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Often the regression function is specified by a system of ordinary differential equations (ODEs) involving
some unknown parameters. Typically analytical solution of the ODEs is not available, and hence likeli-
hood evaluation at many parameter values by numerical solution of equations may be computationally
prohibitive. Bhaumik and Ghosal (Electron. J. Stat. 9 (2015) 3124–3154) considered a Bayesian two-step
approach by embedding the model in a larger nonparametric regression model, where a prior is put through
a random series based on B-spline basis functions. A posterior on the parameter is induced from the re-
gression function by minimizing an integrated weighted squared distance between the derivative of the
regression function and the derivative suggested by the ODEs. Although this approach is computationally
fast, the Bayes estimator is not asymptotically efficient. In this paper, we suggest a modification of the
two-step method by directly considering the distance between the function in the nonparametric model and
that obtained from a four stage Runge–Kutta (RK4) method. We also study the asymptotic behavior of the
posterior distribution of θ based on an approximate likelihood obtained from an RK4 numerical solution
of the ODEs. We establish a Bernstein–von Mises theorem for both methods which assures that Bayesian
uncertainty quantification matches with the frequentist one and the Bayes estimator is asymptotically effi-
cient.

Keywords: approximate likelihood; Bayesian inference; Bernstein–von Mises theorem; ordinary
differential equation; Runge–Kutta method; spline smoothing

1. Introduction

Differential equations are encountered in various branches of science such as in genetics [6],
viral dynamics of infectious diseases [1,19], pharmacokinetics and pharmacodynamics (PKPD)
[8]. In many cases these equations do not lead to any explicit solution. A popular example is
the Lotka–Volterra equations, also known as predator-prey equations. The rates of change of the
prey and predator populations are given by the equations

df1θ (t)

dt
= θ1f1θ (t) − θ2f1θ (t)f2θ (t),

df2θ (t)

dt
= −θ3f2θ (t) + θ4f1θ (t)f2θ (t), t ∈ [0,1],
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where θ = (θ1, θ2, θ3, θ4)
T and f1θ (t) and f2θ (t) denote the prey and predator populations at

time t , respectively. These models can be put in a regression model Y = fθ (t) + ε, θ ∈ � ⊆ R
p ,

where fθ (·) satisfies the ODE

dfθ (t)
dt

= F
(
t, fθ (t), θ

)
, t ∈ [0,1]; (1.1)

here F is a known appropriately smooth vector valued function and θ is a parameter vector
controlling the regression function.

The nonlinear least squares (NLS) is the usual way to estimate the unknown parameters pro-
vided that the analytical solution of the ODE is available, which is not the case in most real
applications. The 4-stage Runge–Kutta algorithm (RK4) ([13], page 134 and [18], page 53) can
solve (1.1) numerically. The parameters can be estimated by applying NLS in the next step. Xue,
Miao and Wu [28] studied the asymptotic properties of the estimator. They used differential evo-
lution method [24], scatter search method and sequential quadratic programming [22] method
for the NLS part and established the strong consistency,

√
n-consistency and asymptotic normal-

ity of the estimator. The estimator turns out to be asymptotically efficient, but this approach is
computationally intensive.

In the generalized profiling procedure [21], a linear combination of basis functions is used to
obtain an approximate solution. A penalized optimization is used to estimate the coefficients of
the basis functions. The estimated θ is defined as the maximizer of a data dependent fitting crite-
rion involving the estimated coefficients. The statistical properties of the estimator obtained from
this approach were explored in the works of [20]. This method is also asymptotically efficient,
but has a high computational cost.

Varah [26] used a two-step procedure where the state variables are approximated by cubic
spline in the first step. In the second step, the parameters are estimated by minimizing the sum
of squares of difference between the non-parametrically estimated derivative and the derivatives
suggested by the ODEs at the design points. Thus, the ODE model is embedded in the nonpara-
metric regression model. This method is very fast and independent of the initial or boundary
conditions. Brunel [3] did a modification by replacing the sum of squares by a weighted in-
tegral and obtained the asymptotic normality of the estimator. Gugushvili and Klaassen [12]
followed the approach of [3], but used kernel smoothing instead of spline and established

√
n-

consistency of the estimator. Wu, Xue and Kumar [27] used penalized smoothing spline in the
first step and numerical derivatives of the nonparametrically estimated functions. Brunel, Clairon
and d’Alché-Buc [4] used nonparametric smoothing and a set of orthogonality conditions to es-
timate the parameters. But the major drawback of the two-step estimation methods is that these
are not asymptotically efficient.

ODE models in Bayesian framework was considered in the works of [9,23] and [11]. They
obtained an approximate likelihood by solving the ODEs numerically. Using the prior assigned
on θ , MCMC technique was used to generate samples from the posterior. This method also has
high computational complexity. Campbell and Steele [5] proposed the smooth functional temper-
ing approach which utilizes the generalized profiling approach [21] and the parallel tempering
algorithm. Jaeger [15] also used the generalized profiling in Bayesian framework. Bhaumik and
Ghosal [2] considered the Bayesian analog of the two-step method suggested by [3], putting prior
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on the coefficients of the B-spline basis functions and induced a posterior on �. They established
a Bernstein–von Mises theorem for the posterior distribution of θ with n−1/2 contraction rate.

In this paper we propose two separate approaches. We use Gaussian distribution as the work-
ing model for error, although the true distribution may be different. The first approach in-
volves assigning a direct prior on θ and then constructing the posterior of θ using an approx-
imate likelihood function constructed using the approximate solution fθ ,r (·) obtained from RK4.
Here r is the number of grid points used. When r is sufficiently large, the approximate likeli-
hood is expected to behave like the actual likelihood. We call this method Runge–Kutta sieve
Bayesian (RKSB) method. In the second approach we define θ as arg minη∈�

∫ 1
0 ‖βT N(·) −

fη,r (·)‖2w(t) dt for an appropriate weight function w(·) on [0,1], where the posterior distribu-
tion of β is obtained in the nonparametric spline model and N(·) is the B-spline basis vector. We
call this approach Runge–Kutta two-step Bayesian (RKTB) method. Thus, this approach is sim-
ilar in spirit to [2]. Similar to [2], prior is assigned on the coefficients of the B-spline basis and
the posterior of θ is induced from the posterior of the coefficients. But the main difference lies in
the way of extending the definition of parameter. Instead of using deviation from the ODE, we
consider the distance between function in the nonparametric model and RK4 approximation of
the model. Ghosh and Goyal [10] considered Euler’s approximation to construct the approximate
likelihood and then drew posterior samples. In the same paper they also provided a non-Bayesian
method by estimating θ by minimizing the sum of squares of the difference between the spline
fitting and the Euler approximation at the grid points. However they did not explore the theo-
retical aspects of those methods. We shall show both RKSB and RKTB lead to Bernstein–von
Mises Theorem with dispersion matrix inverse of Fisher information and hence both the proposed
Bayesian methods are asymptotically efficient. This was not the case for the two step-Bayesian
approach [2]. Bernstein–von Mises Theorem implies that credible intervals have asymptotically
correct frequentist coverage. The computational cost of the two-step Bayesian method [2] is the
least, RKTB is more computationally involved and RKSB is the most computationally expensive.

The paper is organized as follows. Section 2 contains the description of the notations and some
preliminaries of Runge–Kutta method. The model assumptions and prior specifications are given
in Section 3. The main results are given in Section 4. In Section 5 we carry out a simulation study.
Proofs of the main results are given in Section 6. Section 7 contains the proofs of the technical
lemmas. The Appendix is provided in the last section.

2. Notations and preliminaries

We describe a set of notations to be used in this paper. Boldfaced letters are used to denote vectors
and matrices. The identity matrix of order p is denoted by Ip . We use the symbols maxeig(A) and
mineig(A) to denote the maximum and minimum eigenvalues of the matrix A, respectively. The
L2 norm of a vector x ∈ R

p is given by ‖x‖ = (
∑p

i=1 x2
i )1/2. The notation f (r)(·) stands for the

r th order derivative of a function f (·), that is, f (r)(t) = dr

dtr
f (t). For the function θ �→ fθ (x),

the notation ḟθ (x) implies ∂
∂θ fθ (x). Similarly, we denote f̈θ (x) = ∂2

∂θ2 fθ (x). A vector valued
function is represented by the boldfaced symbol f(·). We use the notation f (x) to denote the
vector (f (x1), . . . , f (xp))T for a real-valued function f : [0,1] → R and a vector x ∈ R

p . Let
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us define ‖f‖g = (
∫ 1

0 ‖f(t)‖2g(t) dt)1/2 for f : [0,1] �→R
p and g : [0,1] �→ [0,∞). The weighted

inner product with the corresponding weight function g(·) is denoted by 〈·, ·〉g . For numerical
sequences an and bn, both an = o(bn) and an � bn mean an/bn → 0 as n → ∞. Similarly, we
define an � bn. The notation an = O(bn) is used to indicate that an/bn is bounded. The notation
an 
 bn stands for both an = O(bn) and bn = O(an), while an � bn means an = O(bn). The
symbol oP (1) stands for a sequence of random vectors converging in P -probability to zero,
whereas OP (1) stands for a stochastically bounded sequence of random vectors. Given a sample
{Xi : i = 1, . . . , n} and a measurable function ψ(·), we define Pnψ = n−1 ∑n

i=1 ψ(Xi). The
symbols E(·) and Var(·) stand for the mean and variance respectively of a random variable, or
the mean vector and the variance-covariance matrix of a random vector. We use the notation
Gnψ to denote

√
n(Pnψ − Eψ). For a measure P , the notation P (n) implies the joint measure

of a random sample X1, . . . ,Xn coming from the distribution P . Similarly, we define p and p(n)

for the corresponding densities. The total variation distance between the probability measures P

and Q defined on Rp is given by ‖P − Q‖TV = supB∈Rp |P(B) − Q(B)|, Rp being the Borel
σ -field on R

p . Given an open set E, the symbol Cm(E) stands for the class of functions defined
on E having first m continuous partial derivatives with respect to its arguments. For a set A,
the notation 1{A} stands for the indicator function for belonging to A. The symbol := means
equality by definition. For two real numbers a and b, we use the notation a ∧ b to denote the
minimum of a and b. Similarly, we denote a ∨ b to be the maximum of a and b.

Given r equispaced grid points a1 = 0, a2, . . . , ar with common difference h and an ini-
tial condition fθ (0) = y0, Euler’s method ([14], page 9) computes the approximate solution
as fθ ,r (ak+1) = fθ ,r (ak) + hF(ak, fθ ,r (ak), θ) for k = 1,2, . . . , r − 1. The RK4 method ([14],
page 68) is an improvement over Euler’s method. Let us denote

k1 = F
(
ak, fθ ,r (ak), θ

)
,

k2 = F
(
ak + h/2, fθ ,r (ak) + h/2k1, θ

)
,

k3 = F
(
ak + h/2, fθ ,r (ak) + h/2k2, θ

)
,

k4 = F
(
ak + h, fθ ,r (ak) + hk3, θ

)
.

Then we obtain fθ ,r (ak+1) from fθ ,r (ak) as fθ ,r (ak+1) = fθ ,r (ak) + h/6(k1 + 2k2 + 2k3 + k4).
By the proof of Theorem 3.3 of [14], page 124, we have

sup
t∈[0,1]

∥∥fθ (t) − fθ ,r (t)
∥∥= O

(
r−4), sup

t∈[0,1]
∥∥ḟθ (t) − ḟθ ,r (t)

∥∥= O
(
r−4). (2.1)

3. Model assumptions and prior specifications

Now we formally describe the model. For the sake of simplicity, we assume the response to be
one dimensional. The extension to the multidimensional case is straight forward. The proposed
model is given by

Yi = fθ (Xi) + εi, i = 1, . . . , n, (3.1)
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where θ ⊆ �, which is a compact subset of Rp . The function fθ (·) satisfies the ODE given by

dfθ (t)

dt
= F

(
t, fθ (t), θ

)
, t ∈ [0,1]. (3.2)

Let for a fixed θ , F ∈ Cm−1((0,1),R) for some integer m ≥ 1. Then, by successive differen-
tiation we have fθ ∈ Cm((0,1)). By the implied uniform continuity, the function and its sev-
eral derivatives can be uniquely extended to continuous functions on [0,1]. We also assume
that θ �→ fθ (x) is continuous in θ . The true regression function f0(·) does not necessarily lie
in {fθ : θ ∈ �}. We assume that f0 ∈ Cm([0,1]). Let εi are identically and independently dis-
tributed with mean zero and finite moment generating function for i = 1, . . . , n. Let the common
variance be σ 2

0 . We use N(0, σ 2) as the working model for the error, which may be different
from the true distribution. We treat σ 2 as an unknown parameter and assign an inverse gamma
prior on σ 2 with shape and scale parameters a and b, respectively. Additionally it is assumed

that Xi
i.i.d.∼ G with density g. The approximate solution to (1.1) is given by fθ,r , where r = rn is

the number of grid points, which is chosen so that

rn � n1/8. (3.3)

Let us denote Y = (Y1, . . . , Yn)
T and X = (X1, . . . ,Xn)

T . The true joint distribution of (Xi, εi)

is denoted by P0. Now we describe the two different approaches of inference on θ used in this
paper.

3.1. Runge–Kutta sieve Bayesian method (RKSB)

For RKSB, we denote γ = (θ , σ 2). The approximate likelihood of the sample {(Xi, Yi,) : i =
1, . . . , n} is given by L∗

n(γ ) =∏n
i=1 pγ ,n(Xi, Yi,), where

pγ ,n(Xi, Yi) = (
√

2πσ)−1 exp
{−(

2σ 2)−1∣∣Yi − fθ ,rn(Xi)
∣∣2}g(Xi). (3.4)

We also denote

pγ (Xi, Yi) = (
√

2πσ)−1 exp
{−(

2σ 2)−1∣∣Yi − fθ (Xi)
∣∣2}g(Xi). (3.5)

The true parameter γ 0 := (θ0, σ
2∗ ) is defined as

γ 0 = arg max
γ

P0 logpγ ,

which takes into account the situation when fθ0 is the true regression function, θ0 being the
true parameter. We denote by 	γ and 	γ ,n the log-likelihoods with respect to (3.5) and (3.4),
respectively. We make the following assumptions.

(A1) The parameter vector γ 0 is the unique maximizer of the right-hand side above.
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(A2) The sub-matrix of the Hessian matrix of −P0 logpγ at γ = γ 0 given by

∫ 1

0

(
ḟ T

θ0
(t)ḟθ0(t) − ∂

∂θ

(
ḟ T

θ (t)
(
f0(t) − fθ0(t)

))∣∣∣
θ=θ0

)
g(t) dt (3.6)

is positive definite.
(A3) The prior measure on � has a Lebesgue-density continuous and positive on a neighbor-

hood of θ0.
(A4) The prior distribution of θ is independent of that of σ 2.

By (A1) we get

∫ 1

0
ḟ T

θ0
(t)

(
f0(t) − fθ0(t)

)
g(t) dt = 0,

(3.7)

σ 2∗ = σ 2
0 +

∫ 1

0

∣∣f0(t) − fθ0(t)
∣∣2g(t) dt.

The joint prior measure of γ is denoted by 
 with corresponding density π . We obtain the
posterior of γ using the approximate likelihood given by (3.4).

Remark 3.1. In the RKSB method, the space of densities induced by the RK4 numerical solution
of the ODEs approaches the space of actual densities as the sample size n goes to infinity. This
justifies the use of the term “sieve” in “RKSB.”

Remark 3.2. The assumptions (A1) and (A2) are necessary to prove the convergence of the
Bayes estimator of γ to the true value γ 0. These are usually satisfied in most practical situations
for example the Lotka–Volterra equations considered in the simulation study. When the true re-
gression function is the solution of the ODE, the Hessian matrix becomes

∫ 1
0 ḟ T

θ0
(t)ḟθ0(t)g(t) dt

which is positive definite unless the components of ḟ T
θ0

as is the case in our simulation study.

3.2. Runge–Kutta two-step Bayesian method (RKTB)

In the RKTB approach, the proposed model is embedded in nonparametric regression model

Y = Xnβ + ε, (3.8)

where Xn = ((Nj (Xi)))1≤i≤n,1≤j≤kn+m−1, {Nj(·)}kn+m−1
j=1 being the B-spline basis functions of

order m with kn − 1 interior knots 0 < ξ1 < ξ2 < · · · < ξkn−1 < 1 chosen to satisfy the pseudo-
uniformity criteria:

max
1≤i≤kn−1

|ξi+1 − 2ξi + ξi−1| = o
(
k−1
n

)
,

(3.9)
max

1≤i≤kn−1
|ξi − ξi−1|/ min

1≤i≤kn−1
|ξi − ξi−1| ≤ M
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for some constant M > 0. Here ξ0 and ξkn are defined as 0 and 1, respectively. The criteria (3.9) is
required to apply the asymptotic results obtained in [29] where they mention the similar criteria
in equation (3) of that paper. We assume for a given σ 2

β ∼ Nkn+m−1
(
0, σ 2n2k−1

n Ikn+m−1
)
. (3.10)

Simple calculation yields the conditional posterior distribution for β given σ 2 as

Nkn+m−1

((
XT

n Xn + kn

n2
Ikn+m−1

)−1

XT
n Y, σ 2

(
XT

n Xn + kn

n2
Ikn+m−1

)−1)
. (3.11)

By model (3.8), the expected response at a point t ∈ [0,1] is given by βT N(t), where N(·) =
(N1(·), . . . ,Nkn+m−1(·))T . Let us denote for a given parameter η

Rf,n(η) =
{∫ 1

0

∣∣f (t) − fη,rn(t)
∣∣2g(t) dt

}1/2

,

Rf0(η) =
{∫ 1

0

∣∣f0(t) − fη(t)
∣∣2g(t) dt

}1/2

,

where f (t) = βT N(t). Now we define θ = arg minη∈� Rf,n(η) and induce posterior distribution
on � through the posterior of β given by (3.11). Also let us define θ0 = arg minη∈� Rf0(η). Note
that this definition of θ0 takes into account the case when fθ0 is the true regression function with
corresponding true parameter θ0. We use the following standard assumptions.

(A5) For all ε > 0,

inf
η:‖η−θ0‖≥ε

Rf0(η) > Rf0(θ0). (3.12)

(A6) The matrix

Jθ0 = −
∫ 1

0
f̈θ0(t)

(
f0(t) − fθ0(t)

)
g(t) dt +

∫ 1

0

(
ḟθ0(t)

)T (
ḟθ0(t)

)
g(t) dt

is nonsingular.

Remark 3.3. The assumption (A5) implies that θ0 is a well-separated point of minima of Rf0(·)
which is needed to prove the convergence of the posterior distribution of θ to the true value θ0.
A similar looking assumption appears in the argmax theorem used to show consistency of M-
estimators and is a stronger version of the condition of uniqueness of the location of minimum.

Remark 3.4. The matrix Jθ0 is usually non-singular specially in the case when the true regression

function satisfies the ODE since then the expression of Jθ0 becomes
∫ 1

0 ḟ T
θ0

(t)ḟθ0(t)g(t) dt which
is usually positive definite.
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4. Main results

Our main results are given by Theorems 4.1 and 4.2.

Theorem 4.1. Let the posterior probability measure related to RKSB be denoted by 
n. Then
posterior of γ contracts at γ 0 at the rate n−1/2 and

∥∥
n

(√
n(γ − γ 0) ∈ ·|X,Y

)− N
(
�n,γ 0

, σ 2∗ V−1
γ 0

)∥∥
TV = oP0(1),

where Vγ 0
= (σ−2∗ Vθ0

0
0

σ−4∗ /2

)
with

Vθ0 =
∫ 1

0

(
ḟ T

θ0
(t)ḟθ0(t) − ∂

∂θ

(
ḟ T

θ (t)
(
f0(t) − fθ0(t)

))∣∣∣
θ=θ0

)
g(t) dt

and �n,γ 0
= V−1

γ 0
Gn	̇γ 0,n.

Since θ is a sub-vector of γ , we get Bernstein–von Mises theorem for the posterior distribu-
tion of

√
n(θ − θ0), the mean and dispersion matrix of the limiting Gaussian distribution being

the corresponding sub-vector and sub-matrix of �n,γ 0
and σ 2∗ V−1

γ 0
respectively. We also get the

following important corollary.

Corollary 1. When the regression model (3.1) is correctly specified and also the error is Gaus-
sian, the Bayes estimator based on 
n is asymptotically efficient.

Let us denote C(t) = J−1
θ0

(ḟθ0(t))
T and HT

n = ∫ 1
0 C(t)NT (t)g(t) dt . Note that C(t) is a p-

component vector. Also, we denote the posterior probability measure of RKTB by 
∗
n. Now we

have the following result.

Theorem 4.2. Let

μn = √
nHT

n

(
XT

n Xn

)−1XT
n Y − √

n

∫ 1

0
C(t)f0(t)g(t) dt,

	n = nHT
n

(
XT

n Xn

)−1Hn

and B = ((〈Ck(·),Ck′(·)〉g))k,k′=1,...,p . If B is non-singular, then for m ≥ 2 and n1/(2m) � kn �
n1/2,

∥∥
∗
n

(√
n(θ − θ0) ∈ ·|Y )− N

(
μn, σ

2
0 	n

)∥∥
TV = oP0(1). (4.1)

Remark 4.1. It will be proved later in Lemma 10 that both μn and 	n are stochastically bounded.
Hence, with high true probability the posterior distribution of (θ − θ0) contracts at 0 at n−1/2

rate.
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Remark 4.2. The previous theorem indicates that second order smoothness of the true mean
function is sufficient to ensure the contraction rate n−1/2. The issue of Bayesian adaptation does
not arise in this case. For m = 2, the required condition becomes n1/4 � kn � n1/2. Since the
knots are chosen deterministically, we do not need to assign a prior on the number of terms of
the random series used.

We also get the following important corollary.

Corollary 2. When the regression model (3.1) is correctly specified and the true distribution of
error is Gaussian, the Bayes estimator based on 
∗

n is asymptotically efficient.

Remark 4.3. The Bayesian two-step approach [2] considers the distance between the derivative
of the function in the nonparametric model and the derivative given by the ODE. On the other
hand, RKTB approach deals directly with the distance between the function in the nonparametric
model and the parametric nonlinear regression model through the RK4 approximate solution of
the ODE. Direct distance in the latter approach produces the efficient linearization giving rise
to efficient concentration of the posterior distribution which can be traced back to efficiency
properties of minimum distance estimation methods depending on the nature of the distance.

Remark 4.4. RKSB is the Bayesian analog of estimating θ as

θ̂ = arg min
η∈�

n∑
i=1

(Yi − fη,rn)
2.

Similarly, RKTB is the Bayesian analog of θ̂ = arg minη∈�

∫ 1
0 (f̂ (t)−fη,rn )

2g(t) dt , where f̂ (·)
stands for the nonparametric estimate of f based on B-splines. Arguments similar to ours should
be able to establish analogous convergence results for these estimators.

5. Simulation study

We consider the Lotka–Volterra equations to study the posterior distribution of θ . We consider
two cases. In case 1, the true regression function belongs to the solution set and in case 2 it does
not. Thus, we have p = 4, d = 2 and the ODE’s are given by

F1
(
t, fθ (t), θ

) = θ1f1θ (t) − θ2f1θ (t)f2θ (t),

F2
(
t, fθ (t), θ

) = −θ3f2θ (t) + θ4f1θ (t)f2θ (t), t ∈ [0,1],

with initial condition f1θ (0) = 1, f2θ (0) = 0.5. The above system is not analytically solvable.

Case 1 (well-specified case): The true regression function is f0(t) = (f1θ0(t), f2θ0(t))
T where

θ0 = (10,10,10,10)T .
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Table 1. Coverages and average lengths of the Bayesian credible intervals for the three methods in case of
well-specified regression model

RKSB RKTB TS

Coverage Length Coverage Length Coverage Length
n (se) (se) (se) (se) (se) (se)

100 θ1 100.0 2.25 100.0 2.17 100.0 6.93
(0.00) (0.29) (0.00) (0.65) (0.00) (4.95)

θ2 100.0 2.57 100.0 2.48 100.0 6.67
(0.00) (0.33) (0.00) (0.74) (0.00) (4.90)

θ3 99.9 2.50 100.0 2.44 100.0 7.12
(0.00) (0.34) (0.00) (1.44) (0.00) (4.92)

θ4 100.0 2.27 100.0 2.20 100.0 6.59
(0.00) (0.32) (0.00) (1.19) (0.00) (4.77)

500 θ1 100.0 0.75 99.4 0.56 99.2 1.09
(0.00) (0.06) (0.00) (0.02) (0.00) (0.05)

θ2 100.0 0.85 99.4 0.64 98.8 1.02
(0.00) (0.07) (0.00) (0.02) (0.00) (0.05)

θ3 100.0 0.82 99.3 0.61 99.0 1.16
(0.00) (0.07) (0.00) (0.02) (0.00) (0.05)

θ4 99.9 0.74 99.3 0.56 99.0 1.04
(0.00) (0.06) (0.00) (0.02) (0.00) (0.05)

Case 2 (misspecified case): The true regression function is f0(t) = (f1τ 0(t) + t2+t−c1
6 ,

f2τ 0(t) + t2+t−c2
6 )T where τ 0 = (10,10,10,10)T and c1 and c2 are chosen so that

∫ 1

0
f1τ 0(t)

(
t2 + t − c1

)=
∫ 1

0
f2τ 0(t)

(
t2 + t − c2

)= 0.

For a sample of size n, the Xi ’s are drawn from Uniform(0,1) distribution for i = 1, . . . , n.
Samples of sizes 100 and 500 are considered. We simulate 900 replications for each case. The
output are displayed in Tables 1 and 2, respectively. Under each replication, a sample of size
1000 is drawn from the posterior distribution of θ using RKSB, RKTB and Bayesian two-step [2]
methods and then 95% equal tailed credible intervals are obtained. For case 2, we do not consider
the Bayesian two-step method since there is no existing result on asymptotic efficiency under
misspecification of the regression function and hence it is not comparable with the numerical
solution based methods. The Bayesian two-step method is abbreviated as TS in Table 1. We
calculate the coverage and the average length of the corresponding credible intervals over these
900 replications. The estimated standard errors of the interval length and coverage are given
inside the parentheses in the tables.

The true distribution of error is taken N(0, (0.1)2). We put an inverse gamma prior on σ 2

with shape and scale parameters being 30 and 5, respectively. For RKSB, the prior for each θj is
chosen as independent Gaussian distribution with mean 6 and variance 16 for j = 1, . . . ,4. We
take n grid points to obtain the numerical solution of the ODE by RK4 for a sample of size n.
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Table 2. Coverages and average lengths of the Bayesian credible intervals for RKSB and RKTB in case of
misspecified regression model

RKSB RKTB

Coverage Length Coverage Length
n (se) (se) (se) (se)

100 θ1 99.4 2.32 100.0 2.21
(0.01) (0.31) (0.00) (0.83)

θ2 99.1 2.64 100.0 2.46
(0.01) (0.36) (0.00) (0.79)

θ3 99.4 2.78 100.0 2.7
(0.01) (0.46) (0.00) (1.73)

θ4 99.3 2.5 100.0 2.38
(0.01) (0.43) (0.00) (1.43)

500 θ1 98.8 0.89 99.3 0.56
(0.00) (0.07) (0.00) (0.02)

θ2 98.9 1 99.5 0.62
(0.00) (0.13) (0.00) (0.02)

θ3 99.0 1.05 99.2 0.66
(0.00) (0.09) (0.00) (0.03)

θ4 99.2 0.94 99.1 0.59
(0.00) (0.08) (0.00) (0.02)

According to the requirements of Theorem 4.2 of this paper and Theorem 1 of [2], we take m = 3
and m = 5 for RKTB and Bayesian two-step method, respectively. In both cases, we choose kn −
1 equispaced interior knots 1

kn
, 2

kn
, . . . , kn−1

kn
. This specific choice of knots satisfies the pseudo-

uniformity criteria (3.9) with M = 1. Looking at the order of kn suggested by Theorem 4.2, kn

is chosen in the order of n1/5 giving the values of kn as 13 and 18 for n = 100 and n = 500
respectively in RKTB. In Bayesian two-step method, the values of kn are 17 and 20 for n = 100
and n = 500, respectively by choosing kn in the order of n1/9 following the suggestion given
in Theorem 1 of [2]. In all the cases, the constant multiplier to the chosen asymptotic order is
selected through cross-validation.

We separately analyze the output given in Table 1 since it deals with asymptotic efficiency.
Not surprisingly the first two methods perform much better compared to the third one because
of asymptotic efficiency obtained from Corollaries 1 and 2, respectively. For RKSB, a single
replication took about one hour and four hours for samples of sizes 100 and 500, respectively.
For RKTB, these times are around one hour and two and half hours, respectively. In Bayesian
two-step method, each replication took about one and two minutes for n = 100 and 500, respec-
tively. Thus from the computational point of view Bayesian two-step method is preferable than
the numerical solution based approaches. We also show the trace plots of RKSB in Figures 1
and 2. We used 50 000 MCMC iterations with 2000 burn in and thinning of lag 48. It seems that
the mixing is reasonable and it should be possible to improve by running a longer chain at the
expense of more computing time.
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Figure 1. Trace plots of θ1, θ2, θ3 and θ4 in RKSB for n = 100.

We also consider another study for the well-specified case for true parameter θ0 = (5,5,5,5)T .
The output are given in Table 3 which shows that the coverages are robust with respect to the
choice of the true parameter vector.

6. Proofs

We use the operators E0(·) and Var0(·) to denote expectation and variance with respect to P0.

Proof of Theorem 4.1. From Lemma 1 below, we know that there exists a compact subset

U of (0,∞) such that 
n(σ
2 ∈ U |X,Y)

P0→ 1. Let 
U,n(·|X,Y) be the posterior distribution
conditioned on σ 2 ∈ U . By Theorem 2.1 of [17] if we can ensure that there exist stochastically
bounded random variables �n,γ0 and a positive definite matrix Vγ 0

such that for every compact
set K ⊂R

p+1,

sup
h∈K

∣∣∣∣log
p

(n)

γ 0+h/
√

n,n

p
(n)
γ 0,n

(X, Y ) − hT Vγ 0
�n,γ 0

+ 1

2
hT Vγ 0

h

∣∣∣∣→ 0, (6.1)
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Figure 2. Trace plots of θ1, θ2, θ3 and θ4 in RKSB for n = 500.

in (outer) P
(n)
0 probability and that for every sequence of constants Mn → ∞, we have

P
(n)
0 
U,n

(√
n‖γ − γ 0‖ > Mn|X, Y

)→ 0, (6.2)

then ∥∥
U,n

(√
n(γ − γ 0) ∈ ·|X, Y

)− N
(
�n,γ 0

,V−1
γ 0

)∥∥
TV = oP0(1).

We show that the conditions (6.1) and (6.2) hold in Lemmas 1 to 5. Lemma 2 gives that Vγ 0
=(

σ−2∗ Vθ0
0

0
σ−4∗ /2

)
with

Vθ0 =
∫ 1

0

(
ḟ T

θ0
(t)ḟθ0(t) − ∂

∂θ

(
ḟ T

θ (t)
(
f0(t) − fθ0(t)

))∣∣∣
θ=θ0

)
g(t) dt

and �n,γ 0
= V−1

γ 0
Gn	̇γ 0,n. Since ‖
n − 
U,n‖TV = oP0(1), we get

∥∥
n

(√
n(γ − γ 0) ∈ ·|X, Y

)− N
(
�n,γ 0

,V−1
γ 0

)∥∥
TV = oP0(1).

Hence, we get the desired result. �
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Table 3. Coverages and average lengths of the Bayesian credible intervals for the three methods in case of
well-specified regression model with θ0 = (5,5,5,5)T

RKSB RKTB TS

Coverage Length Coverage Length Coverage Length
n (se) (se) (se) (se) (se) (se)

100 θ1 100.0 1.16 100.0 1.01 100.0 6.24
(0.00) (0.1) (0.00) (0.14) (0.00) (5.44)

θ2 100.0 1.35 100.0 1.18 100.0 5.25
(0.00) (0.12) (0.00) (0.16) (0.00) (4.64)

θ3 100.0 1.96 100.0 1.82 100.0 4.98
(0.00) (0.22) (0.00) (0.66) (0.00) (4.35)

θ4 100.0 1.58 100.0 1.45 100.0 4.55
(0.00) (0.17) (0.00) (0.45) (0.00) (4.07)

500 θ1 100.0 0.36 99.0 0.26 99.8 0.77
(0.00) (0.02) (0.00) (0.01) (0.00) (0.04)

θ2 100.0 0.42 99.2 0.31 99.6 0.64
(0.00) (0.02) (0.00) (0.01) (0.00) (0.03)

θ3 100.0 0.6 99.2 0.44 99.4 0.64
(0.00) (0.04) (0.00) (0.02) (0.00) (0.03)

θ4 100.0 0.48 99.0 0.36 99.4 0.57
(0.00) (0.03) (0.00) (0.02) (0.00) (0.02)

Proof of Corollary 1. The log-likelihood of the correctly specified model with Gaussian error
is given by

	γ 0
(X,Y ) = − logσ0 − 1

2σ 2
0

∣∣Y − fθ0(X)
∣∣2 + logg(X).

Thus, ∂
∂θ0

	γ 0
(X,Y ) = σ−2

0 (ḟθ0(X))T (Y − fθ0(X)) and ∂

∂σ 2
0
	γ 0

(X,Y ) = − 1
2σ 2

0
+ 1

2σ 4
0
|Y −

fθ0(X)|2. Hence, the Fisher information is given by

I(γ 0) =
⎛
⎝σ−2

0

∫ 1

0
ḟ T

θ0
(t)ḟθ0(t)g(t) dt 0

0 σ−4
0 /2

⎞
⎠ .

Looking at the form of Vγ 0
in Theorem 4.1, we get V−1

γ 0
= (I(γ 0))

−1 if the regression function

is correctly specified and the true error distribution is N(0, σ 2
0 ). �

Proof of Theorem 4.2. We have for f (·) = βT N(·)

J−1
θ0

�(f ) =
∫ 1

0
C(t)βT N(t)g(t) dt = HT

n β, (6.3)
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where HT
n = ∫ 1

0 C(t)NT (t)g(t) dt which is a matrix of order p × (kn + m − 1). Consequently,
the asymptotic variance of the conditional posterior distribution of HT

n β is σ 2HT
n (XT

n Xn +
kn

n2 I)−1Hn. By Lemma 9 and the posterior consistency of the σ 2 given by Lemma 11, it suf-

fices to show that for any neighborhood N of σ 2
0 ,

sup
σ 2∈N

∥∥
∗
n

(√
nHT

n β − √
nJ−1

θ0
�(f0) ∈ ·|X,Y, σ 2)− N

(
μn, σ

2	n

)∥∥
TV = oP0(1). (6.4)

Note that 
(N c|X,Y) = oP0(1). It is straightforward to verify that the Kullback–Leibler diver-
gence between N((XT

n Xn)
−1XT

n Y, σ 2(XT
n Xn)

−1) and the distribution given by (3.11) converges
in P0-probability to zero uniformly over σ 2 ∈ N and hence, so is the total variation distance. By
linear transformation, (6.4) follows. Note that

sup
B∈Rp

∣∣
(√
n(θ − θ0) ∈ B|X,Y

)− �
(
B;μn, σ

2
0 	n

)∣∣

≤
∫

sup
B∈Rp

∣∣
(√
n(θ − θ0) ∈ B|X,Y, σ 2)− �

(
B;μn, σ

2	n

)∣∣d

(
σ 2|X,Y

)

+
∫

sup
B∈Rp

∣∣�(
B;μn, σ

2	n

)− �
(
B;μn, σ

2
0 	n

)∣∣d

(
σ 2|X,Y

)

≤ sup
σ 2∈N

sup
B∈Rp

∣∣
(√
n(θ − θ0) ∈ B|X,Y, σ 2)− �

(
B;μn, σ

2	n

)∣∣

+ sup
σ 2∈N ,B∈Rp

∣∣�(
B;μn, σ

2	n

)− �
(
B;μn, σ

2
0 	n

)∣∣+ 2

(
N c|X,Y

)
.

Using the fact that 	n is stochastically bounded given by Lemma 10, the total variation dis-
tance between the two normal distributions appearing in the second term of the above display
is bounded by a constant multiple of |σ 2 − σ 2

0 |, and hence can be made arbitrarily small by
choosing N accordingly. The first term converges in probability to zero by (6.4). The third term
converges in probability to zero by the posterior consistency. �

Proof of Corollary 2. The log-likelihood of the correctly specified model is given by

	θ0(X,Y ) = − logσ0 − 1

2σ 2
0

∣∣Y − fθ0(X)
∣∣2 + logg(X).

Thus 	̇θ0(X,Y ) = −σ−2
0 (ḟθ0(X))T (Y − fθ0(X)) and the Fisher information is given by

I(θ0) = σ−2
0

∫ 1
0 (ḟθ0(X))T ḟθ0(t)g(t) dt . In the proof of Lemma 10 we obtained that σ 2

0 	n
P0→

σ 2
0 J−1

θ0

∫ 1
0 (ḟθ0(t))

T ḟθ0(t)g(t) dtJ−1
θ0

. This limit is equal to (I(θ0))
−1 under the correct specifica-

tion of the regression function as well as the likelihood. �
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7. Proofs of technical lemmas

The first five lemmas in this section are related to RKSB. The rest are for RKTB. The first lemma
shows that the posterior of σ 2 lies inside a compact set with high probability.

Lemma 1. There exists a compact set U independent of θ and n such that 
n(σ
2 ∈ U |X,

Y)
P0→ 1.

Proof. Given θ , the conditional posterior of σ 2 is an inverse gamma distribution with shape and
scale parameters n/2+a and 2−1 ∑n

i=1(Yi −fθ (Xi))
2 +b, respectively. Clearly E(σ 2|X,Y, θ) =

n−1 ∑n
i=1(Yi − fθ (Xi))

2 + o(1) a.s. Hence, it is easy to show using the weak law of large num-
bers that the mean of the conditional posterior of σ 2 converges in P0-probability to σ 2

θ := σ 2
0 +∫ 1

0 (f0(t)−fθ (t))
2g(t) dt . Then it follows that for any ε > 0, 
n(σ

2 ∈ [σ 2
θ − ε, σ 2

θ + ε]|X,Y, θ)

converges in P0-probability to 1. Since � is compact and σ 2
θ is continuous in θ , there exists a

compact set U such that U ⊇ [σ 2
θ −ε, σ 2

θ +ε] for all θ . Now 
n(σ
2 /∈ U |X,Y) is bounded above

by
∫

�


n

(∣∣σ 2 − σ 2
θ

∣∣> ε|X,Y, θ
)
d
n(θ |X,Y)

≤ ε−2
∫

�

((
E
(
σ 2|X,Y, θ

)− σ 2
θ

)2 + Var
(
σ 2|X,Y, θ

))
d
n(θ |X,Y).

It suffices to prove that

sup
θ∈�

∣∣E(σ 2|X,Y, θ
)− σ 2

θ

∣∣= oP0(1) and sup
θ∈�

Var
(
σ 2|X,Y, θ

)= oP0(1).

Using the facts that θ �→ fθ (x) is Lipschitz continuous and other smoothness criteria of fθ (x)

and f0(x) and applying Theorem 19.4 and Example 19.7 of [25], it follows that {(Y − fθ (X))2 :
θ ∈ �} is P0-Glivenko–Cantelli and hence

sup
θ∈�

∣∣E(σ 2|X,Y, θ
)− E0

(
E
(
σ 2|X,Y, θ

))∣∣= oP0(1).

Also, it can be easily shown that the quantity supθ∈� |E0(E(σ 2|X,Y, θ)) − σ 2
θ | → 0 as n → ∞

since

E0
(
E
(
σ 2|X,Y, θ

)) = σ 2
0 +

∫ 1

0

(
f0(t) − fθ (t)

)2
g(t) dt

− 2(a − 1)(σ 2
0 + ∫ 1

0 (f0(t) − fθ (t))
2g(t) dt)

n + 2a − 2
+ 2b

n + 2a − 2

and the parameter space � is compact and the mapping θ �→ fθ (·) is continuous. This gives the
first assertion. To see the second assertion, observe that Var(σ 2|X,Y, θ) = O(n−1) a.s. by the
previous assertion and the fact that the conditional posterior of σ 2 given θ is inverse gamma. �
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In view of the previous lemma, we choose the parameter space for γ to be � × U from now
onwards. We show that the condition (6.1) holds by the following lemma.

Lemma 2. For the model induced by Runge–Kutta method as described in Section 3, we have

sup
h∈K

∣∣∣∣log

∏n
i=1 pγ 0+h/

√
n,n(Xi, Yi)∏n

i=1 pγ 0,n(Xi, Yi)
− hT Vγ 0

�n,γ0 + 1

2
hT Vγ0h

∣∣∣∣→ 0,

in (outer) P
(n)
0 -probability for every compact set K ⊂R

p+1, where

�n,γ 0
= V−1

γ 0
Gn	̇γ 0,n

and Vγ 0
= (σ−2∗ Vθ0

0
0

σ−4∗ /2

)
with

Vθ0 =
∫ 1

0

(
ḟ T

θ0
(t)ḟθ0(t) − ∂

∂θ

(
ḟ T

θ (t)
(
f0(t) − fθ0(t)

))∣∣∣
θ=θ0

)
g(t) dt.

Proof. Let G be an open neighborhood containing γ 0. For γ 1,γ 2 ∈ G, we have

∣∣log
(
pγ 1

(X1, Y1)/pγ 2
(X1, Y1)

)∣∣≤ m(X1, Y1)‖γ1 − γ2‖,
where m(X1, Y1) is

sup

{ |Y1 − fθ (X1)|
σ 2

∥∥ḟθ (X1)
∥∥+ (Y1 − fθ (X1))

2

2σ 4
+ 1

2σ 2
: (θ , σ 2) ∈ G

}
,

which is square integrable. Therefore, by Lemma 19.31 of [25], for any sequence {hn} bounded
in P0-probability,

Gn

(√
n(	γ 0+(hn/

√
n) − 	γ 0

) − hT
n �̇γ 0

)= oP0(1).

Using the laws of large numbers and (2.1), we find that

Gn

(√
n(	γ 0+(hn/

√
n) − 	γ 0

) − hT
n �̇γ 0

)−Gn

(√
n(	γ 0+(hn/

√
n),n − 	γ 0,n) − hT

n �̇γ 0,n

)

is OP0(
√

nr−4
n ) which is oP0(1) by the condition (3.3) on rn. Hence,

Gn

(√
n(	γ 0+(hn/

√
n),n − 	γ 0,n) − hT

n �̇γ 0,n

)= oP0(1).

We note that

−P0 log(pγ ,n/pγ 0,n)

= logσ − logσ∗ + 1

2σ 2

[
σ 2

0 +
∫ 1

0

∣∣f0(t) − fθ,rn (t)
∣∣2g(t) dt

]



3554 P. Bhaumik and S. Ghosal

− 1

2σ 2∗

[
σ 2

0 +
∫ 1

0

∣∣f0(t) − fθ0,rn(t)
∣∣2g(t) dt

]
(7.1)

= logσ − logσ∗ +
(

1

2σ 2
− 1

2σ 2∗

)[
σ 2

0 +
∫ 1

0

∣∣f0(t) − fθ ,rn(t)
∣∣2g(t) dt

]

+ 1

2σ 2∗

[
2
∫ 1

0

(
f0(t) − fθ0,rn(t)

)(
fθ0,rn(t) − fθ ,rn(t)

)
g(t) dt

+
∫ 1

0

∣∣fθ0,rn (t) − fθ ,rn(t)
∣∣2g(t) dt

]
.

Using (3.7), the last term inside the third bracket in (7.1) can be expanded as

(θ − θ0)
T Vθ0(θ − θ0) + O

(
r−4
n ‖θ − θ0‖

)+ o
(‖θ − θ0‖2),

where Vθ0 = ∫ 1
0 (ḟ T

θ0
(t)ḟθ0(t) − ∂

∂θ (ḟ T
θ (t)(f0(t) − fθ0(t)))|θ=θ0)g(t) dt . Also, writing σ 2∗ =

σ 2
0 + ∫ 1

0 |f0(t) − fθ0(t)|2g(t) dt and using (3.7), the first term in (7.1) is given by

−1

2
log

(
σ 2∗
σ 2

− 1 + 1

)
+ 1

2

(
σ 2∗
σ 2

− 1

)
+ O

(
r−4
n ‖γ − γ 0‖

)+ o
(‖γ − γ 0‖2)

= (σ 2 − σ 2∗ )2

4σ 4∗
+ O

(
r−4
n ‖γ − γ 0‖

)+ o
(‖γ − γ 0‖2).

Hence,

P0 log
pγ 0+hn/

√
n,n

pγ 0,n

+ 1

2n
hT

n Vγ 0
hn = o

(
n−1). (7.2)

We have already shown that

nPn log
pγ 0+hn/

√
n,n

pγ 0,n

−GnhT
n �̇γ 0,n − nP0 log

pγ 0+hn/
√

n,n

pγ 0,n

= oP0(1). (7.3)

Substituting (7.2) in (7.3), we get the desired result. �

Now our objective is to prove (6.2). We define the measure Qγ (A) = P0(pγ /pγ 0
1A) and the

corresponding density qγ = p0pγ /pγ 0
as given in [17]. Also, we define a measure Qγ ,n by

Qγ ,n(A) = P0(pγ ,n/pγ 0,n1A) with qγ ,n = p0pγ ,n/pγ 0,n. The misspecified Kullback–Leibler
neighborhood of γ 0 is defined as

B(ε,γ 0,P0) =
{
γ ∈ � × U : −P0 log

(
pγ ,n

pγ 0,n

)
≤ ε2,P0

(
log

(
pγ ,n

pγ 0,n

))2

≤ ε2
}
.
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By Theorem 3.1 of [17], condition (6.2) is satisfied if we can ensure that for every ε > 0, there
exists a sequence of tests {φn} such that

P
(n)
0 φn → 0, sup

{γ :‖γ−γ 0‖≥ε}
Q(n)

γ ,n(1 − φn) → 0. (7.4)

The above condition is ensured by the next lemma.

Lemma 3. Assume that γ 0 is a unique point of minimum of γ �→ −P0 logpγ . Then there exist
tests φn satisfying (7.4).

Proof. For given γ 1 �= γ 0 consider the tests φn,γ 1
= 1{Pn log(p0/qγ 1,n) < 0}. Note that

Pn log(p0/qγ 1,n) = Pn log(p0/qγ 1
) + OP0(r

−4
n )

P
(n)
0→ P0 log(p0/qγ 1

) and P0 log(p0/qγ 1
) =

P0 log(pγ 0
/pγ 1

) > 0 for γ 1 �= γ 0 by the definition of γ 0. Hence, P
(n)
0 φn,γ 1

→ 0 as n → ∞.
By Markov’s inequality we have that

Q(n)
γ ,n(1 − φn,γ 1

) = Q(n)
γ ,n

(
exp

{
snPn log(p0/qγ 1,n)

}
> 1

)
≤ Q(n)

γ ,n exp
{
snPn log(p0/qγ 1,n)

}
= (

Qγ ,n(p0/qγ 1,n)
s
)n = (

ρ(γ 1,γ , s) + O
(
r−4
n

))n
,

for ρ(γ 1,γ , s) = ∫
ps

0q
−s
γ 1

qγ dμ. By [16] the function s �→ ρ(γ 1,γ 1, s) converges to P0(qγ 1
>

0) = P0(pγ 1
> 0) as s ↑ 1 and has left derivative P0 log(

qγ 1
p0

)1{qγ 1
> 0} = P0 log(

pγ 1
pγ 0

)1{pγ 1
>

0} at s = 1. Then either P0(pγ 1
> 0) < 1 or P0(pγ 1

> 0) = 1 and P0 log(
pγ 1
pγ 0

)1{pγ 1
> 0} =

P0 log(
pγ 1
pγ 0

) < 0 or both. In either case it follows that there exists sγ 1
< 1 arbitrarily close to 1

such that ρ(γ 1,γ 1, sγ 1
) < 1. It is easy to show that the map γ �→ ρ(γ 1,γ , sγ 1

) is continuous
at γ 1 by the dominated convergence theorem. Therefore, for every γ 1, there exists an open
neighborhood Gγ 1

such that

uγ 1
= sup

γ∈Gγ 1

ρ(γ 1,γ , sγ 1
) < 1.

The set {γ ∈ �×U : ‖γ −γ 0‖ ≥ ε} is compact and hence can be covered with finitely many sets
of the type Gγ i

for i = 1, . . . , k. Let us define φn = maxi{φn,γ i
: i = 1, . . . , k}. This test satisfies

P
(n)
0 φn ≤∑k

i=1 P
(n)
0 φn,γ i

→ 0, and

Q(n)
γ ,n(1 − φn) ≤ max

i=1,...,k
Q(n)

γ ,n(1 − φn,γ i
) ≤ max

i=1,...,k

(
uγ i

+ O
(
r−4
n

))n → 0

uniformly in γ ∈⋃k
i=1 Gγ i

. Therefore, the tests φn meet (7.4). �

The proof of Theorem 3.1 of [17] also uses the results of the next two lemmas.
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Lemma 4. Suppose that P0�̇γ 0
�̇
T

γ 0
is invertible. Then for every sequence {Mn} such that Mn →

∞, there exists a sequence of tests {ωn} such that for some constant D > 0, ε > 0 and large
enough n,

P
(n)
0 ωn → 0, Q(n)

γ ,n(1 − ωn) ≤ e−nD(‖γ−γ 0‖2∧ε2),

for all γ ∈ � × U such that ‖γ − γ 0‖ ≥ Mn/
√

n.

Proof. Let {Mn} be given. We construct two sequences of tests. The first sequence is used to test
P0 versus {Qγ ,n : γ ∈ (� × U)1} with (� × U)1 = {γ ∈ � × U : Mn/

√
n ≤ ‖γ − γ 0‖ ≤ ε} and

the second to test P0 versus {Qγ ,n : γ ∈ (�×U)2} with (�×U)2 = {γ ∈ �×U : ‖γ −γ 0‖ > ε}.
These two sequences are combined to test P0 versus {Qγ ,n : ‖γ − γ 0‖ ≥ Mn/

√
n}.

To construct the first sequence, a constant L > 0 is chosen to truncate the score-function, that

is, �̇
L

γ0
= 0 if ‖�̇γ 0

‖ > L and �̇
L

γ 0
= �̇γ 0

otherwise. Similarly we define �̇
L

γ 0,n
. We define

ω1,n = 1
{∥∥(Pn − P0)�̇

L

γ 0,n

∥∥>
√

Mn/n
}
.

Since the function �̇γ 0
is square-integrable, we observe that the matrices P0�̇γ 0,n�̇

T

γ 0,n
,

P0�̇γ 0,n(�̇
L

γ 0,n)
T and P0�̇

L

γ 0,n
(�̇L)Tγ 0,n

can be made sufficiently close to each other for suffi-
ciently large choices of L and n. We fix such an L. Now,

P
(n)
0 ω1,n = P

(n)
0

(∥∥√n(Pn − P0)�̇
L

γ 0,n

∥∥2
> Mn

)

≤ P
(n)
0

(∥∥√n(Pn − P0)�̇
L

γ 0

∥∥2
> Mn/4

)

+ P
(n)
0

(∥∥√n(Pn − P0)
(
�̇
L

γ 0,n
− �̇

L

γ 0

)∥∥2
> Mn/4

)
.

The right-hand side of the above inequality converges to zero since both sequences inside the
brackets are stochastically bounded. The rest of the proof follows from the proof of Theorem 3.3
of [17] and Lemma 2. As far as Q

(n)
γ ,n(1 − ω1,n) for γ ∈ (� × U)1 is concerned, for all γ

Q(n)
γ ,n

(∥∥(Pn − P0)�̇
L

γ 0,n

∥∥≤√
Mn/n

)

= Q(n)
γ ,n

(
sup
v∈S

vT (Pn − P0)�̇
L

γ 0,n
≤√

Mn/n
)

≤ inf
v∈S

Q(n)
γ ,n

(
vT (Pn − P0)�̇

L

γ 0,n
≤√

Mn/n
)
,

where S is the unit sphere in R
p+1. Choosing v = (γ − γ 0)/‖γ − γ 0‖, the right-hand side of the

previous display can be bounded by

Q(n)
γ ,n

(
(γ − γ 0)

T (Pn − P0)�̇
L

γ 0,n
≤√

Mn/n‖γ − γ 0‖
)

= Q(n)
γ ,n

(
(γ 0 − γ )T (Pn − Q̃γ ,n)�̇

L

γ 0,n
≥ (γ − γ 0)

T (Q̃γ ,n − Q̃γ 0,n)�̇
L

γ 0,n

−√
Mn/n‖γ − γ 0‖

)
,
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where Q̃γ ,n = ‖Qγ ,n‖−1Qγ ,n and also note that P0 = Qγ 0,n = Q̃γ 0,n. It should be noted that

(γ − γ 0)
T (Q̃γ ,n − Q̃γ 0,n)�̇

L

γ 0,n

= (
P0(pγ ,n/pγ 0,n)

)−1
(γ − γ 0)

T
(
P0
(
(pγ ,n/pγ 0,n − 1)�̇

L

γ 0,n

)

+ (
1 − P0(pγ,n/pγ 0,n)

)
P0�̇

L

γ 0,n

)
.

By Lemma 3.4 of [17],

(
P0(pγ ,n/pγ 0,n − 1)

)= O
(‖γ − γ 0‖2)

as γ → γ 0. Using the differentiability of γ �→ log(pγ ,n/pγ 0,n) and Lemma 3.4 of [17], we see
that

P0

∥∥∥∥
(

pγ ,n

pγ 0,n

− 1 − (γ − γ 0)
T �̇γ 0,n

)
�̇
L

γ 0,n

∥∥∥∥
≤ P0

∥∥∥∥
(

pγ ,n

pγ 0,n

− 1 − log
pγ ,n

pγ 0,n

)
�̇
L

γ 0,n

∥∥∥∥ (7.5)

+ P0

∥∥∥∥
(

log
pγ,n

pγ0,n

− (γ − γ 0)
T �̇γ 0,n

)
�̇
L

γ 0,n

∥∥∥∥,
which is o(‖γ − γ 0‖). Also note that for all γ ∈ (� × U)1,

−‖γ − γ 0‖
√

Mn/n ≥ −‖γ − γ 0‖2(Mn)
−1/2.

Then we observe that for every δ > 0, there exist ε > 0, L > 0 and N ≥ 1 such that for all n ≥ N

and all γ ∈ (� × U)1,

(γ − γ 0)
T (Q̃γ ,n − Q̃γ 0,n)�̇

L

γ 0,n
−√

Mn/n‖γ − γ 0‖
≥ (γ − γ 0)

T P0
(
�̇γ0,n�̇

T

γ 0,n

)
(γ − γ 0) − δ‖γ − γ 0‖2.

Denoting �(γ ) = (γ − γ 0)
T P0(�̇γ0,n�̇

T

γ 0,n
)(γ − γ 0) and using the positive definiteness of

P0(�̇γ0,n�̇
T

γ 0,n
) for sufficiently large n, there exists a positive constant c such that −δ‖γ −γ 0‖2 ≥

−δ/c�(γ ). Also, there exists a constant r(δ) which depends only on P0(�̇γ0,n�̇
T

γ 0,n
) and has the

property that r(δ) → 1 if δ → 0. We can choose such an r(δ) to satisfy

Q(n)
γ ,n(1 − ω1,n) ≤ Q(n)

γ ,n

(
(γ 0 − γ )T (Pn − Q̃γ ,n)�̇

L

γ 0,n
≥ r(δ)�(γ )

)
,

for sufficiently small ε, sufficiently large L and n, making the type-II error bounded above by

the unnormalized tail probability Q
(n)
γ ,n(W̄n ≥ r(δ)�(γ )) where Wi = (γ −γ 0)

T (�̇
L

γ 0,n
(Xi, Yi)−
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Q̃γ ,n�̇
L

γ 0,n
), (1 ≤ i ≤ n). We note that Q̃γ ,nWi = 0 and Wi are independent. Also,

|Wi | ≤ ‖γ − γ 0‖
(∥∥�̇L

γ 0,n
(Xi,Yi )

∥∥+ ∥∥Q̃γ ,n�̇
L

γ 0,n

∥∥)≤ 2L
√

p + 1‖γ − γ 0‖.
Then we have

Var
Q̃γ ,n

Wi

= (γ − γ 0)
T
[
Q̃γ ,n

(
�̇
L

γ 0,n

(
	̇L
γ 0,n

)T )− Q̃γ ,n	̇
L
γ 0,n

Q̃γ ,n

(
	̇L
γ 0,n

)T ]
(γ − γ 0)

≤ (γ − γ 0)
T Q̃γ ,n

(
	̇L
γ 0,n

(
	̇L
γ 0,n

)T )
(γ − γ 0)

= (
P0(pγ ,n/pγ 0,n)

)−1
(γ − γ 0)

T P0
(
(pγ ,n/pγ 0,n − 1)�̇

L

γ 0,n

(
�̇
L

γ 0,n

)T )
(γ − γ 0)

+ (
P0(pγ ,n/pγ 0,n)

)−1
(γ − γ 0)

T P0
(
�̇
L

γ 0,n

(
�̇
L

γ 0,n

)T )
(γ − γ 0).

The first term on the right-hand side above is o(‖γ −γ 0‖2) by similar argument as in (7.5). Then
it follows that Var

Q̃γ ,n
Wi ≤ s(δ)�(γ ) for small enough ε and large enough L, where s(δ) → 1

as δ → 0 for i = 1, . . . , n. We apply Bernstein’s inequality to obtain

Q(n)
γ ,n(1 − ω1,n) = ‖Qγ ,n‖nQ̃(n)

γ ,n

(
W1 + · · · + Wn ≥ nr(δ)�(γ )

)

≤ ‖Qγ ,n‖n exp

(
−1

2

r2(δ)n�(γ )

s(δ) + 1.5L
√

p + 1‖γ − γ 0‖r(δ)
)

.

We can make the factor t (δ) = r2(δ)(s(δ) + 1.5L
√

p + 1‖γ − γ 0‖r(δ))−1 arbitrarily close to 1
for sufficiently small δ and ε. By Lemma 3.4 of [17], we have

‖Qγ ,n‖ = 1 + P0 log
pγ ,n

pγ 0,n

+ 1

2
P0

(
log

pγ ,n

pγ 0,n

)2

+ o
(‖γ − γ 0‖2)

≤ 1 + P0 log
pγ ,n

pγ 0,n

+ 1

2
(γ − γ 0)

T P0
(
�̇γ 0,n�̇

T

γ 0,n

)
(γ − γ 0) + o

(‖γ − γ 0‖2)

≤ 1 − 1

2
(γ − γ 0)

T Vγ 0
(γ − γ 0) + 1

2
u(δ)�(γ ),

for some constant u(δ) such that u(δ) → 1 as δ → 0 for large n. Using the inequality 1 + x ≤ ex

for all x ∈R, we have, for sufficiently small ‖γ − γ 0‖,

Q(n)
γ ,n(1 − ω1,n) ≤ exp

(
−n

2
(γ − γ 0)

T Vγ 0
(γ − γ 0) + n

2

(
u(δ) − t (δ)

)
�(γ )

)
.

Clearly, u(δ) − t (δ) → 0 as δ → 0 and �(γ ) is bounded above by a multiple of ‖γ − γ 0‖2.
Utilizing the positive definiteness of Vγ 0

, we conclude that there exists a constant C > 0 such
that for sufficiently large L and n and sufficiently small ε > 0,

Q(n)
γ ,n(1 − ω1,n) ≤ exp

(−Cn‖γ − γ 0‖2).



Efficient Bayesian estimation in ODE models 3559

By the assumption of the theorem, there exists a consistent sequence of tests for P0 versus Qγ ,n

for ‖γ − γ 0‖ > ε. Now by Lemma 3.3 of [17], there exists a sequence of tests {ω2,n}such that

P
(n)
0 (ω2,n) ≤ exp (−nC1), sup

‖γ−γ 0‖≥ε

Q(n)
γ ,n(1 − ω2,n) ≤ exp (−nC2).

We define a sequence {ψn} as ψn = ω1,n ∨ω2,n for all n ≥ 1, in which case P
(n)
0 ψn ≤ P

(n)
0 ω1,n +

P
(n)
0 ω2,n → 0 and

sup
γ∈�×U

Q(n)
γ ,n(1 − ψn) = sup

γ∈(�×U)1

Q(n)
γ ,n(1 − ψn) ∨ sup

γ∈(�×U)2

Q(n)
γ ,n(1 − ψn)

≤ sup
γ∈(�×U)1

Q(n)
γ ,n(1 − ω1,n) ∨ sup

γ∈(�×U)2

Q(n)
γ ,n(1 − ω2,n).

Combining the previous bounds, we get the desired result for a suitable choice of D > 0. �

Lemma 5. There exists a constant K > 0 such that the prior mass of the Kullback–Leibler
neighborhoods B(εn,γ 0,P0) satisfies 
(B(εn,γ 0,P0)) ≥ Kε

p
n , where εn � n−1/2.

Proof. From the proof of Lemma 2, we get

−P0 log(pγ ,n/pγ 0,n) = O
(‖γ − γ 0‖2)+ O

(‖γ − γ 0‖r−4
n

)≤ c1‖γ − γ 0‖2 + c2‖γ − γ 0‖εn

for sufficiently large n and positive constants c1 and c2. Again, P0(log(pγ ,n/pγ 0,n))
2 ≤ c3‖γ −

γ 0‖2 for some constant c3 > 0. Let c = min((2c1)
−1/2, (2c2)

−1, c
−1/2
3 ). Then {γ ∈ � × U :

‖γ − γ 0‖ ≤ cεn} ⊂ B(εn,γ 0,P0). Since the Lebesgue-density π of the prior is continuous and
strictly positive in γ 0, we see that there exists a δ′ > 0 such that for all 0 < δ ≤ δ′, 
(γ ∈ �×U :
‖γ − γ 0‖ ≤ δ) ≥ 1

2V π(γ 0)δ
p+1 > 0, V being the Lebesgue-volume of the (p + 1)-dimensional

ball of unit radius. Hence, for sufficiently large n, cεn ≤ δ′ and we obtain the desired result. �

The next lemma is used to estimate the bias of the Bayes estimator in RKTB.

Lemma 6. For m ≥ 2 and n1/(2m) � kn � n1/2,

sup
t∈[0,1]

∣∣E(f (t)|X,Y, σ 2)− f0(t)
∣∣2 = OP0

(
k2
n/n

)+ OP0

(
k1−2m
n

)
.

Proof. By (3.11),

E
(
f (t)|X,Y, σ 2)= (

N(t)
)T (XT

n Xn + knn
−2Ikn+m−1

)−1
XT

n Y. (7.6)

By Lemma 12 in the Appendix, we have uniformly over t ∈ [0,1],
(
N(t)

)T (XT
n Xn

)−1
N(t) 
 kn

n

(
1 + oP0(1)

)
. (7.7)
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Since f0 ∈ Cm, there exists a β∗ ([7], Theorem XII.4, page 178) such that

sup
t∈[0,1]

∣∣f0(t) − (
N(t)

)T
β∗∣∣= O

(
k−m
n

)
. (7.8)

We can bound supt∈[0,1] |E(f (t)|X,Y, σ 2) − f0(t)|2 up to a constant multiple by

sup
t∈[0,1]

∣∣E(f (t)|X,Y, σ 2)− (
N(t)

)T (XT
n Xn

)−1XT
n Y

∣∣2

+ sup
t∈[0,1]

∣∣(N(t)
)T (XT

n Xn

)−1
XT

n

(
Y − f0(x)

)∣∣2
(7.9)

+ sup
t∈[0,1]

∣∣(N(t)
)T (XT

n Xn

)−1
XT

n

(
f0(x) − Xnβ

∗)∣∣2

+ sup
t∈[0,1]

∣∣f0(t) − (
N(t)

)T
β∗∣∣2.

Using the Binomial Inverse theorem, the Cauchy–Schwarz inequality and (7.7), the first term of
(7.9) can be shown to be OP0(k

6
n/n8). The second term can be bounded up to a constant multiple

by

max
1≤k≤n

∣∣(N(sk)
)T (XT

n Xn

)−1
XT

n ε
∣∣2

(7.10)
+ sup

t,t ′:|t−t ′|≤n−1

∣∣(N(t) − N
(
t ′
))T (XT

n Xn

)−1
XT

n ε
∣∣2,

where sk = k/n for k = 1, . . . , n. Applying the mean value theorem to the second term of the
above sum, we can bound the expression by a constant multiple of

max
1≤k≤n

∣∣(N(sk)
)T (XT

n Xn

)−1
XT

n ε
∣∣2 + sup

t∈[0,1]
1

n2

∣∣(N(1)(t)
)T (XT

n Xn

)−1
XT

n ε
∣∣2.

By the spectral decomposition, we can write Xn(XT
n Xn)

−1
XT

n = PT DP, where P is an orthogonal
matrix and D is a diagonal matrix with kn +m−1 ones and n−kn −m+1 zeros in the diagonal.
Now using the Cauchy–Schwarz inequality, we get

max
1≤k≤n

∣∣(N(sk)
)T (XT

n Xn

)−1
XT

n ε
∣∣2

≤ max
1≤k≤n

{(
N(sk)

)T (XT
n Xn

)−1
N(sk)

}
εT PT DPε.

Note that Var0(Pε) = E0(Var(Pε|X)) + Var0(E(Pε|X)) = σ 2
0 Ikn+m−1. Hence, we get

E0(ε
T PT DPε) = σ 2

0 (kn + m − 1). In view of Lemma 12, we can conclude that the first term
of (7.10) is OP0(k

2
n/n). Again applying the Cauchy–Schwarz inequality, the second term of
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(7.10) is bounded by

sup
t∈[0,1]

{
1

n2

(
N(1)(t)

)T (XT
n Xn

)−1
N(1)(t)

}(
εT ε

)
,

which is OP0(n(k3
n/n3)) = OP0(k

3
n/n2), using Lemma 12. Thus, the second term of (7.9) is

OP0(k
2
n/n). Using the Cauchy–Schwarz inequality, (7.7) and (7.8), the third term of (7.9) is

OP0(k
1−2m
n ). The fourth term of (7.9) is of the order of k−2m

n as a result of (7.8). �

The following lemma controls posterior variability in RKTB.

Lemma 7. If m ≥ 2 and n1/(2m) � kn � n1/2, then for all ε > 0,


∗
n

(
sup

t∈[0,1]

∣∣f (t) − f0(t)
∣∣> ε|X,Y, σ 2

)
= oP0(1).

Proof. By Markov’s inequality and the fact that |a + b|2 ≤ 2(|a|2 + |b|2) for two real numbers
a and b, we can bound 
∗

n(supt∈[0,1] |f (t) − f0(t)| > ε|X,Y, σ 2) by

2ε−2
{

sup
t∈[0,1]

∣∣E(f (t)|X,Y, σ 2)− f0(t)
∣∣2

(7.11)
+ E

[
sup

t∈[0,1]
∣∣f (t) − E

(
f (t)|X,Y, σ 2)∣∣2|X,Y, σ 2

]}
.

By Lemma 6, the first term inside the bracket above is OP0(k
2
n/n) + OP0(k

1−2m
n ). For ε∗ :=

(XT
n Xn + knn

−2Ikn+m−1)
1/2

β − (XT
n Xn + knn

−2Ikn+m−1)
−1/2

XT
n Y, we have ε∗|X,Y, σ 2 ∼

N(0, σ 2Ikn+m−1). Writing

sup
t∈[0,1]

∣∣f (t) − E
[
f (t)|X,Y, σ 2]∣∣= sup

t∈[0,1]
∣∣(N(t)

)T (XT
n Xn + knn

−2Ikn+m−1
)−1/2

ε∗∣∣

and using the Cauchy–Schwarz inequality and Lemma 12, the second term inside the bracket in
(7.11) is seen to be OP0(k

2
n/n). By the assumed conditions on m and kn, the lemma follows. �

The next lemma proves the posterior consistency of θ using the results of Lemmas 6 and 7.

Lemma 8. If m ≥ 2 and n1/(2m) � kn � n1/2, then for all ε > 0, 
∗
n(‖θ − θ0‖ > ε|X,Y, σ 2) =

oP0(1).

Proof. By the triangle inequality,
∣∣Rf,n(η) − Rf0(η)

∣∣ ≤ ∥∥f (·) − f0(·)
∥∥

g
+ ∥∥fη,rn(·) − fη(·)

∥∥
g

≤ c′
1 sup

t∈[0,1]

∣∣f (t) − f0(t)
∣∣+ c′

2r
−4
n ,
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for appropriately chosen constants c′
1 and c′

2. For a sequence τn → 0, define

Tn =
{
f : sup

t∈[0,1]
∣∣f (t) − f0(t)

∣∣≤ τn

}
.

By Lemma 7, we can choose τn to satisfy 
(T c
n |X,Y, σ 2) = oP0(1). Hence for f ∈ Tn,

sup
η∈�

∣∣Rf,n(η) − Rf0(η)
∣∣≤ c′

1τn + c′
2r

−4
n = o(1).

Therefore, for any δ > 0, 
∗
n(supη∈� |Rf,n(η)−Rf0(η)| > δ|X,Y, σ 2) = oP0(1). By assumption

(3.12), for ‖θ − θ0‖ ≥ ε there exists a δ > 0 such that

δ < Rf0(θ) − Rf0(θ0)

≤ Rf0(θ) − Rf,n(θ) + Rf,n(θ0) − Rf0(θ0)

≤ 2 sup
η∈�

∣∣Rf,n(η) − Rf0(η)
∣∣,

since Rf,n(θ) ≤ Rf,n(θ0). Consequently,


∗
n

(‖θ − θ0‖ > ε|X,Y, σ 2)

≤ 
∗
n

(
sup
η∈�

∣∣Rf,n(η) − Rf0(η)
∣∣> δ/2|X,Y, σ 2

)

= oP0(1). �

In the following lemma, we approximate
√

n(θ − θ0) by a linear functional of f which is later
used in Theorem 4.2 to obtain the limiting posterior distribution of

√
n(θ − θ0).

Lemma 9. Let m be an integer greater than or equal to 2 and n1/(2m) � kn � n1/2. Then there
exists En ⊆ Cm((0,1))×� with 
(Ec

n|X,Y, σ 2) = oP0(1), such that uniformly for (f, θ) ∈ En,

∥∥√n(θ − θ0) − J−1
θ0

√
n
(
�(f ) − �(f0)

)∥∥�
√

nr−4
n , (7.12)

where �(z) = ∫ 1
0 (ḟθ0(t))

T z(t)g(t) dt .

Proof. By definitions of θ and θ0,

∫ 1

0

(
ḟθ,rn(t)

)T (
f (t) − fθ,rn(t)

)
g(t) dt = 0, (7.13)

∫ 1

0

(
ḟθ0(t)

)T (
f0(t) − fθ0(t)

)
g(t) dt = 0. (7.14)
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We can rewrite (7.13) as

∫ 1

0

(
ḟθ0(t)

)T (
f (t) − fθ (t)

)
g(t) dt +

∫ 1

0

(
ḟθ (t) − ḟθ0(t)

)T (
f (t) − fθ (t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t) − ḟθ (t)

)T (
f (t) − fθ (t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t)

)T (
fθ (t) − fθ,rn (t)

)
g(t) dt = 0.

Subtracting (7.14) from the above equation, we get

∫ 1

0

(
ḟθ0(t)

)T (
f (t) − f0(t)

)
g(t) dt −

∫ 1

0

(
ḟθ0(t)

)T (
fθ (t) − fθ0(t)

)
g(t) dt

+
∫ 1

0

(
ḟθ (t) − ḟθ0(t)

)T (
f (t) − fθ (t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t) − ḟθ (t)

)T (
f (t) − fθ (t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t)

)T (
fθ (t) − fθ ,rn(t)

)
g(t) dt = 0.

Replacing the difference between the values of a function at two different values of an argument
by the integral of the corresponding partial derivative, we get

M(f, θ)(θ − θ0)

=
∫ 1

0

(
ḟθ0(t)

)T (
f (t) − f0(t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t) − ḟθ (t)

)T (
f (t) − fθ (t)

)
g(t) dt

+
∫ 1

0

(
ḟθ,rn(t)

)T (
fθ (t) − fθ ,rn(t)

)
g(t) dt,

where M(f, θ) is given by

∫ 1

0

∫ 1

0

(
ḟθ0(t)

)T
ḟθ0+λ(θ−θ0)(t) dλg(t) dt

−
∫ 1

0

∫ 1

0
f̈θ0+λ(θ−θ0)(t)

(
f0(t) − fθ0(t)

)
dλg(t) dt

−
∫ 1

0

∫ 1

0
f̈θ0+λ(θ−θ0)(t)

(
fθ0(t) − fθ (t)

)
dλg(t) dt
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−
∫ 1

0

∫ 1

0
f̈θ0+λ(θ−θ0)(t)

(
f (t) − f0(t)

)
dλg(t) dt

−
∫ 1

0

∫ 1

0

(
ḟθ (t) − ḟθ0(t)

)T
ḟθ0+λ(θ−θ0)(t) dλg(t) dt.

For a sequence ε → 0, define

En =
{
(f, θ) : sup

t∈[0,1]
∣∣f (t) − f0(t)

∣∣≤ εn,‖θ − θ0‖ ≤ εn

}
.

By Lemmas 7 and 8, we can choose εn so that 
∗
n(E

c
n|X,Y, σ 2) = oP0(1). Then, M(f, θ) is

invertible and the eigenvalues of [M(f, θ)]−1 are bounded away from 0 and ∞ for sufficiently
large n and ‖(M(f, θ))−1 − J−1

θ0
‖ = o(1) for (f, θ) ∈ En. Using (2.1), on En

√
n(θ − θ0)

= (
J−1
θ0

+ o(1)
)(√

n

∫ 1

0

(
ḟθ0(t)

)T (
f (t) − f0(t)

)
g(t) dt + O

(√
nr−4

n

))
.

Note that
√

nJθ0(�(f ) − �(f0)) = √
nHT

n β − √
nJ−1

θ0
�(f0). It was shown in the proof of The-

orem 4.2 that for a given σ 2, the total variation distance between the posterior distribution of√
nHT

n β −√
nJ−1

θ0
�(f0) and N(μn, σ

2	n) converges in P0-probability to 0. By Lemma 10, both

μn and 	n are stochastically bounded. Thus the posterior distribution of J−1
θ0

√
n(�(f ) − �(f0))

assigns most of its mass inside a large compact set with high true probability. �

The next lemma describes the asymptotic behavior of the mean and variance of the limiting
normal distribution given by Theorem 4.2.

Lemma 10. The mean and variance of the limiting normal approximation given by Theorem 4.2
are stochastically bounded.

Proof. First, we study the asymptotic behavior of the matrix Var(μn|X) = 	n = nHT
n ×

(XT
n Xn)

−1Hn. If Ck(·) ∈ Cm∗
(0,1) for some 1 ≤ m∗ < m, then by equation (2) of [7], page 167,

we have for all k = 1, . . . , p,

sup
{∣∣Ck(t) − C̃k(t)

∣∣ : t ∈ [0,1]}= O
(
k−1
n

)
,

where C̃k(·) = αT
k N(·) and αT

k = (Ck(t
∗
1 ), . . . ,Ck(t

∗
kn+m−1)) with appropriately chosen t∗1 , . . . ,

t∗kn+m−1. We can write HT
n (XT

n Xn)
−1Hn as

(Hn − H̃n)
T
(
XT

n Xn

)−1
(Hn − H̃n) + H̃T

n

(
XT

n Xn

)−1H̃n

+ (Hn − H̃n)
T
(
XT

n Xn

)−1H̃n + H̃T
n

(
XT

n Xn

)−1
(Hn − H̃n),
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where the kth row of H̃T
n is given by

∫ 1
0 C̃k(t)(N(t))T g(t) dt for k = 1, . . . , p. Let us denote

A = (α1, . . . ,αp). Then

H̃T
n

(
XT

n Xn

)−1H̃n

= n−1AT

(∫ 1

0
N(t)NT (t)g(t) dt

)(
XT

n Xn

n

)−1(∫ 1

0
N(t)NT (t)g(t) dt

)
A.

We show that

AT

(∫ 1

0
N(t)NT (t)g(t) dt

)(
XT

n Xn

n

)−1(∫ 1

0
N(t)NT (t)g(t) dt

)
A

− AT

(∫ 1

0
N(t)NT (t)g(t) dt

)
A

converges in P0-probability to the null matrix of order p. For a l ∈ R
p , let c = (

∫ 1
0 N(t)NT (t) ×

g(t) dt)Al. Then we can write

lT AT

(∫ 1

0
N(t)NT (t)g(t) dt

)(
XT

n Xn

n

)−1(∫ 1

0
N(t)NT (t)g(t) dt

)
Al

as cT (
XT

n Xn

n
)−1c. Let us denote by Qn the empirical distribution function of X1, . . . ,Xn. Note

that

∣∣∣∣cT

(
XT

n Xn

n

)
c − cT

(∫ 1

0
N(t)NT (t)g(t) dt

)
c

∣∣∣∣
≤ sup

t∈[0,1]
∣∣Qn(t) − G(t)

∣∣cT c sup
t∈[0,1]

∥∥N(t)
∥∥2

= OP0

(
n−1/2)cT c

= OP0

(
n−1/2kn

)
cT

(∫ 1

0
N(t)NT (t)g(t) dt

)
c,

the third step following from Donsker’s theorem and the fact that

sup
t∈[0,1]

∥∥N(t)
∥∥2 ≤ 1.

In the last step we used the fact that the eigenvalues of the matrix
∫ 1

0 N(t)NT (t)g(t) dt are
O(k−1

n ) as proved in Lemma 6.1 of [29]. In that same lemma, it was also proved that the eigenval-
ues of the matrix (XT

n Xn/n) are OP0(k
−1
n ). Both these results are applied in the fourth step of the

next calculation. Using the fact that ‖R−1 − S−1‖ ≤ ‖S−1‖‖R − S‖‖S−1‖ for two nonsingular
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matrices R and S of the same order, we get

∣∣∣∣cT

(
XT

n Xn

n

)−1

c − cT

(∫ 1

0
N(t)NT (t)g(t) dt

)−1

c

∣∣∣∣
= OP0

(
n−1/2kn

)
cT

(
XT

n Xn

n

)−1

c

= OP0

(
n−1/2kn

)
lT AT

(∫ 1

0
N(t)NT (t)g(t) dt

)(
XT

n Xn

n

)−1

×
(∫ 1

0
N(t)NT (t)g(t) dt

)
Al

= OP0

(
n−1/2kn

)
k−1
n lT AT Al = oP0(1).

Now note that the (i, j)th element of the p × p matrix AT (
∫ 1

0 N(t)NT (t)g(t) dt)A is given by∫ 1
0 C̃i(t)C̃j (t)g(t) dt , which converges to

∫ 1
0 Ci(t)Cj (t)g(t) dt , the (i, j)th element of the matrix∫ 1

0 C(t)CT (t)g(t) dt which is J−1
θ0

∫ 1
0 (ḟθ0(t))

T ḟθ0(t)g(t) dt (J−1
θ0

)T . Let us denote by 1kn+m−1

the (kn + m − 1)-component vector with all elements 1. Then for k = 1, . . . , p, the kth diagonal
entry of the matrix (Hn − H̃n)

T (XT
n Xn)

−1(Hn − H̃n) is given by

∫ 1

0

(
Ck(t) − C̃k(t)

)(
N(t)

)T
g(t) dt

(
XT

n Xn

)−1
∫ 1

0

(
Ck(t) − C̃k(t)

)(
N(t)

)
g(t) dt

= 1

n

∫ 1

0

(
Ck(t) − C̃k(t)

)(
N(t)

)T
g(t) dt

(
XT

n Xn/n
)−1

×
∫ 1

0

(
Ck(t) − C̃k(t)

)
N(t)g(t) dt


 kn

n

∫ 1

0

(
Ck(t) − C̃k(t)

)(
N(t)

)T
g(t) dt

×
∫ 1

0

(
Ck(t) − C̃k(t)

)
N(t)g(t) dt

� 1

nkn

,

the last step following by the application of the Cauchy–Schwarz inequality and the facts that
sup{|Ck(t) − C̃k(t)| : t ∈ [0,1]} = O(k−1

n ) and
∫ 1

0 ‖N(t)‖2 dt ≤ 1. Thus, the eigenvalues of

(Hn − H̃n)
T (XT

n Xn)
−1(Hn − H̃n) are of the order (nkn)

−1 or less. Hence,

nHT
n

(
XT

n Xn

)−1Hn
P0→ J−1

θ0

∫ 1

0

(
ḟθ0(t)

)T
ḟθ0(t)g(t) dt

(
J−1
θ0

)T
.
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Thus, the eigenvalues of 	n are stochastically bounded. Now note that

E(μn|X) = √
nHT

n

(
XT

n Xn

)−1XT
n f0(X) − √

nJ−1
θ0

�(f0)

= √
nHT

n

(
XT

n Xn

)−1XT
n

(
f0(X) − Xnβ

∗)

+ √
n

∫ 1

0
C(t)

(
NT (t)β∗ − f0(t)

)
g(t) dt.

Using the Cauchy–Schwarz inequality and (7.8), we get

∥∥E(μn|X)
∥∥ �

√
nmaxeig

(
HT

n

(
XT

n Xn

)−1Hn

)1/2√
nk−m

n + √
nk−m

n

= OP0

(√
nk−m

n

)= oP0(1).

Thus, Zn := ‖E(μn|X)‖2 + maxeig(Var(μn|X)) is stochastically bounded. Given M > 0, there
exists L > 0 such that supn P0(Zn > L) < M−2. Hence for all n, P0(‖μn‖ > M) is bounded
above by M−2E0[E(‖μn‖2|X)1{Zn ≤ L}] + P0(Zn > L) which is less than or equal to (L +
1)/M2. Hence, μn is stochastically bounded. �

In the next lemma, we establish the posterior consistency of σ 2.

Lemma 11. For all ε > 0, we have 
∗
n(|σ 2 − σ 2

0 | > ε|X,Y) = oP0(1).

Proof. The joint density of Y, β and σ 2 is proportional to

σ−n exp

{
− 1

2σ 2
(Y − Xnβ)T (Y − Xnβ)

}

× σ−kn−m+1 exp

{
− 1

2n2k−1
n σ 2

βT β

}
exp

(
− b

σ 2

)(
σ 2)−a−1

,

which implies that the posterior distribution of σ 2 is inverse gamma with shape parameter n/2+a

and scale parameter

1

2

{
YT Y − YT Xn

(
XT

n Xn + knn
−2Ikn+m−1

)−1XT
n Y

}+ b.

Hence, the posterior mean of σ 2 is given by

E
(
σ 2|X,Y

)=
1
2 {YT Y − YT Xn(XT

n Xn + knn
−2Ikn+m−1)

−1XT
n Y} + b

n/2 + a − 1
,

which behaves like the n−1(YT Y − YT Xn(XT
n Xn + knn

−2Ikn+m−1)
−1XT

n Y) asymptotically.
The later can be written as

n−1(YT (In − PXn
)Y + YT

(
PXn

− Xn

(
XT

n Xn + knn
−2Ikn+m−1

)−1XT
n

)
Y
)
,



3568 P. Bhaumik and S. Ghosal

where PXn
= Xn(XT

n Xn)
−1XT

n . We will show that n−1YT (In − PXn
)Y

P0→ σ 2
0 and n−1YT (PXn

−
Xn(XT

n Xn+knn
−2Ikn+m−1)

−1XT
n )Y = oP0(1) and hence E(σ 2|X,Y)

P0→ σ 2
0 . Using Y = f0(X)+

ε, we note that

YT (In − PXn
)Y = εT (In − PXn

)ε + f0(X)T (In − PXn
)f0(X)

+ 2εT (In − PXn
)f0(X).

We show that εT (In − PXn
)ε/n

P0→ σ 2
0 , n−1f0(X)T (In − PXn

)f0(X) = oP0(1) and n−1εT (In −
PXn

)f0(X) = oP0(1). Now, E0(ε
T (In − PXn

)ε/n) → σ 2
0 as n → ∞. Also,

Var0
(
εT (In − PXn

)ε/n
) = n−2(E0 Var

(
εT (In − PXn

)ε|X)
+ Var0 E

(
εT (In − PXn

)ε|X)).
Now

Var
(
εT (In − PXn

)ε|X) = (
μ4 − σ 2

0

)
(n − kn − m + 1)

E
(
εT (In − PXn

)ε|X) = σ 2
0 (n − kn − m + 1),

μ4 being the fourth order central moment of εi for i = 1, . . . , n. Hence,

Var0
(
εT (In − PXn

)ε/n
)→ 0 as n → ∞.

Thus, εT (In − PXn
)ε/n

P0→ σ 2
0 . We can write for β∗ satisfying (7.8)

f0(X)T (In − PXn
)f0(X) = (

f0(X) − Xnβ
∗)T (In − PXn

)
(
f0(X) − Xnβ

∗)
� nk−2m

n ,

since (In − PXn
)Xn = 0. Using the Cauchy–Schwarz inequality, we get

∣∣n−1εT (In − PXn
)f0(X)

∣∣ = ∣∣n−1εT (In − PXn
)
(
f0(X) − Xnβ

∗)∣∣
≤
√

εT ε/nk−m
n = oP0(1).

By the Binomial Inverse theorem,

PXn
− Xn

(
XT

n Xn + knn
−2Ikn+m−1

)−1XT
n = knn

−2Xn

(
XT

n Xn

)−1

×
(

Ikn+m−1 + (
XT

n Xn

)−1 kn

n2

)−1

× (
XT

n Xn

)−1XT
n
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whose eigenvalues are of the order knn
−2nk−1

n k2
nn

−2 = k2
nn

−3. Hence, the random vari-
able YT (PXn

− Xn(XT
n Xn + knn

−2Ikn+m−1)
−1XT

n )Y/n converges in P0-probability to 0 and

E(σ 2|X,Y)
P0→ σ 2

0 . Also,

Var
(
σ 2|X,Y

)= (
E
(
σ 2|X,Y

))2
/(n/2 + a − 2) = oP0(1).

By using the Markov’s inequality, we finally get 
∗
n(|σ 2 − σ 2

0 | > ε|X,Y) = oP0(1) for all
ε > 0. �

Appendix

The following result was used to prove Lemmas 6, 7and 10.

Lemma 12. For any 0 ≤ r ≤ m − 2, there exist constants Lmax > Lmin > 0 such that uniformly
in t ∈ [0,1],

Lminσ
2k2r+1

n

n

(
1 + oP0(1)

)≤ (
N(r)(t)

)T (XT
n Xn

)−1N(r)(t) ≤ Lmaxσ
2k2r+1

n

n

(
1 + oP0(1)

)
.

The proof is implicit in Lemma 5.4 of [30].
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