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In this paper, we consider a semiparametric promotion time cure model and study the asymptotic properties
of its nonparametric maximum likelihood estimator (NPMLE). First, by relying on a profile likelihood
approach, we show that the NPMLE may be computed by a single maximization over a set whose dimension
equals the dimension of the covariates plus one. Next, using Z-estimation theory for semiparametric models,
we derive the asymptotics of both the parametric and nonparametric components of the model and show
their efficiency. We also express the asymptotic variance of the estimator of the parametric component.
Since the variance is difficult to estimate, we develop a weighted bootstrap procedure that allows for a
consistent approximation of the asymptotic law of the estimators. As in the Cox model, it turns out that
suitable tools are the martingale theory for counting processes and the infinite dimensional Z-estimation
theory. Finally, by means of simulations, we show the accuracy of the bootstrap approximation.

Keywords: asymptotic inference; bootstrap; Cox model; promotion time cure model; semiparametric
efficiency

1. Introduction

In traditional survival analysis, it is assumed that all subjects will eventually experience the event
of interest. Hence, the survival function of the population will reach zero at infinity. However,
there are various situations in practice where this assumption is not met. Consider for example,
the situation where one is interested in the time until someone dies or experiences a relapse from
a certain disease. Some people will get cured from the disease and so they will never die due to
that disease and they will never experience a relapse. The survival function will in that case tend
to the proportion of cured individuals. When covariates are present, a number of models have
been proposed in the literature that take this special feature into account. They can be broadly
classified into two groups: mixture cure models and promotion time cure models. In this paper,
we focus on a semiparametric promotion time cure model, which is an extension of the famous
Cox model (see [7]) to the presence of cured subjects. The model has been proposed by [34], and
has been further studied by [5,13,26–29,35], among many others. We give a formal definition of
this model in the next section.

The goal of this paper is to study various aspects of this model in a thorough and mathemat-
ically rigorous way. Although there is an ever expanding literature on this type of models, we
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respectfully believe that a rigorous theoretical study of this model is still missing in the literature.
The paper by [35] is a serious attempt to fill this gap. However, the way they calculate the non-
parametric maximum likelihood estimator (NPMLE) of the vector of regression coefficients is
unnecessarily complicated. This has an important impact on the computation time of the NPMLE
as well as on the development of asymptotic properties of this estimator. Moreover, the estima-
tion of the variance of the estimator lacks clarity, and alternative methods to do inference (based
on for example, bootstrap, empirical likelihood or other inferential procedures) are not studied.
Finally, efficiency is only shown to hold true for the estimator of the parametric component of
the model.

In this paper, we first show that the NPMLE of the vector of regression coefficients can be
computed by maximizing a certain criterion function over a set of dimension d + 1, where d is
the dimension of the covariates. This is an important improvement with respect to the paper by
[35], who obtain the same NPMLE after maximizing an objective function over a (m + d + 1)-
dimensional space, where m is the number of uncensored observations, which increases as the
sample size increases, and can be very large in practice.

Next, this new way of expressing the NPMLE of the vector or regression coefficients of-
fers other important advantages. We show the weak consistency and weak convergence of the
NPMLE and calculate its asymptotic variance, which has a much simpler expression than in
[35], and even more importantly, the formula of the asymptotic variance of the parametric part
is completely explicit. Finally, another important contribution of the paper is that we show the
efficiency of the NPMLE of both the parametric and the nonparametric components of the model
(not just the Euclidean parameter as in [35]), by making use of the results in the books by [3,31]
and [14] on semiparametric efficiency theory.

Although the asymptotic variance of the estimator of regression coefficients has an explicit
formula, it is difficult to estimate it in practice. We therefore propose a bootstrap approach to es-
timate the variance or even the whole distribution of the estimator. We propose a general weighted
bootstrap procedure, as developed in [23] and [33]. The weighted bootstrap offers important ad-
vantages over Efron’s classical bootstrap for censored data, since the former leads to less ties
than the latter (see, e.g., [6]). A slightly more restrictive bootstrap procedure has been studied in
[15] in the context of proportional hazards frailty models.

For showing the weak consistency and weak convergence of the NPMLE and the consistency
of the proposed bootstrap procedure, we make use of the theory of empirical processes (see [32]),
which is an excellent tool for dealing with the asymptotics of Z-estimators like the NPMLE, and
of the theory of martingales and related concepts (see [12]). For similar results in related models,
see, for example, [20] and [15] for frailty models, [21] for proportional odds models, [10] for the
Cox model with missing covariates, and [17] for mixture cure models.

The paper is organized as follows. In the next section, we introduce the model and explain
what type of data we have at hand. We also discuss several aspects related to the model, like
the definition of a cure threshold, the likelihood under the model and the identifiability of the
model. Section 3 deals with the estimation of the parametric and nonparametric component of
the model. In Section 4, the efficient score function and the associated information bound for
the vector of regression coefficients are obtained. The asymptotic properties of the proposed es-
timators are studied in Section 5. In particular, the consistency, weak convergence and efficiency
of the estimators of the parametric and nonparametric components of the model are proved. In
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Section 6, it is explained how to do inference using a bootstrap approach, and it is shown that
the proposed bootstrap procedure is consistent. The finite sample behavior of the proposed es-
timators is studied in Section 7 through a simulation study. In particular, we study the accuracy
of the bootstrap approximation. Section 8 contains the proofs of the main results, whereas some
auxiliary results needed for the main asymptotic results are collected in Appendix.

2. The model

Let (T ,X) denote a random vector where T ∈ R
+ is a survival time and X = (1,ZT )T ∈ R

d

contains covariates Z distributed according to some probability density function. The promotion
time cure model assumes that the conditional survival function of T given X = x has the form

S0(t |x) = exp
(−η

(
βT

0 x
)
�0(t)

)
, (1)

where η : R → R
+, β0 ∈ R

d is the vector of regression coefficients and �0 is an improper (i.e.,
bounded) continuous cumulative hazard function with �0(0) = 0. The parameter β0 synthesises
the effect of the covariates on the response and the non-parametric part �0 models the influence
of the time. Clearly the effect of the intercept in β0 overlaps with the effect of the limiting value
of �0. We avoid identifiability issues by fixing arbitrarily that �0(+∞) := limt→+∞ �0(t) = 1.
Moreover, we assume that β0 lies in the compact set B ⊂ R

d and that �0 is absolutely continu-
ous. Therefore, we define the model

P = {
(x, t) �→ Sβ,�(t |x) = exp

(−η
(
βT x

)
�(t)

) : (β,�) ∈ �̃
}
,

where �̃ = B × (F ∩C), F is the space of cumulative distribution functions and C is the space of
absolutely continuous functions. Since Sβ,�(+∞|x) > 0, this model naturally allows to handle
situations where the event T = +∞ occurs with positive probability. This arises in survival
analysis when some individuals, called cured, never experience the event of interest. See, for
example, [5] for a biological interpretation of the promotion time cure model.

2.1. Censoring and cure thresholding

Equation (1) is very similar to the equation of the well-known Cox model. In fact, when η =
exp, (1) becomes the Cox model except that, for the latter, �0 is a proper cumulative hazard
function, that is, �0(+∞) = +∞. Because of identifiability issues, β0 does not have an intercept
in the Cox model whereas in the promotion time cure model the intercept is required for more
flexibility. As a consequence, the partial likelihood of model P is no longer equal to the marginal
likelihood (see [27], Section 4). For this reason, our estimation method will not rely on the
marginal likelihood.

In this paper, we consider model P with censored data and more specifically we focus on right
censoring. That is, there exists a random variable C ∈ R

+, called the censoring time, such that we
only observe Y = min(T ,C) and δ = 1{T ≤C}, where the random variable δ informs us whether
the failure time is observed or not. From now on, we require that T and C are conditionally
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independent given X and that the censoring mechanism is non-informative (see, for example,
[25] for details). These are usual assumptions in survival analysis and they are necessary for the
identifiability of the model. Unlike [35], we allow the censoring time C to be finite. This is a
natural setting since in practice censoring typically results from the non-occurrence of the event
of interest before the end of the trial or from loss to follow-up. Unfortunately, without any addi-
tional information, this implies that none of the cured subjects is observable. As a consequence,
� in model P cannot be estimated nonparametrically. In order for model P to be identifiable in
(β,�), following [35], we need to introduce a threshold value τ such that any censored observa-
tion beyond τ is treated as cured (T = +∞). This threshold τ should be larger than the largest
uncensored observation and is called the cure threshold. Concerning the parameters of the model,
it implies that �0 is flat after τ . As it is common practice in the field, the value of the threshold
is assumed to be known. In clinical trials for instance, it is often provided by the physician.

2.2. Identifiability

Let P be the probability measure associated with (Y, δ,X) and denote by ∂yf the partial deriva-
tive of a function f with respect to the argument y. According to the values of (Y, δ), there are
three types of individuals and each of them has the following contribution into the likelihood:
(1) uncensored uncured subject (δ = 1, Y = y) with contribution ∂yP (T ≤ y,T ≤ C|X = x),
(2) censored uncured subject (δ = 0, Y = y ≤ τ ) with contribution ∂yP (C ≤ y,C < T |X = x),
and (3) censored cured subject (δ = 0, Y = y > τ ) with contribution P(Y > τ |X = x). Under the
assumptions stated above, the likelihood function Likβ,� of model P is given by

Likβ,�(Y, δ,X) = (
η
(
βT X

)
�′(Y )Sβ,�(Y |X)

)δ × Sβ,�(Y |X)(1−δ)	 × Sβ,�(+∞|X)(1−δ)(1−	),

where 	 = 1{Y≤τ }. We say that model P is identifiable if any distribution in P is uniquely
characterized by some (β,�). The identifiability is necessary to guarantee the consistency of the
MLE. In particular, it implies that the true parameters are the unique maximizers of the expected
likelihood (see Lemma 5.35 in [31]). We have the following proposition.

Proposition 1. Under censoring and under assumptions (A1)(i), (A2)(i) and (A3) given in Sec-
tion 5, model P is identifiable.

The proof of this result and of all upcoming theorems are provided in Section 8.

3. Estimation

We observe n independent copies of W = (Y, δ,X) drawn from model P which is assumed to be
identifiable. The elements of the sample are denoted by Wi = (Yi, δi,Xi), for i = 1, . . . , n, and
the support of W is W . For any measurable function f : W → R, we denote

∫
f (u)dP (u) by

Pf and
∫

f (u)dPn(u) by Pnf , where Pn = n−1 ∑n
i=1 δWi

is the empirical measure associated
to the observations of the sample. We define the metric ρ(f,g) = √

P(f − g)2 and we denote
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by Gn = √
n(Pn − P) the so-called empirical process. We also introduce the notation �∞(W)

for the space of bounded functions f from W to R, endowed with the supremum norm ‖f ‖W =
supx∈W |f (x)|. The Euclidean norm is denoted by | · |2 and the total variation norm by | · |tv.

In what follows, all the convergences, in probability or in distribution (denoted by
P→ and ⇒

respectively), are stated with respect to the outer expectation (see the introduction of [32] for
details).

3.1. Definition of the NPMLE

The maximum likelihood estimator (MLE) of model P is the maximizer of
∏n

i=1 Likβ,�(Wi)

over (β,�) ∈ �̃. For any (β,�) such that, for some δi = 1, �′(Yi) = +∞, the maximand func-
tion equals +∞. Therefore, the MLE does not exist. Following [22], we can circumvent this
problem by, on the one hand, extending the parameter set to discrete cumulative distribution
functions, and, on the other hand, modifying slightly the maximand to account for the discrete-
ness of �. This leads to the NPMLE, formally defined by

(β̂, �̂) = argmax
β∈B,�∈F

n∏
i=1

Lβ,�(Yi, δi ,Xi),

where

Lβ,�(Y, δ,X) = (
η
(
βT X

)
�{Y } exp

(−η
(
βT X

)
�(Y)

))δ exp
(−	(1 − δ)η

(
βT X

)
�(Y)

)
× exp

(−(1 − 	)(1 − δ)η
(
βT X

))
,

with �{y} = �(y) − limt→y− �(t) the size of the jump of � at y. Passing to the logarithmic
scale, since an uncensored observed time necessarily lies below τ , that is, δ	 = δ, the above
optimisation is equivalent to

(β̂, �̂) = argmax
β∈B,�∈F

Pnlβ,�, (2)

where lβ,�(Y, δ,X) = δ log(�{Y }) + δ log(η(βT X)) − 	η(βT X)�(Y ) − (1 − 	)η(βT X) ×
�(+∞). Let

ru,β(Y,X) = η
(
βT X

)(
	1{Y≥u} + (1 − 	)

)
,

dβ(X) = Xη′(βT X
)
/η

(
βT X

)
.

By differentiating lβ,� with respect to β , we define B1(β,�), the score operator for β , by

B1(β,�)[a] = (
dβ(X)T a

)(
δ −

∫
ru,β(Y,X)d�(u)

)
, (3)

for every a ∈ R
d , where we use

∫
as a shortcut for

∫ +∞
0 . Following [22], for every s > 0 and

every bounded function h, we consider the one-dimensional submodel Sβ,�s , with �s defined
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by d�s = (1 + sh)d�. For every y ∈ R
+ we have ∂s�s(y)|s=0 = ∫ y

0 h(u)d�(u), and if more-
over �{y} > 0, then ∂s log�s{y}|s=0 = h(y). Hence, by differentiating lβ,�s at s = 0, we define
B2(β,�), the score operator for �, by

B2(β,�)[h] = δh(Y ) −
∫

ru,β(Y,X)h(u)d�(u), (4)

for every bounded function h. Note that our estimator is the same as the one introduced in [27]
and studied in [18]. The existence of (β̂, �̂) can be shown by noticing the following two facts.
First, Pnlβ,� equals minus infinity if � does not jump at one of the uncensored observations.
Second, an increase of � outside the set of finite observed survival times always reduces the
value of the preceding or forthcoming jump and so the value of the likelihood. As a consequence,
�̂ is a step-function with a finite number m = ∑n

i=1 δi of bounded jumps that sum up to one.
Thus, (β̂, �̂) maximizes a continuous function over the compact set B × [0,1]m−1.

3.2. Computation of the NPMLE

In this section, we describe a new way to compute (β̂, �̂) defined by (2). Unlike the proce-
dures available in the literature, see, for example, [35] or [18], our approach follows from an
optimization over the Euclidean set of dimension d + 1. It works as follows. We begin by pro-
filing out the “nuisance parameter” �. More precisely, for every β , we obtain an explicit for-
mula for �̂β = argmax�∈FPnlβ,�. Next, by some easy calculations, we get a simple formula for
β̂ = argmaxβ∈BPnlβ,�̂β

. Finally, we plug-in the latter into the formula of �β to get �̂ = �̂
β̂

,

and so (β̂, �̂) is the maximizer of (2). Such a procedure is not new in survival analysis. In fact, a
similar idea was applied for the Breslow estimator in the Cox model, see [4] and [19], and for the
proportional hazards frailty model, see [15]. More about profile likelihood can be found in [31].

Since the maximizer �̂ belongs to the space F , the NPMLE must be profiled paying a special
attention to the constraint g(�) := limy→+∞ �(y) = 1. This is done by considering a Lagrange
procedure, for which the score equation associated to � is given by

PnB2(β,�)[h] − λ

∫
h(u)d�(u) = 0,

for every bounded function h. The second term above is precisely equal to the Lagrange mul-
tiplier λ ∈ R times the derivative of the constraint g along the submodel associated to s �→ �s .
Putting Ni(y) = δi1{Yi≤y} and N(y) = n−1 ∑n

i=1 Ni(y), the latter equality can be written as∫
h(u)dN(u) =

∫
(Pnru,β − λ)h(u)d�(u).

Taking h(u) = 1{u≤y}
Pnru,β−λ

, we know that the solution of the above equation is given by

�̂β(y) =
∫ y

0

dN(u)

R̂β(u) − λ
, with R̂β(u) = Pnru,β = n−1

n∑
i=1

ru,β(Yi,Xi),
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where λ satisfies �̂β(+∞) = ∫
dN(u)

R̂β (u)−λ
= 1, or equivalently,

n−1
n∑

i=1

δi

R̂β(Yi) − λ
= 1. (5)

Let R̂β = mini:δi=1 R̂β(Yi). Among the m solutions of this equation, only (the smallest) one, say
λ̂β , leads to an (increasing) cumulative distribution. Consequently, we define λ̂β as the smallest
solution of the previous equation. Note in particular that λ̂β belongs to [R̂β − n−1m, R̂β − n−1).
Injecting �̂β in the likelihood gives

β̂ = argmax
β∈B

{
n∏

i=1

(
η(βT Xi)

R̂β(Yi) − λ̂β

)δi

}

× exp

(
−

n∑
i=1

η
(
βT Xi

)(
	i�̂β(Yi) + (1 − 	i)

))
.

Using (5), since R̂β(u) = Pnru,β , the sum on the right-hand side of the latter equation equals

n∑
i=1

η
(
βT Xi

)(
	i�̂β(Yi) + (1 − 	i)

)
= n−1

n∑
i=1

n∑
j=1

δj

R̂β(Yj ) − λ̂β

(
η
(
βT Xi

)(
	i1{Yj ≤Yi } + (1 − 	i)

))
=

n∑
j=1

δj R̂β(Yj )

R̂β(Yj ) − λ̂β

= nλ̂β +
n∑

j=1

δj .

As a consequence, the NPMLE is given by

β̂ = argmax
β∈B

n∏
i=1

{(
η(βT Xi)

R̂β(Yi) − λ̂β

)δi

exp(−λ̂β)

}
, (6)

�̂(y) =
∫ y

0

dN(u)

R̂
β̂
(u) − λ̂

β̂

= n−1
n∑

i=1

δi1{Yi≤y}
R̂

β̂
(Yi) − λ̂

β̂

, (7)

recalling that λ̂β is the smallest solution of (5).
From these equations, it is interesting to note that moving the threshold beyond the largest

uncensored observed time τn = maxi=1,...,n(Yiδi) has no effect on (β̂, �̂). In fact, observe that
δiR̂β(Yi) = n−1 ∑

k η(βT Xk)1{Yk≥Yi }δi − n−1 ∑
k η(βT Xk)1{Yi>Yk>τ }δi . The last term vanishes

if τ ≥ τn. As a consequence, for any i = 1, . . . , n, δiR̂β(Yi) does not depend on the threshold and
so does the NPMLE of (β,�).
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4. Efficiency bounds

The score operator for β is given by (3), and the score operator for � is given by (4). The efficient
score operator associated with the whole model is

B̃(β,�)[a,h] =
∫ (

dβ(X)T a + h(u)
)
dMβ,�(u),

where Mβ,� = N − Aβ,�, with N(y) = δ1{Y≤y}, and Aβ,�(y) = ∫ y

0 ru,β(Y,X)d�(u). In the
following, for the sake of simplicity, we put M0 = Mβ0,�0 , A0 = Aβ0,�0 , ru,0 = ru,β0 , d0 = dβ0 .

It is useful to note that the process M0 is a martingale with respect to the σ -field Fy induced
by the process {(Z, δ1{Y≤u}, (1 − δ)1{Y≤u}) : 0 ≤ u ≤ y}. Such a result is a generalization of
Theorems 1.3.1 and 1.3.2 in [12] when T follows an improper distribution (see also [1]). The
proof does not require any new ideas compared to the proof of the aforementioned theorems.
Denoting by 〈M0〉 the predictable quadratic variation of M0, one can use Theorem 2.6.1 in [12]
to get that 〈M0〉y = A0(y). Moreover,

E

[∫ y

0
h(u)dM0(u)

∫ y

0
f (u)dM0(u)

]
= E

[∫ y

0
h(u)f (u)dA0(u)

]
, (8)

for any locally bounded predictable processes f and h.
The efficient score function for β is B̃1 = B1(β0,�0) − �B1(β0,�0), i.e. the residual of the

score B1 after projecting it onto the nuisance tangent space generated by B2(β0,�0)[h], when
h ∈ G := {f ∈ �∞(R+) : ∫ f (u)d�0(u) = 0}. This space results from differentiating along sub-
models �s that lie in F . That is to say that, P(B̃1B2(β0,�0)) = 0. By uniqueness of orthogonal
projections on closed subsets of Hilbert spaces, there exists a unique h0 ∈ G such that

E
((

B1(β0,�0) − B2(β0,�0)[h0]
)
B2(β0,�0)[h]) = 0, (9)

for every h ∈ G. In general the element h0 defined above is difficult to compute but it is feasible
in our case by following the martingale approach from [24] originally developed for the Cox
model. By (8), the left-hand side of equation (9) can be written as

E

(∫ (
d0 − h0(u)

)
dM0(u)

∫
h(u)dM0(u)

)
= E

(∫ (
d0 − h0(u)

)
h(u)dA0(u)

)
=

∫ (
D0(u) − R0(u)h0(u)

)
h(u)d�0(u),

with D0(u) = Pd0ru,0 and R0(u) = Pru,0. As a consequence, the efficient score function for β

is expressed as B̃1 = ∫
(d0 − h0(u)) dM0(u), where

h0(u) = D0(u) − c

R0(u)
, with c =

∫
D0(u)R0(u)−1 d�0(u)∫

R0(u)−1 d�0(u)
.

We conclude that the associated information bound is I0 where, by (8),

I0 = var(B̃1) =
∫

P
{(

d0 − h0(u)
)(

d0 − h0(u)
)T

ru,0
}
d�0(u). (10)
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5. Asymptotic properties

To establish the consistency and find the asymptotic distribution of our estimator (β̂, �̂), we will
make use of the existing theory about Z-estimation developed in [20,31,33], among others. For
that, we first need to introduce the following assumptions. Let λβ ∈ (−∞,Rβ(τ )] be the solution
of E

∫
dN(u)

Rβ(u)−λ
= 1, where Rβ(u) = Pru,β (note that infu∈R+ Rβ(u) = Rβ(τ)).

(A1) (i) The matrix var(Z) has full rank.
(ii) Each component of the variable Z is almost surely bounded by M in absolute value.

(A2) (i) The function η is injective and η(x) > 0 for every x ∈ R.
(ii) The function η is two times continuously differentiable.

(iii) The parameter β0 belongs to the interior of a known compact set B ⊂R
d and �0 ∈

F ∩ C.
(iv) The function λβ is such that infβ∈B{Rβ(τ) − λβ} > 0.
(v) The matrix I0 has full rank.

(A3) (i) The variables T and C are independent given Z.
(ii) T > τ implies that T = +∞ and P(C > τ |Z) > 0 a.s.

Assumptions (A1)(i), (A2)(i) and (A3) are required for the identifiability of the model; see
Proposition 1. These assumptions are also needed for consistency and weak convergence. In
fact, they guarantee that the Kullback–Leibler distance between elements of model P and the
true parameters is uniquely minimized. Assumption (A1)(ii) is not strictly necessary and could
be relaxed to a finite moment condition, but it simplifies the proofs. Assumption (A2)(ii), (iii)
permit to consider a model that is not “too large.” In particular, they are needed to control the
metric entropy of the class of functions {(y, x) �→ ru,β(y, x) : β ∈ B,u ∈R

+}. Especially, it will
imply the weak convergence of the empirical scores. Assumption (A2)(iv) is a restriction on the
set B that has to be small enough, and it guarantees that the quantities R̂β(Yi) − λ̂β , for every
i = 1, . . . , n, remain bounded away from 0 with high probability.

The consistency of (β̂, �̂) has already been obtained in [35]. In the following, we present the
same result, but with an alternative proof that relies on representations (6) and (7). Our approach
to prove this result will be useful to show the consistency of the bootstrap version of the estimator.

Theorem 2. Under assumptions (A1)–(A3), we have∣∣(β̂, λ̂
β̂
) − (β0,0)

∣∣
2

P−→ 0 and ‖�̂ − �0‖∞
P−→ 0.

To study the weak convergence, we start by defining the following score operator:

B(β,λ,�)[a, b,h] = B1(β,�)[a] + B2(β,�)[h] − λ

∫
h(u)d�(u) + b

(
g(�) − 1

)
,

for (β,λ,�) ∈ � = B × R × F and (a, b,h) ∈ R
d+1 × �∞(R+). This operator plays a crucial

role in the derivation of the asymptotic behavior of our estimator. In particular, the choice of its
domain is important: it needs to be “small enough” in order to control the metric entropy of the
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underlying class but it also needs to be “sufficiently large” so that any zero of the empirical score
is indeed the NPMLE.

We introduce the space

H = {
(a, b,h) ∈ R

d+1 × �∞(
R

+) : |a|2 ≤ 1, |b| ≤ 1,‖h‖tv ≤ 1
}
.

Let the maps �n : � −→ �∞(H) and � : � −→ �∞(H) be defined by

�n(β,λ,�) = PnB(β,λ,�) and �(β,λ,�) = PB(β,λ,�),

and let �̇0 : lin� −→ �∞(H) be the Fréchet derivative of � at (β0,0,�0), where lin� denotes
the linear span of �. As shown in Lemma 9 (see the Appendix), we have (with d0 ≡ dβ0 and
ru,0 ≡ ru,β0 )

�̇0[β − β0, λ,� − �0](a, b,h)

= −
∫

P
{(

dT
0 a + h(u)

)
dT

0 ru,0
}
d�0(u)(β − β0)

−
∫

P
{(

dT
0 a + h(u)

)
ru,0 − b

}
d(� − �0)(u) − λ

∫
h(u)d�0(u),

for any (a, b,h) ∈ H and (β,λ,�) ∈ �. Since our estimator satisfies �n(β̂, λ̂, �̂) = 0, we are
now in position to apply the classical results from semiparametric Z-estimation theory. This
leads to the following statement.

Theorem 3. Under assumptions (A1)–(A3), we have

n1/2((β̂, �̂) − (β0,�0)
) ⇒ G on R

d × �∞(
R

+)
,

where G is a tight Gaussian process on Rd × �∞(R+), whose law is the same as the weak limit
of �̇−1

0 Gn(B(β0,0,�0)). Moreover, (β̂, �̂) is efficient.

Note that the inverse �̇−1
0 exists thanks to Lemma 10 in the Appendix. Since β̂ is efficient

we have the following corollary that results from the computation of the efficiency bound done
in the previous section. Contrary to the statements in [35], we provide a closed formula for the
variance.

Corollary 4. Under assumptions (A1)–(A3), we have

n1/2(β̂ − β0) ⇒ N
(
0, I−1

0

)
,

where I0 is given by (10).

The latter formula for the variance of the parametric component is appealing for its simplicity.
It naturally results in new inference procedures concerning the regression coefficients of the
promotion time cure model. In the next few lines, we describe a way to estimate I0 given in (10).
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By definition of h0,
∫

P {(d0 − h0(u))h(u)ru,0}d�0(u) = 0 for every bounded real function h

such that
∫

h(u)d�0(u) = 0. Since
∫

h0(u) d�0(u) = 0, it follows that

I0 =
∫

P
{(

d0 − h0(u)
)
dT

0 ru,0
}
d�0(u)

=
∫

C0(u) d�0(u) −
∫

h0(u)D0(u)T d�0(u),

where C0(u) = Pd0d
T
0 ru,0. An estimator Î is then obtained by replacing the theoretical expecta-

tions by empirical means and by replacing β0 by its estimator β̂ , that is,

Î =
∫

Ĉ(u) d�̂(u) −
∫

ĥ(u)D̂(u)T d�̂(u), (11)

where

Ĉ(u) = n−1
n∑

i=1

d
β̂
(Xi) d

β̂
(Xi)

T r
u,β̂

(Yi,Xi),

D̂(u) = n−1
n∑

i=1

d
β̂
(Xi)ru,β̂

(Yi,Xi),

ĥ(u) = D̂(u) − ĉ

R̂
β̂
(u)

, with ĉ =
∫

D̂(u)R̂
β̂
(u)−1 d�̂(u)∫

R̂
β̂
(u)−1 d�̂(u)

.

The function R̂
β̂

and the quantities d
β̂
(Xi), r

u,β̂
(Yi,Xi), i = 1, . . . , n, have been introduced in

Section 3.

6. Bootstrap inference

The results in the previous section reveal that the asymptotic distributions of the proposed esti-
mators can’t be directly used because they depend on many unknown quantities. One solution
to this problem is to approximate this distribution by a bootstrap procedure. The classical boot-
strap of Efron [11] works by resampling with replacement from the original sample, evaluating
the statistic of interest on the bootstrap samples, and then use these statistics to make inference
about the population parameter of interest.

In the following, we consider the weighted bootstrap, a more general resampling scheme than
Efron’s original bootstrap, as developed in [23] and [33]. As mentioned in the introduction, the
weighted bootstrap offers important advantages over Efron’s classical bootstrap for censored
data, since the former leads to less ties than the latter (see, e.g., [6]). The randomness of the
bootstrap is produced with the help of sequences of weights (w1,n,w2,n, . . .) for n ∈ N

∗. These
weights are independent from the original sample (W1,W2, . . .) and the underlying probability
measure associated to these sequences is denoted by P ∗. Additionally we need the following
assumptions.
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(B1) The sequence (wi,n)1≤i≤n is exchangeable, that is, for every permutation (π1, . . . , πn)

of (1, . . . , n), (wi,n) has the same law as (wπi,n).
(B2) Let Sn be the survival function of w1,n. Then,

sup
n≥1

∫
Sn(u)1/2 du < +∞ and lim

A→+∞ lim sup
n→+∞

sup
t≥A

t2Sn(t) = 0.

(B3) wi,n ≥ 0 for all i and n, n−1 ∑n
i=1 wi,n = 1 and n−1 ∑n

i=1(wi,n − 1)2 P ∗→ 1 for all n.

Standard examples of weights that verify the previous assumptions are the i.i.d. weighted boot-
strap, the double bootstrap and Efron’s original bootstrap (see [23] for more examples). Follow-
ing [33], we define the bootstrap estimator as(

β̂∗, �̂∗) = argmax
β∈B,�∈F

P
∗
nlβ,�(Wi), (12)

where P
∗
n is the bootstrap empirical measure, i.e. P∗

n = n−1 ∑n
i=1 wi,nδWi

. Using a similar La-
grange optimization procedure as for the original estimator (see Section 2), we maximize (12)
for a fixed β with respect to �, to obtain

�̂∗
β(y) = n−1

n∑
i=1

wi,nδi1{Yi≤y}
R̂∗

β(Yi) − λ̂∗
β

,

where R̂∗
β(u) = P

∗
nru,β and λ̂∗

β is the smallest solution of the equation n−1 ∑n
i=1

wi,nδi

R̂∗
β (Yi )−λ

= 1.

Injecting the previous solution in (12) we obtain

β̂∗ = argmax
β∈B

{
n∏

i=1

(
η(βT Xi)

R̂∗
β(Yi) − λ̂∗

β

)δiwi,n

exp
(−λ̂∗

β

)}
,

�̂∗(y) = �̂∗
β̂∗(y).

The following theorem guarantees that the bootstrap works, that is, that it reproduces the asymp-
totic law of the estimator β̂ . Formal details about its statement are available in the proof.

Theorem 5. Under assumptions (A1)–(A3) and (B1)–(B3), the bootstrap estimator
√

n((β̂∗,
�̂∗) − (β̂, �̂)) has the same asymptotic law, conditionally on W1,W2, . . . , as

√
n((β̂, �̂) −

(β0,�0)).

7. Simulations

In this section, we study the performance of the estimator given in (6) and the weighted bootstrap
procedure described in Section 6. We consider the following model:

S(t |Z1,Z2) = exp
(− exp(β0 + β1Z1 + β2Z2)�(t)

)
,
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where Z1 is a uniformly distributed random variable on [α,α + 1] and Z2 is a Bernoulli random
variable that takes a value of 0 or 1 with equal probability. The true parameters are β0 = 3, β1 =
−2 and β2 = 1. We choose � to be the cumulative distribution function of either an exponential
variable with mean 1 (Case 1) or a uniform variable on [0,1] (Case 2). The censoring variable
is exponential with parameter λc . By varying the latter we mainly control the censoring rate,
while by varying α we control the cure rate. We use the Newton–Raphson method to maximize
the likelihood. In our algorithm, we use as starting values β0 = 1 and (β1, β2) equal to the
estimates obtained from the classical Cox model ignoring the cure proportion. The bootstrap
weights are given by wi,n = ei/en, where ei , i = 1, . . . , n, are i.i.d. exponential random variables
with rate λ = 1. This is known in the literature as the Bayesian bootstrap, a smooth alternative
to the well known nonparametric (multinomial) bootstrap of Efron; see [16]. The main reason
for considering the bootstrap approach is the difficulty of using the asymptotic distribution to
construct confidence intervals and the fact that, whenever the bootstrap is valid, it typically gives
better results, especially for small sample sizes. Our main objective is to investigate the effect of
the following factors: the sample size n, the distribution �, and the average amount of censoring
and cure.

Many types of bootstrap confidence intervals are available in the literature. The most used ones
are the basic method, the percentile method and the bias corrected method; see [8]. We studied
these three methods and we obtained very similar results in terms of coverage probability and
average length. For this reason and for the sake of brevity, in the following, we only report the re-
sults obtained with the basic method that was, globally, slightly better than the two others. Given
an estimator β̂ of β and a bootstrap estimate β̂∗ of it, the basic bootstrap confidence interval of
confidence level 1 − α is given by [2β̂ − q∗

1−α/2,2β̂ − q∗
α/2], with q∗

α being the quantile of order

α of the bootstrap distribution of β̂∗. In our simulation, we approximate q∗
1−α/2 empirically using

B = 1000 bootstrap replications.
We perform N = 1000 repetitions for two sample sizes (n = 100 and n = 200), three levels of

censoring (20%, 40% and 60%) and four levels of cure (10%, 20%, 40% and 60%). The results
of our simulation study are partially summarized in Tables 1 and 2. We show the empirical
bias (BIAS), the empirical variance (VAR) and the empirical mean squared error (MSE) of β̂k ,
k = 0,1,2. For the bootstrap estimates β̂∗

k , we report the average bootstrap bias (BIAS∗) and the
average bootstrap variance (VAR∗) given, respectively, by

BIAS∗(β̂∗
k

) = 1

N

N∑
i=1

(
β̂

∗(i)
k − β̂

(i)
k

)2
, and VAR∗(β̂∗

k

) = 1

N

N∑
i=1

1

B

B∑
j=1

(
β̂

∗(i)
k,j − β̂

∗(i)
k

)2
,

where β̂
∗(i)
k,j is the bootstrap estimate of βk obtained from the j th bootstrap sample of the ith

simulated data set and β̂
∗(i)
k = 1

B

∑B
j=1 β̂

∗(i)
k,j . For the basic bootstrap confidence intervals, we

report the coverage probability (COV∗) and the average length (LEN∗). The obtained results for
Case 2 (� with bounded support) are slightly better than the corresponding results for Case 1 (�
with unbounded support). For clarity, in the following we will focus on the latter case. With few
exceptions, all our comments also apply to Case 2.
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Table 1. The bias (BIAS), the variance (VAR) and the mean squared error (MSE) of β̂k , k = 0,1,2, together with the average bootstrap bias
(BIAS∗), the average bootstrap variance (VAR∗), the coverage probability (COV∗) and the average length (LEN∗) using the Bayesian bootstrap.
Case 1: �(t) = (1 − exp(−t))I (t ≥ 0)

n = 100 n = 200
Cure
(%)

Cens.
(%) COV∗ LEN∗ BIAS∗ VAR∗ BIAS VAR MSE COV∗ LEN∗ BIAS∗ VAR∗ BIAS VAR MSE

10 20 β0 0.92 2.090 0.032 0.291 0.048 0.351 0.354 0.93 1.482 0.017 0.146 0.020 0.165 0.165
β1 0.94 1.650 −0.033 0.181 −0.052 0.199 0.201 0.94 1.157 −0.017 0.089 −0.020 0.097 0.097
β2 0.95 0.934 0.016 0.058 0.036 0.060 0.062 0.95 0.654 0.008 0.028 0.004 0.029 0.029

40 β0 0.90 2.411 0.029 0.388 −0.160 0.517 0.543 0.88 1.739 0.011 0.201 −0.131 0.280 0.297
β1 0.95 1.910 −0.039 0.244 −0.065 0.252 0.257 0.95 1.335 −0.020 0.118 −0.024 0.125 0.126
β2 0.97 1.086 0.019 0.078 0.039 0.077 0.078 0.95 0.757 0.009 0.038 0.005 0.039 0.039

20 20 β0 0.95 2.345 0.041 0.365 0.058 0.391 0.395 0.94 1.656 0.023 0.181 0.043 0.210 0.212
β1 0.95 1.633 −0.033 0.177 −0.040 0.185 0.187 0.94 1.151 −0.018 0.088 −0.035 0.100 0.101
β2 0.96 0.921 0.015 0.056 0.022 0.056 0.056 0.95 0.649 0.008 0.028 0.008 0.030 0.030

40 β0 0.95 2.786 0.038 0.516 0.052 0.589 0.591 0.93 1.974 0.019 0.257 0.038 0.308 0.310
β1 0.96 1.897 −0.039 0.240 −0.051 0.246 0.249 0.94 1.333 −0.021 0.117 −0.050 0.132 0.135
β2 0.97 1.073 0.018 0.076 0.025 0.076 0.077 0.96 0.755 0.009 0.037 0.008 0.036 0.036

60 β0 0.92 3.463 0.036 0.802 −0.216 1.002 1.049 0.90 2.443 0.012 0.396 −0.196 0.537 0.576
β1 0.95 2.364 −0.052 0.374 −0.082 0.408 0.415 0.94 1.642 −0.026 0.179 −0.059 0.206 0.209
β2 0.97 1.356 0.027 0.122 0.045 0.120 0.122 0.95 0.941 0.013 0.059 0.015 0.062 0.062

40 40 β0 0.94 3.297 0.049 0.719 0.066 0.740 0.745 0.96 2.318 0.026 0.354 0.059 0.338 0.342
β1 0.94 1.884 −0.038 0.236 −0.048 0.243 0.245 0.96 1.325 −0.020 0.116 −0.039 0.110 0.111
β2 0.96 1.066 0.017 0.075 0.020 0.074 0.075 0.95 0.754 0.009 0.037 0.006 0.038 0.038

60 β0 0.95 4.171 0.048 1.152 0.049 1.248 1.251 0.94 2.930 0.024 0.567 0.073 0.604 0.610
β1 0.96 2.343 −0.050 0.367 −0.061 0.384 0.388 0.94 1.641 −0.026 0.179 −0.060 0.187 0.190
β2 0.96 1.345 0.026 0.121 0.035 0.120 0.122 0.95 0.940 0.013 0.058 0.004 0.062 0.062

60 60 β0 0.96 4.891 0.059 1.584 0.074 1.571 1.576 0.94 3.388 0.029 0.756 0.059 0.841 0.844
β1 0.97 2.355 −0.049 0.371 −0.063 0.364 0.368 0.94 1.636 −0.024 0.177 −0.036 0.193 0.194
β2 0.96 1.363 0.026 0.124 0.036 0.132 0.133 0.95 0.943 0.013 0.059 0.018 0.064 0.064
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Table 2. The bias (BIAS), the variance (VAR) and the mean squared error (MSE) of β̂k , k = 0,1,2, together with the average bootstrap bias
(BIAS∗), the average bootstrap variance (VAR∗), the coverage probability (COV∗) and the average length (LEN∗) using the Bayesian bootstrap.
Case 2: �(t) = tI (0 ≤ t ≤ 1) + I (t > 1)

n = 100 n = 200
Cure
(%)

Cens.
(%) COV∗ LEN∗ BIAS∗ VAR∗ BIAS VAR MSE COV∗ LEN∗ BIAS∗ VAR∗ BIAS VAR MSE

10 20 β0 0.93 2.082 0.034 0.289 0.056 0.335 0.338 0.95 1.467 0.019 0.142 0.027 0.157 0.157
β1 0.94 1.651 −0.033 0.182 −0.052 0.199 0.202 0.94 1.158 −0.018 0.089 −0.021 0.098 0.099
β2 0.95 0.934 0.016 0.058 0.037 0.062 0.063 0.95 0.654 0.008 0.028 0.004 0.029 0.029

40 β0 0.94 2.453 0.031 0.403 0.024 0.487 0.488 0.92 1.761 0.012 0.206 0.003 0.267 0.267
β1 0.95 1.914 −0.039 0.245 −0.072 0.250 0.255 0.95 1.336 −0.020 0.118 −0.023 0.128 0.128
β2 0.96 1.091 0.019 0.079 0.038 0.078 0.080 0.94 0.758 0.009 0.038 0.006 0.041 0.041

20
20

β0 0.95 2.346 0.041 0.365 0.058 0.391 0.395 0.94 1.655 0.023 0.180 0.043 0.210 0.212
β1 0.95 1.633 −0.033 0.177 −0.039 0.186 0.187 0.94 1.151 −0.018 0.088 −0.035 0.100 0.101
β2 0.96 0.920 0.015 0.056 0.022 0.056 0.056 0.95 0.649 0.008 0.028 0.008 0.029 0.030

40 β0 0.95 2.750 0.042 0.501 0.065 0.558 0.562 0.94 1.934 0.023 0.247 0.061 0.290 0.294
β1 0.95 1.885 −0.039 0.237 −0.045 0.251 0.253 0.94 1.326 −0.021 0.116 −0.051 0.133 0.136
β2 0.96 1.067 0.019 0.076 0.029 0.075 0.076 0.95 0.750 0.009 0.037 0.008 0.037 0.037

60 β0 0.94 3.506 0.040 0.822 0.003 0.987 0.988 0.93 2.471 0.014 0.405 0.021 0.508 0.508
β1 0.95 2.360 −0.052 0.374 −0.080 0.404 0.410 0.95 1.638 −0.026 0.178 −0.060 0.201 0.204
β2 0.97 1.352 0.027 0.122 0.043 0.122 0.123 0.94 0.936 0.013 0.058 0.013 0.063 0.063

40 40 β0 0.94 3.297 0.049 0.719 0.065 0.741 0.745 0.95 2.317 0.026 0.354 0.059 0.338 0.342
β1 0.94 1.883 −0.038 0.236 −0.047 0.243 0.245 0.96 1.325 −0.020 0.116 −0.039 0.110 0.111
β2 0.96 1.066 0.017 0.075 0.020 0.074 0.075 0.95 0.754 0.009 0.037 0.006 0.038 0.038

60
β0 0.95 4.144 0.056 1.142 0.086 1.210 1.218 0.95 2.907 0.029 0.557 0.083 0.578 0.585
β1 0.94 2.341 −0.051 0.367 −0.067 0.385 0.389 0.95 1.641 −0.027 0.179 −0.059 0.185 0.188
β2 0.96 1.337 0.026 0.119 0.030 0.120 0.121 0.94 0.938 0.013 0.058 0.005 0.064 0.064

60 60 β0 0.96 4.892 0.059 1.584 0.072 1.568 1.574 0.94 3.387 0.029 0.755 0.058 0.840 0.843
β1 0.97 2.356 −0.049 0.371 −0.063 0.363 0.367 0.94 1.635 −0.024 0.177 −0.036 0.192 0.194
β2 0.96 1.363 0.026 0.124 0.036 0.132 0.133 0.95 0.942 0.013 0.059 0.018 0.063 0.064
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First, observe that the variance represents almost 100% of the MSE. Second, regarding the
sample size, increasing the latter from 100 to 200, decreases the MSE by the (multiplicative)
factor of 2. The same remark applies to the variance. The bias also decreases with the sample
size except for one case (β0 with 60% of censoring and 40% of cure). The decrease in the bias
varies by a factor of 1 to 9 and is more important for β̂3. Except for β0 with small cure proportion
(10%) and large censoring (40% or more), the coverage probability remains stable around the
nominal confidence level of 95%. In all studied cases, the average length decreases by a factor
of about 1.5. Globally, the estimation of β0 is more difficult, in the sense that β̂0 has more (finite
sample) bias and more variance than β̂1 and β̂2. The cure proportion has no or only a very
small effect on the MSE of β̂1 and β̂2, but it does affect the behavior of β̂0. In fact, when the
percentage of cure increases, the bias of β̂0 decreases but its variance (and so its MSE) increases.
For data with small percentage of cure (20% or less) and large percentage of censoring (40%
or more), the bias of β̂0 can be quite large even for large sample size (n = 200). This is due to
the fact that the observed percentage of cure, that is, the proportion of censored individuals with
observed survival time larger than the last uncensored survival time, can be extremely small.
In such case, the resulting point estimate and confidence interval for β0 should be interpreted
with care. Regarding the effect of censoring, one can see that the MSE of the β̂k’s increases
as the percentage of censoring increases. For β̂1 and β̂2, this is mainly due to the increase of
the variance component. But for β̂0, both the bias and the variance may increase significantly
with censoring. On average, the bootstrap estimate of the bias and the variance are very accurate
(max |BIAS∗ − BIAS| < 5% and max |VAR∗ − VAR| < 10%) except for β0 with high censoring
rate and small cure rate.

To get an idea about the distribution of β̂k , we provide in Figure 1 the Q–Q plot of β̂0 − β0

(somewhat similar plots were obtained for β̂1 and β̂2). This plot clearly shows that the normal
approximation becomes better as the sample size becomes larger. Figure 2 shows the plot of the
kernel density estimator of β̂0 − β0 and its corresponding bootstrap estimate. From this plot we
can see that (at least for the sample under study) the approximation obtained by the proposed
bootstrap method becomes more precise as the sample size grows.

Finally, we ran the entire simulation study and recalculated the confidence intervals for the
β’s based on Efron’s basic bootstrap, that is, we generated {wi,n}1≤i≤n from a n-multinomial
distribution with parameters (n, (1/n, . . . ,1/n)), and based directly on asymptotic normality
using the plug-in variance estimator given by (11). Table 3 gives a short overview of the re-
sults. Globally, compared to the Bayesian bootstrap, the multinomial weights lead systematically
to slightly conservative and wider confidence intervals. Also, through the bootstrap iterations,
we noticed that the Newton–Raphson algorithm sometimes has convergence difficulties. This
leads, from time to time, to aberrant bootstrap estimates, especially in the case of bootstrap sam-
ples with high percentage of censoring. Globally, the asymptotic normal approximation gives
satisfactory results, that is, the obtained confidence intervals are somewhat similar to those ob-
tained via bootstrap. This demonstrates the validity of the proposed estimator of the asymp-
totic variance-covariance matrix I−1

0 . However, as can be seen by comparing Table 3 and Ta-
ble 1, the weighted bootstrap method typically outperforms the empirical asymptotic variance
method especially when the percentage of censoring is high and the sample size is “relatively
small.”
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Figure 1. Q–Q plot of β̂0 − β0 for Case 1 when the cure rate is 20% and the censoring rate is 40%.

8. Proofs

In the proofs, we use the norm

‖�‖BV = sup
h∈H

∣∣∣∣∫ h(u)d�(u)

∣∣∣∣,
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Figure 2. Plot of the density of β̂0 − β0 (solid curve) and of β̂∗
0 − β̂0 (dashed curve) for Case 1 when the

cure rate is 20% and the censoring rate is 40%. The density estimator is based on an Epanechnikov kernel
and the bandwidth equals 0.16.

and we shall keep in mind that both norms ‖ · ‖BV and ‖ · ‖∞ are equivalent on the space of real
valued functions of bounded variation (see [9]).

8.1. Proof of Proposition 1

Suppose that (β,�) and (β̃, �̃) both lie in �̃ and result in the same distribution for (Y1, δ1)

given X1 (this distribution is expressed through the likelihood given in Section 3). Showing
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Table 3. The coverage probability and average length based on Efron’s bootstrap (COV∗, LEN∗) and based
on the asymptotic normality using (11). Case 1: �(t) = (1 − exp(−t))I (t ≥ 0)

n = 100 n = 200
Cure
(%)

Cens.
(%) COV∗ LEN∗ COV LEN COV∗ LEN∗ COV LEN

20 20 β0 0.97 2.521 0.98 2.629 0.95 1.718 0.95 1.826
β1 0.96 1.750 0.95 1.677 0.95 1.195 0.94 1.166
β2 0.97 0.972 0.96 0.950 0.96 0.667 0.94 0.663

40 β0 0.96 3.040 0.96 3.010 0.94 2.076 0.94 2.077
β1 0.97 2.053 0.94 1.921 0.95 1.389 0.95 1.325
β2 0.98 1.147 0.96 1.080 0.96 0.779 0.94 0.754

60 β0 0.94 3.847 0.90 3.559 0.91 2.609 0.90 2.469
β1 0.97 2.599 0.93 2.316 0.95 1.722 0.93 1.604
β2 0.98 1.476 0.94 1.314 0.96 0.980 0.93 0.914

identifiability is showing that (β,�) = (β̃, �̃). Taking y > τ , we have that

η
(
βT x

) = η
(
β̃T x

)
,

for almost every x that lies in the support of the conditional law of X. Hence, because η is
injective by (A2)(i), we obtain that βT x = β̃T x for almost every x. Now, since β has an intercept,
we write β = (α, γ ) with α ∈R, γ ∈Rd−1 and β̃ = (̃α, γ̃ ) with α̃ ∈ R, γ̃ ∈Rd−1. We know that

(γ − γ̃ )T z = α̃ − α,

where the last equality happens for almost every z in the support of the law of Z. As a con-
sequence, var((γ − γ̃ )T Z) = 0, and we obtain by assumption (A1)(i) that γ = γ̃ and α = α̃.
Finally, taking δ = 1, we have that

�′(y)η
(
βT x

)
exp

(−η
(
βT x

)
�(y)

) = �̃′(y)η
(
βT x

)
exp

(−η
(
βT x

)
�̃(y)

)
,

for almost every y in the support of the conditional distribution of T when T ≤ C given X = x,
which is, by (A3)(i), equal to the support of t �→ −∂tS(t)P (C > t |X = x), if S is the survival
function associated to �. By (A3)(ii), this is true a.e. (d�) and a.e. (d�̃). Integrating from 0 to
y ∈R

+, we get that � = �̃.

8.2. Proof of Theorem 2

We first show the consistency of β̂ . The consistency of λ̂ and �̂ will follow. By (6), we have

β̂ = argmax
β∈B

Mn(β),

with Mn(β) = n−1
n∑

i=1

{
δi log

(
η
(
βT Xi

)) − δi log
(
R̂β(Yi) − λ̂β

) − λ̂β

}
,
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with λ̂β defined in (5). Similarly as for obtaining (6), we can show that the map � given by
t �→ E

∫ t

0
dN(u)

Rβ(u)−λβ
maximizes P lβ,�, for every β ∈ B . By plugging it in the likelihood, we

obtain

β0 = argmax
β∈B

M(β),

with M(β) = Eδ log
(
η
(
βT X

)) − Eδ log
(
Rβ(Y ) − λβ

) − λβ.

As a consequence, we can use Theorem 5.7 in [31]. This is done by checking that

sup
β∈B

∣∣Mn(β) − M(β)
∣∣ P−→ 0, (13)

sup
|β−β0|2≥ε

∣∣M(β)
∣∣ < M(β0) for all ε > 0. (14)

The second condition is a direct consequence of the identifiability of the model (see Theo-
rem 5.35 in [31]) and the continuity of the map M on B which is compact. The first one can
be obtained in the following way. The difference Mn(β) − M(β) results naturally in three terms.
We focus on ∫

log
(
R̂β(u) − λ̂β

)
dN(u) − E

∫
log

(
Rβ(u) − λβ

)
dN(u),

which is the most difficult term to handle. It equals∫
log

(
R̂β(u) − λ̂β

)(
dN(u) − E dN(u)

) +
∫

log

(
R̂β(u) − λ̂β

Rβ(u) − λβ

)
E dN(u). (15)

By (A2)(iv) and Lemma 7, we have that infβ∈B(R̂β(τ ) − λ̂β) > 0 with probability going to
one. Hence, the first term in (15) goes to 0 in probability provided that suph | ∫ h(u)(dN(u) −
E dN(u))| does, where the supremum is taken over the set of bounded increasing functions. By
[9], this is equivalent to the uniform convergence of N(u) to EN(u) which is indeed true by the
Glivenko–Cantelli theorem. The second term goes to 0 as a direct consequence of Lemma 7.

Now it remains to treat λ̂
β̂

and �̂. For λ̂
β̂

, since λ̂
β̂

= λ
β̂
+ λ̂

β̂
−λ

β̂
= λ

β̂
+oP (1) by Lemma 7,

we get the stated result by the continuity of the map β �→ λβ . For �̂, we write

�̂(y) − �0(y) =
∫ y

0

(dN(u) − E dN(u))

R̂
β̂
(u) − λ̂

β̂

+
∫ y

0

{(
R

β̂
(u) − λ̂

β̂

)−1 − Rβ0(u)−1}E dN(u),

and both terms are treated similarly as the two terms of (15).

8.3. Proof of Theorem 3

We first apply the well-known weak convergence theorem for Z-estimators [30], quoted in the
Appendix as Theorem 11. It gives us the weak convergence of the NPMLE. Second, we obtain
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the efficiency by using a suitable characterization of the influence function. The proof is divided
in several important steps related to Theorem 11 and to the efficiency for the last step.

For any (a, b,h) ∈ R
d+1 × �∞(R+), we define the norm ‖(a, b,h)‖ = |a|2 + |b| + |h|tv, on

the parameter space.

First step: The class of scores is Donsker.
Let Vβ0 , Vλ0 and V�0 be neighborhoods of β0, λ0 and �0, respectively, and denote w =

(y, δ, x). We need to show that the class{
w �→ B(β,λ,�)[a, b,h](w) : (a, b,h) ∈ H, β ∈ Vβ0 , λ ∈ Vλ0 ,� ∈ V�0

}
is Donsker. This class is included in B1 +B2 +B3 +B4 with

B1 = {
w �→ δdβ(x)T a + δh(y) : (a, b,h) ∈H

}
,

B2 =
{
w �→ −

∫
dβ(x)T aru,β(y, x) d�(u) : (a, b,h) ∈H, β ∈ Vβ0 ,� ∈ V�0

}
,

B3 =
{
w �→ −

∫
h(u)ru,β(y, x) d�(u) : (a, b,h) ∈ H, β ∈ Vβ0 ,� ∈ V�0

}
,

B4 =
{
w �→ −λ

∫
h(u)d�(u) + b

(
g(�) − 1

) : (a, b,h) ∈H, λ ∈ Vλ0,� ∈ V�0

}
.

The class B1 is Donsker because the class of functions of bounded variation is Donsker [9] and
because the class {w �→ δdβ(x) : β ∈ Vβ0} is Donsker by Lemma 6 in the Appendix. Now it is
easy to see that the class B2 will be Donsker provided that B3 is Donsker. For the class B3, we
use the continuous mapping theorem (see Theorem 1.3.6 in [33]), by considering the mapping
T : �∞(R+ × Vβ0) → �∞(H× Vβ0 × V�0) given by

T r̃ : (h,β,�) �→
∫

h(u)̃ru,β d�(u),

for any r̃ ∈ �∞(R+ × Vβ0). We have the identity Gn(B3) = TGn(B̃3) with B̃3 = {w �→
ru,β(y, x) : β ∈ Vβ0 , u ∈ R

+}. Now, since B̃3 is Donsker by Lemma 6 and since T is continuous
(|T r − T r̃| ≤ ‖r − r̃‖∞‖�‖BV), Gn(B3) converges to a tight element in �∞(H × Vβ0 × V�0).
Equivalently, B3 is Donsker. The class B4 is Donsker since it only contains constant and uni-
formly bounded functions.

Second step: The scores are ρ-continuous.
More precisely, we will show that

sup
(a,b,h)∈H

∣∣P (
B(β,λ,�) − B(β0,0,�0)

)2∣∣ −→ 0

as ‖(β − β0, λ,� − �0)‖ → 0. We write B(β,λ,�) − B(β0,0,�0) = [B(β,λ,�) − B(β,0,

�)] + [B(β,0,�) − B(β,0,�0)] + [B(β,0,�0) − B(β0,0,�0)] and below we give upper
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bounds for each term of this decomposition. First, we have

∣∣B(β,λ,�) − B(β,0,�)
∣∣ =

∣∣∣∣(λ − 0)

∫
h(u)d�(u)

∣∣∣∣ ≤ |λ − 0|‖�‖BV.

Since |g(�) − g(�0)| ≤ ‖� − �0‖BV, one has∣∣B(β,0,�) − B(β,0,�0)
∣∣

=
∣∣∣∣−∫ (

dβ(X)T a + h(u)
)
ru,β(Y,X)d(� − �0)(u) + b

(
g(�) − g(�0)

)∣∣∣∣
≤ ‖� − �0‖BV

∣∣η′(βT X
)(

XT a
) + η

(
βT X

) + b
∣∣,

and finally,∣∣B(β,0,�0) − B(β0,0,�0)
∣∣

=
∣∣∣∣∫ (

dβ(X)T a + h(u)
)
d(Mβ,�0 − M0)(u) +

∫ (
dβ(X) − d0(X)

)T
a dM0(u)

∣∣∣∣
=

∣∣∣∣∫ (
dβ(X)T a + h(u)

)(
ru,β(Y,X) − ru,0(Y,X)

)
d�0(u)

+
∫ (

dβ(X) − d0(X)
)T

a dM0(u)

∣∣∣∣
≤ ∣∣η(

βT X
) − η

(
βT

0 X
)∣∣‖�0‖BV

∣∣dβ(X)T a + 1
∣∣

+ ∣∣(dβ(X) − d0(X)
)T

a
∣∣∣∣∣ lim

y→+∞M0(y)

∣∣∣.
The conclusion follows from Lebesgue’s dominated convergence theorem.

Third step: �̇0 is continuously invertible.
By Lemma 9, � is Fréchet differentiable at (β0,0,�0) with derivative given in the aforemen-

tioned Lemma. Moreover, by Lemma 10, it is continuously invertible.
So far, since (β̂, λ̂, �̂) → (β0,0,�0) in probability, all the conditions of Theorem 11 quoted

in the Appendix are satisfied. Therefore, we have the following decomposition:

�̇0n
1/2[β̂ − β0, λ̂, �̂ − �0] = −GnB(β0,0,�0) + oP (1).

This implies that

n1/2(β̂ − β0, λ̂, �̂ − �0) = −�̇−1
0

[
GnB(β0,0,�0)

] + oP (1).

Fourth step: Efficiency.
To show the efficiency, we follow some ideas of the proof of Corollary 3.2 in [14]. From the

previous decomposition, we deduce that the influence function ϕ associated with the random
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sequence n1/2(β̂ − β0, �̂ − �0) can be expressed as

ϕ ≡ [
ϕ1, ϕ2(·)

] = −�̇−1
0

(
B(β0,0,�0)

)⎛⎝1 0
0 0
0 1

⎞⎠ , with ϕ1 ∈R
d .

By Theorem 25.23 in [31], we only need to show that ϕ is the efficient influence function of
model P . Equivalently, characterizing the influence function by Riesz theorem (see page 363 in
[31] or Proposition 18.2 in [14]), we have that

P
(
ϕB̃(β0,0,�0)[a,h]) =

[
a, y �→

∫ y

0
h(u)d�0(u)

]
,

for every a ∈ R
d and every h ∈ G, where G = {f ∈ �∞(R+) : ∫ f (u)d�0(u) = 0} is introduced

in Section 4. The operator B̃ is defined in Section 4. It is the efficient score function associated
with model P . The previous equation holds whenever

P
(−�̇−1

0

[
B(β0,0,�0)

]
B̃(β0,0,�0)[a,h]) =

[
a,0, y �→

∫ y

0
h(u)d�0(u)

]
, (16)

for every a ∈ R
d and every h ∈ G. By using the linearity of �̇−1

0 and then the fact that
P B̃(β0,�0)[a,h] = 0 for every (a,h) ∈ R

d × G, we get

P
(−�̇−1

0

[
B(β0,0,�0)

]
B̃(β0,0,�0)[a,h]) = −�̇−1

0

[
P

{
B(β0,0,�0)B̃(β0,0,�0)[a,h]}]

= −�̇−1
0

[
P

{
B̃(β0,0,�0)B̃(β0,0,�0)[a,h]}].

By (8), the right-hand side of the above equation equals

−�̇−1
0

[
(̃a, h̃) �→

∫
P

{(̃
aT d0 + h̃(u)

)(
aT d0 + h(u)

)
ru,0

}
d�0(u)

]
.

By the definition of �̇0, for any (a,h) ∈ R
d × G, the map (̃a, h̃) �→ ∫

P {(̃aT d0 + h̃(u))(aT d0 +
h(u))ru,0}d�0(u) is the image of [a,0, y �→ ∫ y

0 h(u)d�0(u)] by the operator −�̇0. This implies
that the quantity in the previous equation is equal to

�̇−1
0 �̇0

[
a,0, y �→

∫ y

0
h(u)d�0(u)

]
=

[
a,0, y �→

∫ y

0
h(u)d�0(u)

]
.

Hence, we have shown (16).

8.4. Proof of Theorem 5

The bootstrap estimator is influenced by two different sources of randomness: the original sample
(Wi)i=1,...,n, and the weights (wi,n)i=1,...,n. In the following, we say that 	n = oP ∗(1) in P -
probability, if P(P ∗(|	n| > η) > ε) → 0, for any ε > 0 and η > 0. The formal statement of
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Theorem 5 is

n1/2((β̂∗, λ̂∗) − (β̂, λ̂)
) = G + oP ∗(1),

in P -probability, with G introduced in Theorem 3. To show this, we apply Theorem 3.1 in [33]
in which the consistency (in P -probability) of the bootstrap is required in the first place. For us,
this means showing that∣∣(β̂∗, λ̂∗

β̂∗
) − (β0,0)

∣∣
2 = oP ∗(1) and

∥∥�̂∗ − �0
∥∥∞ = oP ∗(1),

both in P -probability. We follow the proof of Theorem 2. We know that

β̂∗ = argmax
β∈B

M∗
n(β)

with M∗
n(β) = n−1

n∑
i=1

{
δiwi,n log

(
η(βT Xi)

R̂∗
β(Yi) − λ̂∗

β

)
− λ̂∗

β

}
.

Hence, it suffices to check both conditions (13) and (14), but with Mn replaced by M∗
n . The latter

one is already verified. For the former, we introduce N
∗
(y) = n−1 ∑n

i=1 δiwi,n1{Yi≤y}, and write
M∗

n(β) − Mn(β) as

∫
log

(
R̂∗

β(u) − λ̂∗
β

)
d
(
N∗ − N

)
(u) +

∫
log

(
R̂∗

β(u) − λ̂∗
β

R̂β(u) − λ̂β

)
dN(u), (17)

and then, relying on Lemma 8, we can follow what has been done in the proof of Theorem 2 to
show that each term of (17) is oP ∗(1), in P -probability.

Because all other conditions in Theorem 3.1 in [33] have been verified when showing Theo-
rem 3, it only remains to show that

lim
u→+∞ lim inf

n→+∞ sup
t≥u

P ∗(Dn(W) > t
) = 0

with Dn(W) = sup
‖θ−θ0‖≤δn

‖B(θ) − B(θ0)‖H
1 + √

n‖θ − θ0‖ ,

with θ = (β,λ,�) and θ0 = (β0, λ0,�0), for every δn → 0. Following Example 1 in [33], for n

sufficiently large, we have that

Dn(W) ≤ 2 sup
‖θ−θ0‖≤1

∥∥B(θ)
∥∥
H.

Then, since it is fairly straightforward to show that the above quantity is bounded, the conclusion
follows.
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Appendix: Auxiliary results

For sake of clarity and brevity in the presentation, when possible, we omit from now on the
integration variables in the proofs.

A.1. Some lemmas

Lemma 6. Under (A1)(ii) and (A2)(ii), the function classes {x �→ dβ(x) : β ∈ B} and {(y, x) �→
ru,β(y, x) : β ∈ B,u ∈R

+} are P -Donsker.

Proof. Since B is compact, we can embed B in a ball of finite radius. Let β , β̃ be elements
of B . By assumption (A2)(ii), η′/η is Lipschitz on compact sets, and therefore we have for
k = 1, . . . , d ,

P(dβ,k − dβ̃,k)
2 ≤ C1E

(
X2

k

(
βT X − β̃T X

)2) ≤ C1|β − β̃|22E
(
X2

k |X|22
) ≤ C1M

4d|β − β̃|22,
for some 0 < C1 < +∞, where the last bound is derived using (A1)(ii). It is well known that an
ε-covering of B (with respect to the norm | · |2) may have a cardinality of order ε−d . Hence, the
ε-covering number of {x �→ dβ(x) : β ∈ B} with respect to the metric ρ has order ε−d , whose
square root logarithm is integrable. This implies the first statement.

For the second class, remark that {(y,	) �→ 1{y≥u}	 + (1 − 	) : u ∈ R
+} is bounded and

Donsker with covering number of order ε−1 (see, for instance, Example 2.5.7 in [33]). Moreover,
we can act similarly as before to show that the class {x �→ η(βT x) : β ∈ B} is bounded and
Donsker. Finally, the result follows by using that the product of two bounded Donsker classes is
again Donsker (see, for instance, Example 2.10.8 in [33]). �

Lemma 7. Under (A1)(ii) and (A2)(ii), (iv), supβ∈B ‖R̂β − Rβ‖∞
P−→ 0 and supβ∈B |λ̂β −

λβ | P−→ 0.

Proof. The first convergence follows from Lemma 6, because (u,β) �→ Rβ(u) equals the empir-
ical process (u,β) �→ Pnru,β , and because Donsker classes are also Glivenko–Cantelli. The sec-
ond convergence is equivalent to the uniform consistency (in β) of a certain class of Z-estimators,
indexed by β . For A > 0, define λβ(A) as the solution (if it exists) on (−∞,Rβ(τ )] of

E

∫
dN

Rβ − λ
= A.

Then, clearly λβ(1) = λβ . Since λ �→ E
∫

dN
Rβ−λ

is continuously increasing on the set (−∞,

Rβ(τ )], by (A2)(iv), we know that infβ∈B Rβ(τ) − λβ(A) > 0 for A sufficiently close to 1 (we
should further assume that this is the case). Moreover, the function A �→ λβ(A) is uniformly (in
β ∈ B) continuous at the point A = 1, that is,

lim
A→1

sup
β∈B

∣∣λβ(A) − λβ

∣∣ = 0. (18)
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Then showing that

P
(
λβ(1 − η) ≤ λ̂β ≤ λβ(1 + η) for all β ∈ B

) −→ 1, (19)

for every η > 0, will conclude the proof. Indeed since this is true for any η > 0, one can find a
sequence ηn → 0, such that (19) holds replacing η by ηn. It will remain to invoke (18) in order
to obtain the stated result. Hence, we finish the proof by showing that (19) holds true. Let η > 0.
Since λ �→ �β,n(λ) = n−1 ∑n

i=1
δi

R̂β (Yi )−λ
is an increasing function on (−∞,Rβ(τ )] for every

β ∈ B , we have that the event in (19) is equivalent to{
�β,n

(
λβ(1 − η)

) ≤ 1 ≤ �β,n

(
λβ(1 + η)

)
for all β ∈ B

}
which happens with probability going to 1 as soon as

sup
β∈B

∣∣�β,n

(
λβ(A)

) − A
∣∣ P−→ 0,

for any A > 0. We have

�β,n

(
λβ(A)

) − A =
∫

dN − E dN

R̂β − λβ(A)
+

∫ {(
R̂β − λβ(A)

)−1 − (
Rβ − λβ(A)

)−1}
E dN.

As a consequence, we can follow the arguments used to obtain the convergence of both terms in
(15) in the proof of Theorem 2. �

Lemma 8. Under (A1)(ii), (A2)(ii), (iv) and (B1)–(B3), we have that supβ∈B ‖R̂∗
β − R̂β‖∞ =

oP ∗(1) in P -probability and supβ∈B |λ̂∗
β − λ̂β | = oP ∗(1) in P -probability.

Proof. The first convergence is a consequence of Lemma 6 and Theorem 2.1 in [23]. The
technique to obtain the second convergence is the same as in the proof of Lemma 7, show-
ing that, for any η > 0, we have that λ̂β(1 − η) ≤ λ̂∗

β ≤ λ̂β(1 + η) with high probability. We
omit the details, since they are similar to those of the proof of Lemma 7, replacing �β,n by

λ �→ n−1 ∑n
i=1

wi,nδi

R̂∗
β(Yi )−λ

. �

Lemma 9. Under (A1)(ii) and (A2)(ii), the map � is Fréchet differentiable at (β0,0,�0), and
the derivative �̇0 : lin� → �∞(H) is given by the map (with d0 ≡ dβ0 and ru,0 ≡ ru,β0 )

�̇0[β − β0, λ,� − �0](a, b,h)

= −
∫

P
{(

dT
0 a + h(u)

)
dT

0 ru,0
}
d�0(u)(β − β0)

−
∫ (

P
{(

dT
0 a + h(u)

)
ru,0

} − b
)
d(� − �0)(u) − λ

∫
h(u)d�0(u),

for any (a, b,h) ∈ H and (β,λ,�) ∈ �.
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Proof. By definition of the Fréchet differentiability, we need to show that∥∥�(β,λ,�) − �(β0,0,�0) − �̇0[β − β0, λ,� − �0]
∥∥
H

(20)
= o

(∥∥(β − β0, λ,� − �0)
∥∥)

,

as ‖(β − β0, λ,� − �0)‖ → 0. First, we will show that �̇0 is the Gâteau derivative of the map
� at the point (β0, λ0,�0). Second, we will show that (20) holds. Let (β,λ,�) ∈ �. On the one
hand, since

d(Mβ,� − M0)(u) = (ru,0 − ru,β) d�0(u) + ru,0 d(�0 − �)(u) + (ru,β − ru,0) d(�0 − �)(u),

and because Ef (X)dM0 = 0 for any bounded f , we have

E

∫ (
aT dβ(X) + h

)
dMβ,�

= E

∫ (
aT dβ(X) + h

)
d(Mβ,� − M0)

= P

∫ (
aT dβ + h

)
(ru,0 − ru,β) d�0(u)

(21)

+ P

∫ (
aT dβ + h(u)

)
ru,0 d(�0 − �)(u) + r1

= P

∫ (
aT d0 + h(u)

)
(ru,0 − ru,β) d�0(u)

+ P

∫ (
aT d0 + h(u)

)
ru,0 d(�0 − �)(u) + r1 + r2 + r3,

with r1 = P
∫
(aT dβ + h(u))(ru,β − ru,0) d(�0 − �)(u), r2 = P

∫
aT (dβ − d0)(ru,0 −

ru,β) d�0(u) and r3 = P
∫

aT (dβ − d0)ru,0 d(�0 − �)(u). On the other hand, we have

−λ

∫
hd� + b

(
g(�) − 1

) = −λ

∫
hd�0 + b

(
g(�) − g(�0)

) + r4

(22)

= −λ

∫
hd�0 + b

∫
d(� − �0) + r4,

with r4 = λ
∫

hd(�0 − �). Combining (21) and (22), we get that

�(β,λ,�)[a, b,h]
= −

∫
P

(
aT d0 + h(u)

)
(ru,β − ru,0) d�0(u)

−
∫ (

P
{(

aT d0 + h(u)
)
ru,0

} − b
)
d(� − �0)(u) − λ

∫
hd�0 +

4∑
k=1

rk.
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Now, using a Taylor expansion, we obtain that∣∣η(
βT X

) − η
(
βT

0 X
) − (β − β0)

T Xη′(βT
0 X

)∣∣ ≤ 1

2
|β − β0|22|X|22 sup

u∈K

∣∣η′′(u)
∣∣,

where K = {βT x : x ∈ [−M,M]d , β ∈ B} is compact. As a consequence, we have

�(β,λ,�)[a, b,h]
= −

∫
P

{(
aT d0 + h

)
(β − β0)

T d0ru,0
}
d�0(u)

−
∫ (

P
{(

aT d0 + h(u)
)
ru,0

} − b
)
d(� − �0)(u)

− λ

∫
hd�0 +

5∑
k=1

rk,

with r5 = − ∫
P(aT d0 + h(u))(ru,β − ru,0 − (β − β0)

T d0ru,0) d�0(u) = − ∫
P(aT d0 +

h(u))(η(βT X) − η(βT
0 X) − (β − β0)

T Xη′(βT
0 X))(	1{Y≥u} + (1 − 	))d�0(u). Equation (20)

holds if and only if ∥∥∥∥∥
5∑

k=1

rk

∥∥∥∥∥
H

= o
(∥∥(β − β0, λ,� − �0)

∥∥)
.

It is fairly straightforward to show this using the regularity conditions on η and the boundedness
of the support of X. For instance, for r5 we have

|r5| ≤ 1

2
|β − β0|22 sup

u∈K

∣∣η′′(u)
∣∣ ∫ E

(|X|22
∣∣aT d0(X) + h

∣∣)d�0 = O
(|β − β0|22

)
. �

Lemma 10. Under (A1)(i), (ii), (A2)(ii) and (A3)(i), (ii), the operator �̇0 : lin� → �∞(H) is
continuously invertible.

Proof. Since �̇0 (given in Lemma 9) is a linear operator between two Banach spaces we can
apply Lemma 6.17 in [14] to �̇0 = T + K , where T and K are given by

T [β − β0, λ,� − �0](a, b,h) = −aT I0(β − β0) −
∫

(hR0 − b)d(� − �0) − λ

∫
hd�0,

K[β − β0,� − �0](a, b,h) = −
∫ (

aT h0 + h
)
DT

0 d�0(β − β0) −
∫

aT D0 d(� − �0),

and we recall that I0 = ∫
P {(d0 − h0(u))(d0 − h0(u))T ru,0}d�0(u), R0(u) = Pru,0 and

D0(u) = Pd0ru,0. First, we show that T is continuously invertible by proving that it is bounded
and that ∥∥T [β − β0, λ,� − �0]

∥∥
H ≥ ε

∥∥(β − β0, λ,� − �0)
∥∥ (A.23)
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for some ε > 0. The boundedness of T follows from the boundedness of R0. Since the right-hand
side of (A.23) equals

sup
|a|2≤ε,|b|≤ε,‖h‖tv≤ε

{
aT (β − β0) + bλ +

∫
hd(� − �0)

}
,

it suffices to show that {(a, b,h) ∈ R
d+1 × �∞(R+) : |a|2 ≤ ε, |b| ≤ ε,‖h‖tv ≤ ε} is included in{(

aT I0,

∫
hd�0, hR0 − b

)
: |a|2 ≤ 1, |b| ≤ 1,‖h‖tv ≤ 1

}
.

This is straightforward, because I ∗ is invertible by (A1)(i) and the fact that R0 is bounded away
from 0 with bounded variations (by (A2)(ii) and (A3)(i), (ii)).

Second, we demonstrate that K is a compact operator, that is, for every sequence in
K({(α,H) : ‖(α,H)‖ ≤ 1}) there exists a subsequence that converges. Let (αn,Hn) be such
a sequence. By Helly’s selection theorem (see [2]) and the compactness of {α ∈ R

d : |α|2 ≤ 1},
there exists a subsequence (αk(n),Hk(n)) that converges pointwise to (α∞,H∞). According to
Gini’s theorem, the pointwise convergence can be extended to uniform convergence (see, for
instance, the proof of Theorem 19.1 in [31]). Consequently, we have that∥∥K[αk(n),Hk(n)] − K[α∞,H∞]∥∥H

= sup
(α,h)∈H

∣∣∣∣∫ (
αT h0 + h

)
DT

0 d�0(αk(n) − α∞) + αT

∫
D0 d(Hk(n) − H∞)

∣∣∣∣
≤ C2

(|αk(n) − α∞|2 + ‖Hk(n) − H∞‖BV
)
,

for some 0 < C2 < +∞, and this tends to 0.
Third, we show that ker(�̇0) = {0}. Let (α, γ,H) ∈ lin� such that �̇0[α,γ,H ] = 0, with �̇0

given in Lemma 9. By taking a = h = 0, we get that
∫

dH = 0. Then, by taking h = −aT h0, we
obtain

aT

∫
P

(
d0 − h0(u)

)
dT

0 ru,0 d�0(u)α = 0,

for every a, since it is easily verified that
∫

P(dT
0 a −hT

0 a)ru,0 dH = 0 and
∫

h0 d�0 = 0. This is
equivalent to I0α = 0, which implies that α = 0 according to (A1)(i). By taking h = (1 + aT h0)

and for the same reason as previously, we get that γ = 0. We conclude with
∫

hdH = 0, which
implies that H ≡ 0. �

A.2. A weak convergence theorem for Z-estimators

Infinite dimensional Z-estimators have been studied by many authors: see Theorem 25.90 in
[31], Theorem 3.3.1 in [33], Theorem 2.11 in [14], among others. The following statement is
not exactly the original one, due to Van der Vaart [30], since we use Lemma 3.3.5 of [32] to
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replace one of the conditions of the original statement. The new conditions (namely (c) and (d)
in the following theorem) are not strictly necessary but are easy to check in many cases. Let
(�,‖ · ‖) be a subset of a Banach space and let H be a given set. Let B(θ) : H → L2(P ) where
L2(P ) denotes the set of functions with second moment bounded with respect to P , and define
the operator �̇0 : lin� → �∞(H) as the Fréchet derivative of the map PB at some point θ0 ∈ �.

Theorem 11 (van der Vaart [30]). Let θ0 ∈ � and let Vθ0 be some neighborhood of θ0. Suppose
that

(a) ‖PnB(θ̂)‖H = oP (n−1/2) and ‖PB(θ0)‖H = 0.

(b) θ̂
P−→ θ0.

(c) The class {B(θ)[h] : h ∈H, θ ∈ Vθ0} is Donsker.
(d) ‖P(B(θ) − B(θ0))

2‖H −→ 0 whenever θ → θ0.
(e) The operator �̇0 is continuously invertible.

Then,

�̇0n
1/2(θ̂ − θ0) = −PnB(θ0) + oP (1).
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