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Many popular robust estimators are U -quantiles, most notably the Hodges–Lehmann location estimator and
the Qn scale estimator. We prove a functional central limit theorem for the U -quantile process without any
moment assumptions and under weak short-range dependence conditions. We further devise an estimator
for the long-run variance and show its consistency, from which the convergence of the studentized ver-
sion of the U -quantile process to a standard Brownian motion follows. This result can be used to construct
CUSUM-type change-point tests based on U -quantiles, which do not rely on bootstrapping procedures. We
demonstrate this approach in detail with the example of the Hodges–Lehmann estimator for robustly de-
tecting changes in the central location. A simulation study confirms the very good efficiency and robustness
properties of the test. Two real-life data sets are analyzed.
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1. Introduction

Let X1, . . . ,Xn be a (not necessarily independent) sample from some univariate distribution F .
For a symmetric, measurable function g : R2 → R, the average of the

(
n
2

)
values g(Xi,Xj ),

1 ≤ i < j ≤ n, is called a U -statistic with kernel g. If the data are independent, this is an unbiased
estimator of the quantity E(g(X1,X2)). A prominent textbook example is the scale estimator
known as Gini’s mean difference, which is obtained for g(x, y) = |x − y|.

Instead of taking the average, one may also consider the sample median of g(Xi,Xj ), 1 ≤
i < j ≤ n, or more generally any sample p-quantile, 0 < p < 1. Such a statistic is called a U -
quantile. Several estimators that have gained popularity in robust statistics are U -quantiles. For
instance, taking p = 1/4 and the above mentioned kernel g(x, y) = |x − y| yields the Qn scale
estimator [40]. Similarly, choosing the sample median and the kernel g(x, y) = (x + y)/2 yields
the Hodges–Lehmann estimator of location [20,41],

ĥn = median
{
(Xi + Xj)/2|1 ≤ i < j ≤ n

}
. (1)

The motivation for the present article originates in the authors’ interest in robust change-point
detection. Let us consider for an instant the change-point-in-location problem. Specifically, if
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we let (Yi)1≤i≤n be a centered stationary sequence and assume the data (Xi)1≤i≤n to follow the
model Xi = Yi + μi , 1 ≤ i ≤ n, we want to test the hypothesis

H0 : μ1 = μ2 = · · · = μn

against the alternative

H1 : ∃k ∈ {1, . . . , n − 1} : μ1 = · · · = μk �= μk+1 = · · · = μn.

The usual CUSUM test statistic for detecting changes in the central location can be written as

TCS,n = max
1≤k≤n

k√
n
|X̄k − X̄n|, (2)

where X̄k denotes the mean of the first k observations. For a stationary sequence Xk , k ∈ Z, sat-
isfying suitable moment and short-range dependence conditions, TCS,n converges in distribution
to σCS supt∈[0,1] |B(t)|, where

σ 2
CS =

∞∑
k=−∞

cov(X0,Xk) (3)

is the long-run variance limn→∞ nvar(X̄n) of the mean, and B denotes a Brownian bridge. The
main tool for proving the convergence of TCS,n is an invariance principle (or functional central
limit theorem) for the partial sum process

(
1√
n

[sn]∑
i=0

(Xi − EX1)

)
0≤s≤1

=
( [ns]√

n
(X̄1:[ns] − EX1)

)
0≤s≤1

, (4)

which one may also view as a partial mean process. The first objective of the present paper is
to establish a functional limit theorem under short-range dependence for the U -quantile process,
that is, the process obtained from the right-hand side of (4) by replacing the sample mean by
a U -quantile and EX1 by the corresponding population value (Theorem 2.3). The second main
theoretical contribution is to propose and establish the consistency of an estimator for the long-
run variance term that appears in the limit process (Theorem 2.4). These results can be used
to devise a CUSUM-type change-point test for location based on the Hodges–Lehmann estima-
tor, which is expected to have a much higher robustness against heavy tails than the classical
CUSUM test while retaining essentially the same efficiency under normality, as it is known that
the Hodges–Lehmann estimator has an asymptotic efficiency of 95% with respect to the mean at
normality (e.g., [8]). Similarly, the classical approach to the change-in-scale detection problem is
a CUSUM-type test statistic, where the mean is replaced by the sample variance. This goes back
to Inclán and Tiao [32], and has been extended to broader settings by several authors [18,36,47].
This test suffers even more so from the vulnerability to outliers and heavy tails. Our results can
also be used to devise an alternative test for changes in the variability based on the highly robust
Qn scale estimator.
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The outline of the paper is as follows. The limit theorems for general U -quantiles are given
in Section 2, with the proofs being deferred to the Appendix. In Section 3, we investigate the
application of the results to the problem of change-in-location detection by means of the Hodges–
Lehmann estimator. In Section 4, we analyze power and finite-sample properties of this test and
compare it to the classical CUSUM test and a similar test based on the median by means of
numerical simulations. The simulation results confirm that the good efficiency and robustness
properties of the Hodges–Lehmann estimator translate into similar properties of the test. The
application of the test is demonstrated at two data examples in Section 5.

2. Limit theorems for U -quantiles under dependence

Let (Xi)i∈Z be a strictly stationary sequence of random variables. The empirical p-U -quantile
can be written as the generalized inverse U−1

n (p) of the empirical U -distribution function

Un(t) = 2

n(n − 1)

∑
1≤i<j≤n

1{g(Xi,Xj )≤t}.

To allow smoothed estimators of the generalized distribution function as well, we replace
1{g(x,y)≤t} by a more general function h(x, y, t).

Definition 2.1. We call a nonnegative, bounded, measurable function h :R×R×R →R which
is symmetric in the first two arguments and non-decreasing in the third argument a U -quantile
kernel function. For fixed t ∈ R, we call

Un(t) = 2

n(n − 1)

∑
1≤i<j≤n

h(Xi,Xj , t)

the U -statistic with kernel h(·, ·, t) and the process (Un(t))t∈R the empirical U -distribution func-
tion. We define the population U -distribution function as U(t) = E[h(X,Y, t)], where X, Y are
independent with the same distribution as X0. Furthermore, U−1(p) = inf{t |U(t) ≥ p} is called
the p-U -quantile and U−1

n (p) = inf{t |Un(t) ≥ p} the empirical p-U -quantile.

To study the empirical U -distribution function, we need a functional version of the Hoeffding
decomposition [21]. We write Un(t) as

Un(t) = U(t) + 2

n

n∑
i=1

h1(Xi, t) + 2

n(n − 1)

∑
1≤i<j≤n

h2(Xi,Xj , t),

where

h1(x, t) = Eh(x,X0, t) − U(t),
(5)

h2(x, y, t) = h(x, y, t) − h1(x, t) − h1(y, t) − U(t).
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U -quantiles can be analyzed using a generalized Bahadur representation. Bahadur [5] showed
that the empirical quantile can be approximated by a linear transform of the empirical distribution
function. This was generalized by Geertsema [15] to U -quantiles of independent data. The rate
of convergence was improved by Choudhury and Serfling [8], Dehling, Denker and Philipp [11]
and Arcones [3] later. A generalized Bahadur representation for U -quantiles of dependent data
was recently established by [45,46].

Concerning the serial dependence structure of the process (Xi)i∈Z, we assume it to be near
epoch dependent in probability (P NED) on an absolutely regular process. For two σ -fields
A,B ⊂ F on the probability space (�,F,P ), the absolute regularity coefficient β(A,B) =
E[supA∈A |P(A|B) − P(A)|] is a measure of dependence of A and B. Let (Zi)i∈Z be a station-
ary process. The absolute regularity coefficients of (Zi)i∈Z are given by

βk = β
(
σ(. . . ,Z−1,Z0), σ (Zk,Zk+1, . . .)

)
, k ∈N.

The process (Zi)i∈Z is called absolutely regular if βk → 0 as k → ∞. We will not study abso-
lutely regular processes themselves, as important classes of time-series like linear processes are
not covered. Instead, we study processes which are near epoch dependent on absolutely regular
processes.

Definition 2.2. Let ((Xi,Zi))i∈Z be a stationary process.

1. We say that (Xi)i∈Z is Lp near epoch dependent, p ≥ 1, on the process (Zi)i∈Z with ap-
proximation constants (al,p)l∈N if liml→∞ al,p = 0 and

(
E

∣∣X0 − E
(
X0|σ(Z−l , . . . ,Zl)

)∣∣p) 1
p ≤ al,p, l ∈ {0,1,2, . . .}.

2. We say that (Xi)i∈Z is near epoch dependent in probability (P NED) on the process (Zi)i∈Z
with approximation constants (al)l∈N if al → 0 as l → ∞ and there is a sequence of func-
tions fl : R2l+1 → R and a non-increasing function φ : (0,∞) → (0,∞) such that

P
(∣∣X0 − fl(Z−l , . . . ,Zl)

∣∣ > ε
) ≤ alφ(ε)

for all l ∈N and ε > 0.

Near epoch dependent processes are also called approximating functionals (e.g., [7]). This
class of short-range dependent processes includes all time series models relevant in economet-
rics, like ARMA-processes and GARCH-processes (e.g., [19]), and furthermore also covers ex-
panding dynamical systems, where the sequence Xn+1 = T (Xn) is deterministic apart from the
initial value X0 (see, e.g., [22]).

We prefer to use near epoch dependence in probability (P NED) instead of the usual L2 near
epoch dependence since it does not necessitate the existence of any moments. We consider
quantile-based estimators, a decisive advantage of them being their moment-freeness, and we
do not want to limit the scope of our results in this respect by implicitly introducing moment
assumptions in the short-range dependence conditions. The concept of P NED used here was in-
troduced by Dehling et al. [13]. Similar concepts that embody the idea of approximating (Xi)i∈Z
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in a probability sense rather than an Lp sense can be found under the name of S-mixing in [6] and
under the name of L0-approximability in [39], Chapter 6. If (Xi)i∈Z is near epoch dependent in
probability on the process (Zi)i∈Z, we can represent Xn almost surely as Xn = f∞((Zn+l )l∈Z).
We will require the P NED approximation constants al and the absolute regularity coefficients
βk to fulfill certain rate conditions.

Assumption 1. The sequence (Xi)i∈Z is P NED on an absolutely regular sequence (Zi)i∈Z such
that alφ(l−6) = O(l−6) as l → ∞ and

∑∞
k=1 kβk < ∞.

So far, the U -statistic kernel g is completely arbitrary. In proofs for weakly dependent data,
the dependent random variables are approximated by independent random variables. In order to
control the error induced by this approximation, we require some form of continuity condition
on h with respect to the marginal distribution of the process.

Assumption 2. Let 0 < p < 1 and h : R × R × R → R be a bounded kernel function such that
for a constant L and for all t in a neighborhood of U−1(p) and all ε > 0

E
[

sup
x,y:

‖(x,y)−(X,Y )‖≤ε

∣∣h(x, y, t) − h(X,Y, t)
∣∣2

]
≤ Lε,

where X, Y are independent with the same distribution as X0 and ‖(x1, x2)‖ = (x2
1 + x2

2)1/2

denotes the Euclidean norm.

This condition holds for all Lipschitz continuous kernel functions h. If Lipschitz continuity
does not hold, as it is the case for kernels of the type h(x, y, t) = 1{g(x,y)≤t}, we need some
regularity conditions on the distribution of X0, cf. Remark 3.2 below.

Since we consider sample quantiles, we further require that the U -distribution function U be-
haves regularly at U−1(p). Let u(t) = U ′(t) denote the derivative of the U -distribution function.

Assumption 3. Let U(t) = E[h(X,Y, t)] be differentiable in a neighborhood of U−1(p) ∈ R

with u(U−1(p)) > 0 and∣∣U(t) − p − u
(
U−1(p)

)(
t − U−1(p)

)∣∣ = o
(∣∣t − U−1(p)

∣∣3/2)
as t → U−1(p). (6)

We are now ready to state the first of our two main results.

Theorem 2.3. Under Assumptions 1, 2, and 3, we have for the U -quantile process that( [ns]√
n

(
U−1

[ns](p) − U−1(p)
))

s∈[0,1]
d−→ σpW

in the Skorokhod space D[0,1], where W is a standard Brownian motion and

σ 2
p = 4

u2(U−1(p))

∞∑
r=−∞

cov
(
h1

(
X0,U

−1(p)
)
, h1

(
Xr,U

−1(p)
))

. (7)
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Unless the distribution of the whole process (Xi)i∈Z is fully specified, the long-run variance
σ 2

p is unknown. For statistical applications, it is therefore desirable to have an estimate of σ 2
p .

The estimator we propose below is obtained by replacing all unknown quantities in the right-
hand side of (7) by their empirical versions. We restrict our attention to the original situation
where h takes on the form h(x, y, t) = 1{g(x,y)≤t}. This allows to directly apply usual kernel
density estimation to the U -statistic density u. Let

ûn(t) = 2

n(n − 1)dn

∑
1≤i<j≤n

K

(
g(Xi,Xj ) − t

dn

)
, (8)

where K is a density kernel and dn a bandwidth which fulfill the following conditions.

Assumption 4. The function K is symmetric around 0, Lipschitz continuous with bounded sup-
port and bounded variation, and it integrates to 1. The bandwidth dn satisfies dn → 0 and
nd

8/3
n → ∞ as n → ∞.

Furthermore, we need an empirical version of h1 from (5). Let

ĥ1(x, t) = 1

n

n∑
i=1

h(x,Xi, t) − 1

n2

n∑
i,j=1

h(Xi,Xj , t),

and consider the sample autocovariance of (ĥ1(Xi, t))1≤i≤n for lag r , that is,

ρ̂(r, t) = 1

n

n−r∑
i=1

ĥ1(Xi, t)ĥ1(Xi+r , t).

We estimate the infinite-sum part in (7) by a heteroscedasticity and autocorrelation consistent
(HAC) kernel estimator, and define

σ̂ 2
p,n = 4

û2
n(U

−1
n (p))

n−1∑
r=−(n−1)

W(r/bn)ρ̂
(
r,U−1

n (p)
)
,

where W and bn fulfill the following conditions.

Assumption 5. The function W : [0,∞) → [0,1) is continuous at 0 and at all but a finite num-
ber of points. Furthermore, |W | is dominated by a non-increasing, integrable function and∫ ∞

0 | ∫ ∞
0 W(t) cos(xt) dt |dx < ∞. The bandwidth bn satisfies bn → ∞ and bn/

√
n → 0 as

n → ∞.

Assumption 5 mainly coincides with Assumption 1 of de Jong and Davidson [10]. It is satisfied
by a large class of kernels, including the Bartlett kernel W(t) = (1−|t |)1{|t |≤1}. Finally, we need
a continuity condition similar to Assumption 2 also for the kernel g.
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Assumption 6. There is a constant L such that for all ε > 0

E
(

sup
x,y:

‖(x,y)−(X,Y )‖≤ε

∣∣g(x, y) − g(X,Y )
∣∣)2 ≤ Lε,

where X, Y are independent with the same distribution as X0.

Conditions of this type (including Assumption 2 above) are also called variation conditions
and were first introduced by Denker and Keller [14]. They are mild regularity conditions which
we usually find to be fulfilled for kernels and data distributions that are of interest for statistical
applications. Specific conditions on the distribution F implied by Assumptions 2 and 6 in case
of the Hodges–Lehmann estimator are discussed in Remark 3.2.

We have the following consistency result for the long-run variance estimator.

Theorem 2.4. Under Assumptions 1 to 6 we have σ̂ 2
p,n

p−→ σ 2
p as n → ∞.

The following result is an immediate corollary of Theorems 2.3 and 2.4. Part (A) follows by
Slutsky’s lemma, and part (B) by a further application of the continuous mapping theorem.

Corollary 2.5. Under Assumptions 1 to 6, we have:

(A) ( [ns]√
nσ̂p,n

(U−1
[ns](p) − U−1(p)))s∈[0,1]

d−→ W

in the Skorokhod space D[0,1], where W is a standard Brownian motion, and

(B) max2≤k≤n
k√

nσ̂p,n
|U−1

k (p) − U−1
n (p)| d−→ sup0≤s≤1 |B(s)|,

where B(s) = W(s) − sW(1), 0 ≤ s ≤ 1, is a standard Brownian bridge.

We refer to the process in Corollary 2.5(A) as the studentized U -quantile process.

3. Robust detection of changes in the central location

We return to the question of change-point detection as outlined in the Introduction. The practical
implementation of the CUSUM test, cf. (2), requires the estimation of the long-run variance σ 2

CS,
cf. (7), which is usually accomplished by a kernel estimator of the form

σ̂ 2
CS,n =

n−1∑
k=−(n−1)

W(k/bn)

{
1

n

n−|k|∑
i=1

(Xi − X̄n)(Xi+|k| − X̄n)

}
, (9)

where W and bn are as in Assumption 5 (see, e.g., [4]). The CUSUM test is known to be in-
efficient under heavy tails and prone to outliers. It is interesting to note that, although outliers
tend to increase the test statistic TCS,n, the general effect outliers have on the test is not a size
distortion, but rather a loss of power: the test statistic is divided by the estimate σ̂CS,n, which is
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even more strongly increased by outliers. An intuitive approach to a robust, less outlier-sensitive
change-point detection is to replace the sample mean in (2) by an alternative location estimator.
We will pursue this approach in the following and examine the median and the Hodges–Lehmann
estimator ĥn, cf. (1), as potential alternatives.

The problem of change-point-in-location detection is a classic one and well studied, see, for
example, the monograph by Csörgő and Horváth [9]. Articles considering the problem under
dependence include among others Andrews [1], Kokoszka and Leipus [35], Horváth, Kokoszka
and Steinebach [23] and Horváth and Steinebach [24]. The literature on robust analysis of the
change-point problem is comparably limited. There are approaches, for example, based on ranks
(e.g., [2,29]), M-estimators (e.g., [28]) and U -statistics (e.g., [16,17]). All of these consider in-
dependent sequences. Recently, Hušková and Marušiaková [31] considered robust change-point
procedures for α-mixing sequences. See [30] for a recent overview on robust change-point analy-
sis. Høyland [25] and Dehling and Fried [12] consider two-sample tests based on the two-sample
Hodges–Lehmann estimator for independent and dependent data, respectively, which may pro-
vide the basis for robust change-point tests based on the two-sample Hodges–Lehmann estimator.

When replacing the mean in (2), one possibility is the median, presumably the simplest robust
location estimator, leading to the test statistic

TMed,n = max
1≤k≤n

k√
n

|m̂k − m̂n|, (10)

where m̂k denotes the median of X1, . . . ,Xk . Under the null hypothesis of no change and under
appropriate regularity conditions (which include no moment conditions, but smoothness condi-
tions on the distribution F of X1), TMed,n converges in distribution to σMed supt∈[0,1] |B(t)| with

σ 2
Med = 1

f (m)2

∞∑
k=−∞

cov(1{X0≤m},1{Xk≤m}), (11)

where m = F−1(1/2) denotes the median of the distribution F and f its density. This conver-
gence result as well as the consistency of the long-run variance estimator

σ̂ 2
Med,n = 1

f̂n(m̂n)2

n−1∑
k=−(n−1)

W(k/bn)

{
1

n

n−|k|∑
i=1

(1{Xi≤m̂n} − 1/2)(1{Xi+|k|≤m̂n} − 1/2)

}
(12)

with a suitable kernel density estimator

f̂n(x) = 1

ndn

n∑
k=1

K
{
(Xk − x)/dn

}
(13)

can be shown by similar techniques as Theorems 2.3 and 2.4. However, this robustification is paid
by a substantial loss in efficiency at normality. The median is known to possess an asymptotic
relative efficiency of π/2 = 64% with respect to the mean for independent Gaussian observa-
tions. Hence we propose to use the Hodges–Lehmann estimator, which is also highly robust but
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possesses an asymptotic relative efficiency of 3/π = 95% with respect to the mean at normality.
This leads to the test statistic

THL,n = max
1≤k≤n

k√
n
|ĥk − ĥn|. (14)

It should be noted that Hodges and Lehmann [20] actually consider the variant h̃n = median{(Xi +
Xj)/2,Xk|1 ≤ i < j ≤ n,1 ≤ k ≤ n}. Since h̃n and ĥn behave very similarly and are asymptoti-
cally equivalent, we stick to the variant ĥn, to which the U -quantile theory applies directly.

For stationary and short-range dependent sequences, this test statistic THL,n converges in dis-
tribution to σHL supt∈[0,1] |B(t)|, where B is a Brownian bridge and

σ 2
HL = 4

u(h)2

∞∑
k=−∞

E
(
ψ(X0)ψ(Xk)

)
. (15)

Here, u is the density of the distribution of (X + Y)/2 for X,Y ∼ F independent, h its median,
and ψ(x) = P((x +Y)/2 ≤ h)− 1/2 for Y ∼ F . Implementing the long-run variance estimation
technique for U -quantiles described in Section 2, one obtains

σ̂ 2
HL,n = 4

û(ĥn)2

n−1∑
k=−(n−1)

W(k/bn)

{
1

n

n−|k|∑
i=1

ψ̂n(Xi)ψ̂n(Xi+|k|)
}

, (16)

where ûn is given by (8) for the kernel g(x, y) = (x + y)/2, and

ψ̂n(x) = n−1
n∑

j=1

(1{(x+Xj )/2≤ĥn} − 1/2).

The asymptotic behavior of the studentized test statistic THL,n/σ̂HL,n is given by Corollary 2.5(B)
and is summarized in the following corollary.

Corollary 3.1. Let (Xi)i∈Z be a stationary sequence with marginal distribution F which sat-
isfies Assumption 1. Let F be such that Assumptions 2 and 3 are fulfilled for the kernel
h(x, y, t) = 1{(x+y)/2≤t}. If further Assumptions 4 and 5 are satisfied, then THL,n/σ̂HL,n con-
verges in distribution to supt∈[0,1] |B(t)|, where B is as before a Brownian bridge.

Remark 3.2. It is desirable to translate Assumptions 2 and 3 for this kernel h into a set of easy-
to-verify conditions on F . It is sufficient that F possesses a Lebesgue density f which satisfies
the following three conditions:

(A) f is cadlag on R,

(B) sup−∞<s<t<∞ |f (t−)−f (s)
t−s

| < ∞, and

(C) the support of f (i.e., the closure of {x|f (x) > 0}) is a connected set or f is symmetric
around some point in R.
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Assumption 6 is met for all distributions F since the kernel g(x, y) = (x + y)/2 is Lipschitz
continuous. The function f being both a density and cadlag (right-continuous and left-hand
side limits) on R implies that f is bounded, hence F is Lipschitz continuous, from which As-
sumption 2 follows. Concerning Assumption 3, f being cadlag also implies that f has at most
countably many discontinuity points, which together with (B) implies (6). Condition (B) is ful-
filled, for example, if f possesses a right-hand side derivative f ′ everywhere, and f ′ is cadlag.
Note that the U -density u in this case is up to re-scaling the convolution of f with itself. Finally,
either of the conditions of (C) ensures that the U -density u is non-zero in a neighborhood around
its median.

4. Simulations

We present Monte Carlo simulation results to investigate the size and power properties of the
three tests proposed in the previous section. We have carried out simulations for several sample
sizes, but the results presented are for n = 240 only. This sample size is large enough for the
asymptotics to provide sensible approximations, and the picture is the same at other sample sizes
as far as the comparison of the tests is concerned. Throughout, we use 1000 replications. We
consider two different scenarios concerning the characteristics of the marginal distribution of the
data generating process:

(A) symmetric data distributions,
(B) skewed data distributions. The set-up will be such that a change in variance occurs along

with the change in location.

In scenario (A), we generate data from the following general one-change-point model:

Xi = Yi + μ1{i>�θn�}, i = 1, . . . , n,

where Yi , i ∈ Z, is a stationary sequence, μ the jump height, and θ a jump location parameter.
We use the following three marginal distributions for the process (Yi)i∈Z: normal, t3, and t1. The
tν distribution with parameter ν > 0 has the density fν(x) = √

νB(ν/2,1/2)(1 + x2/ν)−(ν+1)/2,
where B is the beta function. In order to make the jump sizes better comparable among the
different marginal distributions, we scale the tν distribution such that the median (of the dis-
tribution) of |Y1| is the same as in the normal case, that is, we multiply the tν realizations by
γν = z3/4/tν;3/4, where zα and tν;α denote the α-quantiles of the normal distribution and the tν
distribution, respectively. Concerning the serial dependence of the sequences, we consider two
cases:

(A.1) independence, that is, the Yi , i ∈ Z, are i.i.d.
(A.2) AR(1), that is, Yi = γνF

−1
ν {�(Zi/

√
1 − φ2)}, where the Zi fulfill the auto-regressive

equation Zi = φZi−1 + εi with εi ∼ N(0,1) i.i.d. and φ = 0.4. Here, F−1
ν denotes the

quantile function of the tν distribution and � the c.d.f. of the standard normal distribu-
tion. Thus, (Yi)i∈Z is a marginal transformation of a Gaussian AR process. It is again
scaled such that median(F|Y1|) = z3/4.
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In the independence case (A.1), the values of the long-run variances are

σ 2
CS = var(Y1) =

{
1, for the normal distribution,

γ 2
ν ν/(ν − 2), for the tν distribution (ν > 2),

σ 2
HL =

{
π/3, for the normal distribution,

γ 2
ν /

(
3u2

ν

)
, for the tν distribution,

where uν = 2
∫ ∞
−∞ f 2

ν (x) dx. Explicit expressions are available for the convolution of a tν -density
with itself for odd integer ν, see [37]. We obtain σ 2

HL = (2π/5)2 for ν = 3 and σ 2
HL = π2/3 for

ν = 1. Furthermore

σ 2
Med =

{
π/2, for the normal distribution,

γ 2
ν /

{
4fν(0)2

}
, for the tν distribution.

In the AR(1) scenario (A.2), we have

σ 2
CS = (1 + φ)/(1 − φ)

for normality. As for the tν distribution, we are not aware of an explicit expression for the moment
correlation of a bivariate distribution characterized by a Gaussian copula and tν margins. We have
furthermore

σ 2
HL =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

3
+ 4

∞∑
k=1

arcsin

(
φk

2

)
, for the normal distribution,

(γν/uν)
2

{
1

3
+ 4

π

∞∑
k=1

arcsin

(
φk

2

)}
, for the tν distribution,

σ 2
Med =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

2
+ 2

∞∑
k=1

arcsin
(
φk

)
, for the normal distribution,

{
γν/fν(0)

}2

{
1

4
+ 1

π

∞∑
k=1

arcsin
(
φk

)}
, for the tν distribution.

We can thus study the behavior of the test statistics under the null and their respective long-run
variance estimators individually. In the tables below, we distinguish three ways of dealing with
the long-run variance. We use the

① known values,

② marginal variance estimates, and (17)

③ full long-run variance estimates.

Full long-run variance estimation adjusts for possible serial dependence, that is, we use the es-
timators σ̂ 2

CS,n, σ̂ 2
HL,n and σ̂ 2

Med,n as given by (9), (16) and (12), respectively. Marginal long-run
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variance estimation means we assume independence and only include the summand that corre-
sponds to k = 0 in the sums in (9), (16) and (12). We take the following choices for bandwidths
and kernels,

K(t) = 3

4

(
1 − t2)1[−1,1](t),

(18)
W(t) = (

1 − t2)21[−1,1](t), dn = Inn
−1/3, bn = 2n1/3,

where In denotes the sample interquartile range of the data points the kernel density estimator is
applied to. The kernel K above is known as Epanechnikov kernel, and W as quartic kernel. The
two kernels serve different purposes, K is used for density estimation and must be scaled such
that it integrates to 1, while W is used for autocorrelation-consistent variance estimation and must
be scaled such that W(0) = 1. These choices are ultimately arbitrary, but they have been shown
to perform well in simulations over a wide range of scenarios. The results generally differ very
little with respect to the choice of the kernel. We compute for each sample the test statistics TCS,n,
THL,n, TMed,n, divide them by the square root of the corresponding long-run variance estimate
and count how often the thus adjusted test statistic exceeds the critical value 1.358, which is the
95% quantile of the limiting distribution. Although based on highly robust estimators, the test
statistics THL,n and TMed,n are susceptible to outliers. Problems can arise when several extreme
values occur at the beginning of the sequence. In order to improve the robustness of the tests,
we apply an ad-hoc fix and simply exclude the first 10 values from the sequences of successive
estimates before taking the maximum.

Analysis of size

The results for the size of the tests are summarized in Table 1. We observe the following:

(1) The CUSUM test and the test based on the Hodges–Lehmann estimator (referred to as
Hodges–Lehmann test in the following) keep the nominal size of 5% for the normal and

Table 1. Test size. Rejection frequencies (%) at the asymptotic 5% significance level of the CUSUM
test (2), the Hodges–Lehmann test (14), and the median test (10) under no change. Marginal distributions:
normal, t3, and t1; dependence scenarios: independence and AR(1) with parameter φ = 0.4; sample size
n = 240; 1000 runs. Long-run variance estimation: ①, ②, ③, cf. (17)

Test: CUSUM Hodges–Lehmann Median

Long-run variance: ① ② ③ ① ② ③ ① ② ③

Independent Normal 4 4 3 3 3 3 9 8 8
data t3 5 3 2 4 4 2 8 7 8

t1 1 1 7 6 5 10 8 10

AR(1) Normal 4 31 3 4 30 3 8 27 8
φ = 0.4 t3 26 3 4 30 3 9 29 10

t1 6 0 8 34 5 9 26 8
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Figure 1. A typical trajectory of the change-point process of the median test (kn−1/2σ̂−1
Med,n

(m̂k −
m̂n))k=1,...,n (black) and the analogue for the CUSUM test (gray) for n = 240 independent standard normal
observations.

the t3 distribution under independence as well as dependence, but appear to be slightly
conservative.

(2) The median test shows a substantial size distortion in all situations, also when the test
statistic is adjusted by the true variance. It persists also for considerably larger n. This
size distortion in line with results reported in Shao and Zhang [42], for which the
self-normalization approach proposed by the authors does not provide a remedy either.
This behavior may be described as a discretization problem in finite samples: the m̂k ,
k = 1, . . . , n, take on only a small number of distinct values. The resulting paths differ
strongly from the paths of a Brownian bridge also for large samples (n > 1000), and the
distribution of the supremum very slowly approaches its limit. In principle, this discretiza-
tion applies also to the Hodges–Lehmann test, but to a negligible extent. For n = 240, the
Hodges–Lehmann estimator is the median of about 30 000 (in case of continuous mod-
els) distinct values. A typical trajectory of the median change-point process of a standard
normal i.i.d. sample with estimated long-run variance is depicted in Figure 1. Due to the
size distortion, the median test is excluded from the detailed power considerations in the
following. In summary, it has a power comparable to that of the Hodges–Lehmann test
when not corrected for size, but when corrected for size, it has in all situations, a much
lower efficiency.

(3) As expected, the marginal variance estimation fails in the AR(1) case. Ignoring the serial
dependence leads to clearly wrong results.

Analysis of power

In Table 2, power results in the independence scenario (A.1) for several alternatives are given.
We consider jump heights μ = 1/4,1/2,1 and jump locations θ = 1/4,1/2,3/4. The results for
θ = 1/4 are similar to those for θ = 3/4 and not reported here. We find from Table 2:

(1) The CUSUM test has, as expected, no power at the t1 distribution. Since the second mo-
ments of the t1 distribution are infinite, neither the CUSUM test statistic nor the long-run
variance estimator σ̂ 2

CS,n converges.
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Table 2. Test power under independence. Rejection frequencies (%) at the asymptotic 5% significance
level of the CUSUM test (2), the Hodges–Lehmann test (14), and the median test (10) under one-jump
alternatives for independent errors. Data distributions: normal, t3, and t1; Sample size n = 240; 1000 runs.
Long-run variance estimation: ①, ②, ③, cf. (17)

Test: CUSUM Hodges–Lehmann

Long-run variance: ① ② ③ ① ② ③

Jump: Location Height

Normal 1/2 1/4 38 37 29 38 36 29
data 1/2 94 93 86 93 92 84

1 100 100 100 100 100 100
3/4 1/4 19 19 12 19 18 11

1/2 75 75 49 74 71 46
1 100 100 100 100 100 98

t3 data 1/2 1/4 16 19 14 31 29 22
1/2 57 63 51 86 85 75
1 100 98 96 100 100 100

3/4 1/4 8 9 6 18 15 9
1/2 33 38 22 65 62 39
1 95 93 81 100 100 95

t1 data 1/2 1/4 10 10 31 25 18
1/2 2 2 81 74 58
1 9 6 100 100 99

3/4 1/4 10 10 18 13 10
1/2 2 10 60 52 28
1 3 2 99 97 73

(2) The CUSUM test and the Hodges–Lehmann test perform very similarly at the normal
distribution, with minor advantages for the CUSUM test. The Hodges–Lehmann test is
clearly more efficient at the t3 distribution and has still good power at the t1 distribu-
tion.

(3) By comparing the power of the tests with known variance and with estimated variance,
we find that, although a change in location generally increases the variance estimate,
thus decreasing the power of the test, this effect is rather small in case of the marginal
variance estimation, cf. columns ②. The marginal variance estimation provides an upper
bound on what might be possibly gained by a sophisticated, data adaptive selection of the
bandwidth bn.

In Table 3, power results for the AR(1) scenario (A.2) are given with the same choices of the
parameters μ and θ and the same marginal distributions as in Table 2. All tests have a lower
power in the presence of positive autocorrelations, but the conclusions concerning the rankings
of the tests are the same as in the independent case.
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Table 3. Test power for AR(1) with φ = 0.4. Rejection frequencies (%) at the asymptotic 5% significance
level of the CUSUM test (2), the Hodges–Lehmann test (14), and the median test (10) under one-jump
alternatives with AR(1) errors. Marginal data distributions: normal, t3, and t1; sample size n = 240; 1000
runs. Long-run variance estimation: ①, ③, cf. (17)

Test: CUSUM Hodges–Lehmann

Long-run variance: ① ③ ① ③

Jump: Location Height

Normal 1/2 1/4 17 14 18 13
data 1/2 57 47 56 45

1 99 98 99 98
3/4 1/4 9 6 9 6

1/2 35 20 34 17
1 94 77 94 71

t3 data 1/2 1/4 7 14 10
1/2 24 51 37
1 79 99 92

3/4 1/4 3 8 6
1/2 10 29 14
1 44 90 57

t1 data 1/2 1/4 10 16 11
1/2 2 46 28
1 3 97 79

3/4 1/4 10 13 7
1/2 10 25 12
1 10 76 29

The data generating process in scenario (B) is similar to that in scenario (A). The data follow
the one-change-point model

Xi =
{

Yi, 1 ≤ i ≤ �θn�,

Yi/λ2, �θn� + 1 ≤ i ≤ n,

where the Yi , i ∈ Z, are exponentially distributed with parameter λ = 1. Instead of a change in
the central location of a symmetric distribution we consider now a change in the parameter λ of
the exponential distribution, which implies a change in the variability along with the change in
the location. The set-up is inspired by the river Elbe discharge data example in Section 5, which,
as a referee has pointed out, exhibits such features. To give an impression how the tests perform
in such a situation, we only consider independent observations and a change in the middle of the
observed period, that is, θ = 1/2. The kernel and bandwidth choices for the long run variance
estimation are as in scenario (A). We use as before n = 240 observations and 1000 repetitions.
For i.i.d. sequences Yi , i ∈ Z, of Exp(1), we have E(Y1) = 1, m = median(Y1) = log(2), and
σ 2

CS = σ 2
Med = var(Y1) = 1. Furthermore, the population value of the Hodges–Lehmann estimator
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Table 4. Exponential distribution. Rejection frequencies (%) at the asymptotic 5% significance level of the
CUSUM test (2), the Hodges–Lehmann test (14), and the median test (10) at independent exponentially
distributed observations; The parameter λ changes from 1 in the 1st half to λ2 in the 2nd half; sample size
n = 240; 1000 runs. Long-run variance estimation: ①, ②, ③, cf. (17)

Test: CUSUM Hodges–Lehmann Median

Long-run variance: ① ② ③ ① ② ③ ① ② ③

Mean 2nd half 1/λ2

1 4 3 3 5 5 4 11 8 9
4/5 29 22 32 27 32 32
2/3 78 66 77 70 64 59
1/2 100 98 100 99 97 92
1/3 100 100 100 100 100 100

h is the solution to 2(1 + 2h) = e2h, and σ 2
HL = {3 − (2h − 1)2}/(2h)2. The empirical rejection

probabilities of the three tests under scenario (B) for several values of λ2 are given in Table 4.
We find that, as in scenario (A) under normality, the CUSUM test and the Hodges–Lehmann
test behave similarly, and appear to equally well detect changes in the location if a change in
variance occurs at the same time. Here we include also power results for the median test and note
that it has a similar power as the other tests but clearly exceeds of the nominal 5% level under
the null.

5. Data examples

We consider two data sets, both from hydrology: the maximum annual discharge of the river Elbe
at Dresden and the annual rainfall in Argentina.

The first data set has recently been analyzed by Sharipov, Tewes and Wendler [43]. It consists
of the annual maximum discharge of the river Elbe at Dresden, Germany, in the years 1851 to
2012. The time series is depicted in Figure 2. There appears to be shift in the time series around
the year 1900, with the annual maximum discharge being lower on average afterwards. Indus-
trialization and infrastructural development at the end of the 19th century led to a significant
discharge of industrial sewage in to the river Elbe upstream from Dresden, making the river less
prone to freezing in winter, resulting in lower spring floods. The series is clearly non-normal,
cf. Figure 4 (left). It exhibits a heavy upper tail, with three extreme floods in 1862, 1890, and
2002. Extreme events tend to dominate any moment based analysis such as the CUSUM test,
potentially obscuring the visible change in the central location. Applying the CUSUM and the
Hodges–Lehmann test with the choices for K , W , dn, and bn as in the simulations section,
cf. (18), we observe that both change-point processes, i.e., (kn−1/2σ̂−1

HL,n(ĥk − ĥn))k=1,...,n and

(kn−1/2σ̂−1
CS,n(X̄k − X̄n))k=1,...,n, which are depicted in the lower plot of Figure 2, look similar

and take their maxima at 1900. However, the test decision at the 5% significance level is differ-
ent: contrary to the Hodges–Lehmann test, the CUSUM test does not reject the hypothesis of no
change. However, with bn = 2n1/3 the HAC bandwidth is chosen rather large, while a look at



3130 D. Vogel and M. Wendler

Figure 2. Top: Maximum yearly discharge (in cubic meter per second) of the river Elbe at Dresden from
1851 until 2012 (n = 162). Bottom: Change-point processes (kn−1/2σ̂−1

HL,n(ĥk − ĥn))k=1,...,n (solid line)

and (kn−1/2σ̂−1
CS,n

(X̄k − X̄n)k=1,...,n (dashed line).

the sample autocorrelations suggests that it is legitimate to treat the observations as independent.
When excluding the autocovariances from the long-run variance estimation, both tests consis-
tently reject the null hypothesis. The heavy tail renders the CUSUM test inefficient, making the
test outcome at the 5% level sensitive to the choice of tuning parameters, whereas the Hodges–
Lehmann test clearly detects the change, regardless of the choice of bn. With the average yearly
maximum discharge, the variability of the time series decreases. The simulation results of sce-
nario (B) in the previous section suggest that the CUSUM as well as the Hodges–Lehmann test
are valid in such a situation.

The second example is the Argentina rainfall data that has previously been analyzed in a
change-point context by Wu, Woodroofe and Mentz [48] and Shao and Zhang [42]. Also in this
example, there is evidence (a dam built from 1952 to 1962) that supports the assumption of
a change in the central location. The series is depicted in Figure 3. The normal quantile plot
(Figure 4, right) reveals a fair agreement with normality, and in fact the Hodges–Lehmann and
the CUSUM test behave similarly with both processes attaining their minima at 1955. Both reject
the null hypothesis at the 5% level for bn = n1/3, cf. Figure 3. Following the analysis of [42], we
also apply the median-based test to this data example (dotted line in Figure 3). The median test
does not reject the hypothesis of no change. This is in apparent contradiction to the analysis by
[42], who report a p-value of less than 0.001. The authors apply a self-normalized version of the
test, but since self-normalization tends to decrease the power, this is unlikely to be responsible
for the different results. We suspect that Shao and Zhang [42] applied the median-based test in
the same manner as the CUSUM test, restricting the location of the potential change-point to the
years 1952–1962, making the test largely resemble a two-sample test.
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Figure 3. Top: Yearly rainfall (in millimeters) in Argentina from 1884 until 1996 (n = 113). Bottom:
Change-point processes (kn−1/2σ̂−1

HL,n(ĥk − ĥn))k=1,...,n (solid line), (kn−1/2σ̂−1
CS,n

(X̄k − X̄n))k=1,...,n

(dashed line), and (kn−1/2σ̂−1
Med,n

(m̂k − m̂n))k=1,...,n (dotted line).

6. Summary and discussion

We have proved a functional limit theorem for the general U -quantile process for short-range
dependent data. We have furthermore established the consistency of an HAC kernel estimator for
the long-run variance. The results are formulated under very mild conditions on the data. We use

Figure 4. Normal quantile plots for the River Elbe discharge data (left) and the Argentina rainfall data
(right).
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near epoch dependence in probability (P NED) on mixing sequences to capture the short-range
dependence, which does do not imply any moment condition.

As an application of the theory, we examine the properties of a new change-point test for
location. The test is of the plug-in type, obtained from the classical CUSUM test by replacing
the mean by the Hodges–Lehmann estimator. It is demonstrated by simulations and also mediated
by the two data examples that the Hodges–Lehmann test outperforms the CUSUM test at heavy-
tailed data and significantly reduces the potential harm of gross errors, but essentially behaves
as the CUSUM test under normality. We show that the Hodges–Lehmann estimator is clearly to
be preferred over the median for this purpose. A drawback of the Hodges–Lehmann test is the
higher computational cost, but this has become negligible with the use of computers.

The problem of robust univariate location estimation is well studied with Huber [26] being one
of the main contributions, and there are other robust estimators that might perform comparably
to the Hodges–Lehmann estimator in this context. See, for example, [27], Chapters 3 and 4, for
an overview on robust location estimation. However, besides its good statistical properties, the
Hodges–Lehmann estimator possesses an intriguing conceptual simplicity: there are no weight
functions, trimming percentages, tuning constants, etc., to choose. Furthermore, a thorough math-
ematical analysis of robust estimators generally tends to be elaborate, and the literature on func-
tional limit theorems for such estimators is rather limited. Jurečková and Sen [33,34] are works
in this direction, but we are not aware of any results for dependent data.

A certain reservation towards the use of robust estimators in general stems from the strong
focus on moment characteristics as descriptive parameters of distributions. For instance, the mean
is widely used to describe the central location, and any alternative location measure, such as the
median or the Hodges–Lehmann estimator, coincides with the mean only under some restrictive
assumptions on the data distribution (e.g., symmetry). This objection against the use of robust
estimators is of much lesser legitimacy for two-sample or change-point tests. If we consider
explicitly the change-point model described in the Introduction, where the observations before
and after the change-point differ only by a shift, but otherwise follow the same distribution, this
shift is picked up equally by any proper, translation equivariant location measure, and one is
hence free to make the choice solely based on the statistical properties of the estimators.

Appendix A: Proof of Theorem 2.3

All throughout the Appendix, we use C as generic notation for a constant. Its value may change
from line to line, but it is always independent of n and all other indices involved in the respective
statement. Further, we write ‖ · ‖p = (E| · |p)1/p for the Lp-norm of a random variable. In
Appendix A, we prove Theorem 2.3. Appendix B is devoted to the proof of Theorem 2.4.

We start by gathering several important auxiliary results from the literature which are stated
here without proof. The following weak invariance principle for U -statistics is a variant of The-
orem 2.5 of [13] for bounded kernels. Dehling et al. [13] state the invariance principle for un-
bounded kernels, assuming (2 + δ)-moments. The bounded case can be proved in the same way,
so we omit the proof.
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Proposition A.1. Under Assumptions 1, 2, and 3, the U -statistic process( [ns]√
n

(
U[ns]

(
U−1(p)

) − p
))

s∈[0,1]

converges weakly in D[0,1] to σW , there W is a standard Brownian motion, and

σ 2 = 4
∞∑

r=−∞
cov

(
h1

(
X0,U

−1(p)
)
, h1

(
Xr,U

−1(p)
))

.

We will approximate U -quantiles by U -statistics and will make repeated use of U -statistic
results. Similarly to (5), we can define the Hoeffding decomposition of the kernel g, and define
g1(x) = Eg(x,Y ) − Eg(X,Y ), where X, Y ∼ F are i.i.d. and F is the marginal distribution of
the process (Xi)i∈Z. The following lemma is the analogue of Lemma A.2 of [13] for bounded
kernels g.

Lemma A.2. Let (Xn)n∈Z be a stationary and P -near epoch dependent process on (Zn)n∈Z
with approximating constants al and non-increasing function φ. Let further g be a bounded,
symmetric kernel satisfying the variation condition (Assumption 6). If there is a sequence of
positive numbers (sl)l∈N such that alφ(sl) = O(sl), then the sequence (g1(Xn))n∈Z is L2-NED
on (Zn)n∈Z, and the approximation constants satisfy al,2 = O(s

1/2
l ).

Lemma A.3. Under Assumptions 1 and 2, we have for any t ∈ R∥∥∥max
n≤2k

∑
1≤i<j≤n

h2(Xi,Xj , t)

∥∥∥
2
≤ C2

5
4 kk,

and
∑

1≤i<j≤n h2(Xi,Xj , t) = O(n5/4 log2(n)) almost surely.

This is Lemma B.6 of [13].

Proposition A.4. Under Assumptions 1 and 2, we have Un(U
−1(p)) − p = O(

√
log log(n)/n)

almost surely.

Proof. We use the Hoeffding decomposition

Un

(
U−1(p)

) − p = 2

n

n∑
i=1

h1
(
Xi,U

−1(p)
) + 2

n(n − 1)

∑
1≤i<j≤n

h2
(
Xi,Xj ,U

−1(p)
)
.

For the second summand, we can use Lemma A.3. By Lemma A.2, the sequence (h1(Xn,

U−1(p)))n∈Z is L2-NED, so we can use the law of the iterated logarithm as in Theorem 8 of
[38] for first summand. �

To approximate the U -quantiles by U -statistics, we use the following generalized Bahadur
representation.
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Proposition A.5. Under Assumptions 1, 2, and 3, we have:

(A) sup|t−U−1(p)|≤C

√
log logn

n

|Un(t) − U(t) − Un(U
−1(p)) + p| = O(n−5/8) and

(B) Rn = U−1
n (p) − U−1(p) + Un(U−1(p))−p

u(U−1(p))
= O(n−5/8) almost surely as n → ∞.

Proof. To shorten notation, we abbreviate U−1(p) by t0. Keep in mind that U(t0) = p.
Part (A): We set cn = 2−5k/8 for n = 2k−1 + 1, . . . ,2k and k ∈ N. Note that U(t) and Un(t)

are non-decreasing, so for any m ∈N and any t ∈ [t0 + mcn, t0 + (m + 1)cn] we have∣∣Un(t) − Un(t0) − U(t) + p
∣∣

≤ max
{∣∣Un(t0 + mcn) − Un(t0) − U(t) + p

∣∣,∣∣Un

(
t0 + (m + 1)cn

) − Un(t0) − U
(
t0 + (m + 1)cn

) + p
∣∣}

≤ max
{∣∣Un(t0 + mcn) − Un(t0) − U(t) + p

∣∣,∣∣Un

(
t0 + (m + 1)cn

) − Un(t0) − U
(
t0 + (m + 1)cn

) + p
∣∣}

+ ∣∣U(
t0 + (m + 1)cn

) − U(t0 + mcn)
∣∣.

Using this inequality for all t such that |t − t0| ≤ C
√

(logk)/2k , it follows that

sup
|t−t0|≤C

√
log k

2k

∣∣Un(t) − Un(t0) − U(t) + p
∣∣

≤ max
|m|≤C2−5k/8 log k

∣∣Un

(
t0 + (m + 1)cn

) − Un(t0) − U(t0 + mcn) + p
∣∣

+ max
|m|≤C2−k/8 log k

∣∣U(
t0 + (m + 1)cn

) − U(t0 + mcn)
∣∣,

and by Assumption 3 on the differentiability of the U -distribution function:

max
|m|≤C2−5k/8 log k

∣∣U(
t0 + (m + 1)cn

) − U(t0 + mcn)
∣∣ = O(cn).

We use the Hoeffding decomposition and treat the linear part and the degenerate part separately:

max
|m|≤C2k/8 log k

∣∣Un

(
t0 + (m + 1)cn

) − Un(t0) − U(t0 + mcn) + p
∣∣

≤ max
|m|≤C2k/8 log k

∣∣∣∣∣2

n

n∑
i=1

h1(Xi, t0 + mcn) − 2

n

n∑
i=1

h1(Xi, t0)

∣∣∣∣∣
+ max

|m|≤C2k/8 log k

∣∣∣∣∣ 2

n(n − 1)

n∑
i=1

h2(Xi,Xj , t0 + mcn) − 2

n(n − 1)

n∑
i=1

h2(Xi,Xj , t0)

∣∣∣∣∣.
The functions satisfying the variation condition (Assumption 2) form a vector space, so for h1
the variation condition holds uniformly in some neighborhood of t0. Furthermore, the sequence
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(h1(Xn, t0))n∈Z is L2-NED by Lemma A.2 and thus the approximation condition of [45] holds.
Applying Theorem 1 of [45] to the function g = h1, we obtain

max
|m|≤C2k/8 log k

∣∣∣∣∣2

n

n∑
i=1

h1(Xi, t0 + mcn) − 2

n

n∑
i=1

h1(Xi, t0)

∣∣∣∣∣
≤ sup

|t−t0|≤C

√
log k

2k

∣∣∣∣∣2

n

n∑
i=1

h1(Xi, t) − 2

n

n∑
i=1

h1(Xi, t0)

∣∣∣∣∣ = O(cn)

almost surely. It remains to show that

max
|m|≤C2k/8 log k

∣∣Qn(t0 + mcn) − Qn(t0)
∣∣ = O

(
n2cn

)
(19)

almost surely, where Qn(t) = ∑
1≤i<j≤n h2(Xi,Xj , t). Recall that for any random variables

Y1, . . . , Ym, it holds E(maxi=1,...,m |Yi |)2 ≤ ∑m
i=1 EY 2

i and therefore

E

(
max

2k−1<n≤2k
max

|m|≤C2k/8 log k

2

22kcn

∣∣Qn(t0 + cnm) − Qn(t0)
∣∣)2

≤ 2

24k(2−5k/8)2

∑
|m|≤C2k/8 log k

E
(

max
2k−1<n≤2k

∣∣Qn(t0 + cnm) − Qn(t0)
∣∣)2

,

where we have used that cn = 2−5k/8 for n = 2k−1 + 1, . . . ,2k . The right-hand side is further
bounded by

4

211k/4

∑
|m|≤C2k/8 log k

E
(

max
2k−1<n≤2k

∣∣Qn(t0 + cnm)
∣∣)2 ≤ C2k/8

211k/4
log(k)2

5
2 kk2 = C2− k

8 k2 logk,

where we have applied Lemma A.3. Using the Markov inequality, we conclude that

∞∑
k=1

P

(
max

2k−1<n≤2k
max

|m|≤C2k/8 log k

2

22kcn

∣∣Qn(t0 + cnm) − Qn(t0)
∣∣ > ε

)

≤
∞∑

k=1

1

ε2
E

(
max

2k−1<n≤2k
max

|m|≤C2k/8 log k

2

22kcn

∣∣Qn(t0 + cnm) − Qn(t0)
∣∣)2

≤ C

∞∑
k=1

2− k
8 k2 logk < ∞,

and with the Borel–Cantelli lemma (19) follows, and hence Part (A) is proved.
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Part (B): Without loss of generality, let u(t0) = 1, otherwise replace h(x, y, t) by h(x, y, t
u(t0)

).
We represent Rn as Zn(p − Un(t0)) with

Zn(x) = (
Un(· + t0) − Un(t0)

)−1
(x) − x = U−1

n

(
x + Un(t0)

) − x − t0,

where (Un(· + t0) − Un(t0))
−1 is the inverse function of x �→ Un(x + t0) − Un(t0). By Propo-

sition A.4, we have lim supn→∞ ±√
n(log logn)−1(Un(t0) − p) = C. By Assumption 3 and

Part (A), we have

sup
|x|≤C

√
(log logn)/n

∣∣Zn(x)
∣∣ = sup

|x|≤C
√

(log logn)/n

∣∣Un(x + t0) − Un(t0) − x
∣∣

≤ sup
|x|≤C

√
(log logn)/n

∣∣Un(x + t0) − U(x + t0) − Un(t0) + p
∣∣

+ sup
|x|≤C

√
(log logn)/n

∣∣U(x + t0) − p − x
∣∣ = O(cn).

Then by Theorem 1 of [44], |Rn| ≤ sup|x|≤C
√

(log logn)/n
|Zn(x)| = O(cn), so Part (B) of Propo-

sition A.5 is proved. �

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. We write

[ns]√
n

(
U−1

[ns](p) − U−1(p)
) = [ns]√

n

p − Un(U
−1(p))

u(U−1(p))
+ [ns]√

n
Rn,

where Rn is as in Proposition A.5. By Proposition A.1,

( [ns]√
n

(
p − Un(U

−1(p))

u(U−1(p))

))
s∈[0,1]

converges weakly in D[0,1] to σW , there W is a standard Brownian motion and the variance is
given by

σ 2 = 4

u2(U−1(p))

∞∑
k=−∞

cov
(
h1

(
X0,U

−1(p)
)
, h1

(
Xk,U

−1(p)
))

.

By Proposition A.5, we have n5/8Rn → 0 almost surely and thus |nRn| ≤ Cn3/8 almost surely.
Consequently

sup
s∈[0,1]

[ns]√
n

|R[ns]| = 1√
n

max
k≤n

k|Rk| ≤ 1√
n
Cn3/8 → 0

almost surely, and Slutsky’s theorem completes the proof. �
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Appendix B: Proof of Theorem 2.4

The proof of Theorem 2.4 consists of two main steps: showing the convergence of the density
estimator û2

n(U
−1
n (p)) to u2(U−1(p)) and showing the convergence of the cumulative autoco-

variance part. The former is the content of Lemma B.2. The following Lemma B.1 is an essential
tool for the latter step.

Lemma B.1. Under Assumptions 1, 2, 3, and 5 we have

(n−1)∑
r=−(n−1)

1

n

n−|r|∑
i=1

(
ĥ1(Xi, tn)ĥ1(Xi+|r|, tn) − ĥ1(Xi, t0)ĥ1(Xi+|r|, t0)

)
W

( |r|
bn

)

converges to 0 in probability as n → ∞, where we have abbreviated t0 = U−1(p) and tn =
U−1

n (p).

Proof. We first have a look at the covariance estimator for a fixed lag r . We will use the facts
that |h| ≤ 1, |ĥ| ≤ 1 and that h is non-decreasing in the third argument.∣∣∣∣∣1

n

n−r∑
i=1

(
ĥ1(Xi, tn)ĥ1

(
Xi+r ,U

−1
n (p)

) − ĥ1(Xi, t0)ĥ1(Xi+r , t0)
)∣∣∣∣∣

≤
∣∣∣∣∣1

n

n−r∑
i=1

(
ĥ1(Xi, tn) − ĥ1(Xi, t0)

)
ĥ1(Xi+r , tn)

∣∣∣∣∣
+

∣∣∣∣∣1

n

n−r∑
i=1

ĥ1(Xi, t0)
(
ĥ1(Xi+r , tn) − ĥ1(Xi+r , t0)

)∣∣∣∣∣
≤

∣∣∣∣∣1

n

n−r∑
i=1

(
1

n

n∑
j=1

h(Xi,Xj , tn) − 1

n

n∑
j=1

h(Xi,Xj , t0)

)
ĥ1(Xi+r , tn)

∣∣∣∣∣
+

∣∣∣∣∣1

n

n−r∑
i=1

(
1

n2

n∑
j1,j2=1

h(Xj1 ,Xj2, tn) − 1

n2

n∑
j1,j2=1

h(Xj1 ,Xj2, t0)

)
ĥ1(Xi+r , tn)

∣∣∣∣∣
+

∣∣∣∣∣1

n

n−r∑
i=1

ĥ1(Xi, t0)

(
1

n

n∑
j=1

h(Xi+r ,Xj , tn) − 1

n

n∑
j=1

h(Xi+r ,Xj , t0)

)∣∣∣∣∣
+

∣∣∣∣∣1

n

n−r∑
i=1

ĥ1(Xi, t0)

(
1

n2

n∑
j1,j2=1

h(Xj1 ,Xj2, tn) − 1

n2

n∑
j1,j2=1

h(Xj1 ,Xj2, t0)

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

n2

n−r∑
i=1

n∑
j=1

(
h(Xi,Xj , tn) − h(Xi,Xj , t0)

)∣∣∣∣∣



3138 D. Vogel and M. Wendler

+
∣∣∣∣∣n − r

n

1

n2

n∑
j1,j2=1

(
h(Xj1 ,Xj2, tn) − h(Xj1 ,Xj2, t0)

)∣∣∣∣∣
+

∣∣∣∣∣ 1

n2

n−r∑
i=1

n∑
j=1

(
h(Xi+r ,Xj , tn) − h(Xi+r ,Xj , t0)

)∣∣∣∣∣
+

∣∣∣∣∣n − r

n

1

n2

n∑
j1,j2=1

(
h(Xj1 ,Xj2, tn) − h(Xj1 ,Xj2, t0)

)∣∣∣∣∣
≤ 4

∣∣∣∣∣ 1

n2

n∑
j1,j2=1

(
h(Xj1 ,Xj2, tn) − h(Xj1,Xj2, t0)

)∣∣∣∣∣
≤ 4

∣∣∣∣∣ 1

n2

n∑
j1,j2=1

(
h(Xj1 ,Xj2, tn) − h(Xj1,Xj2, t0) − U(tn) + p

)∣∣∣∣∣ + 4
∣∣U(tn) − p

∣∣.

First, note that the right-hand side of this chain of inequalities does not depend on r . By Propo-
sitions A.4 and A.5, |tn − t0| = O(

√
log log(n)/n) almost surely. So we can conclude with the

help of Proposition A.5 that

∣∣∣∣∣ 1

n2

n∑
j1,j2=1

(
h(Xj1,Xj2, tn) − h(Xj1,Xj2, t0) − U(tn) + p

)∣∣∣∣∣
≤ ∣∣Un(tn) − Un(t0) − U(tn) + p

∣∣ +
∣∣∣∣∣ 1

n2

n∑
j=1

(
h(Xj ,Xj , tn) − h(Xj ,Xj , t0) − U(tn) + p

)∣∣∣∣∣
≤ sup

|t−t0|≤C

√
log logn

n

∣∣Un(t) − U(t) − Un(t0) + p
∣∣ + C/n = O

(
n−5/8)

almost surely. From Assumption 3 and Theorem 2.3, we conclude that |U(tn)−p| ≤ C(tn − t0) =
OP (n−1/2), and finally arrive at

n−1∑
r=−(n−1)

1

n

n−|r|∑
i=1

(
ĥ1(Xi, tn)ĥ1(Xi+|r|, tn) − ĥ1(Xi, t0)ĥ1(Xi+|r|, t0)

)
W

(|r|/bn

)

≤ C
1√
n

n∑
r=−n

W
(|r|/bn

) → 0

in probability as n → ∞. The proof is complete. �
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Lemma B.2. Under Assumptions 1, 3, 4, and 6,

ûn = 2

n(n − 1)dn

∑
1≤i<j≤n

K
((

g(Xi,Xj ) − U−1
n (p)

)
/dn

) → u
(
U−1(p)

)

in probability as n → ∞.

Proof. We introduce an upper kernel Ku,n and a lower kernel Kl,n by

Ku,n(t) = sup
t ′:|t−t ′|≤

√
logn

n

K(t) and Kl,n(t) = inf
t ′:|t−t ′|≤

√
logn

n

K(t),

and further an upper estimate ûu,n and a lower estimate ûl,n by

ûu,n = 2

n(n − 1)dn

∑
1≤i<j≤n

Ku,n

(
g(Xi,Xj ) − U−1(p)

dn

)
,

ûl,n = 2

n(n − 1)dn

∑
1≤i<j≤n

Kl,n

(
g(Xi,Xj ) − U−1(p)

dn

)
.

Since |U−1
n (p) − U−1(p)| = O(

√
log log(n)/n) almost surely (Propositions A.4 and A.5), we

have almost surely ûl,n ≤ ûn ≤ ûu,n for all but a finite number of n. Hence, it suffices to show
that ûu,n → u(U−1(p)) and ûl,n → u(U−1(p)) in probability as n → ∞. We will focus on
ûu,n, as the proof for ûl,n is analogous. Note that ûn is a U -statistic with symmetric kernel
kn(x, y) = Ku,n((g(x, y) − U−1(p))/d) depending on n. We use the Hoeffding decomposition

ũn = Ekn(X,Y ), k1,n(x) = Ekn(x,Xi) − ũn,

k2,n(x, y) = kn(x, y) − k1,n(x) − k1,n(y) − ũn,

where X, Y are independent with the same distribution as X0. We obtain

ûu,n = ũn + 2

n

n∑
i=1

k1,n(Xi) + 2

n(n − 1)

∑
1≤i<j≤n

k2,n(Xi, Yi). (20)

We treat the three summands on the right-hand side separately. By our assumptions, K has a
bounded support, so let K(x) = 0 for |x| > M . Because the density u is continuous and K

integrates to 1, we can conclude that

ũn − u
(
U−1(p)

)
=

∫
1

dn

Ku,n

(
x − U−1(p)

dn

)
u(x)dx − u

(
U−1(p)

)

=
∫

Ku,n(x)u
(
xdn + U−1(p)

)
dx − u

(
U−1(p+)

)
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≤
∫

Ku,n(x)
∣∣u(

xdn + U−1(p)
) − u

(
U−1(p)

)∣∣dx +
(∫

Ku,n(x) dx − 1

)

≤ 2

(
Mdn +

√
logn

n

)
sup

|x|≤Mdn+
√

logn
n

∣∣u(
xdn + U−1(p)

) − u
(
U−1(p)

)∣∣ sup
x∈R

K(x),

which converges to 0 as n → ∞ since dn → 0. To prove the convergence of the second and
third summand in the Hoeffding decomposition (20), we first gather some properties of the se-
quence kn. Kernel K is Lipschitz continuous for some constant L1, that is |K(x) − K(y)| ≤
L1|x − y|, hence the mapping x → 1

d
K(x

d
) is Lipschitz continuous with constant L1/d

2, and

kn(x, y) = 1
d
K(

g(x,y)
d

) satisfies the variation condition (Assumption 2) with constant L′ = Cd−4.
Furthermore, kn(x, y) ≤ M ′ = C 1

d
and E|kn(X,Y )| ≤ C for independent X, Y and thus Ek2

1,n ≤
C 1

d
. By the proof of Lemma A.2, we find that (k1,n(Xi))i∈Z is L2-near epoch dependent with

approximation constants a′
l = C/d2

nl−3. As in the proof of Lemma C.1 of [13], we have that

∣∣Ek1,n(Xi)k1,n(Xi+k)
∣∣

≤ 10
∥∥E

(
k1,n(Xi+k)|Gi+k+l

i+k−l

)∥∥2
2+δ

β
δ

2+δ

k−2l

+ 2
∥∥k1,n(Xi)

∥∥
2

∥∥k1,n(Xi+k) − E
(
k1,n(Xi+k)|Gi+k+l

i+k−l

)∥∥
2

≤ C
1

d2
n

βl + C
1√
dn

a′
l ,

where Gj
i denotes the σ -field generated by Zi, . . . ,Zj , so we obtain by stationarity that

E

(
2

n

n∑
i=1

k1,n(Xi)

)2

≤ 4

n

∞∑
i=1

∣∣E(
k1,n(X1)k1,n(Xi)

)∣∣ ≤ C
1

nd
5/2
n

∞∑
i=1

(
(3/i)3 + βi

)

converges to 0 since nd
5/2
n → ∞. So the second summand of (20) converges to 0. For the de-

generate part, we use that k2,n(x, y) is a degenerate kernel bounded by C/dn, so we can prove
similarly to Lemma B.2 of [13] that

∥∥k2,n(Xi,Xi+k+2l ) − k2,n(Xi,l,Xi+k+2l,l)
∥∥

2 ≤ C
(√

L′ε + M ′a
δ

2+δ

l φ
δ

2+δ (ε) + M ′βk

)
,

where we write Xi,l short for fl(Zi−l , . . . ,Zi+l ), and can conclude that

∥∥∥∥ 2

n(n − 1)

∑
1≤i<j≤n

(
k2,n(Xi,Xj ) − k2,n(Xi,l,Xi+k+2l,l)

)∥∥∥∥
2

≤ Cn−3/4(√ML′ + M ′) ≤ C
(
d

8/3
n n

)−3/4 → 0
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by our assumptions on dn. Similarly (compare Lemma B.4 of [13]), we get∥∥∥∥ 2

n(n − 1)

∑
1≤i<j≤n

k2,l,n(Xi,l,Xj,l) − k2,n(Xi,l,Xj,l)

∥∥∥∥
2
≤ Cn−3/4(√ML′ + M ′) → 0,

where k2,l,n is defined by the Hoeffding decomposition of kn with respect to the distribution of
X0,l . Finally, as in Lemma B.5 of [13],

∣∣Ek2,l,n(Xi1,l ,Xi2,l)k2,l,n(Xi3,l ,Xi4,l)
∣∣ ≤ C

(
M ′)2

βm−l ,

with m = max{i(2) − i(1), i(4) − i(3)}, where i(1), . . . , i(4) are the ordered indices i1, i2, i3, i4, and
thus

E

( ∑
1≤i<j≤n

k2,l,n(Xi,l,Xj,l)

)2

≤ Cn−2(M ′)2
l2 → 0

for l = �n1/4�. We convergence of 2
n(n−1)

∑
1≤i<j≤n k2,n(Xi, Yj ) then follows along the lines of

the proof of Lemma A.3 (Lemma B.6 of [13]), and hence ûu,n converges to u(U−1(p)), and the
proof is complete. �

Proof of Theorem 2.4. We can rewrite the variance estimator σ̂ 2
p as

σ̂ 2
p = 4

û2
n

n−1∑
r=−(n−1)

W

( |r|
bn

)
1

n

n−|r|∑
i=1

ĥ1(Xi, tn)ĥ1(Xi+|r|, tn)

= 4

û2
n

n−1∑
r=−(n−1)

W

( |r|
bn

)
1

n

n−|r|∑
i=1

h1(Xi, t0)h1(Xi+|r|, t0)

+ 4

û2
n

n−1∑
r=−(n−1)

1

n

n−|r|∑
i=1

(
h1(Xi, t0)h1(Xi+|r|, t0) − ĥ1(Xi, t0)ĥ1(Xi+|r|, t0)

)
W

( |r|
bn

)

+ 4

û2
n

n−1∑
r=−(n−1)

1

n

n−|r|∑
i=1

(
ĥ1(Xi, t0)ĥ1(Xi+|r|, t0) − ĥ1(Xi, tn)ĥ1(Xi+|r|, tn)

)
W

( |r|
bn

)
.

By Lemma B.2, the density estimator ûn converges to u. Hence, the first summand converges to
σ 2

p by Theorem 2.1 of [10] and Slutsky’s theorem. The second and the third summand converge
to 0 by Lemma C.3 of [13] and Lemma B.1, respectively. �
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