample, respectively, do not over-
lap) we find that �P,2(s

∗|0, �̂2,D2(s)) ≥ −(n1 + n2 − 1) log(2). On the other hand, the function
S1

2 gets evaluated at s1,1, . . . , s2,n2 − s2,n2−1. The smallest of these values is contained in all the
intervals defining S1

2 , the second smallest of these values is contained in (n1 + n2 − 1) out of
the (n1 + n2) intervals defining S1

2 and so on. Thus, we see that �P,m(s∗|1, �̂m,Dm(s)) equals
−∑n1+n2

i=1 log(i). Apparently, this behaviour of �P,2(s
∗|0, �̂2,D2(s)) and �P,2(s

∗|1, �̂2,D2(s))

does not depend on how the samples s1,1, . . . , s1,n1 and s2,1, . . . , s2,n2 were generated. Of course,
such a behaviour rules out the possibility to get a consistent estimator based on the profile likeli-
hood function.

We now provide examples to which Theorem 2.1 and Corollary 2.1 can be applied.

Example 2.7 (ARA1 or Kijima I with non-random repair). Consider again the model of Ex-
ample 2.1 and notice first of all that γ θ

i,j−1 ≡ 1 for every θ ∈ [0,1]. Let 0 ≤ θ < θ̃ ≤ 1. We first
discuss part (a) of Theorem 2.1 for this model. For arbitrary positive real numbers x, y and z

with y < z we have that

x − θx < z − θy ⇒ x − θ̃x < z − θ̃y.

Indeed, the functions f1, f2 : [0,1] → R, defined by f1(θ̄) := x − θ̄x and f2(θ̄) := z − θ̄y,
respectively, are both monotonically decreasing. By assumption f1(θ) < f2(θ). Moreover,
f1(1) = 0 and f2(1) > 0. Hence, f1(θ) < f2(θ), ∀θ > θ , because f1 and f2 are linear. Hence, for
this model (Pλ0,θ0)m(Am,θ,θ̃ ) = 1 for every m ∈ N whenever θ < θ̃ regardless of (λ0, θ0) (recall
that we consider a simple counting process so that we have Sk,� > Sk,�−1 with probability one
and notice that Sk,� corresponds to z and Sk,�−1 to y).
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We now turn to part (b) of Theorem 2.1. For x, y and z as before and 0 ≤ θ ≤ θ̃ < 1 the
condition

x − θ̃x < z − θ̃y but x − θx ≥ z − θy

is equivalent to

z − y

1 − θ
+ y ≤ x <

z − y

1 − θ̃
+ y. (2.10)

Now, if we consider the data generating process of Example 2.4 with ni ≥ 2 and m ≥ 2, then we
have for θ < θ̃ from (2.10)(

Pλ0,θ0
)m

(Bm,θ,θ̃ )

≥ (
Pλ0,θ0

)m
(

S2,2 − S2,1

1 − θ
+ S2,1 ≤ S1,1 <

S2,2 − S2,1

1 − θ̃
+ S2,1

)
(2.11)

=
∫
R2

(
Pλ0,θ0

)m
(

s2,2 − s2,1

1 − θ
+ s2,1 ≤ S1,1 <

s2,2 − s2,1

1 − θ̃
+ s2,1

)
dF

S2,2,S2,1
λ0,θ0

(s2,2, s2,1)

=
∫
R2

[
F

S1,1
λ0,θ0

(
s2,2 − s2,1

1 − θ̃
+ s2,1

)
− F

S1,1
λ0,θ0

(
s2,2 − s2,1

1 − θ
+ s2,1

)]
dF

S2,2,S2,1
λ0,θ0

(s2,2, s2,1),

where the first equality follows from the independence of the units, and F
S2,2,S2,1
λ0,θ0

denotes the

joint distribution function of (S2,1, S2,2) under (Pλ0,θ0)m and similar F
S1,1
λ0,θ0

denotes the distribu-

tion function of S1,1 under (Pλ0,θ0)m. Clearly, if λ0 is such that the corresponding cumulative

distribution function F0, which equals here F
S1,1
λ0,θ0

, is strictly increasing on R, the integrand in

(2.11) is positive whenever θ < θ̃ . With slightly more effort other cases as, for instance, an
F0 which is constant on some intervals can be discussed. Let us finally consider the condi-
tion of Corollary 2.1. Assume that θ0 ∈ [0,1] is not equal to 0. Consider [θ0 − ε, θ0 + ε] with
[θ0 −ε, θ0 +ε] � [0,1] and let 0 ≤ θ < θ0 −ε. Then, from equation (2.11) we have a lower bound
for (Pλ0,θ0)m(Bm,θ,θ0−ε) that does not depend on m, m ≥ 2. Clearly, this lower bound also holds
for (Pλ0,θ0)m(Bm,θ,θ̃ ), θ̃ ∈ [θ0 − ε, θ0 + ε], as the integrand in equation (2.11) is non-decreasing

in θ̃ for θ fixed.

Example 2.8 (ARA∞ or Kijima II with non-random repair). Consider again the model of Ex-
ample 2.2 and notice that we again have that γ θ

i,j−1 ≡ 1 for every θ ∈ [0,1]. Let 0 ≤ θ < θ̃ ≤ 1.
Then for arbitrary s1 < · · · < si−1 and s̄1 < · · · < s̄k (positive) real numbers the condition in part
(a) of Theorem 2.1 reads as

si−1 − θ

i−1∑
�=1

(1 − θ)i−1−�s� < s̄k − θ

k−1∑
�=1

(1 − θ)k−1−�s̄�

(2.12)

⇒ si−1 − θ̃

i−1∑
�=1

(1 − θ̃ )i−1−�s� < s̄k − θ̃

k−1∑
�=1

(1 − θ̃ )k−1−�s̄�.
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This implication may not hold for every pair (θ, θ̃ ) with θ < θ̃ regardless of s1 < · · · < si−1 and
s̄1 < · · · < s̄k ; see Section 3 for more details on that. However, we see that it holds for 0 ≤ θ < 1
and θ̃ = 1 so that (Pλ0,θ0)m(Am,θ,1) = 1 and Theorem 2.1 now implies(

Pλ0,θ0
)m(

�P,m

(
s∗|θ, �̂m,Dm(s)

) ≥ �P,m

(
s∗|1, �̂m,Dm(s)

)) = 1, 0 ≤ θ < 1.

Furthermore, for i = 2 and k = 2 we find that equation (2.12) boils down to equation (2.10) (with
x = s1, y = s̄1 and z = s̄2). It therefore follows from Example 2.7 that (Pλ0,θ0)m(Bm,θ,1) > 0,
0 ≤ θ < 1.

3. Simulation results

In this section, as mentioned in the Introduction, we provide some simulation results illustrat-
ing Assumption 2.1 imposed in Theorem 2.1. We have seen in Example 2.4 that under Type-II
censoring Assumption 2.1 holds. It is also clear from Example 2.5 that, in general, under Type-I
censoring Assumption 2.1 is not fulfilled. Moreover, in Example 2.8 we left some questions
open. Here, we will analyse these questions further by Monte Carlo simulations. Furthermore,
as mentioned in the Introduction and in Remark 2.1 the behaviour of the “discrete log profile
likelihood” is studied by Monte Carlo simulations as well. In all the simulations the hazard rate
function used in the definition of Model 2.1 was taken to come from a right truncated Weibull
distribution with reliability function Sd defined for d > 0 by

Sd(t) := e−t2 − e−d2

1 − e−d2 1[0,d)(t), t > 0.

Hence, the corresponding hazard rate function λd equals

λd(t) = 2te−t2

e−t2 − e−d2 1[0,d)(t), t > 0.

We simulated data following an ARA1 model (see Example 2.1) and an ARA∞ model (see Ex-
ample 2.2), respectively, for various values of (θ, d). In addition we introduced two types of
censoring: Type-I and Type-II censoring. The sample size m was always taken to be equal to
100. Under Type-I censoring the data observed were given by Si,1 < · · · < Si,ri for (random)
ri , i = 1, . . . ,100, and Si,ri+1, i = 1, . . . ,100, was right censored by τi = τ , i = 1, . . . ,100,
for some non-random τ > 0. In case of Type-I censoring Assumption 2.1 is not fulfilled. If the
censoring time is random and equal to Si,r , i = 1, . . . ,100, for some non-random r the data
are Type-II censored (see Example 2.4) and Assumption 2.1 holds. Combining the two mod-
els, ARA1 and ARA∞, and the two types of censoring one obtains four possible combinations.
The results, that is, ten realizations of the function �P,100, for Type-II censoring and the fol-
lowing values of (θ0, d, r) ∈ {0,0.5,1} × {5} × {2,5} are given in Figures 1 and 2. Here θ0
denotes as in Examples 2.7 and 2.8 the true parameter. Type-I censored data were simulated
for (θ0, d, τ ) ∈ {0.1,0.5,1} × {2} × {2.2} and (θ0, d, τ ) ∈ {0,0.5,1} × {6} × {5.9}. The reason
for taking (θ0, d, τ ) = (0.1,2,2.2) instead of (θ0, d, τ ) = (0,2,2.2) is that θ0 corresponds to a
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Figure 1. Each of the 6 figures contains ten graphs of θ �→ �m,P (s|θ, �̂m,Dm(s)) for θ ∈ [0,1] and
m = 100 obtained from simulated data for which λ = λd , the effective age follows the ARA1 assump-
tion of Example 2.1, and for τi = Si,r for 1 ≤ i ≤ m (Type II censoring, see Example 2.4). Here θ denotes
the true parameter.

non-homogeneous Poisson process for which with d = 2 the observations are not censored. The
results, that is, again ten realizations of the function �P,100, are given in Figures 3 and 4.

Examples 2.4 and 2.7 together imply that conditions (a) and (b) of Theorem 2.1 are met for
an ARA1 model under Type-II censoring with probability one and a positive probability, respec-
tively. It is also clear that Assumption 2.1 is not fulfilled for Type-I censoring. The results for
Type-II censoring are given in Figure 1. Clearly, the ten realizations of the function �P,100 are
decreasing in θ as it was proved in Example 2.7 by verifying condition (a) of Theorem 2.1 for all
pairs (θ, θ̃ ) with θ < θ̃ . We also see that all realizations of �P,100 in Figure 1 seem to be strictly
decreasing as a function of θ so that the probabilities with which condition (b) of Theorem 2.1
hold might be quite large for the above λd ’s. The picture is slightly different for the combination
ARA1 and Type-I censoring. Of course assumptions (a) and (b) of Theorem 2.1 on the statistical
model are not affected by considering Type-I censored data instead of Type-II censored data,
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Figure 2. Each of the 6 figures contains ten graphs of θ �→ �m,P (s|θ, �̂m,Dm(s)) for θ ∈ [0,1] and
m = 100 obtained from simulated data for which λ = λd , the effective age follows the ARA∞ assump-
tion of Example 2.2, and for τi = Si,r for 1 ≤ i ≤ m (Type II censoring, see Example 2.4). Here θ denotes
the true parameter.

but the assumption (Assumption 2.1) on the sampling procedure is not met. Comparing the left-
and right-hand side of Figure 3 we see that on the left-hand side not all realizations of �P,100

are monotonically decreasing whereas on the right-hand side all realizations seem to lead to a
monotonically decreasing �P,100. This is probably a result of the fact that due to the increased
observation period (τ = 2.2 on the left-hand side and τ = 5.9 on the right-hand side) the part of
�P,100 stemming from Type-I censored observations (exactly these observations seem to prevent
�P,100 from being monotonically decreasing in case of Type-I censoring) gets outweighed by the
number of observed failure times.

Now we briefly discuss the simulation results for the ARA∞ model and the two types of cen-
soring. In Example 2.8, we did not prove that conditions (a) and (b) of Theorem 2.1 hold for
all pairs (θ, θ̃ ) with θ < θ̃ . The simulation results for an ARA∞ model under Type-II censoring
(Assumption 2.1 is then fulfilled) suggest that condition (a) (and maybe even (b)) of Theorem 2.1
may also hold with probability one for all pairs (θ, θ̃ ) with θ < θ̃ as for the ARA1 model. How-
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Figure 3. Each of the 6 figures contains ten graphs of θ �→ �m,P (s|θ, �̂m,Dm(s)) for θ ∈ [0,1] and
m = 100 obtained from simulated data for which λ = λd , the effective age follows the ARA1 assumption
of Example 2.1, and s = τi = τ for all 1 ≤ i ≤ m (Type I censoring). Here θ denotes the true parameter.

ever, this is not necessarily the case as can be seen from Figure 5 where we plotted the difference
between the right- and left-hand side in the first displayed equation of Example 2.8 for i = 9,
s1 = 5.0, s2 = 7.1, s3 = 12.2, s4 = 16.3, s5 = 17.0, s6 = 20.5, s7 = 22.5, s8 = 27, and k = 9,
s̄1 = 3.4, s̄2 = 7.9, s̄3 = 10, s̄4 = 14.0, s̄5 = 19.6, s̄6 = 22.6, s̄7 = 23.3, s̄8 = 26.0, s̄9 = 27.1 as
a function of θ . However, the realizations shown in Figure 2 suggest that the probabilities of
the events in condition (a) and (b) of Theorem 2.1, respectively, are relatively large. In case of
an ARA∞ model and Type-I censoring Assumption 2.1 is not met and condition (a) of Theo-
rem 2.1 does not hold for all pairs (θ, θ̃ ) with θ < θ̃ . Nevertheless, the simulation results shown
in Figure 4 suggest that the profile likelihood estimator remains inconsistent.

We finish this section by the comparison of the “discrete” and the “continuous log profile
likelihood” as explained in Remark 2.1. For the above, given right-truncated Weibull distribu-
tion and various values of (θ0, d, r) and a sample size of m = 100 we simulated five samples
from an ARA1 model. For each simulated sample, the two versions (continuous and discrete) of
the profile likelihood function were calculated for θ ∈ [0,1]. The continuous profile likelihood
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Figure 4. Each of the 6 figures contains ten graphs of θ �→ �m,P (s|θ, �̂m,Dm(s)) for θ ∈ [0,1] and
m = 100 obtained from simulated data for which λ = λd , the effective age follows the ARA∞ assump-
tion of Example 2.2, and s = τi = τ for all 1 ≤ i ≤ m (Type I censoring). Here θ denotes the true parameter.

curves are plotted with solid black lines whereas the discrete profile likelihood curves are plotted
with dotted red lines. The results are given in Figure 6. The obtained results are consistent with
Theorem 2.1 where we use the continuous version of the profile log-likelihood function (solid
lines). In addition we observe that using a version of the profile log-likelihood accounting for
the fact that the NPMLE of the baseline cumulative hazard is discrete (Appendix B) still leads
to monotone profile log-likelihood functions. Finally notice that we see in Figure 6 that the dif-
ferences of the realizations of the discrete and continuous version are for all θ ∈ [0,1] close to
log exp(−∑m

i=1 Ni(s)) = −m · r . This term is just a product integral (the second double product
in (B.5)). That the differences of the realizations are almost constant as a function of θ is due to
the fact that m is large compared to r . For m small and r large the differences are far from being
constant as a function of θ .
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Figure 5. Difference between g(θ) := s̄k − θ
∑k−1

�=1(1 − θ)k−1−�s̄� and f (θ) := si−1 − θ ×∑i−1
�=1(1 − θ)i−1−�s�, where i = 9, s1 = 5.0, s2 = 7.1, s3 = 12.2, s4 = 16.3, s5 = 17.0, s6 = 20.5,

s7 = 22.5, s8 = 27, k = 9 and s̄1 = 3.4, s̄2 = 7.9, s̄3 = 10, s̄4 = 14.0, s̄5 = 19.6, s̄6 = 22.6, s̄7 = 23.3,
s̄8 = 26.0, s̄9 = 27.1, see Example 2.8.

4. Conclusion

We have seen in Example 2.7 a model for recurrent events for which the profile likelihood ap-
proach with a right-continuous step function as an estimator for � fails in all respects as the
profile likelihood function in that example is monotonically decreasing with probability one re-
gardless of the sample size and the true underlying probability measure. As mentioned in the
Introduction, a similar behaviour may occur in a single event model with covariates. It is also
clear from the two sentences preceding Remark 2.1 that this behaviour cannot only be attributed
to the fact that the argument of the exponential in the profile likelihood function is free of the ef-
fective age parameter θ . This is simply because the same goes for the profile likelihood function
in Cox’s proportional hazards model for which the profile likelihood approach works. Moreover,
Appendix C rules out the possibility that the failure of the profile likelihood approach results from
an identifiability issue. To conclude: It seems to be a fine line that divides semi-parametric mod-
els for which the profile likelihood approach based on the definition of the NPMLE employed
here works from those semi-parametric models for which it fails. This failure of the profile like-
lihood approach seems to be caused rather by the definition of the NPMLE used here than by
profiling. An exact description, that is, an “if and only if” statement, of when the profile likeli-
hood approach based on the definition of the NPMLE employed here works might be difficult
or even impossible to obtain. Nevertheless, a few general features of that approach are worth
summarizing. When the NPMLE �̂(·; θ) is a right-continuous step function the profile likeli-
hood method fails for the semi-parametric accelerated failure time model (with a single event).
This is because for this model θ influences only the locations of the jumps of �̂(·; θ) but not the
jump heights. This is in contrast to Cox’s proportional hazards model where the jump heights
of �̂(·; θ) do depend on θ whereas the locations of the jumps are the same for all θ . Here we
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Figure 6. Each of the 6 figures contains five graphs of θ �→ �m,P (s|θ, �̂m,Dm(s)) (solid lines) for
θ ∈ [0,1] and m = 100 obtained from simulated data for which λ = λd , the effective age follows the
ARA1 assumption of Example 2.1, and for τi = Si,r for 1 ≤ i ≤ m (Type II censoring, see Example 2.4).
The dotted red lines are the realizations of the discrete profile likelihood curves. Here θ denotes the true
parameter.

have proved a result that gives conditions under which profile likelihood inference does not work
for the effective age parameter in a semi-parametric recurrent event model. In the examples pre-
sented, the jump heights of the NPMLE �̂(·; θ) depend on θ . Nevertheless, the profile likelihood
method fails. This might be a result of the fact that θ does not only affect the jump heights, but
also the locations. One may wonder whether the locations being independent of θ (together with
some regularity conditions) is a sufficient condition for the profile likelihood method to work.

Appendix A: Proofs and auxiliary lemmas

Before we give the proof of Theorem 2.1, we state two lemmas. The first lemma will be used
in the proof of part (a) and part (b) whereas the second lemma will only be used in the proof of
part (b).
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Lemma A.1. Let I1 and I2 be two subsets of a finite set J with I1 �= J and |I1| = |I2|, where for
any set K we denote by |K| its cardinality. Moreover, assume that for at least one element i1 of
I1 we have i1 /∈ I2. Then there is at least one element i2 ∈ J such that i2 ∈ I2, but i2 /∈ I1.

Proof. The claim is immediate from the facts that I1 � J and I2 � J have the same cardinality
and that i1 ∈ I1, but i1 /∈ I2. �

The following lemma is obvious and its proof is therefore omitted.

Lemma A.2. Let xi , yi , 1 ≤ i ≤ I , and x̃i , ỹi , 1 ≤ i ≤ I , be (non-negative) real numbers.

(a) Define the functions G and G̃ both with domain {1, . . . , I } by

G(j) :=
I∑

i=1

1(xi ,∞)(yj )

and

G̃(j) :=
I∑

i=1

1(x̃i ,∞)(ỹj ).

Then:
(i) If for a given j ∈ {1, . . . , I } we have that for all i ∈ {1, . . . , I } the relation xi < yj

implies the following relation x̃i < ỹj , then

G(j) ≤ G̃(j).

(ii) If additionally to the assumption in part (i), we have that there is an i ∈ {1, . . . , I }
such that x̃i < ỹj but xi ≥ yj then

G(j) < G̃(j).

(b) Denote by y(i), 1 ≤ i ≤ I , and ỹ(i), 1 ≤ i ≤ I , the increasingly ordered values of the yi ,
1 ≤ i ≤ I , and of the ỹi , 1 ≤ i ≤ I , respectively. Define the functions Gord and G̃ord both
with domain {1, . . . , I } by

Gord(j) :=
I∑

i=1

1(xi ,∞)(y(j))

and

G̃ord(j) :=
I∑

i=1

1(x̃i ,∞)(ỹ(j)).

Then we have for j ≤ k

Gord(j) ≤ Gord(k) and G̃ord(j) ≤ G̃ord(k).
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Proof of Theorem 2.1. Throughout the proof whenever appropriate, we suppress the depen-
dence on ω, otherwise it is made explicit. We first prove part (a). Notice first that under Assump-
tion 2.1 we have for every θ̆ that the log profile likelihood �P,m(s∗|θ̆ , �̂m,Dm(s)) equals

−
m∑

k=1

Jk(s
∗)∑

�=1

log
(
S θ̆

m

(
s∗, εθ̆

k (Sk�)
))

(A.1)

= −
m∑

k=1

Jk(s
∗)∑

�=1

log
(
S θ̆

m

(
s∗, εθ̆

k,�−1(Sk,�)
))

.

Now, let ω be arbitrary. Put U(ω) := ∑m
k=1 Jk(s

∗,ω). Denoting the increasingly ordered values

of εθ̆
k,�−1(Sk,�(ω)), 1 ≤ k ≤ m,1 ≤ � ≤ Jk(s

∗,ω), by (εθ̆
k,�−1(Sk,�(ω)))(p), p = 1, . . . ,U(ω), the

right-hand side of equation (A.1) can be rewritten as

−
U(ω)∑
p=1

log
[
S θ̆

m

(
s∗,

(
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

)]
. (A.2)

From equation (2.4), we now obtain that under Assumption 2.1 the quantity in (A.2) equals

−
U(ω)∑
p=1

log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

γ θ̆
i,j−1

((
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

)
(A.3)

× 1
(εθ̆

i,j−1(Si,j−1(ω)),εθ̆
i,j−1(Si,j (ω))]

((
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

)]
.

We see that under the assumption (Pλ0,θ0)m(γ θ
i,j−1(t) ≤ c, γ θ̃

i,j−1(t) ≥ c,1 ≤ i ≤ m,1 ≤ j ≤
Ji(s

∗),0 ≤ t < ∞) = 1 our claim(
Pλ0,θ0

)m(
�P,m

(
s∗|θ , �̂m,Dm(s)

) ≥ �P,m

(
s∗|θ̃ , �̂m,Dm(s)

))
≥ (

Pλ0,θ0
)m

(A
m,θ ,θ̃ )

would follow if

−
U(ω)∑
p=1

log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

1(εθ
i,j−1(Si,j−1(ω)),εθ

i,j−1(Si,j (ω))]
((

εθ
k,�−1

(
Sk,�(ω)

))
(p)

)]
(A.4)

≥ −
U(ω)∑
p=1

log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

1
(εθ̃

i,j−1(Si,j−1(ω)),εθ̃
i,j−1(Si,j (ω))]

((
εθ̃
k,�−1

(
Sk,�(ω)

))
(p)

)]
,
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were true for (almost) all ω ∈ A
m,θ ,θ̃ , because we have

−
U(ω)∑
p=1

log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

γ θ
i,j−1

((
εθ
k,�−1

(
Sk,�(ω)

))
(p)

)

× 1(εθ
i,j−1(Si,j−1(ω)),εθ

i,j−1(Si,j (ω))]
((

εθ
k,�−1

(
Sk,�(ω)

))
(p)

)]
(A.5)

≥ −
U(ω)∑
p=1

log

[
c

m∑
i=1

Ji (s
∗,ω)∑

j=1

1(εθ
i,j−1(Si,j−1(ω)),εθ

i,j−1(Si,j (ω))]
((

εθ
k,�−1

(
Sk,�(ω)

))
(p)

)]

and

−
U(ω)∑
p=1

log

[
c

m∑
i=1

Ji (s
∗,ω)∑

j=1

1
(εθ̃

i,j−1(Si,j−1(ω)),εθ̃
i,j−1(Si,j (ω))]

((
εθ̃
k,�−1

(
Sk,�(ω)

))
(p)

)]

≥ −
U(ω)∑
p=1

log

[
m∑

i=1

Ji(s
∗,ω)∑

j=1

γ θ̃
i,j−1

((
εθ̃
k,�−1

(
Sk,�(ω)

))
(p)

)
(A.6)

× 1
(εθ̃

i,j−1(Si,j−1(ω)),εθ̃
i,j−1(Si,j (ω))]

((
εθ̃
k,�−1

(
Sk,�(ω)

))
(p)

)]
.

Now notice that for arbitrary θ̆ we can rewrite

−
U(ω)∑
p=1

log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

1
(εθ̆

i,j−1(Si,j−1(ω)),εθ̆
i,j−1(Si,j (ω))]

((
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

)]

as

−
U(ω)∑
p=1

(
log

[
m∑

i=1

Ji (s
∗,ω)∑

j=1

1
(εθ̆

i,j−1(Si,j−1(ω)),∞)

((
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

) − (p − 1)

])
, (A.7)

because the condition (
εθ̆
k,�−1

(
Sk,�(ω)

))
(p)

≤ εθ̆
i,j−1

(
Si,j (ω)

)
fails for exactly (p − 1) pairs (i, j), 1 ≤ i ≤ m,1 ≤ j ≤ Ji(s

∗). As the representation (A.7) holds
for every element of �, we see (A.4) would follow if for every p and (almost) every ω ∈ A

m,θ ,θ̃
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it were true that for every pair (i, j)

εθ
i,j−1

(
Si,j−1(ω)

)
< εθ

gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
(A.8)

⇒ εθ̃
i,j−1

(
Si,j−1(ω)

)
< εθ̃

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)
.

Here εθ
gθ
(p)

,hθ
(p)

−1
(Sgθ

(p)
,hθ

(p)
(ω)) denotes the p smallest value among the εθ

g,h−1(Sg,h(ω)), 1 ≤
g ≤ m, 1 ≤ h ≤ Jg(s

∗), and εθ̃

kθ̃
(p)

,�θ̃
(p)

−1
(S

kθ̃
(p)

,�θ̃
(p)

(ω)) denotes the p smallest value among the

εθ̃
k,�−1(Sk,�(ω)), 1 ≤ k ≤ m, 1 ≤ � ≤ Jk(s

∗). Consequently, (gθ
(p), h

θ
(p)) denotes the index pair of

the p smallest observation among the εθ
g,h−1(Sg,h(ω)), 1 ≤ g ≤ m, 1 ≤ h ≤ Jg(s

∗) and similar

for the pair (kθ̃
(p), �

θ̃
(p)). Before continuing, we need some more notation. For two pairs (i, j) and

(k, �) of natural numbers (i, j) = (k, �) means i = k and j = �. Moreover, for any pair (i, j), 1 ≤
i ≤ m,1 ≤ j ≤ Ji(s

∗), and θ̆ ∈ {θ , θ̃} we denote by rkθ̆ (i, j) the rank of εθ̆
i,j−1(Si,j (ω)) among

the εθ̆
k,�−1(Sk,�(ω)), 1 ≤ k ≤ m, 1 ≤ � ≤ Jk(s

∗), i.e. rkθ̆ (i, j) is equal to 1 if εθ̆
i,j−1(Si,j (ω)) is

the smallest among the εθ̆
k,�−1(Sk,�(ω)), 1 ≤ k ≤ m, 1 ≤ � ≤ Jk(s

∗). For the rest of the proof of
part (a), let ω ∈ A

m,θ ,θ̃ .

Case 1: Suppose that gθ
(p) = kθ̃

(p) and hθ
(p) = �θ̃

(p). Then we immediately see that (A.8) is just
the assumption stated in part (a).

Case 2: Suppose that (gθ
(p), h

θ
(p)) �= (kθ̃

(p), �
θ̃
(p)) and that we additionally have rkθ (kθ̃

(p), �
θ̃
(p)) >

p. Then (A.8) holds, because we have

εθ

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)
> εθ

gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
due to the fact that rkθ (kθ̃

(p), �
θ̃
(p)) > p and the implication

εθ
i,j−1

(
Si,j−1(ω)

)
< εθ

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)

⇒ εθ̃
i,j−1

(
Si,j−1(ω)

)
< εθ̃

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)

is just the assumption made in part (a).

Case 3: Let (gθ
(p), h

θ
(p)) �= (kθ̃

(p), �
θ̃
(p)) and rkθ (kθ̃

(p), �
θ̃
(p)) < p and assume additionally that

rkθ̃ (gθ
(p), h

θ
(p)) < p. Then (A.8) is true, because we have

εθ̃
gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
< εθ̃

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)
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due to the fact that rkθ̃ (gθ
(p), h

θ
(p)) < p and the implication

εθ
i,j−1

(
Si,j−1(ω)

)
< εθ

gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
⇒ εθ̃

i,j−1

(
Si,j−1(ω)

)
< εθ̃

gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
is again just the assumption stated in part (a).

Case 4: Let (gθ
(p), h

θ
(p)) �= (kθ̃

(p), �
θ̃
(p)) and rkθ (kθ̃

(p), �
θ̃
(p)) < p and assume additionally that

rkθ̃ (gθ
(p), h

θ
(p)) > p. Notice first of all that rkθ (kθ̃

(p), �
θ̃
(p)) < p and rkθ̃ (gθ

(p), h
θ
(p)) > p together

imply that there is at least one pair (e, f ), 1 ≤ e ≤ m, 1 ≤ f ≤ Je(s
∗) such that rkθ (e, f ) > p

and rkθ̃ (e, f ) < p. Indeed, let

I θ := {
(v,w),1 ≤ v ≤ m,1 ≤ w ≤ Jv

(
s∗)|rkθ (v,w) < rkθ (g,h) = p

}
and

I θ̃ := {
(v,w),1 ≤ v ≤ m,1 ≤ w ≤ Jv

(
s∗)|rkθ̃ (v,w) < rkθ (g,h) = p

}
.

Because by assumption we have (kθ̃
(p), �

θ̃
(p)) ∈ I θ and (kθ̃

(p), �
θ̃
(p)) /∈ I θ̃ , Lemma A.1 implies

that there is at least one pair (e, f ) ∈ I θ̃ such that (e, f ) /∈ I θ . Hence, rkθ̃ (e, f ) < p and
rkθ (e, f ) ≥ p. Now, if rkθ (e, f ) = p we must have (e, f ) = (gθ

(p)
, hθ

(p)
). However, this is im-

possible, because on one hand we have

(e, f ) ∈ I θ̃

and on the other hand

rkθ̃
(
gθ

(p), h
θ
(p)

)
> p.

This proves rkθ (e, f ) > p and therefore there is indeed at least one pair with the stated properties.
Now we get from the assumption in part (a)

εθ
ij−1

(
Si,j−1(ω)

)
< εθ

e,f −1

(
Se,f (ω)

) ⇒ εθ̃
i,j−1

(
Si,j−1(ω)

)
< εθ̃

e,f −1

(
Se,f (ω)

)
.

This clearly implies (A.8), because

εθ
e,f −1

(
Se,f (ω)

)
> εθ

gθ
(p)

,hθ
(p)

−1

(
Sgθ

(p)
,hθ

(p)
(ω)

)
and

εθ̃
e,f −1

(
Se,f (ω)

)
< εθ̃

kθ̃
(p)

,�θ̃
(p)

−1

(
S

kθ̃
(p)

,�θ̃
(p)

(ω)
)
.

This finishes the proof of part (a).
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We now begin with the proof of the statement in part (b). Consider an arbitrary ω ∈ B
m,θ ,θ̃ .

To shorten the notation, we introduce the functions F θ̆
ω , θ̆ ∈ {θ , θ̃}, defined on {(g,h)|1 ≤ g ≤

m,1 ≤ h ≤ Jg(s
∗,ω)} by

F θ̆
ω(g,h) :=

m∑
i=1

Ji (s
∗,ω)∑

j=1

1
(εθ̆

i,j−1(Si,j−1(ω)),∞)

(
εθ̆
g,h−1

(
Sg,h(ω)

))
, θ̆ ∈ {θ , θ̃}.

Before continuing with the actual proof, we state the following facts about the functions F θ
ω and

F θ̃
ω . First, under the assumption made in part (a) of Theorem 2.1 we obtain from Lemma A.2

part (a), (i) that for every pair (g,h)

F θ
ω(g,h) ≤ F θ̃

ω(g,h). (A.9)

Second, the assumptions in part (a) and part (b) of Theorem 2.1 together imply in view of
Lemma A.2(a), (ii) that

F θ
ω(k, �) < F θ̃

ω(k, �). (A.10)

Third, notice that part (b), (i) of Lemma A.2 implies for θ̆ ∈ {θ , θ̃}

F θ̆
ω(g,h) ≤ F θ̆

ω(k, �) if rkθ̆ (g,h) ≤ rkθ̆ (k, �). (A.11)

Fourth, in the proof of part (a) of Theorem 2.1 we showed (A.8) so that we have

F θ
ω(g,h) ≤ F θ̃

ω(k, �) if rkθ (g,h) = rkθ̃ (k, �). (A.12)

We now start considering all possible cases. In each case considered, it is sufficient to show that
the inequality in (A.12) is strict for two pairs (g,h) and (k, �). This follows by combining (A.5)
and (A.6). Of course, the two pairs might be equal. To ease the reading of the proof, each case is
illustrated by a graphic; see Figure 7.

Case 1: rkθ̃ (k, �) < rkθ (k, �). Then let the pair (u, v) be such that rkθ̃ (u, v) = rkθ (k, �) and

notice that we consequently have rkθ̃ (u, v) > rkθ̃ (k, �). We now obtain

F θ̃
ω(u, v)

(A.11)≥ F θ̃
ω(k, �)

(A.10)
> F θ

ω(k, �).

Hence, the inequality in (A.12) is strict for the pairs (u, v) and (k, �) that fulfill p = rkθ̃ (u, v) =
rkθ (k, �).

Case 2: rkθ̃ (k, �) = rkθ (k, �). Then we immediately see that the inequality in (A.12) is strict

for p = rkθ̃ (k, �) = rkθ (k, �) by (A.10).

Case 3: rkθ̃ (k, �) > rkθ (k, �). Before continuing with Case 3, we remark that we will assume
that

F θ
ω(g,h) = F θ̃

ω(k, �) if rkθ (g,h) = rkθ̃ (k, �). (A.13)



Failure of profile likelihood for semi-parametric models 3675

Figure 7. Illustration of the different cases considered in the proof of part (b) of Theorem 2.1. The ranks of
the pairs under θ are given on the upper axis in ascending order and under θ̃ on the lower axis. For Case 3b,
the three graphics on the right-hand side illustrate the process of extracting n̄ with the property as given in
(A.21).

The reason why we can assume equation (A.13) is that if (A.13) did not hold, we would have
found two pairs for which the inequality in (A.12) would be strict. However, this would finish the
proof. To make the remainder of the proof easily accessible, we state the following lemma. �

Lemma A.3. Under the assumption stated in (A.13) we have that

rkθ (i, j) ≥ rkθ (a, b) = rkθ̃ (α,β) ≥ rkθ̃ (i, j)

implies

F θ
ω(i, j) = F θ

ω(a, b) = F θ̃
ω(α,β) = F θ̃

ω(i, j).
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Proof.

F θ
ω(i, j)

(A.11)≥ F θ
ω(a, b)

(A.13)= F θ̃
ω(α,β)

(A.11)≥ F θ̃
ω(i, j)

(A.9)≥ F θ
ω(i, j).

Hence, we can replace all ≥ by = which finishes the proof. �

Proof of Theorem 2.1 continued. Let the pairs (u, v) and (c, d) be such that

rkθ (u, v) = rkθ̃ (k, �) and rkθ (k, �) = rkθ̃ (c, d). (A.14)

From (A.13), we then get

F θ̃
ω(k, �) = F θ

ω(u, v), (A.15)

because rkθ (u, v) = rkθ̃ (k, �). Define now the sets

I θ
1 := {

(a, b),1 ≤ a ≤ m,1 ≤ b ≤ Ja

(
s∗)|rkθ (a, b) ≤ rkθ (k, �)

}
and

I θ̃
1 := {

(a, b),1 ≤ a ≤ m,1 ≤ b ≤ Ja

(
s∗)|rkθ̃ (a, b) ≤ rkθ (k, �)

}
.

Since (k, �) ∈ I θ
1 and (k, �) /∈ I θ̃

1 , it follows from Lemma A.1 that there must be a pair (c1, d1)

such that (c1, d1) ∈ I θ̃
1 and (c1, d1) /∈ I θ

1 , i.e.

rkθ̃ (c1, d1) ≤ rkθ (k, �)
(A.14)= rkθ̃ (c, d) and rkθ (c1, d1) > rkθ (k, �). (A.16)

Now make the following assumption that we call

Case 3a: rkθ (c1, d1) ≥ rkθ (u, v). (A.17)

Under this assumption combining the left-hand side of (A.14) with the left-hand side of (A.16),
we obtain from Lemma A.3

F θ
ω(c1, d1) = F θ

ω(u, v) = F θ̃
ω(k, �) = F θ̃

ω(c1, d1)

which implies that

F θ
ω(c1, d1) = F θ̃

ω(k, �). (A.18)

Combining the left- and right-hand side of (A.16), we have

rkθ̃ (c1, d1) ≤ rkθ (k, �) = rkθ̃ (c, d) < rkθ (c1, d1)

and we obtain from Lemma A.3

F θ
ω(c1, d1) = F θ

ω(k, �) = F θ̃
ω(c, d) = F θ̃

ω(c1, d1). (A.19)
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However, in view of (A.18) the first equality in equation (A.19) gives F θ
ω(k, �) = F θ̃

ω(k, �) which
this is a contradiction to (A.10). Hence, the assumption made in equation (A.15) does not hold
and we must have

F θ̃
ω(k, �) > F θ

ω(u, v),

which finishes the proof if we are in Case 3a, that is, the assumption stated in (A.17) holds. Now
if (A.17) does not hold, we consider

Case 3b: rkθ (c1, d1) < rkθ (u, v).

In this case continue extracting pairs (cn, dn), n ≥ 2, with

(cn, dn) ∈ I θ̃
n := {

(a, b),1 ≤ a ≤ m,1 ≤ b ≤ Ja

(
s∗)|rkθ̃ (a, b) ≤ rkθ (cn−1, dn−1)

}
and

(A.20)
(cn, dn) /∈ I θ

n := {
(a, b),1 ≤ a ≤ m,1 ≤ b ≤ Ja

(
s∗)|rkθ (a, b) ≤ rkθ (cn−1, dn−1)

}
.

Clearly, the pairs (cn, dn) and the sets as given in (A.20) exist by Lemma A.1 at least as

long as rkθ (cn−1, dn−1) < rkθ (u, v) = rkθ̃ (k, �), because by construction (cn−1, dn−1) ∈ I θ̃
n and

(cn−1, dn−1) ∈ I θ
n , but (k, �) /∈ I θ̃

n and (k, �) ∈ I θ
n . Because rkθ (cn, dn) is strictly increasing for

every ω (with the property that we have to consider Case 3 and that we are not in Case 3a, that
is, the assumption stated in (A.17) does not hold) there is an n̄ ≥ 2 such that

rkθ (cn̄, dn̄) ≥ rkθ (u, v)
(A.14)= rkθ̃ (k, �) and rkθ (cn̄−1, dn̄−1) < rkθ (u, v). (A.21)

Notice that equation (A.21) together with (A.20) implies

rkθ̃ (cn̄, dn̄) < rkθ (u, v)
(A.21)= rkθ̃ (k, �). (A.22)

Let the pair (en−1, fn−1) be such that

rkθ̃ (en−1, fn−1) = rkθ (cn−1, dn−1), 2 ≤ n ≤ n̄. (A.23)

Then

rkθ̃ (cn, dn) ≤ rkθ̃ (en−1, fn−1)
(A.23)= rkθ (cn−1, dn−1) < rkθ (cn, dn), 2 ≤ n ≤ n̄. (A.24)

Applying Lemma A.3 to (A.24), we now obtain for every n, 2 ≤ n ≤ n̄

F θ
ω(cn, dn) = F θ

ω(cn−1, dn−1) = F θ̃
ω(en−1, fn−1) = F θ̃

ω(cn, dn). (A.25)

Furthermore, combining (A.21) and (A.22), we have

rkθ (cn̄, dn̄) ≥ rkθ (u, v) = rkθ̃ (k, �) > rkθ̃ (cn̄, dn̄).
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Applying once again Lemma A.3, we obtain

F θ
ω(cn̄, dn̄) = F θ

ω(u, v) = F θ̃
ω(k, �) = F θ̃

ω(cn̄, dn̄). (A.26)

In particular,

F θ̃
ω(k, �) = F θ

ω(cn̄, dn̄), (A.27)

and we know from equation (A.19) which is valid here as well as it was derived from equa-
tion (A.16)

F θ
ω(k, �) = F θ

ω(c1, d1). (A.28)

Together with (A.25) equations (A.27) and (A.28) now imply that

F θ̃
ω(k, �) = F θ

ω(k, �).

However, this is a contradiction to (A.10) showing that also in Case 3b the assumed equality in
(A.13) cannot hold. This finishes the proof of part (b). �

Appendix B: Discrete hazard rates

Recall that for a probability measure P on R with a finite support on {z1, . . . , zK }, say, the (dis-
crete) hazard rate λ and the survival function S are given by the formulas

λ(t) := P({t})
P([t,∞))

and P
(
(t,∞)

) =: S(t) =
∏

i:zi≤t

(
1 − λ(zi)

)
. (B.1)

Recall also that the relation P([t,∞)) = S(t−) = ∏
i:zi<t (1 − λ(zi)) implies that

P
({t}) = λ(t) · S(t−).

Now we shall define an effective age model corresponding to a sequence of discrete probabil-
ity measures Pd with supports {z1, . . . , zK1 , zK1+1, . . . , zKd

}, d ∈ N (the method could also be
used for a continuous probability measure). This model has exactly the same transition kernels
as Model 2.1. To do so, assume that for every θ ∈ � we have given a sequence of functions
εθ

0 , εθ
1 , . . . , θ ∈ �, that are interpreted as the effective age functions for the time interval between

the j th and the (j − 1)th event, with the following properties:

(a) εθ
0 : R+ →R+;

(b) εθ
j−1 : D⊂R

j
+ → R+, j = 2,3, . . . and D denotes the domain;

(c) The functions εθ
j−1;s1,...,sj−1

(·) := εθ
j−1(s1, . . . , sj−1, ·) are strictly increasing for every

fixed s1, . . . , sj−1.
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Here Rd+ := {x ∈Rd |xi ≥ 0, i = 1, . . . , d}. For every d ∈N we now define a probability measure
Qd on Rd by defining for j = 1, . . . , d transition kernels

Qj

(
sj |s1, . . . , sj−1, ε

θ
j−1

) :=
Pd({εθ

j−1;s1,...,sj−1
(sj )})

Pd((εθ
j−1;s1,...,sj−1

(sj−1),∞))
,

= λd

(
εθ
j−1;s1,...,sj−1

(sj )
) Pd([εθ

j−1;s1,...,sj−1
(sj ),∞))

Pd((εθ
j−1;s1,...,sj−1

(sj−1),∞))
(B.2)

= λd

(
εθ
j−1;s1,...,sj−1

(sj )
) Sd(εθ

j−1;s1,...,sj−1
(sj )−)

Sd(εθ
j−1;s1,...,sj−1

(sj−1))
for sj > sj−1,

where we use the convention that 0/0 := 0, s0 = 0, and λd and Sd are the hazard rate and the sur-
vival function corresponding to Pd , respectively. In equation (B.2), we have implicitly assumed
that Pd and the functions εθ

j−1;s1,...,sj−1
match properly, that is, Pd((εθ

j−1;s1,...,sj−1
(sj−1),∞)) >

0, j = 1,2, . . . .

Remark B.1. Constructing effective age models through equation (B.2) is similar to the ap-
proaches in Dorado et al. [12] and Last and Szekli [25].

Example B.1. For the model discussed in Example 2.1 we have for θ ∈ [0,1] that εθ
0(s) := s, s ∈

R+. Moreover, we have for θ ∈ [0,1] that εθ
d−1 : Rj

+ → R+, j ≥ 2, with εθ
j−1(s) := sj − θsj−1,

s = (s1, . . . , sj−1, sj ) ∈R
j
+.

Furthermore, for the model discussed in Example 2.2 we have for θ ∈ [0,1] that εθ
0(s) := s,

s ∈ R+. Moreover, we have for θ ∈ [0,1] that εθ
j−1 : Rj

+ → R+, j ≥ 2, with εθ
j−1(s) := sj −

θ
∑j−1

�=1(1 − θ)j−1−�s�, s = (s1, . . . , sj−1, sj ) ∈Rd+.

Now, let [0, s], Dm(s), Ni(s) and τi be as in Section 2 and denote the event occurrence times
by s̃ij , 1 ≤ i ≤ m, 1 ≤ j ≤ Ni(s). Then the full likelihood corresponding to the model defined by
(B.2) is given by with d = max{N1(s), . . . ,Nm(s)}

LF

(
s|Pd ,

(
εθ
i,j−1

)
1≤i≤m,j∈N,Dm(s)

)
=

m∏
i=1

Ni(s)∏
j=1

λd

(
εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j )
)

×
m∏

i=1

Ni(s)∏
j=1

Sd(εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j )−)

Sd(εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j−1))

×
m∏

i=1

Sd(εθ
i,Ni(s);s̃i,1,...,s̃i,Ni (s)

(τi ∧ s))

Sd(εθ
i,Ni(s);s̃i,1,...,s̃i,Ni (s)

(s̃i,Ni (s)))
(B.3)
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(B.1)=
m∏

i=1

Ni(s)∏
j=1

λd

(
εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j )
)

×
(

m∏
i=1

Ni(s)∏
j=1

∏
k∈I θ

i,j

(
1 − λd(zk)

))

×
(

m∏
i=1

∏
k∈I

θ,τi
i

(
1 − λd(zk)

))
,

where for every pair (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ Ni(s), the sets I θ
i,j are defined by

I θ
i,j := {

k ∈ {1, . . . ,K}|εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j−1) < zk < εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j )
}

and for every i, 1 ≤ i ≤ m, the sets I
θ ,τi

i are defined by

I
θ ,τi

i := {
k ∈ {1, . . . ,K}|εθ

i,Ni (s);s̃i,1,...,s̃i,Ni (s)
(s̃i,Ni (s)) < zk ≤ εθ

i,Ni(s);s̃i,1,...,s̃i,Ni (s)
(τi ∧ s)

}
.

To see that equation (B.3) is indeed the discrete time analogue of equation (2.2) notice that(
m∏

i=1

Ni(s)∏
j=1

∏
k∈I θ

i,j

(
1 − λd(zk)

)) ·
(

m∏
i=1

∏
k∈I

θ,τi
i

(
1 − λd(zk)

))

=
(

m∏
i=1

Ni(s)∏
j=1

∏
u∈(I θ

i,j )−1

(
1 − λd

(
εθ
i,j−1;s̃i,1,...,s̃i,j−1

(u)
)))

(B.4)

×
(

m∏
i=1

∏
u∈(I

θ,τi
i )−1

(
1 − λd

(
εθ
i,Ni(s);s̃i,1,...,s̃i,Ni (s)

(u)
)))

,

where for every pair (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ Ni(s), the intervals (I θ
i,j )

−1 are defined by(
I θ
i,j

)−1 := {
u ∈R+|s̃i,j−1 < u < s̃i,j

}
and for every i, 1 ≤ i ≤ m, the intervals (I

θ ,τi

i )−1 are defined by(
I

θ ,τi

i

)−1 := {
u ∈R+|s̃i,Ni(s) < u ≤ τi ∧ s

}
,

and the product w.r.t. u stands for the product integral.
Now we are going to maximise (B.3) for θ fixed. As in Section 2.2, maximisation is w.r.t.

all discrete probability measures that put (positive) mass at the points εθ
k,�−1;s̃k,1,...,s̃k,�−1

(s̃k,�),
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1 ≤ k ≤ m, 1 ≤ � ≤ Nk(s), which we assume to be different. Also as in Section 2.2 we denote the
corresponding hazard rates at these points by λθ

k,�. Then the full likelihood (B.3) after rearranging
can be written as

m∏
k=1

Nk(s)∏
�=1

λθ
k,�

m∏
k=1

Nk(s)∏
�=1

(
1 − λθ

k,�

)|I θ ,B
k,� |+|I θ ,τk ,B

k |
, (B.5)

where for every pair (k, �), 1 ≤ k ≤ m, 1 ≤ � ≤ Nk(s), the sets I
θ ,B
k,� are defined (cf. Section 2.2)

as

I
θ ,B
k,� := {

(i, j),1 ≤ i ≤ m,1 ≤ j ≤ Ni(s)|
εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j−1) < εθ
k,�−1;s̃k,1,...,s̃k,�−1

(s̃k,�) < εθ
i,j−1;s̃i,1,...,s̃i,j−1

(s̃i,j )
}

and for every k, 1 ≤ k ≤ m, the sets I
θ ,τi ,B
k are defined (cf. Section 2.2) by

I
θ ,τi ,B
k := {

i,1 ≤ i ≤ m|
εθ
i,Ni(s);s̃i,1,...,s̃i,Ni (s)

(s̃i,Ni(s)) < εθ
k,�−1;s̃k,1,...,s̃k,�−1

(s̃k,�) ≤ εθ
i,Ni(s);s̃i,1,...,s̃i,Ni (s)

(τi ∧ s)
}
.

Moreover, as in Appendix A for any set I we denote by |I | its cardinality. As the function
x → x(1 − x)k , k ∈N0 with x ∈ [0,1], is maximised at x = 1/(k + 1) we see that equation (B.5)
is maximised at

λθ
k,� = 1

|I θ ,B
k,� | + |I θ ,τk,B

k | + 1
.

Notice that this NPMLE coincides with the one given in Section 2.2 if the derivatives of the
effective functions w.r.t. observational time are equal to one, because we have the relations
|I θ ,B

k,� | + 1 = |I θ
k,�| and |I θ ,τk,B

k | = |I θ ,τk

k |.

Appendix C: Identifiability in Examples 2.1 and 2.2

First note that the distribution of (S1, S2) (or (T1, T2)) is the same under Kijima I or Kijima
II models; see Examples 2.1 and 2.2. Indeed, the joint distribution of (T1, T1) is defined by its
density function

g
(θ,f )
T1,T2

(t1, t2) = f (t1)f
(
t2 + (1 − θ)t1

)
/S

(
(1 − θ)t1

)
1{t1≥0}1{t2≥0},

for (t1, t2) ∈ R2+. Here f is an unknown probability density function with support [0,∞) (S is
the corresponding survival function) and θ is an unknown Euclidean parameter in [0,1]. Let μk

be the Lebesgue measure on Rk (k ≥ 1). Proving the identifiability of (θ, f ) requires to show

the following one-to-one property: g
(θ,f )
T1,T2

= g
(θ̃,f̃ )
T1,T2

μ2-a.e. implies (θ, f ) = (θ̃ , f̃ ). The fact that
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f = f̃ is straightforward by integrating g
(θ,f )
T1,T2

(t1, t2) with respect to t2 on R. Thus, identifiability

reduces to proving that θ = θ̃ results from

f
(
t2 + (1 − θ)t1

)
/S

(
(1 − θ)t1

) = f
(
t2 + (1 − θ̃ )t1

)
/S

(
(1 − θ̃ )t1

)
, μ2-a.e. (C.1)

Integrating (C.1) with respect to t2 on [s,∞) leads to

S
(
s + (1 − θ)t1

)
/S

(
(1 − θ)t1

) = S
(
s + (1 − θ̃ )t1

)
/S

(
(1 − θ̃ )t1

)
, μ2-a.e. (C.2)

Using (C.1) (with t2 = s) and (C.2), we obtain

λ
(
s + (1 − θ)t1

) = λ
(
s + (1 − θ̃ )t1

)
, μ2-a.e. (C.3)

Now suppose that there exists a nonempty open interval (a, b) such that λ is one-to-one on (a, b).
Let θ̃ �= θ . Then for any pair (s, t1) quantities s + (1 − θ)t1 and s + (1 − θ̃ )t1 belong to (a, b)

simultaneously if and only if{
a − (1 − θ)t1 < s < b − (1 − θ)t1,

a − (1 − θ̃ )t1 < s < b − (1 − θ̃ )t1.

For the latter to hold, we must have

a − (1 − θ ∨ θ̃ )t1 < b − (1 − θ ∧ θ̃ )t1 ⇔ t1 <
b − a

|θ̃ − θ | .

Then for μ2 almost all (t1, s) ∈ {(x, y) ∈ R2+|x < (b − a)/|θ̃ − θ |, a − (1 − θ ∨ θ̃ )x < y <

b − (1 − θ ∧ θ)x} we must have s + (1 − θ)t1 = s + (1 − θ̃ )t1. Hence, θ = θ̃ which proves the
semi-parametric identifiability of Kijima I and Kijima II models whenever the first two failures
can be observed.
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