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In this paper, we present a test for the maximal rank of the volatility process in continuous diffusion mod-
els observed with noise. Such models are typically applied in mathematical finance, where latent price
processes are corrupted by microstructure noise at ultra high frequencies. Using high frequency observa-
tions, we construct a test statistic for the maximal rank of the time varying stochastic volatility process.
Our methodology is based upon a combination of a matrix perturbation approach and pre-averaging. We
will show the asymptotic mixed normality of the test statistic and obtain a consistent testing procedure.
We complement the paper with a simulation and an empirical study showing the performances on finite
samples.
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1. Introduction

In the last twenty years, asymptotic theory for high frequency data has received a great deal of
attention in probability and statistics. This is mainly motivated by financial applications, where
observations of stock prices are recorded very frequently. In an ideal world, that is, under no-
arbitrage conditions, price processes must follow a semimartingale, which is a celebrated result
of Delbaen and Schachermayer [4]. We refer to a monograph [9] for a comprehensive study of
limit theorems for Itô semimartingales and their manifold applications in statistics.

Despite the aforementioned theoretical result, at ultra high frequencies, the financial data is
contaminated by microstructure noise such as rounding errors, bid-ask bounces and misprints.
One of the standard models for the microstructure noise is an additive i.i.d. process independent
of the latent price (see, e.g., [3,14] among many others; an extension of this model can be found
in [7]). More formally, the model is given as

Yti = Xti + εti with dXt = bt dt + σt dWt , (1.1)

where (Xt )t∈[0,T ] is a d-dimensional continuous Itô semimartingale, ti = i�n and (εt )t∈[0,T ] is
a d-dimensional i.i.d. process independent of X with

E[εt ] = 0 and E
[
εt ε

�
t

]=: � ∈R
d×d . (1.2)
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Here and throughout the paper, we denote with x� the transpose of x, be it a vector or a matrix.
We are in the framework of infill asymptotics, that is, �n → 0 while T remains fixed. This paper
is devoted to the test for the maximal rank of the co-volatility matrix ct = σtσ

�
t of the unob-

served diffusion process X. We remark that this is an equivalent formulation of the following
problem: What is the minimal amount of independent Brownian motions required for modeling
the d-dimensional diffusion X? Answering this question might give a direct economical inter-
pretation of the financial data at hand. Furthermore, testing for the full rank of ct is connected to
testing for completeness of financial markets.

In a recent paper [8], the described statistical problem has been solved in a continuous diffu-
sion setting without noise (we also refer to an earlier article [6] for a related problem). The main
idea is based upon a matrix perturbation method, which helps to identify the rank of a given ma-
trix. The maximal rank of the stochastic co-volatility process (ct )t∈[0,T ] is then asymptotically
identified via a certain ratio statistic, which uses the scaling property of a Brownian motion.
Clearly, the test statistic becomes invalid in the framework of continuous diffusion models ob-
served with noise. To overcome this problem, we apply the pre-averaging approach, which has
been originally proposed in [7,11]. As the name suggests, weighted averages of increments of
the process Y are built over a certain window in order to eliminate the influence of the noise to
some extent. This in turn gives the possibility to infer the co-volatility process (ct )t∈[0,T ]. The

size of the pre-averaging window kn is typically chosen as kn = O(�
−1/2
n ) and objects as the

integrated co-volatility
∫ T

0 ct dt can be estimated with the convergence rate of �
−1/4
n , which is

known to be optimal.
At this stage, we would like to stress that combining the pre-averaging approach and the ma-

trix perturbation method is by far not trivial. There are mainly two problems that need to be
solved. First of all, when using the optimal window size of kn = O(�

−1/2
n ) in the pre-averaging

approach, the diffusion and the noise parts have the same order, and it becomes virtually impossi-
ble to distinguish the rank of the co-volatility from the unknown rank of the covariance matrix �.
Hence, we will choose a proper sub-optimal window size to still obtain a reasonable convergence
rate for the test statistic. The second and more severe problem is that the ratio statistic proposed
in [8] heavily relies on the scaling property of a Brownian motion. This scaling property is not
shared by an i.i.d. noise process introduced in (1.2). Thus, a much deeper probabilistic analysis
of the main statistic is required to come up with a valid testing procedure.

The paper is organized as follows. Section 2 gives the probabilistic description of the model,
presents the main assumptions and defines the testing hypotheses. The background on matrix
perturbation and pre-averaging method is demonstrated in Section 3. Section 4 presents the main
results of the paper as well as an extension of the method to the usage of overlapping increments.
Section 5 is concerned with a simulation study and a real data example. All proofs are collected
in Section 6.

2. The setting and main assumptions

We start with a filtered probability space (�,F, (Ft )t∈[0,T ],P), satisfying the usual assumptions,
on which all stochastic processes are defined. As indicated at (1.1), we observe the d-dimensional
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process Y = X + ε at time points i�n, i = 0,1, . . . , [T/�n]. The process X is given via

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs, (2.1)

where (bt )t∈[0,T ] is a d-dimensional drift process, (σt )t∈[0,T ] is a R
d×q -valued volatility process

and W denotes a q-dimensional Brownian motion. We introduce the notation

ct = σtσ
�
t , rt = rank(ct ), Rt = sup

s∈[0,t)

rs .

We need more structural assumptions on the processes b and σ .

Assumption (A). The processes b and σ have the form

σt = σ0 +
∫ t

0
as ds +

∫ t

0
vs dWs,

bt = b0 +
∫ t

0
a′
s ds +

∫ t

0
v′
s dWs, (2.2)

vt = v0 +
∫ t

0
a′′
s ds +

∫ t

0
v′′
s dWs,

where bt and a′
t are R

d -valued, σt , at and v′
t are R

d×q -valued, vt and a′′
t are R

d×q×q -valued,
and v′′

t is Rd×q×q×q -valued, all those processes being adapted. Finally, the processes at , v
′
t , v

′′
t

are càdlàg and the processes a′
t , a

′′
t are locally bounded.

Notice that Assumption (A) is exactly the same assumption, which has been imposed in [8].
We remark that, by enlarging the dimension q of the Brownian motion W if necessary, we may
assume without loss of generality that all processes X,b,σ, v are driven by the same Brownian
motion. In the framework of a stochastic differential equation, that is, when bt = h1(Xt ) and
σt = h2(Xt ), Assumption (A) is automatically satisfied whenever h1 ∈ C2(Rd) and h2 ∈ C4(Rd)

(due to Itô’s formula). We also remark that Assumption (A) is rather unusual in the literature.
Indeed, for classical high frequency statistics, such as for example, power variations (cf. [2]),
only the first line of (2.2) is required. However, when RT < d our test statistic, which will be
introduced in Section 4, turns out to be degenerate and, in contrast to classical cases, we require a
higher order stochastic expansion of the increments of X. This explains the role of the second and
third line of (2.2). Finally, we specify our assumptions on the noise process ε introduced at (1.2).

Assumption (E). The i.i.d. process (εt )t∈[0,T ] is (Ft )-adapted and independent of a, a′, a′′,
v′, v′′, W , hence also independent of b, σ and X. Furthermore, it is Gaussian, meaning that
εt ∼Nd(0,�) and E[εsε

�
t ] = 0 for all s, t ∈ [0, T ] with s �= t .

Remark 2.1. Theoretically, we could discuss a more general structure of the noise. In particular,
we could give up the assumption of the Gaussianity. What we really require is the mutual inde-
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pendence of the noise at different times as well as the existence of the moments up to a certain
order.

Now, for any r ∈ {0,1, . . . , d}, we introduce the following subsets of �:

�r
T := {

ω ∈ � : RT (ω) = r
}
, �

≤r
T := {

ω ∈ � : RT (ω) ≤ r
}
. (2.3)

Notice that the sets �r
T and �

≤r
T are indeed FT -measurable. This can be justified as follows.

The rank rt is the biggest integer r ≤ d such that the sum of the determinants of the matrices
(c

ij
t )i,j∈J , where J runs through all subsets of {1, . . . , d} with r points, is positive; see, for

example, [6], Lemma 3. Since the mapping t �→ ct is continuous by Assumption (A), this implies
that for any r the random set {t : rt (ω) > r} is open in [0, T ), so the mapping t �→ rt is lower
semi-continuous. The very same argument proves that the random set{

t ∈ [0, T ) : RT (ω) = rt (ω)
}

is non-empty and open for each ω ∈ �. Hence, this set has a positive Lebesgue measure, which
helps to statistically identify the maximal rank RT (in contrast to lower ranks rt < RT , which
might be attained at a single point on the interval [0, T ]).

The following discussion is devoted to testing the null hypothesis H0 : RT = r against the
alternative H1 : RT �= r (or H0 : RT ≤ r against H1 : RT > r). Notice that this a pathwise hy-
pothesis, since we test whether a given path ω belongs to �r

T (or �
≤r
T ) or not. It is in general

impossible to know whether this hypothesis holds for another path ω′ ∈ �.

3. Matrix perturbation and pre-averaging approach

3.1. Matrix perturbation method

The matrix perturbation method is a numerical approach to the computation of the rank of a
given matrix. It has been introduced in [8] in the context of rank testing. To explain the main idea
of our method, we need to introduce some notation. Recall that d and q are the dimensions of
X and W , respectively. Let M denote the set of all d × d matrices and Mr , r ∈ {0, . . . , d}, the
set of all matrices in M with rank r . Furthermore, let M′ be the set of all d × q matrices. For
any matrix A, we denote by Ai the ith column of A; for any vectors x1, . . . , xd in R

d , we write
mat(x1, . . . , xd) for the matrix in M whose ith column is the column vector xi . For r ∈ {0, . . . , d}
and A,B ∈M we define the quantity

Mr
A,B := {

G ∈ M : Gi = Ai or Gi = Bi with #{i : Gi = Ai} = r
}
.

In other words, Mr
A,B is the set of all matrices G ∈ M with r columns equal to those of A and

the remaining d − r ones equal to those of B (all of them being at their original places). We also
define the number

γr(A,B) :=
∑

G∈Mr
A,B

det(G). (3.1)
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We demonstrate the main ideas of the matrix perturbation approach for a deterministic problem
first. Let A ∈ M be an unknown matrix with unknown rank r . Assume that, although A is un-
known, we have a way of computing det(A + λB) for all λ > 0 and some given matrix B ∈Md .
The multilinearity property of the determinant implies the following asymptotic expansion

det(A + λB) = λd−rγr (A,B) + O
(
λd−r+1) as λ ↓ 0. (3.2)

This expansion is the key to identification of the unknown rank r . Indeed, when γr(A,B) �= 0
we deduce that

det(A + 2λB)

det(A + λB)
→ 2d−r as λ ↓ 0. (3.3)

However, it is impossible to choose a matrix B ∈ Md which guarantees γr(A,B) �= 0 for all
A ∈ Mr . To solve this problem, we can use a random perturbation. As it has been shown in [8],
for any A ∈Mr we have γr(A,B) �= 0 almost surely when B is the random matrix whose entries
are independent standard normal (in fact, the random variable γr(A,B) has a Lebesgue density).
This is intuitively clear, because the multivariate standard normal distribution does not prefer
directions. It is exactly this idea which will be the core of our testing procedure.

3.2. Pre-averaging approach

In this subsection, we briefly introduce the pre-averaging method; we refer to for example, [7,11]
for a more detailed exposition.

Let g : [0,1] → R be a weight function with g(0) = g(1) = 0, which is continuous, piecewise
C1 with piecewise Lipschitz derivative g′ and

∫ 1
0 g2(x) dx > 0. A canonical choice of such a

function is given by g(x) = min(x,1 − x); see [7] for its interpretation. Now, let (kn)n≥1 be a
sequence of positive integers representing the window size such that kn → ∞ and un := kn�n →
0. For any stochastic process V , we define the pre-averaged increments via

V
n

i :=
kn−1∑
j=1

g

(
j

kn

)
�n

i+jV = −
kn−1∑
j=0

(
g

(
j + 1

kn

)
− g

(
j

kn

))
V(i+j)�n, (3.4)

where �n
i V := Vi�n − V(i−1)�n . Roughly speaking, this local averaging procedure reduces the

influence of the noise process when we apply it to the noisy diffusion process Y defined at (1.1).
Indeed, we may show that

X
n

i = OP(
√

kn�n) and εn
i = OP(

√
1/kn),

where the first approximation is essentially justified by the independence of the increments of
W and the first identity of (3.4), and the second approximation follows from the i.i.d. structure
of the noise process and the second identity of (3.4). We clearly see that a large kn increases the
influence of the diffusion part X and diminishes the influence of the noise part ε. However, in
standard statistical problems, for example, estimation of quadratic variation, the optimal rate of
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convergence is obtained when the contributions of both terms are balanced. This results in the
choice of the window size kn with kn

√
�n = θ + o(�

1/4
n ), where θ ∈ (0,∞). With this window

size, we deduce for instance that

√
�n

[T/�n]−kn+1∑
i=0

(
Y

n

i

)(
Y

n

i

)� P−→ θψ2

∫ T

0
ct dt + θ−1ψ1T �,

where the constants ψ1 and ψ2 are defined by

ψ1 :=
∫ 1

0

(
g′(x)

)2
dx, ψ2 :=

∫ 1

0
g2(x) dx

(cf. [7]). The bias can be corrected via

Cn
t =

√
�n

θψ2

[T/�n]−kn+1∑
i=0

(
Y

n

i

)(
Y

n

i

)� − ψ1�n

2θ2ψ2

[T/�n]∑
i=1

(
�n

i Y
)(

�n
i Y

)� P−→
∫ T

0
ct dt,

and the statistic Cn
t becomes a consistent estimator of the quadratic covariation of X with con-

vergence rate �
−1/4
n . This rate is known to be optimal.

As explained in the Introduction, the optimal choice of the window size kn as introduced above
would not lead to a feasible testing procedure for the maximal rank RT . Due to the complex
structure of the test statistic, which will be introduced in Section 4, there is generally no de-
biasing procedure as above (unless RT = d ; see Remark 4.12). For this reason we introduce the
following window size kn:

kn�
2/3
n = θ + o

(
�

1/6
n

)
, θ ∈ (0,∞), un := kn�n. (3.5)

Within the framework of our test statistic, this choice of kn leads to an optimal rate of conver-
gence, which becomes �

−1/6
n (although better rates of convergence are theoretically possible,

but they can only be derived under �d
T ; see again Remark 4.12). We show the intuition behind

this choice in the next section. We remark that an easier choice of the window size would be
kn = O(�

−3/4
n ), which would completely eliminate the influence of the noise process on the

central limit theorem. However, this would lead to a slower rate of convergence of �
−1/8
n . For

this reason, we dispense with the exact exposition of this case.

4. Main results

4.1. Test statistic

In this subsection, we introduce a random perturbation of the original data and define the main
statistics. Following the basic ideas of [8] and the motivation of Section 3.1, we define a d-
dimensional “perturbation” process X′ by

X′
t = σ̃W ′

t ,
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where σ̃ ∈Md is a positive definite deterministic d ×d matrix and W ′ is a d-dimensional Brow-
nian motion. Without loss of generality, we may assume that W ′ is also defined on the filtered
probability space (�,F, (Ft )t∈[0,T ],P). Let G ⊂F be the sub-σ -algebra, which is generated by
all processes appearing in Assumption (A) and by the noise process ε. We assume that W ′ is
independent of G. Now, we use X′ to define the perturbed process

Z
n,κ
t := Yt + √

κunX
′
t , (4.1)

where κ = 1,2 and the sequence un is defined at (3.5). In some sense, the perturbation process X′
t

plays the role of the random perturbation matrix B introduced after (3.3). As we will see below,
our two main statistics will be constructed at two different frequencies �n and 2�n, which will
be indicated by the constant κ = 1,2.

Recall the definition of the pre-averaged quantity V
n

i introduced in (3.4) for a stochastic pro-
cess V . We sometimes write V (g)ni instead of V

n

i if we want to stress the dependency of the
term V

n

i on the weight function g. Furthermore, we use the notation V (g)
n,κ
i to indicate that the

quantity V (g)ni is built using frequency κ�n with κ = 1,2, that is,

V (g)
n,κ
i =

kn−1∑
j=1

g

(
j

kn

)
(V(i+κj)�n − V(i+κ(j−1))�n). (4.2)

If V = Zn,κ defined at (4.1), we will slightly abuse the notation introduced in (4.2) and use the
convention Z(g)

n,κ
i := Zn,κ(g)

n,κ
i . Now, we define our main test statistics via

S(g)
n,κ
T = 3dun

[T/3dun]−1∑
i=0

f
((

Z(g)
n,κ
((3i+κ−1)d+κ(j−1))kn

/
√

κun

)
j=1,...,d

)
, (4.3)

for κ = 1,2 with the test function f on (Rd)d given as

f (x1, . . . , xd) := det
(
mat(x1, . . . , xd)

)2
. (4.4)

Note that the summands in (4.3) use non-overlapping increments of the process Zn,κ , and also
the statistics S(g)

n,1
T and S(g)

n,2
T are based on distinct increments; see also Section 4.5 for a more

detailed discussion.

Remark 4.1. The statistic S(g)
n,κ
T is similar in spirit to the one introduced in [8], where a d-

dimensional continuous Itô semimartingale without noise has been considered. Therein, the
statistics S

n,κ
T defined in [8], equation (2.13), which use the raw increments instead of pre-

averaged ones, satisfy the following law of large numbers

S
n,2
T

S
n,1
T

P−→ 2d−RT .

This should be compared with the motivation described at (3.3). The latter convergence asymp-
totically identifies the maximal rank RT . The crucial difference to our framework is that this
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convergence is no longer valid when we use the statistics S(g)
n,κ
T introduced in (4.3). It relies

on the fact that the noise process ε does not have the scaling property of the driving Brownian
motion W . To overcome this issue, we will not only use different frequencies �n and 2�n, but
also two different weight functions g and h, which are connected through certain identities. For
this purpose, a very thorough analysis of the asymptotic behaviour of S(g)

n,κ
T is required.

Remark 4.2. Let us explain the choice of the window size kn introduced at (3.5) and the per-
turbation rate

√
κun. Under Assumptions (A) and (E), we will prove the following asymptotic

decomposition for i = 0, . . . , [T/3dun] − 1 and κ = 1,2

1√
κun

mat
(
Z(g)

n,κ
(3i+κ−1)dkn

, . . . ,Z(g)
n,κ
((3i+κ−1)d+κ(d−1))kn

)
= A(g)

n,κ
i + √

κun

(
B(1, g)

n,κ
i + B(2, g)

n,κ
i + B(3, g)

n,κ
i

)
(4.5)

+ κunC(g)
n,κ
i + κunD(g)

n,κ
i ,

where the R
d×d -valued sequences A(g)

n,κ
i ,C(g)

n,κ
i ,D(g)

n,κ
i and B(g)

n,κ
i := B(1, g)

n,κ
i +

B(2, g)
n,κ
i + B(3, g)

n,κ
i are tight. The matrix A(g)

n,κ
i , which is the dominating term in the ex-

pansion, is defined by

A(g)
n,κ
i = σ(3i+κ−1)dun√

κun

mat
(
W(g)

n,κ
(3i+κ−1)dkn

, . . . ,W(g)
n,κ
((3i+κ−1)d+κ(d−1))kn

)
,

while B(1, g)
n,κ
i depends on b, v introduced in (2.2), B(2, g)

n,κ
i comes solely from the pertur-

bation X′ and B(3, g)
n,κ
i is associated with the noise process ε (the third order term C(g)

n,κ
i

is connected to a, v′, v′′ and the term D(g)
n,κ
i depends on a, a′, a′′, v′, v′′, defined in (2.2)).

Since det(A(g)
n,κ
i ) = 0 whenever RT < d , our statistic S(g)

n,κ
T is degenerate in the sense that

the second order term enters the law of large numbers. At this stage, we realize that the choice
of the window size kn = O(�

−2/3
n ) and the perturbation rate

√
κun creates a balance between

the second order term B(1, g)
n,κ
i in the stochastic expansion coming from the diffusion process,

B(3, g)
n,κ
i stemming from the noise process ε and B(2, g)

n,κ
i induced by the perturbation pro-

cess X′. The classical choice kn = O(�
−1/2
n ) would make the noise part one of the dominating

terms, but in this case, the estimation of the maximal rank RT would be virtually impossible
since we impose no assumptions on the covariance matrix � of the noise. On the other hand,
when kn = O(�

−3/4
n ) the noise part would enter the third order term and thus would not influ-

ence the limit theory. Although the asymptotic results become much easier in the latter case, the
convergence rate gets rather low (�−1/8

n ). Hence, within the framework of our test statistic, the
choice kn = O(�

−2/3
n ) meets the balance between feasibility of the testing procedure and the

optimal rate of convergence.
Clearly, B(g)

n,κ
i plays the role of the perturbation matrix B defined in Section 3.1 while λ =√

κun. Since it is impossible to guarantee that the matrices B(1, g)
n,κ
i and B(3, g)

n,κ
i have full

rank, we require the presence of the matrix B(2, g)
n,κ
i to insure almost sure invertibility of the

sum. Thus, the perturbation process X′ plays the role of regularization.
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4.2. Notation

In order to state the limit theory for the statistics S(g)
n,κ
T , we need to introduce some notation.

For any weight function g, we define the quantities

ψ1(g) =
∫ 1

0

(
g′(x)

)2
dx, ψ2(g) =

∫ 1

0
g2(x) dx,

(4.6)

ψ3(g) =
∫ 1

0
g(x)dx, ψ4(g) =

∫ 1

0
xg2(x) dx.

For r ∈ {0,1, . . . , d}, we define the function Fr on (R2d)d by

Fr(v1, . . . , vd) = γr

(
mat(x1, . . . , xd),mat(y1, . . . , yd)

)2
, vj =

(
xj

yj

)
∈ R

2d, (4.7)

where γr was introduced at (3.1). Let W and W
′

be Brownian motions of dimension q and d ,
respectively, and let � = (�i)i≥1 be an i.i.d. sequences of d-dimensional standard normal ran-
dom variables. W , W

′
, and � are defined on some filtered probability space (�,F, (F t )t≥0,P)

and are assumed to be independent. Let M≥0 be the space of all symmetric positive-semidefinite
matrices ϕ ∈ M. We introduce the space U = M′ × M × R

dq2 × R
d × M≥0, and let u =

(α,β, γ, a,ϕ) ∈ U . By ϕ1/2 ∈ M we denote the matrix root of ϕ.
Now, for κ = 1,2, we define the 2d-dimensional variables (explicitly writing the components

with l ∈ {1, . . . , d})

�(u,g, κ)lj = 1√
κ

q∑
m=1

αlm

∫ κj

κ(j−1)

g
(
s/κ − (j − 1)

)
dW

m

s , (4.8)

�(u,g, κ)d+l
j = 1

κ
al

∫ κj

κ(j−1)

g
(
s/κ − (j − 1)

)
ds

+ 1

κ

q∑
m,k=1

γ lkm

∫ κj

κ(j−1)

g
(
s/κ − (j − 1)

)
W

k

s dW
m

s

(4.9)

+ 1√
κ

d∑
m=1

βlm

∫ κj

κ(j−1)

g
(
s/κ − (j − 1)

)
dW

′m
s

+ 1

κ

(
ψ1(g)

θ3

)1/2 d∑
m=1

(
ϕ1/2)lm�

m

κj .

Some explanations are in order to understand these definitions.

Remark 4.3. To get an intuition for the notation, we remark that the components of u ∈ U ac-
count for the processes in Assumption (A) that will appear in the limit. This means that α is
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related to σt , β to σ̃ , γ to vt and a to bt . Finally, ϕ accounts for the covariance structure of
the noise and is associated with �. As motivated above, we use different rates in our procedure.
Therefore, we also have to define the limit for the two cases κ = 1,2.

Remark 4.4. Note that the random-vectors �(u,g, κ)i and �(u,g, κ)j are uncorrelated when-
ever i �= j .

Using the notation at (4.7), we define for a weight function g, u = (α,β, γ, a,ϕ) ∈ U and
κ = 1,2 the real-valued random variables

F r(u,g, κ) = Fr

(
�(u,g, κ)1, . . . ,�(u,g, κ)d

)
,

and set

�r(u,g, κ) = E
[
F r(u,g, κ)

]
,

(4.10)
�′

r (u, g, κ) = E
[
F r(u,g, κ)2]− �r(u,g, κ)2,

where the expectation E is taken with respect to the measure P, introduced after equation (4.7).

Remark 4.5. Under the special assumption that ϕ = 0 (which corresponds to the situation with-
out noise), the sequences (�(u,g,1)j )j≥1 and (�(u,g,2)j )j≥1 have the same global law which
implies also that �r(u,g,1) = �r(u,g,2) and �′

r (u, g,1) = �′
r (u, g,2). This is not the case

when ϕ �= 0. Proposition 4.9 will demonstrate under which conditions one can find another
weight function h such that �r(u,g,1) = �r(u,h,2) and �′

r (u, g,1) = �′
r (u,h,2) even in the

general situation that ϕ �= 0.

Remark 4.6. We have introduced the random variables �(u,g, κ)j only for weight functions,
implying that g is continuous and piecewise C1 with a piecewise Lipschitz derivative g′. As a
matter of fact, we will often work with a discretized version gn of g defined as

gn(s) :=
kn−1∑
i=1

g

(
i

kn

)
1
( i−1

kn
, i
kn

](s). (4.11)

Note that gn(0) = gn(1) = 0 and that gn converges to g uniformly on [0,1]. By definition,
gn fails to be a weight function as it is not continuous. Nevertheless, the integrals

∫ 1
0 gn(s) ds,∫ 1

0 gn(s) dW
m

s and
∫ 1

0 gn(s)W
k

s dW
m

s still make sense. This corresponds to the fact that ψl(g
n)

introduced at (4.6) is well-defined for l = 2,3,4. Moreover, we have by a Riemann approxima-
tion argument that

ψl

(
gn
)= ψl(g) + O

(
k−1
n

)
, l = 2,3,4.

For ψ1(g
n), we must approximate the derivative and set

ψ1
(
gn
) := 1

kn

kn−1∑
i=0

(
g( i+1

kn
) − g( i

kn
)

1/kn

)2

= ψ1(g) + O
(
k−1
n

)
, (4.12)
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where the second identity follows again by a Riemann approximation argument. With this con-
vention, we can extend the notation and write �(u,gn, κ)j , F r(u,gn, κ), �r(u,gn, κ) and
�′

r (u, gn, κ), respectively.

4.3. Law of large numbers

In this subsection, we present the law of large numbers for the statistic S(g)
n,κ
T . The quantity

�r(u,g, κ) defined at (4.10) will essentially determine the limit. First, we demonstrate how the
terms �r(u,g, κ) and �′

r (u, g, κ) depend on the rank of the argument α. The following lemma
has been shown in [8], Lemma 3.1.

Lemma 4.7. Let u = (α,β, γ, a,ϕ) ∈ U with β ∈ Md and g be a weight function. Then, if
r ∈ {0, . . . , d} and κ = 1,2, we deduce that

rank(α) = r =⇒ �r(u,g, κ) > 0, �′
r (u, g, κ) > 0, (4.13)

rank(α) < r =⇒ �r(u,g, κ) = �′
r (u, g, κ) = 0. (4.14)

The law of large numbers is as follows.

Theorem 4.8. Assume that conditions (A) and (E) hold. Let r ∈ {0, . . . , d} and g be a weight
function. Then, on �r

T and for κ = 1,2, we obtain the convergence

(κun)
r−dS(g)

n,κ
T

P−→ S(r, g)κT :=
∫ T

0
�r(σs, σ̃ , vs, bs,�,g, κ) ds > 0. (4.15)

In view of Remark 4.1, Theorem 4.8 is not directly applicable since the limit S(r, g)κT cru-
cially depends on κ , meaning that generally S(r, g)1

T �= S(r, g)2
T . In particular, the ratio statistics

S(g)
n,2
T /S(g)

n,1
T does not contain any information about the unknown maximal rank RT . To

make use of Theorem 4.8 we need a better understanding of the structure of the functional �r .
The following proposition is absolutely crucial for our testing procedure.

Proposition 4.9. (i) Fix r ∈ {0, . . . , d}, u ∈ U and κ = 1,2. Then there exist C∞-functions
τr,u,κ , τ ′

r,u,κ : R4 → R such that

�r(u,g, κ) = τr,u,κ

(
ψ1(g), . . . ,ψ4(g)

)
, �′

r (u, g, κ) = τ ′
r,u,κ

(
ψ1(g), . . . ,ψ4(g)

)
(4.16)

for any weight function g.
(ii) Let g and h be weight functions such that ψ1(h) = 4ψ1(g) and ψl(h) = ψl(g) for l =

2,3,4. Then, for any r ∈ {0, . . . , d} and any u ∈ U , we obtain that

�r(u,g,1) = �r(u,h,2), �′
r (u, g,1) = �′

r (u,h,2).
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Proposition 4.9(i) says that the quantity �r(u,g, κ) does not depend on the entire function g,
but only on the quantities ψl(g), l = 1, . . . ,4. But most importantly, Proposition 4.9(ii) and
Theorem 4.8 imply the convergence

S(h)
n,2
T

S(g)
n,1
T

P−→ 2d−r on �r
T , (4.17)

whenever the pair of weight functions g,h satisfies the conditions of Proposition 4.9(ii). This
opens the door to hypothesis testing. We now give an example of a pair of weight function g,h

which fulfills the conditions of Proposition 4.9(ii).

Example 4.10. We define the two auxiliary weight functions g̃(x) := max(0,min(x,1 − x))

and h̃(x) := max(0,min(ax, b(1 − x))) with a = 2
2−√

3
and b = 2

2+√
3

. Then, a pair of weight

functions satisfying the conditions of Proposition 4.9(ii) is given by gc(x) := g̃(cx) and hc(x) :=
h̃(cx − c + 1) where c = 8+√

3
8 (see Figure 1). Indeed, for c ≥ 1, we obtain that

ψ1(hc) = 4ψ1(gc) = 4c,

ψ2(hc) = ψ2(gc) = 1

12c
,

ψ3(hc) = ψ3(gc) = 1

4c
,

ψ4(hc) = 8c − 4 − √
3

96c2
, ψ4(gc) = 1

24c2
,

and for c = 8+√
3

8 , we have 8c−4−√
3

96c2 = 1
24c2 = 536−128

√
3

11 163 .

Remark 4.11. From a statistical point of view and regarding the definition of the pre-averaged
increments in (3.4), we see that it is certainly not ideal to choose weight functions which are

Figure 1. A particular pair of weight functions gc (left), hc (right) from Example 4.10 with c = 8+√
3

8
satisfying the conditions of Proposition 4.9(ii).
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locally constant. Nevertheless, Example 4.10 is an attempt to reduce the parts where the weight
functions are constant while still sticking to a rather simple “triangular” form.

Remark 4.12. Here we demonstrate why the classical choice of the local window kn

√
�n = θ +

o(�
1/4
n ) does not work in the context of rank estimation. We assume for the moment that the noise

covariance matrix � has full rank and let A ∈ M be a matrix with unknown rank r , which should
represent the volatility matrix. Furthermore, let B ∈ Md be a perturbation matrix and let λ > 0
represent the perturbation rate

√
un as in Section 3.1. With the window size kn = O(�

−1/2
n )

the noise and the diffusive parts become balanced and Proposition 4.9(i) suggests that we may
estimate objects of the form

�(λ,g) = det
(
(xgA + yg�) + λB

)2 with xg = ψ2(g), yg = ψ1(g).

We will now expand the quantity �(λ,g) using again the multilinearity of the determinant. For
this purpose, we denote with P3 the set of all multi-integers p = (p1,p2,p3) with pj ≥ 0 and
p1 +p2 +p3 = d , and I3 the set of all partitions I = (I1, I2, I3) of {0, . . . , d} such that Ij contains
exactly pj points. For p ∈ P3, I ∈ I3 and A1,A2,A3 ∈ M, we call GI

A1,A2,A3
the matrix in M

whose ith column is the ith column of Aj when j ∈ Ij . We then immediately deduce the identity

�(λ,g) =
( ∑

p=(p1,p2,p3)∈P3,

p2 �=0,p3≤d−r

∑
I∈Ip

λp3 det
(
GI

xgA,yg�,B

)+ λd−r
∑

I∈I(r,0,d−r)

det
(
GI

xgA,yg�,B

)

+
∑

p=(p1,p2,p3)∈P3,
p3>d−r

∑
I∈Ip

λp3 det
(
GI

xgA,yg�,B

))2

=: (�1(λ, g) + �2(λ, g) + �3(λ, g)
)2

.

When r < d and λ ↓ 0, the first term �1(λ, g), which in particular contains yd
g det(�) �= 0, dom-

inates �2(λ, g) which has the order λd−r , while �3(λ, g) is negligible with respect to �2(λ, g).
However, recalling the theory from Section 3.1 it is exactly the term �2(λ, g), which contains
the information about the unknown rank r . In a purely deterministic framework, we may hope to
correct for the dominating bias caused by the term �1(λ, g) by taking a suitable linear combina-
tion of a particular family (�(λ,gl))l . Unfortunately, in a statistical setting, the objects contained
in �1(λ, g) can be only estimated with a precision rate u

−1/2
n (cf. Theorem 4.13 below), which

would still give a huge bias that dominates �2(λ, g) whenever r < d . This is precisely the reason
why we see little hope in using the optimal window size kn = O(�

−1/2
n ).

4.4. Central limit theorem and testing procedure

In order to provide a formal testing procedure associated with the convergence in probability at
(4.17), we need to show a joint stable central limit theorem for the statistics (S(g)

n,1
T , S(h)

n,2
T ).

We say that a sequence of random variables Hn converges stably in law to H (Hn
dst−→ H ), where
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H is defined on an extension (�̃, F̃, P̃) of the original probability space (�,F,P), if and only if

lim
n→∞E

[
φ(Hn)Z

]= Ẽ
[
φ(H)Z

]
for any bounded and continuous function φ and any bounded F -measurable random variable Z.
We refer to [1,10] or [12] for a detailed study of stable convergence. Note that stable convergence
is a stronger mode of convergence than weak convergence, but it is weaker than convergence in
probability.

Now, let g and h be two weight functions satisfying the conditions of Proposition 4.9(ii). We
define the statistic U(r, g,h)nT = (U(r, g,h)

n,1
T ,U(r, g,h)

n,2
T ) via

U(r, g,h)nT = 1√
un

(
ur−d

n S(g)
n,1
T − S(r, g)1

T , (2un)
r−dS(h)

n,2
T − S(r,h)2

T

)
. (4.18)

The following theorem is one of the most important results of the paper.

Theorem 4.13. Assume that conditions (A) and (E) are satisfied, the weight functions g,h fulfill
the assumptions of Proposition 4.9(ii) and RT (ω) ≤ r for some r ∈ {0, . . . d}. Then we obtain the
stable convergence

U(r, g,h)nT
dst−→ MN

(
0,V (r, g,h)T

)
, (4.19)

where

V (r, g,h)T
(4.20)

= diag

(
3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,g,1) ds,3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,h,2) ds

)
is a diagonal matrix. MN (0,V (r, g,h)T ) denotes the two dimensional mixed normal distribu-
tion with G-conditional mean 0 and G-conditional covariance matrix V (r, g,h)T .

Note that the rate of convergence u
−1/2
n corresponds to �

−1/6
n for our choice of the window

size kn at (3.5). We remark that due to Proposition 4.9(ii), we know that S(r, g)1
T = S(r,h)2

T such
that the same centering term appears in both components on the right-hand side of (4.18). Again
thanks to Proposition 4.9(ii) we see that the two diagonal elements of V (r, g,h)T coincide. In
order to obtain a feasible version of the stable convergence in (4.19), we need to construct a
consistent estimator of the G-conditional covariance matrix V (r, g,h)T . To this end, we define
the following estimators for the “second moments”:

V (g,h)
n,11
T = 9d2un

[T/3dun]−1∑
i=0

f 2((Z(g)
n,1
(3id+(j−1))kn

/
√

un

)
j=1,...,d

)
, (4.21)

V (g,h)
n,22
T = 9d2un

[T/3dun]−1∑
i=0

f 2((Z(h)
n,2
(3id+d+2(j−1))kn

/
√

2un

)
j=1,...,d

)
, (4.22)
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V (g,h)
n,12
T = 9d2un

[T/3dun]−1∑
i=0

f
((

Z(g)
n,1
(3id+(j−1))kn

/
√

un

)
j=1,...,d

)
× f

((
Z(h)

n,2
(3id+d+2(j−1))kn

/
√

2un

)
j=1,...,d

)
,

(4.23)

where f is given at (4.4). Following the intuition from (4.17) we define an estimator R̂(g,h)nT
via

R̂(g,h)nT := d − log(S(h)
n,2
T /S(g)

n,1
T )

log 2
. (4.24)

Now, we obtain the following proposition.

Proposition 4.14. Assume that conditions (A) and (E) are satisfied and the weight functions g,h

fulfill the assumptions of Proposition 4.9(ii).

(i) Let r ∈ {0, . . . , d}. Then, on �
≤r
T :(

u2
n

)r−d
V (g,h)

n,11
T

(4.25)
P−→ 3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,g,1) + �2
r (σs, σ̃ , vs, bs,�,g,1) ds,

(
4u2

n

)r−d
V (g,h)

n,22
T

(4.26)
P−→ 3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,h,2) + �2
r (σs, σ̃ , vs, bs,�,h,2) ds,

(
2u2

n

)r−d
V (g,h)

n,12
T

(4.27)
P−→ 3d

∫ T

0
�r(σs, σ̃ , vs, bs,�,g,1)�r(σs, σ̃ , vs, bs,�,h,2) ds.

(ii) We have the (stable) central limit theorem

1√
un

R̂(g,h)nT − RT√
V (n,T ,g,h)

dst−→ � ∼N (0,1), (4.28)

where � is defined on an extension (�̃, F̃, P̃) of the original probability space (�,F,P) and is
independent of the σ -algebra G. The random variable V (n,T ,g,h) is defined via

V (n,T ,g,h) := V (g,h)
n,11
T + 4R̂(g,h)nT −dV (g,h)

n,22
T − 21+R̂(g,h)nT −dV (g,h)

n,12
T

(S(g)
n,1
T log 2)2

. (4.29)

We remark that Proposition 4.14(ii) follows directly from Theorem 4.13, Proposition 4.14(i)
and the delta method for stable convergence. For this, it is essential to realize that, even though
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the estimator V (n,T ,g,h) for the conditional variance is not G-measurable, it converges to a
G-measurable limit due to Proposition 4.14(i) and Theorem 4.8.

Notice also that due to Proposition 4.9(ii) the right-hand side of (4.25) and (4.26) coincide
and, moreover, that the right-hand side of (4.27) can be written as

3d

∫ T

0
�2

r (σs, σ̃ , vs, bs,�,g,1) ds.

Remark 4.15. Instead of using the estimators for the second moments given in (4.21) till (4.23),
we could also use a more direct approach and consider

V ′(g)nT := 3d2un

[T/2dun]−1∑
i=0

{
f
((

Z(g)
n,1
(2id+j−1)kn

/
√

un

)
j=1,...,d

)
− f

((
Z(g)

n,1
(2id+d+j−1)kn

/
√

un

)
j=1,...,d

)}2
.

Notice that similar to Proposition 4.14(i), we have that

(
u2

n

)r−d
V ′(g)nT

P−→ 3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,g,1) ds.

Then (4.28) also holds upon replacing V (n,T ,g,h) defined at (4.29) by

V ′(n,T , g) := 2V ′(g)nT

(S(g)
n,1
T log 2)2

.

The feasible central limit theorem at (4.28) opens the door to hypothesis testing. Let us define
the rejection regions via

Cn,=r
α := {

ω : ∣∣R̂(g,h)nT − r
∣∣> z1−α/2

√
unV (n,T ,g,h)

}
, (4.30)

Cn,≤r
α := {

ω : R̂(g,h)nT − r > z1−α

√
unV (n,T ,g,h)

}
, (4.31)

where zα denotes the α-quantile of the standard normal distribution. Obviously, the rejection
region Cn,=r

α corresponds to H0 : RT = r vs. H1 : RT �= r , while Cn,≤r
α corresponds to H0 : RT ≤

r vs. H1 : RT > r . The asymptotic level and consistency of the tests are demonstrated in the
following corollary.

Corollary 4.16. Assume that conditions (A) and (E) are satisfied and the weight functions g,h

fulfill the assumptions of Proposition 4.9(ii).

(i) The test defined through (4.30) has asymptotic level α in the sense that

A ⊂ �r
T , P(A) > 0 =⇒ P

(
Cn,=r

α |A)→ α. (4.32)
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Furthermore, the test is consistent, that is,

P
(
Cn,=r

α ∩ (
�r

T

)c)→ P
((

�r
T

)c)
. (4.33)

(ii) The test defined through (4.31) has asymptotic level at most α in the sense that

A ⊂ �
≤r
T , P(A) > 0 =⇒ lim sup

n→∞
P
(
Cn,≤r

α |A)≤ α. (4.34)

Furthermore, the test is consistent, that is,

P
(
Cn,≤r

α ∩ (
�

≤r
T

)c)→ P
((

�
≤r
T

)c)
. (4.35)

4.5. Working with overlapping increments

Recall that our test statistics S(g)
n,κ
T , κ = 1,2, defined at (4.3) work with “maximally non-

overlapping” increments in the following sense: (i) Each single summand uses non-overlapping
increments, (ii) for each κ = 1,2 the summands in S(g)

n,κ
T contain distinct increments, and fi-

nally (iii) also the statistics S(g)
n,1
T and S(g)

n,2
T are composed of distinct increments. The partic-

ular reasons for using non-overlapping increments on these three levels are also different. Point
(i) is necessary to obtain the asymptotic decomposition explained in Remark 4.2. On the other
hand, (ii) ensures the stable central limit theorem at (4.19) for each single component and (iii)
implies the diagonal form of the conditional covariance matrix at (4.20), so in particular, the
conditional covariance is not degenerate.

In order to reduce the asymptotic variance of the rank-estimator at (4.38) and to improve
its finite sample performance, it is desirable to use overlapping increments at least at some of
the different levels. Whereas (i) is crucial for the whole approximation idea, (ii) and (iii) are
less compulsory. Concerning point (iii) one can allow for common increments in the two main
statistics as long as the conditional covariance appearing in Theorem 4.13 is not degenerate; see,
for example, [8]. A natural ansatz of tailoring new statistics using overlapping increments on the
level of (ii) and (iii) is the following. We define

S̃(g)
n,κ
T = �n

[T/�n]−κdkn−1∑
i=0

f
((

Z(g)
n,κ
i+κ(j−1)kn

/
√

κun

)
j=1,...,d

)
(4.36)

for κ = 1,2, a weight function g and the function f defined at (4.4). Proving a law of large
numbers is a quite straightforward corollary to Theorem 4.8. The idea is to split up the sum in
(4.36) into the sum of 3dkn partial sums, each of them having summands with distinct increments
and being of the form at (4.3) with different starting points.

Corollary 4.17. Assume that conditions (A) and (E) hold. Let r ∈ {0, . . . , d} and g be a weight
function. Then, on �r

T and for κ = 1,2, we obtain the convergence

(κun)
r−d S̃(g)

n,κ
T

P−→ S(r, g)κT , (4.37)

where S(r, g)κT is defined at (4.15).
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Then, using a pair of weight functions g,h, satisfying the conditions of Proposition 4.9(ii) we
obtain an analog version of the convergence at (4.17), such that

R̃(g,h)nT := d − log(S̃(h)
n,2
T /S̃(g)

n,1
T )

log 2
(4.38)

is a consistent estimator for the maximal rank.
In contrast to the straightforward derivation of the law of large numbers, it is far from being

trivial to derive a stable central limit theorem corresponding to Theorem 4.13. In principle, one
could show a one dimensional central limit theorem for each of the two components (of course
with a different conditional variance) with the so called “small blocks–big blocks”-technique
which has become a standard method for proving central limit theorems for dependent data; see
[7,11]. However, for the joint convergence, the remaining major problem is to show that the
resulting conditional covariance matrix is not degenerate. It is not clear how one could show
this, and also simulation studies give evidence that the sample covariance matrix is also ‘almost’
degenerate. Consequently, a central limit theorem like the one at (4.28), and with that hypothesis
testing, seems to be much more complicated.

5. Simulation study and real data example

5.1. Simulations

In this subsection, we want to examine how well the testing procedure for the maximal rank
performs in finite samples. The main focus lies on considering the convergence results in (4.28),
(4.32) and (4.33). Complementing these results, we examine how well the estimator R̂(g,h)nT
works to estimate the maximal rank RT and we compare it with the estimator for overlapping
increments R̃(g,h)nT (using the law of large numbers which is implicitly given by (4.28)). To this
end, we also consider the truncated and integer-valued modifications of the estimators defined as

R̂int(g,h)nT :=

⎧⎪⎨⎪⎩
0, R̂(g,h)nT < 1/2,

r, R̂(g,h)nT ∈ [r − 1/2, r + 1/2), r ∈ {1, . . . , d − 1},
d, R̂(g,h)nT ≥ d − 1/2,

(5.1)

R̃int(g,h)nT :=

⎧⎪⎨⎪⎩
0, R̃(g,h)nT < 1/2,

r, R̃(g,h)nT ∈ [r − 1/2, r + 1/2), r ∈ {1, . . . , d − 1},
d, R̃(g,h)nT ≥ d − 1/2.

(5.2)

We emphasize that due to the rate of convergence of �
−1/6
n we expect a worse performance

in finite samples in comparison to the simulation study in [8] (there, the rate of convergence is
�

−1/2
n ).
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5.1.1. Models and parameters

For all simulations, we set T = 1. Assuming a trading day consists of 23 400 seconds, we use
the sampling frequencies �−1

n = 23 400 × 10k for k = 0,1,2. We remark that nowadays liquid
assets can be observed even at the highest frequency �−1

n = 23 400 × 102. We work with a fix
dimension of d = 8, which makes the simulation results comparable with the real data example
of Section 5.2. Following the simulation study in [8], we set σ̃ = Id and due to [7] we use θ = 1/3
for the pre-averaging procedure. Additionally, we set kn := [θ/�

2/3
n ] such that (3.5) is satisfied.

We use the weight functions g,h explicitly constructed in Example 4.10. For the noise part, we
always assume a covariance structure of � = 0.0005Id like in [7]. We perform 100 repetitions
for X to uncover the finite sample properties. To reduce the influence of the random perturbation,
we simulate W ′ 10 times for each repetition. The following quantities are reported:

• k : the implicitly given sampling frequency defined as �−1
n = 23 400 × 10k ;

• the first two moments of the test statistic
R̂(g,h)n1−R1√
unV (n,1,g,h)

defined at (4.28) to check for the
normal approximation;

• �r
1 : the proportion of rejection for the possible null hypotheses �r

1 with r ∈ {0, . . . , d}
defined at (2.3) at level α = 0.05.

In order to compare the rank estimators for the overlapping and the non-overlapping approach,
we first take the empirical means of the estimators R̂(g,h)n1 and R̃(g,h)n1 over 10 different
simulations of W ′, and we take the respective empirical medians of R̂int(g,h)n1 and R̃int(g,h)n1 .
For the sake of brevity, we denote these quantities again with the same notation. We report the
following quantities:

• mean: the sample mean over the 100 repetitions of R̂(g,h)n1 and R̃(g,h)n1;
• variance: the sample variance over the 100 repetitions of R̂(g,h)n1 and R̃(g,h)n1;
• ratio: the proportions of the event that the estimator R̂int(g,h)n1 and R̃int(g,h)n1 coincides

with R1.

For the non-overlapping approach, we use again the three frequencies �−1
n = 23 400 × 10k ,

k = 0,1,2. Due to computational restrictions, we conduct the simulation for the overlapping
approach just for the lowest frequency �−1

n = 23 400. We consider the following models for the
semimartingale X defined at (2.1).

Model 1 We have a vanishing drift bt = 0 and a constant volatility σt = Id of full rank.
Model 2 We observe pure noise, so bt = 0 and σt = 0.
Model 3 We have a constant drift bt = 0.5 and a constant volatility structure with rank R1 = 6

which is given by

σt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Model 4 We have a vanishing drift bt = 0 and a time varying volatility process given by σt =
max(sin(2πt),0)Id , such that R1 = 8.

5.1.2. Summary

According to our theoretical results, the empirical counterparts of the first two moments, level
and power reported in Table 1 seem to converge to their theoretical analogues as the frequency
increases. However, the speed of convergence depends on the particular model, and generally,
even at the highest frequency �−1

n = 23 400 × 102, the empirical results are still quite far away

from the theoretical asymptotic results, which is due to the rather slow convergence rate of �
−1/6
n .

More specifically, the numerical results at the lowest frequency �−1
n = 23 400 are less reliable

for all four models.
In particular, for models 1, 2 and 3, we observe reasonable results for the convergence of the

empirical moments. Only at the lowest frequency �−1
n = 23 400, model 3 performs considerably

worse than models 1 and 2. An explanation is that there are several small order terms in the
expansion of the main statistic, which seem to influence the finite sample performance at rela-
tively low frequencies. Recall that there is a drift term in model 3, whereas models 1 and 2 have
vanishing drift and constant volatility, such that these lower order terms do not appear. Also the
relatively bad performance of the empirical moments in model 4 is in line with that explanation.
It is the only model with time varying volatility – and the range of the rank is quite extreme: one
has full rank in [0,1/2) and pure noise in [1/2,0]. Astonishingly, in model 4 one obtains the best
results for the empirical moments at the lowest frequency.

The approximation of power again depends on the complexity of the time-varying coefficients
of the model. Quite intuitively, we observe a better power performance for alternative hypotheses,
which are more distant to the true one. In models 1 and 3, at the lowest frequency, the underesti-
mation of the true maximal rank (7.29 and 5.87; see Table 2) induces a bias in the corresponding

Table 1. The results for the statistic R̂(g,h)n1 in four models are summarized according to their order

k 1st mt 2nd mt �0
1 �1

1 �2
1 �3

1 �4
1 �5

1 �6
1 �7

1 �8
1

0 −1.84 715.27 0.933 0.903 0.843 0.781 0.693 0.609 0.553 0.527 0.535
1 0.19 15.71 0.990 0.962 0.908 0.836 0.734 0.637 0.539 0.471 0.444
2 −0.22 3.99 1.000 0.981 0.954 0.922 0.800 0.632 0.435 0.313 0.285

0 2.30 6472.00 0.567 0.597 0.622 0.676 0.743 0.814 0.866 0.898 0.935
1 −0.11 13.51 0.360 0.400 0.491 0.602 0.738 0.841 0.917 0.952 0.980
2 0.11 3.72 0.253 0.281 0.448 0.647 0.791 0.916 0.969 0.988 0.996

0 −23.09 2.29 × 105 0.830 0.764 0.714 0.657 0.607 0.565 0.580 0.590 0.617
1 −0.15 17.40 0.903 0.825 0.721 0.594 0.494 0.433 0.400 0.451 0.534
2 −0.02 3.84 0.975 0.927 0.811 0.684 0.499 0.346 0.278 0.330 0.515

0 0.54 10.44 0.818 0.780 0.723 0.679 0.631 0.591 0.560 0.540 0.521
1 17.20 2.76 × 105 0.905 0.883 0.856 0.825 0.772 0.717 0.681 0.637 0.606
2 −1.79 1281.66 0.933 0.915 0.889 0.824 0.725 0.642 0.553 0.505 0.517
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Table 2. The results for the rank estimators R̂(g,h)n
T

and
R̃(g,h)n

T
of the overlapping and non-overlapping approach for

the four models are summarized according to their order

Overlapping k Mean Variance Ratio

No 0 7.29 8.86 0.48
No 1 8.12 7.01 0.64
No 2 7.80 3.40 0.61
Yes 0 7.88 0.55 0.72

No 0 0.02 1.41 0.55
No 1 −0.04 0.70 0.59
No 2 0.11 0.39 0.58
Yes 0 0.08 0.04 0.93

No 0 5.87 5.33 0.15
No 1 5.82 2.81 0.27
No 2 6.00 1.34 0.29
Yes 0 5.96 0.24 0.67

No 0 9.10 27.82 0.60
No 1 8.63 20.77 0.68
No 2 7.99 10.62 0.56
Yes 0 8.93 1.49 0.90

tests: in model 1, the proportion of rejection for the null hypothesis �7
1 is 0.527 which is smaller

than 0.535, the proportion of rejection for the true hypothesis �8
1 (also compare the values for

�5
1 and �6

1 for model 3). In model 4, we have the same effect at the highest frequency where the
proportion of rejection is 0.505 for �7

1 and 0.517 for �8
1. This cannot merely be explained by the

relatively small bias of −0.01 of R̂(g,h)n1; see Table 2. However, the rounded but not truncated
version of R̂(g,h)n1 takes 17 times the value 7, but only 11 times the value 8 in our simulated
sample, which can serve as an explanation of the biased test.

If we first focus on the results for the non-overlapping statistics in Table 2 we can see that the
bias and the variance of the corresponding rank-estimator seem to become smaller as �n → 0.
Especially for the variance we can see this in all models. In line with this convergence, one would
expect that the ratio of events that R̂int(g,h)n1 coincides with the true maximal rank increases as
�n → 0. However, we can assert this increase only for model 3. This is the only model where the
true maximal rank, which is 6, is an “inner point” of the possible values {0, . . . ,8}. In the other
models, truncation effects in the definition at (5.1) take place. For example, in model 4, at the
frequencies �−1

n = 23 400 × 10k , k = 0,1, there is actually an upwards bias (+1.10 and +0.63),
whereas for the highest frequency, there is a negligible bias (−0.01).

Comparing the results for the non-overlapping approach with the overlapping approach out-
lined in Section 4.5 yields qualitatively expectable, but quantitatively impressive results. First of
all, the bias of the estimator using the overlapping approach is of comparable size as the one
for the non-overlapping approach at the same frequency �−1

n = 23 400. On the other hand, the
sample variances of the two different approaches is dramatically different. Comparing the esti-
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mators at the same frequency, the overlapping approach reduces the variance by a factor of 16
(model 1) up to 35 (model 2). Even for the unfair comparison at different frequencies for the
different approaches (�−1

n = 23 400 × 102 for the non-overlapping approach and �−1
n = 23 400

for the overlapping approach), the variance in the overlapping approach is still smaller than the
one in the non-overlapping approach by a factor of 5 (model 3) up to 10 (model 2). As a result of
the variance reduction, the proportion of the event that the estimators defined at (5.1) and (5.2)
coincide with the true maximal rank increases in all models when switching to the overlapping
approach. In our simulation study, this proportion of correct estimation in the overlapping ap-
proach is considerably higher than that proportion for the non-overlapping approach uniformly
over all frequencies. Only the comparison on model 4 seems to be slightly unfair due to the
positive bias of R̃(g,h)n1 and the truncation effects when calculating R̃int(g,h)n1 .

We remark that we have conducted several pre-simulations for lower dimensions. In theses
cases, the speed of convergence both of the empirical moments and of the empirical powers
is the higher the lower the dimension is. This can be explained by the fact that the true rate
of convergence is [T/3dun]1/2 rather than �

−1/6
n , which decreases when d is growing. On the

other hand, for constant volatility models the speed of convergence seems to increase as the time
horizon increases, which is also in line with the above statement. For more complicated models,
the relation is not so easy. The explanation is that one should rather replace T with the Lebesgue
measure of the set {t ∈ [0, T ] : rt = RT } in the rate of convergence given above.

5.2. Real data example

5.2.1. Data description

In order to test our theoretical results on real data, we consider a homogeneous market of eight
stocks from big American banks: American International, Allstate, Bank of America, Citigroup,
Goldman Sachs, J. P. Morgan, MetLife, and Prudential Financial. The sample period is 2006–
2009, both years included, which results in a total number of 1007 trading days. We performed a
pre-cleaning of the data to exclude misprints. We have applied the previous-tick method to obtain
1-second equidistant observations in each trading day, that is 23 401 prices in total for each day.

5.2.2. Data cleaning

As our asymptotic theory is not robust to jumps in the price process X, we need to eliminate
possible jumps first. To remove possible intraday jumps, we apply the following algorithm:

1. For each component Ym of the observed price process, we calculate the mean daily squared
volatility, denoted by (̂σm

i )2 for day i. To this end, we use the jump-robust pre-averaged
estimator defined at [5], equation (4.35). As parameters we use the standard weight func-
tion g(x) = min(x,1 − x), θ = 1/3 and k′

n = [θ/�
1/2
n ], resulting in ψ2 = ψ2(g) = 1/12;

see (4.6).
2. For each day i and each component Ym, we define a threshold

Thresholdm
i := 3σ̂ m

i

√
ψ2k′

n�n.



Testing the maximal rank of the volatility process 3043

3. We delete a pre-averaged increment Y
n

j within day i of the multi-dimensional price process
whenever there is at least one component m ∈ {1, . . . , d} such that∣∣Ymn

j

∣∣> Thresholdm
i .

Since we have to cancel the increments in all components whenever there occurs a jump in a sin-
gle component, the algorithm removes quite a number of increments. The number of remaining
increments is about 71.9% of the original number before the data cleaning.

5.2.3. Results

In line with the simulation study, we set σ̃ = Id , θ = 1/3 and kn = [θ/�
2/3
n ] and use the weight

functions g,h which are constructed in Example 4.10. Over each time window, we use 10 in-
dependent realizations of the random perturbation W ′. Again, we report R̂(g,h)nT (R̃(g,h)nT ,
respectively) as the mean over that sample of the respective estimators, and R̂int(g,h)nT
(R̃int(g,h)nT , respectively) as the respective median.

We report the results for the non-overlapping increments approach for a time window of one
day in Figure 2 and over a rolling time window of 10 days in Figure 3. One can find the results
for the overlapping increments approach for a time window of one day in Figure 4. For a first
analysis of the results, we ignore the time varying structure of the data and compute the sample
mean and variance of the estimators R̂(g,h)n1 , R̂(g,h)n10, and R̃(g,h)n1; see Table 3.

For the non-overlapping situation with a one-day time window, we clearly see a positive bias.
The sample variance reduces both when switching to a larger time horizon and when switching

Figure 2. Estimators R̂(g,h)n1 (circles) and R̂int(g,h)n1 (squares) over a one-day time window.
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Figure 3. Estimators R̂(g,h)n10 (circles) and R̂int(g,h)n10 (squares) over a 10-days rolling time window.

to the overlapping increments approach. Consequently, it is clearly preferable to work with the
results of the overlapping increments approach. An obvious and interesting question is whether
one could reject the null hypothesis that the market at hand is complete. This amounts to asking

Figure 4. Estimators R̃(g,h)n1 (circles) and R̃int(g,h)n1 (squares) over a one-day time window.
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Table 3. Sample mean and variance of R̂(g,h)n1 ,
R̂(g,h)n10, and R̃(g,h)n1

Overlapping T Mean Variance

No 1 10.85 16.11
No 10 8.20 8.12
Yes 1 8.22 2.31

whether the maximal rank of the co-volatility is 8 for all days in the sample period and the days
where R̃int(g,h)n1 yields another result is just due to the variance of the estimator (and the low
frequency). To this end, we count the events that R̃int(g,h)n1 = 8 which is for 700 out of the
1007 trading days in the sample period. For 223 days, the estimator yield 7, and for the rest
of the days, it yields smaller values. If we compare these numbers with the results of model 1
in the simulation study for the overlapping approach (see also Table 2), those numbers are of
comparable size: 72 out of 100 simulations, the estimator yields 8, 25 times the value 7, and 3
times the value 6. Of course, with 2.31 the sample variance of the estimator in the data example
is much bigger than the variance in the simulation study with constant and full rank, which is
0.55. On the other hand, it is plausible that for the real data, there is both a non-vanishing drift
term and a more complex volatility structure than a merely constant volatility. Hence, probably
due to the lower order terms in the expansion of the main statistic, the variance is bigger; see also
the discussion of the simulation study.

Finally, we see different rank regimes in the data. It seems that the rank estimator yields higher
values in the mid-third of the sample period in comparison to the first and last third.

6. Proofs

Before presenting the proofs in detail, let us briefly outline the roadmap of this section. In Sec-
tion 6.1, we introduce some technical results about expansions of determinants. We justify the
asymptotic expansion at (3.2) and also show some more involved results.

In Section 6.2, we show that – using a standard localization procedure – we obtain the stochas-
tic decomposition explained in Remark 4.2. Moreover, we show how the law of the dominating
term in the expansion can be expressed in terms of the notation introduced in Section 4.2.

Section 6.3 is especially concerned with the proof of Proposition 4.9. To this end, we perform
a very detailed analysis of the terms �r and �′

r introduced at (4.10) and their dependency on the
weight function g. This mainly relies on an application of the Leibniz rule for the calculation of
the determinants and a repeated use of the Itô isometry to calculate the expectations.

Section 6.4 deals with the proofs of the main Theorem 4.13 and of Proposition 4.14. First, we
show that – thanks to the stochastic expansion established in Section 6.2 – the main approxima-
tion idea motivated in Section 3.1 works in the stochastic setting. The second main step in the
proof of Theorem 4.13 is the application of a stable central limit theorem for semimartingales
(see, e.g., [10], Theorem IX.7.28). Proposition 4.14(i) follows along the lines of parts of the proof
of Theorem 4.13. Proposition 4.14(ii) follows by Theorem 4.13, Theorem 4.8 – which in turn is
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a direct consequence of Theorem 4.13 – and Proposition 4.14(ii) by applying the delta method
for stable convergence. Note that this procedure does only work under a proper choice of the pair
of weight functions which fulfills Proposition 4.9(ii).

The proof of Corollary 4.16 is essentially a consequence of the stable convergence at (4.28)
and is referred to Section 6.5.

6.1. Expansion of determinants

Due to Section 3.1, the key to identifying the unknown rank of a matrix A ∈ M is the matrix
perturbation method which results in the expansion at (3.2). While we could show the law of
large numbers at (4.15) with an expansion like the one at (3.2), we need a higher order expan-
sion of the determinant to derive the central limit theorem at (4.19). Therefore, we shall intro-
duce some additional notation to the one in Section 3.1 which is similar to the one introduced
in [8].

In the sequel, ‖A‖ denotes the Euclidean norm of a matrix A ∈ M. For any positive integer
m ≥ 1, we denote with Pm the set of all multi-integers p = (p1, . . . , pm) with pj ≥ 0 and p1 +
· · · + pm = d , and Ip the set of all partitions I = (I1, . . . , Im) of {0, . . . , d} such that Ij contains
exactly pj points. For p ∈ Pm, I ∈ Ip and A1, . . . ,Am ∈ M, we call GI

A1,...,Am
the matrix in M

whose ith column is the ith column of Aj when j ∈ Ij .
Due to the multilinearity property of the determinant we have the following identity for all

A1, . . . ,Am ∈ M

det(A1 + · · · + Am) =
∑

p∈Pm

∑
I∈Ip

det
(
GI

A1,...,Am

)
. (6.1)

For A,B,C ∈ M and r ∈ {0, . . . , d}, recalling (3.1), we recover the identity

γr(A,B) =
∑

I∈I(r,d−r)

det
(
GI

A,B

)
(6.2)

and set

γ ′
r (A,B,C) :=

∑
I∈I(r,d−r−1,1)

det
(
GI

A,B,C

)
, (6.3)

with the convention that γ−1(A,B) = 0 and γ ′
d(A,B,C) = 0. Let A,B,C,D ∈ M and

rank(A) ≤ r . Using (6.1), we obtain the asymptotic expansion

det
(
A + λB + λ2C + λ2D

)
= λd−rγr (A,B) (6.4)

+ λd−r+1(γr−1(A,B) + γ ′
r (A,B,C) + γ ′

r (A,B,D)
)+ O

(
λd−r+2) as λ ↓ 0.

This observation gives rise to the following lemma (see also [8], Lemma 6.2).
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Lemma 6.1. There is a constant K > 0 such that for all r ∈ {0, . . . , d}, all λ ∈ (0,1] and all
A,B,C,D ∈ M with rank(A) ≤ r we have with � = ‖A‖ + ‖B‖ + ‖B‖ + ‖D‖∣∣det

(
A + λB + λ2C + λ2D

)− λd−rγr (A,B) − λd−r+1(γr−1(A,B) + γ ′
r (A,B,C)

)∣∣
(6.5)

≤ Kλr−d+1�d−1(λ� + ‖D‖),∣∣∣∣ 1

λ2d−2r
det

(
A + λB + λ2C + λ2D

)2 − γr(A,B)2

− 2λγr(A,B)
(
γr−1(A,B) + γ ′

r (A,B,C)
)∣∣∣∣ (6.6)

≤ Kλ�2d−1(λ� + ‖D‖).
If further λ′ ∈ (0,1], A′,B ′,C′,D′ ∈ M with rank(A′) ≤ r and �′ = ‖A′‖ + ‖B ′‖ + ‖C′‖ +
‖D′‖, then ∣∣∣∣ 1

(λλ′)2d−2r
det

(
A + λB + λ2C + λ2D

)2 det
(
A′ + λ′B ′ + λ′2C′ + λ′2D′)2

(6.7)

− γr(A,B)2γr

(
A′,B ′)2

∣∣∣∣≤ K
(
λ + λ′)��′.

Proof. The inequalities at (6.5) and (6.7) essentially follow from the asymptotic expansion at
(6.4) and the fact that there is a K > 0 such that for any p ∈P4, I ∈ Ip and λ ∈ (0,1] we have∣∣det

(
GI

A,λB,λ2C,λ2D

)∣∣= λp2+2p3+2p4
∣∣det

(
GI

A,B,C,D

)∣∣≤ Kλp2+2p3+2p4�d−p4‖D‖p4 .

The inequality at (6.6) follows from (6.5) by taking squares. �

6.2. The stochastic decomposition

Under Assumption (A) and by a standard localization procedure (see, e.g., [2], Section 3), it is
no restriction to make the following technical assumption.

Assumption (A1). Assumption (A) holds and the processes Xt , bt , σt , at , vt , a′
t , v′

t , a′′
t , v′′

t

defined at (2.1) and (2.2) are uniformly bounded in (ω, t).

We make the convention that all constants are denoted by K , or Kp if they depend on an addi-
tional parameter p. The constants never depend on T , t, n, i, j . To ease notation, we use generic
constants that may change from line to line. We introduce the filtration (Ht )t∈[0,T ] defined as

Ht := Ft ∨ σ(ε),
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where σ(ε) is the σ -field generated by the whole process (ε)t∈[0,T ]. For any process V and for
the filtrations (Ft )t∈[0,T ], (Ht )t∈[0,T ] and κ = 1,2, we will use the simplifying notation

V
n,κ
i = V(3i+κ−1)dun, Fn,κ

i =F(3i+κ−1)dun, Hn,κ
i =H(3i+κ−1)dun . (6.8)

Note that we have the “nesting property” Fn,1
i ⊂ Fn,2

i and Hn,1
i ⊂ Hn,2

i , respectively. Now, we
show that under Assumption (A) we can obtain the stochastic decomposition at (4.5) explained
in Remark 4.2. To do so, we notice (see [8], Section 6) that under Assumption (A), and for any
z ≤ t ≤ s, we have the following expansion for the increment Xs − Xt = ∫ s

t
bu ds + ∫ s

t
σs dWs

(using vector notation): ∫ s

t

bu du = α1 + α2 + α3 + α4,∫ s

t

σu dWu = α5 + α6 + α7 + α8 + α9 + α10 + α11,

where

α1 = bz(s − t), α2 =
∫ s

t

(∫ u

z

a′
w dw

)
du,

α3 = v′
z

∫ s

t

(Wu − Wz)du, α4 =
∫ s

t

(∫ u

z

(
v′
w − v′

z

)
dWw

)
du,

α5 = σz(Ws − Wt), α6 = az

∫ s

t

(u − z) dWu,

α7 =
∫ s

t

(∫ u

z

(aw − az) dw

)
dWu, α8 = vz

∫ s

t

(Wu − Wz)dWu, (6.9)

α9 =
∫ s

t

(∫ u

z

(∫ w

z

a′′
r dr

)
dWw

)
dWu,

α10 = v′′
z

∫ s

t

(∫ u

z

(Ww − Wz)dWw

)
dWu,

α11 =
∫ s

t

(∫ u

z

(∫ w

z

(
v′′
r − v′′

z

)
dWr

)
dWw

)
dWu.

By the Burkhölder–Gundy inequality (see, e.g., [13]), we have under Assumption (A1) for all
p, t, s > 0 and for V = X,σ,b, v that

E

[
sup

u∈[0,s]
‖Vt+u − Vt‖p|Ft

]
≤ Kpsp/2. (6.10)

We set

ηt,s = sup
u∈[0,s],V =a,v′,v′′

‖Vt+u − Vt‖2, n
n,κ
i =

√
E
[
η(3i+κ−1)dun,κdun |Fn,κ

i

]
.
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Using the Burkhölder–Gundy inequality and Hölder inequality leads to (recall that z ≤ s)

E
[‖αj‖p|Fz

]≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Kp(s − z)p/2 if j = 5,

Kp(s − z)p if j = 1,8,

Kp(s − z)3p/2 if j = 3,6,10,

Kp(s − z)2p if j = 2,9,

Kp(s − z)3p/2
E
[
η

p
z,s−z|Fz

]
if j = 4,7,11.

(6.11)

Let g be a weight function (see Section 3.2) and gn its discretization introduced at (4.11). For
κ = 1,2, we define the function

gn,κ(x) := gn(κunx) =
kn−1∑
j=1

g

(
j

kn

)
1(κ(j−1)�n,κj�n](x).

Using (6.9) with z = (3i + κ − 1)dun, t = ((3i + κ − 1)d + κ(j − 1))un, s = ((3i + κ − 1)d +
κj)un with i ∈ {0, . . . , [T/3dun] − 1}, j ∈ {1, . . . , d} and κ = 1,2 we then obtain the stochastic
decomposition at (4.5), namely

1√
κun

mat
(
Z(g)

n,κ
(3i+κ−1)dkn

, . . . ,Z(g)
n,κ
((3i+κ−1)d+κ(d−1))kn

)
= A(g)

n,κ
i + √

κun

(
B(1, g)

n,κ
i + B(2, g)

n,κ
i + B(3, g)

n,κ
i

)
+ κunC(g)

n,κ
i + κunD(g)

n,κ
i ,

where (using vector notation)

A(g)
n,κ
i,j = σ

n,κ
i√
κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
dWs,

B(1, g)
n,κ
i,j = b

n,κ
i

κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
ds

+ v
n,κ
i

κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
× (Ws − W(3i+κ−1)dun) dWs,

B(2, g)
n,κ
i,j = σ̃√

κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
dW ′

s,

B(3, g)
n,κ
i,j = 1

κun

ε(g)
n,κ
((3i+κ−1)d+κ(j−1))kn

,

C(g)
n,κ
i,j = a

n,κ
i

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
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× (
s − (3i + κ − 1)dun

)
dWs

+ v′n,κ
i

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
× (Ws − W(3i+κ−1)dun) ds

+ v′′n,κ
i

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ

(
s − (

(3i + κ − 1)d + κ(j − 1)
)
un

)
×
(∫ s

(3i+κ−1)dun

(Wu − W(3i+κ−1)dun) dWu

)
dWs,

and D(g)
n,κ
i,j is the remainder term. In the sequel, we will make the convention that B(g)

n,κ
i :=

B(1, g)
n,κ
i + B(2, g)

n,κ
i + B(3, g)

n,κ
i . With the following lemma, we can deduce that under As-

sumption (A1) the R
d×d -valued sequences A(g)

n,κ
i ,B(g)

n,κ
i ,C(g)

n,κ
i ,D(g)

n,κ
i are tight (see

also equation (6.15) in [8]).

Lemma 6.2. Let the Assumptions (A1) and (E) be satisfied. For p ≥ 1, there is a Kp > 0 such
that we have the following estimates

E
[∥∥A(g)

n,κ
i,j

∥∥p + ∥∥B(g)
n,κ
i,j

∥∥p + ∥∥C(g)
n,κ
i,j

∥∥p|Fn,κ
i

]≤ Kp,

E
[∥∥D(g)

n,κ
i,j

∥∥p|Fn,κ
i

]≤ Kp

(
u

p/2
n + (

η
n,κ
i

)p∧2)≤ Kp.

Proof. To show the estimate for the term B(3, g)
n,κ
i,j , we refer to [9], equation (16.2.3), which

implies that E[‖ε(g)
n,κ
i ‖p] ≤ Kpk

−p/2
n , such that the claim follows by recalling (3.5). For the

remaining terms, we use (6.11) with z = (3i + κ − 1)dun, t = ((3i + κ − 1)d + κ(j − 1))un, s =
((3i + κ − 1)d + κj)un plus the fact that gn,κ is uniformly bounded in n. �

Lemma 6.3. Assume Assumptions (A1) and (E). Then unE[∑[T/3dun]−1
i=0 η

n,κ
i ] → 0.

Proof. The proof follows along the lines of the proof of Lemma 6.3 in [8]. �

Lemma 6.4. Let the Assumptions (A1) and (E) be satisfied. Fix a weight function g. Then, for
any r ∈ {0, . . . , d}, i = 0, . . . , [T/3dun] − 1 and κ = 1,2 the Fn,κ

i -conditional law of

γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2

coincides with the Fn,κ
i -conditional law of

F r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)
,

where

�n := θ3

k3
n�

2
n

�. (6.12)
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Proof. The quantity F r(σ
n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ) can be realized on the probability space

(�,F, (Ft )t∈[0,T ],P) by taking

Wt = W((3id+κ−1)d+t)un − W(3id+κ−1)dun√
un

, W
′
t = W ′

((3id+κ−1)d+t)un
− W ′

(3id+κ−1)dun√
un

.

Then define � implicitly, such that

1

κ

(
ψ1(g)

θ3

)1/2 d∑
m=1

((
�n

)1/2)lm
�

m

κj = B(3, g)
n,κ
i,j .

Indeed, we know that B(3, g)
n,κ
i,j is a centered Gaussian random variable with covariance matrix

1

κ2u2
n

kn−1∑
μ=0

(
g

(
μ + 1

kn

)
− g

(
μ

kn

))2

� = ψ1(g
n)

κ2k3
n�

2
n

� = 1

κ2

ψ1(g
n)

θ3
�n,

where ψ1(g
n) is defined at (4.12). We also remark that due to (3.5) we obtain that �n = (1 +

o(�
1/6
n ))�. �

As a direct consequence of Lemma 6.4, we can deduce that

E
[
γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2|Fn,κ
i

]= �r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)
, (6.13)

Var
[
γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2|Fn,κ
i

]= �′
r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)
. (6.14)

6.3. Proof of Lemma 4.7 and Proposition 4.9

Proof of Lemma 4.7. The proof of Lemma 4.7 follows along the lines of the proof of [8],
Lemma 3.1. (Notice that we can incorporate the additional terms with �j appearing in (4.9) in
the terms �j at [8], equation (6.8).) �

Proof of Proposition 4.9. We start with the proof of part (i). Let r ∈ {0, . . . , d}, u =
(α,β, γ, a,ϕ) ∈ U , κ = 1,2 and g be any weight function. Using the notation at (4.8) and (4.9),
we define the matrices

A(u,g, κ) := (
�(u,g, κ)

j
i

)
i,j=1,...,d

, B(u,g, κ) := (
�(u,g, κ)

d+j
i

)
i,j=1,...,d

,

being elements of M. Furthermore, for I ∈ I(r,d−r) we will use the notation

GI
A(u,g,κ),B(u,g,κ) = ((

GI
A(u,g,κ),B(u,g,κ)

)j
i

)
i,j=1,...,d

.
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Then, developing the determinant with the Leibniz rule, we obtain the identity

�r(u,g, κ) = E
[
γr

(
A(u,g, κ),B(u,g, κ)

)2]
= E

[ ∑
I,I′∈I(r,d−r)

det
(
GI

A(u,g,κ),B(u,g,κ)

)
det

(
GI′

A(u,g,κ),B(u,g,κ)

)]

= E

[ ∑
I,I′∈I(r,d−r)

∑
π,π ′∈Sd

sgn(π) sgn
(
π ′)

(6.15)

×
d∏

i=1

(
GI

A(u,g,κ),B(u,g,κ)

)π(i)

i

d∏
j=1

(
GI′

A(u,g,κ),B(u,g,κ)

)π ′(j)

j

]

=
∑

I,I′∈I(r,d−r)

∑
π,π ′∈Sd

sgn(π) sgn
(
π ′)

×
d∏

i=1

E
[(

GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π ′(i)
i

]
,

where Sd denotes the group of all permutations of the set {1, . . . , d} and sgn(π) ∈ {−1,1} is
the sign of the permutation π ∈ Sd . The last step in the computation is due to the fact that the
vectors (GI

A(u,g,κ),B(u,g,κ))i and (GI′
A(u,g,κ),B(u,g,κ))j are uncorrelated if i �= j . Thus, for fixed

r ∈ {0, . . . , d} and κ = 1,2, the mapping (u, g) �→ �r(u,g, κ) can be considered as a polynomial

in
(
d
r

)2 × (d!)2 × d variables of the form

E
[(

GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π ′(i)
i

]
, (6.16)

where I, I′ ∈ I(r,d−r), π,π ′ ∈ Sd and i = 1, . . . , d . Using Itô’s isometry, (6.16) takes one of the
following three forms with l, l′ ∈ {1, . . . , d}:

E
[
�(u,g, κ)li�(u,g, κ)l

′
i

]= ψ2(g)

q∑
m=1

αlmαl′m,

E
[
�(u,g, κ)li�(u,g, κ)d+l′

i

]= 0,

E
[
�(u,g, κ)d+l

i �(u,g, κ)d+l′
i

]= ψ3(g)2alal′ + (
ψ4(g) + (i − 1)ψ2(g)

) q∑
m,k=1

γ lkmγ l′km

+ ψ2(g)

d∑
m=1

βlmβl′m + ψ1(g)

κ2θ3

d∑
m=1

(
ϕ1/2)lm(ϕ1/2)l′m.
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Hence, if we additionally fix u ∈ U , then there is a polynomial τr,u,κ : R4 → R such that the
mapping g �→ �r(u,g, κ) can be written as

g �→ τr,u,κ

(
ψ1(g),ψ2(g),ψ3(g),ψ4(g)

)
.

This shows the first part of (4.16). To show the second part, we use the relationship

�′
r (u, g, κ) = E

[
γr

(
A(u,g, κ),B(u,g, κ)

)4]− �r(u,g, κ)2.

By a similar calculation as in (6.15), we obtain that

E
[
γr

(
A(u,g, κ),B(u,g, κ)

)4]
=

∑
I,I′,I′′,I′′′
∈I(r,d−r)

∑
π,π ′,π ′′,π ′′′

∈Sd

sgn(π) sgn
(
π ′) sgn

(
π ′′) sgn

(
π ′′′) d∏

i=1

E
[(

GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

× (
GI′

A(u,g,κ),B(u,g,κ)

)π ′(i)
i

(
GI′′

A(u,g,κ),B(u,g,κ)

)π ′′(i)
i

(
GI′′′

A(u,g,κ),B(u,g,κ)

)π ′′′(i)
i

]
.

If we fix again r ∈ {0, . . . , d}, κ = 1,2, the mapping (u, g) �→ E[γr(A(u,g, κ),B(u,g, κ))4] can

be considered as a polynomial in
(
d
r

)4 × (d!)4 × d variables of the form

E
[(

GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π ′(i)
i

(6.17)
× (

GI′′
A(u,g,κ),B(u,g,κ)

)π ′′(i)
i

(
GI′′′

A(u,g,κ),B(u,g,κ)

)π ′′′(i)
i

]
,

where I, I′, I′′, I′′′ ∈ I(r,d−r), π,π ′,π ′′,π ′′′ ∈ Sd and i = 1, . . . , d . By a careful calculation, we
can see that (6.17) takes one of the following five forms with l, l′, l′′, l′′′ ∈ {1, . . . , d}:

E
[
�(u,g, κ)li�(u,g, κ)l

′
i �(u,g, κ)l

′′
i �(u,g, κ)l

′′′
i

]= ψ2(g)2Kα,

E
[
�(u,g, κ)li�(u,g, κ)l

′
i �(u,g, κ)l

′′
i �(u,g, κ)d+l′′′

i

]= 0,

E
[
�(u,g, κ)li�(u,g, κ)l

′
i �(u,g, κ)d+l′′

i �(u,g, κ)d+l′′′
i

]
= ψ2(g)

q∑
m=1

αlmαl′m
(

ψ3(g)2al′′al′′′ + (
ψ4(g) + (i − 1)ψ2(g)

) q∑
m,k=1

γ l′′kmγ l′′′km

+ ψ2(g)

d∑
m=1

βl′′mβl′′′m + ψ1(g)

κ2θ3

d∑
m=1

(
ϕ1/2)l′′m(ϕ1/2)l′′′m),

E
[
�(u,g, κ)li�(u,g, κ)d+l′

i �(u,g, κ)d+l′′
i �(u,g, κ)d+l′′′

i

]= 0,

E
[
�(u,g, κ)li�(u,g, κ)l

′
i �(u,g, κ)d+l′′

i �(u,g, κ)d+l′′′
i

]
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= ψ3(g)4alal′al′′al′′′ + (
ψ4(g) + (i − 1)ψ2(g)

)2
Kγ + ψ2(g)2Kβ +

(
ψ1(g)

κ2θ3

)2

Kϕ

+ ψ3(g)2(ψ4(g) + (i − 1)ψ2(g)
)
Ka,γ

+ ψ3(g)2ψ2(g)Ka,β + ψ3(g)2 ψ1(g)

κ2θ3
Ka,ϕ + (

ψ4(g) + (i − 1)ψ2(g)
)
ψ2(g)Kγ,β

+ (
ψ4(g) + (i − 1)ψ2(g)

)ψ1(g)

κ2θ3
Kγ,ϕ + ψ2(g)

ψ1(g)

κ2θ3
Kβ,ϕ.

We remark that the constants do not depend on κ . Consequently, if we additionally fix u ∈ U ,
there is a polynomial τ ′

r,u,κ : R4 → R such that the mapping g �→ �′
r (u, g, κ) can be written as

g �→ τ ′
r,u,κ

(
ψ1(g),ψ2(g),ψ3(g),ψ4(g)

)
,

which proves part (i) of Proposition 4.9. By an inspection of the previous calculations, we see
that the only term where κ appears is the term ψ1(g)

κ2θ3 . Hence, for any r ∈ {0, . . . , d}, u ∈ U , we
have

τr,u,1(x1, x2, x3, x4) = τr,u,2(4x1, x2, x3, x4),

τ ′
r,u,1(x1, x2, x3, x4) = τ ′

r,u,2(4x1, x2, x3, x4), (x1, x2, x3, x4) ∈R
4.

This shows part (ii) of Proposition 4.9. �

6.4. Proof of Theorem 4.13 and Proposition 4.14

Let g be a weight function. We begin by constructing approximations for the main test statistics
S(g)

n,κ
T defined at (4.3) and V (g,h)

n,κκ ′
T given at (4.21), (4.22) and (4.23). The approximations

are discretized versions of S(r, g)κT (see (4.15)) and the right-hand sides of (4.25) to (4.27)

S(r, g)
n,κ
T := 3dun

[T/3dun]∑
i=0

γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2
,

V (r, g,h)
n,κκ ′
T :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9d2un

[T/3dun]−1∑
i=0

γr

(
A(g)

n,1
i ,B(g)

n,1
i

)4
, if κ = κ ′ = 1,

9d2un

[T/3dun]−1∑
i=0

γr

(
A(h)

n,2
i ,B(h)

n,2
i

)4
, if κ = κ ′ = 2,

9d2un

[T/3dun]−1∑
i=0

γr

(
A(g)

n,1
i ,B(g)

n,1
i

)2

× γr

(
A(h)

n,2
i ,B(h)

n,2
i

)2
, if κ = 1, κ ′ = 2.

(6.18)

The lemma is based on the asymptotic expansion at (6.4).
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Lemma 6.5. Assume Assumptions (A1), (E), let r ∈ {0, . . . , d}, κ, κ ′ = 1,2 and g,h be two
weight functions (not necessarily satisfying the conditions of Proposition 4.9(ii)). Then, on �

≤r
T ,

we have that

1√
un

(
1

(κun)d−r
S(g)

n,κ
T − S(r, g)

n,κ
T

)
P−→ 0, (6.19)

1

(κκ ′u2
n)

d−r
V (g,h)

n,κκ ′
T − V (r, g,h)

n,κκ ′
T

P−→ 0. (6.20)

Proof. The proof is an adaption of the proof of [8], Lemma 6.4. Let ξ(g)
n,κ
i denote the ith

summand on the right-hand side of (4.3). We start by showing (6.19). To this end, we use the fact
that rank(A(g)

n,κ
i ) ≤ r for all i to apply the inequality at (6.6) with λ = √

κun to obtain

1

(κun)d−r
ξ(g)

n,κ
i = γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2 + 2
√

κunζ(g)
n,κ
i + ζ̃ (g)

n,κ
i ,

where with the Cauchy–Schwarz inequality (using the conventions after (6.3))

ζ(g)
n,κ
i := γr

(
A(g)

n,κ
i ,B(g)

n,κ
i

)
× (

γr−1
(
A(g)

n,κ
i ,B(g)

n,κ
i

)+ γ ′
r

(
A(g)

n,κ
i ,B(g)

n,κ
i ,C(g)

n,κ
i

))
,

E
[∣∣̃ζ (g)

n,κ
i

∣∣] ≤ Kun + K
√

unE
[
η

n,κ
i

]
.

Applying Lemma 6.3, we deduce that
√

un

∑[T/3dun]−1
i=0 ζ̃ (g)

n,κ
i

P−→ 0. Regarding the structure

of S(r, g)
n,κ
T we need to prove that un

∑[T/3dun]−1
i=0 ζ(g)

n,κ
i

P−→ 0. To this end, we consider the
decomposition ζ(g)

n,κ
i = ζ ′(g)

n,κ
i + ζ ′′(g)

n,κ
i , where ζ ′′(g)

n,κ
i = E[ζ(g)

n,κ
i |Fn,κ

i ]. We obtain

E

[(
un

[T/3dun]−1∑
i=0

ζ ′′(g)
n,κ
i

)2]
= u2

n

[T/3dun]−1∑
i,j=0

E
[
ζ ′′(g)

n,κ
i ζ ′′(g)

n,κ
j

]

= u2
n

[T/3dun]−1∑
i=0

E
[∣∣ζ ′′(g)

n,κ
i

∣∣2]
≤ unKT → 0,

(6.21)

where the second identity follows from the fact that ζ ′′(g)
n,κ
i is Fn,κ

i+1-measurable and the last
estimate is a consequence of Lemma 6.2 and the fact that γr and γ ′

r are continuous functions.

Hence, we know that un

∑[T/3dun]−1
i=0 ζ ′′(g)

n,κ
i

P−→ 0. So it is sufficient to show that ζ ′(g)
n,κ
i = 0,

or the even stronger result that

E
[
ζ(g)

n,κ
i |Hn,κ

i ∨ σ
(
W ′)]= 0, (6.22)

where σ(W ′) is the σ -field generated by the whole process W ′ and Hn,κ
i was introduced be-

fore and in (6.8). Recalling the definitions at (6.2) and (6.3), equation (6.22) follows by the
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implication

I ∈ I(r,d−r), I′ ∈ I(r−1,d−r+1), I′′ ∈ I(r,d−r−1,1)

=⇒ E
[
det

(
GI

A(g)
n,κ
i ,B(g)

n,κ
i

)
det

(
GI′

A(g)
n,κ
i ,B(g)

n,κ
i

)|Hn,κ
i ∨ σ

(
W ′)]= 0, (6.23)

E
[
det

(
GI

A(g)
n,κ
i ,B(g)

n,κ
i

)
det

(
GI′′

A(g)
n,κ
i ,B(g)

n,κ
i ,C(g)

n,κ
i

)|Hn,κ
i ∨ σ

(
W ′)]= 0. (6.24)

Note that due to the conventions after (6.3) the left-hand side of (6.23) is 0 if r = 0, and the
left-hand side of (6.24) is 0 if r = d . The d-dimensional variables A(g)

n,κ
i,j , B(g)

n,κ
i,j and C(g)

n,κ
i,j

can be written in the form

�
(
ω,

(
W(ω)(3i+κ−1)dun+t − W(ω)(3i+κ−1)dun

)
t≥0

)
,

where � is a (Hn,κ
i ∨ σ(W ′)) ⊗ Cq -measurable function on � × C(R+,Rq). Here, C(R+,Rq)

is the set of all continuous functions on R+ with values in R
q and Cq is its Borel σ -field for the

local uniform topology. Notice that for � = A(g)
n,κ
i,j or � = C(g)

n,κ
i,j , the mapping x �→ �(ω,x)

is odd, meaning that �(ω,−x) = −�(ω,x), and for � = B(g)
n,κ
i,j , it is even, meaning that

�(ω,−x) = �(ω,x). We set

� = det
(
GI

A(g)
n,κ
i ,B(g)

n,κ
i

)
,

� ′ = det
(
GI′

A(g)
n,κ
i ,B(g)

n,κ
i

)
,

� ′′ = det
(
GI′′

A(g)
n,κ
i ,B(g)

n,κ
i ,C(g)

n,κ
i

)
,

where �,� ′,� ′′ are functions similar to �. Due to the multilinearity of the determinant we can
deduce that if r is even, then � is even and � ′, � ′′ are odd. If r is odd, � is odd and � ′,� ′′
are even. Thus, in all cases, the products �� ′ and �� ′′ are odd. Now, the (Hn,κ

i ∨ σ(W ′))-
conditional law of (W(3i+κ−1)dun+t − W(3i+κ−1)dun)t≥0 is invariant under the map x �→ −x on
C(R+,Rq), which implies (6.23), and hence (6.22).

The proof of (6.20) is more direct. We apply the estimate at (6.7) with λ = √
κun,λ

′ = √
κ ′un.

With the previous notation and Lemma 6.2 we obtain

E

[∣∣∣∣ 1

(κκ ′u2
n)

d−r
V (g,h)

n,κκ ′
T − V (r, g,h)

n,κκ ′
T

∣∣∣∣]

≤ 9d2un

[T/3dun]−1∑
i=0

E

[∣∣∣∣ 1

(κκ ′u2
n)

d−r
ξ(g)

n,κ
i ξ(h)

n,κ ′
i

− γ ′
r

(
A(g)

n,κ
i ,B(g)

n,κ
i

)2
γ ′
r

(
A(h)

n,κ ′
i ,B(h)

n,κ ′
i

)2
∣∣∣∣]

≤ 9d2KT
√

un → 0,

which implies (6.20). �
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With respect to Lemma 6.5, Theorem 4.13 follows by showing the following lemma.

Lemma 6.6. Assume Assumptions (A1), (E). Let r ∈ {0, . . . , d} and g,h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on �

≤r
T , we have the stable convergence

U ′(r, g,h)nT
dst−→MN

(
0,V (r, g,h)T

)
,

where MN (0,V (r, g,h)T ) is defined after equation (4.20). The two-dimensional statistic
U ′(r, g,h)nT = (U ′(r, g,h)

n,1
T ,U ′(r, g,h)

n,2
T ) is given via

U ′(r, g,h)nT := 1√
un

(
S(r, g)

n,1
T − S(r, g)1

T , S(r, h)
n,2
T − S(r,h)2

T

)
.

We will do the proof of Lemma 6.6 in three steps:

(i) Recall that due to Proposition 4.9(ii) we have that S(r, g)1
T = S(r,h)2

T . By a Riemann
approximation argument, one can show that

1√
un

(
3dun

[T/3dun]−1∑
i=0

�r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,g,1

)
−
∫ T

0
�r(σs, σ̃ , vs, bs,�,g,1) ds

)
P−→ 0,

(6.25)
1√
un

(
3dun

[T/3dun]−1∑
i=0

�r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�,h,2

)
−
∫ T

0
�r(σs, σ̃ , vs, bs,�,h,2) ds

)
P−→ 0.

More precisely, we use the fact that for a fixed weight function g and κ = 1,2, the map
U � u �→ �r(u,g, κ) is a polynomial (and hence C∞) as well as the fact that thanks to As-
sumption (A) the processes σ , v and b are Itô semimartingales and hence càdlàg (see Section 8
in [2] for more details).

(ii) We identify the limit by proving that

3d
√

un

[T/3dun]−1∑
i=0

(
�r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n, gn,1

)
(6.26)

− �r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,g,1

)) P−→ 0,

3d
√

un

[T/3dun]−1∑
i=0

(
�r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2

)
(6.27)

− �r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�,h,2

)) P−→ 0.
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(iii) We prove the stable convergence

U ′′(r, g,h)nT
dst−→MN

(
0,V (r, g,h)T

)
, (6.28)

for the two-dimensional statistic U ′′(r, g,h)nT = (U ′′(r, g,h)
n,1
T ,U ′′(r, g,h)

n,2
T ) with compo-

nents

U ′′(r, g,h)
n,1
T = 3d

√
un

[T/3dun]−1∑
i=0

(
γr

(
A(g)

n,1
i ,B(g)

n,1
i

)2 − �r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n, gn,1

))
,

U ′′(r, g,h)
n,2
T = 3d

√
un

[T/3dun]−1∑
i=0

(
γr

(
A(h)

n,2
i ,B(h)

n,2
i

)2 − �r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2

))
.

The following lemma is concerned with the convergence at (6.26) and (6.27), respectively.

Lemma 6.7. Assume Assumptions (A1), (E). Let r ∈ {0, . . . , d}, κ = 1,2 and g be a weight
function. Then, on �

≤r
T , it holds that

√
un

[T/3dun]−1∑
i=0

(
�r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)
(6.29)

− �r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�,g, κ

)) P−→ 0.

Proof. Fix r ∈ {0, . . . , d}, κ = 1,2 and a weight function g. Recall that by Proposition 4.9(i) for
any u ∈ U there is a polynomial τr,u,κ such that we have �r(u,g, κ) = τr,u,κ (ψ1(g), . . . ,ψ4(g)).
An inspection of the proof of Proposition 4.9(i) yields that the map

U ×R
4 → R,

(
α,β, γ, a,�,ψ1(g), . . . ,ψ4(g)

) �→ τr,(α,β,γ,a,�),κ

(
ψ1(g), . . . ,ψ4(g)

)
is a C∞-function. Consider the first order partial derivatives in (�,ψ1(g), . . . ,ψ4(g)). For fixed
�,g, they are continuous in (α,β, γ, a). Therefore, by a first order Taylor expansion, we obtain
that for any compact set A ⊂M′ ×M×R

dq2 ×R
d

sup
(α,β,γ,a)∈A

∣∣�r

(
α,β, γ, a,�n,gn, κ

)− �r(α,β, γ, a,�,g, κ)
∣∣

≤ KA

∥∥(�n,ψ1
(
gn
)
, . . . ,ψ4

(
gn
))− (

�,ψ1(g), . . . ,ψ4(g)
)∥∥

Rd2 ×R4,

where ‖ · ‖
Rd2×R4 is the Euclidean norm on R

d2 × R
4. Combining (6.12) and (3.5) we get that

(�n)ij − �ij = o(�
1/6
n ), i, j = 1, . . . , d , and with (4.11), (4.12), we have that ψl(g

n) − ψl(g) =
O(k−1

n ), l = 1, . . . ,4. Again using (3.5) this implies that∥∥(�n,ψ1
(
gn
)
, . . . ,ψ4

(
gn
))− (

�,ψ1(g), . . . ,ψ4(g)
)∥∥

Rd2×R4 = o
(
�

1/6
n

)
.
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Now, we apply Assumption (A1) to deduce that

sup
s∈[0,T ]

E
[∣∣�r

(
σs, σ̃ , vs, bs,�

n,gn, κ
)− �r(σs, σ̃ , vs, bs,�,g, κ)

∣∣|Fs

]= o
(
�

1/6
n

)
,

and hence

√
un

[T/3dun]−1∑
i=0

E
[∣∣�r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)− �r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�,g, κ

)∣∣|Fn,κ
i

]
= o

(
�

1/6
n√
un

)
= o(1),

which implies (6.29). �

The next lemma deals with the stable convergence at (6.28).

Lemma 6.8. Assume Assumptions (A1), (E). Let r ∈ {0, . . . , d} and g,h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on �

≤r
T , we have the stable convergence

U ′′(r, g,h)nT
dst−→ MN

(
0,V (r, g,h)T

)
,

where MN (0,V (r, g,h)T ) is defined after equation (4.20). The two-dimensional statistic
U ′′(r, g,h)nT = (U ′′(r, g,h)

n,1
T ,U ′′(r, g,h)

n,2
T ) is given after (6.28).

Proof. We apply a simplified version of Theorem IX.7.28 in [10]. To this end, we introduce the
two-dimensional variables ξn

i with components

ξ
n,1
i = 3d

√
un

(
γr

(
A(g)

n,1
i ,B(g)

n,1
i

)2 − �r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n, gn,1

))
,

ξ
n,2
i = 3d

√
un

(
γr

(
A(h)

n,2
i ,B(h)

n,2
i

)2 − �r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2

))
.

We must prove the following five statements where κ, κ ′ = 1,2:

[T/3dun]−1∑
i=0

E
[
ξ

n,κ
i |Fn,1

i

] P−→ 0, (6.30)

[T/3dun]−1∑
i=0

E
[
ξ

n,κ
i ξ

n,κ ′
i |Fn,1

i

] P−→ V (r, g,h)
κ,κ ′
T , (6.31)

[T/3dun]−1∑
i=0

E
[
ξ

n,κ
i

(
Wm

3(i+1)dun
− Wm

3idun

)|Fn,1
i

] P−→ 0, (6.32)
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[T/3dun]−1∑
i=0

E
[∥∥ξn

i

∥∥21{‖ξn
i ‖>δ}|Fn,1

i

] P−→ 0 ∀δ > 0, (6.33)

[T/3dun]−1∑
i=0

E
[
ξ

n,κ
i (N3(i+1)dun − N3idun)|Fn,1

i

] P−→ 0, (6.34)

where Wm is any of the components of W and N is a one-dimensional bounded martingale,
orthogonal to (W,W ′) in the sense that the covariation between N and Wm, as well as the
covariation between N and W ′m vanishes. We will later specify the conditions on N . If (6.30) to
(6.34) hold, then Theorem IX.7.28 in [10] yields that

U ′′(r, g,h)nT
dst−→ U ′′(r, g,h)T ,

where the random variable U ′′(r, g,h)T is defined on an extension (�̃, F̃, P̃) of the original
probability space (�,F,P). It can be realized as

U ′′(r, g,h)T =
∫ T

0
ys dW ′

s +
∫ T

0
zs dW̃s, (6.35)

where W̃ is a d-dimensional Brownian motion independent of F , and – for fixed σ̃ ,�,g,h – y

and z are càdlàg processes with values in R
d×d which are adapted to the filtration generated by

σ,b, v. Moreover, y and z can be characterized by

[T/3dun]−1∑
i=0

E
[
ξ

n,κ
i

(
W ′m

3(i+1)dun
− W ′m

3idun

)|Fn,1
i

] P−→
∫ T

0
ym
s ds,

and

V (r, g,h)T =
∫ T

0

(
ysy

�
s + zsz

�
s

)
ds.

Since W̃ and W ′ are independent of G and y, z are G-measurable, (6.35) yields that U ′′(r, g,h)T
is mixed normal with G-conditional mean 0 and G-conditional covariance V (r, g,h)T . Now, we
turn to the proof of (6.30) to (6.34).

(i) We use equation (6.13) to derive that E[ξn,κ
i |Fn,κ

i ] = 0 for κ = 1,2. Using the nesting

property Fn,1
i ⊆Fn,2

i and the tower property, we immediately obtain (6.30).
(ii) With equation (6.14) one can show that

E
[
ξ

n,1
i ξ

n,1
i |Fn,1

i

]= 9d2un�
′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n, gn,1

)
,

E
[
ξ

n,2
i ξ

n,2
i |Fn,2

i

]= 9d2un�
′
r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2

)
.
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Now, we have to carefully evaluate the term E[�′
r (σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2)|Fn,1

i ]. Recall
(6.10) which implies that

sup
V =σ,v,b

E
[∥∥V n,2

i − V
n,1
i

∥∥|Fn,1
i

]≤ K
√

un.

Using the multilinearity property of the determinant and the fact that �′
r consists of determinants

to the power four, we end up with

E
[
�′

r

(
σ

n,2
i , σ̃ , v

n,2
i , b

n,2
i ,�n,hn,2

)|Fn,1
i

]
= E

[
�′

r

(
σ

n,1
i + (

σ
n,2
i − σ

n,1
i

)
, σ̃ , v

n,1
i + (

v
n,2
i − v

n,1
i

)
, b

n,1
i + (

b
n,2
i − b

n,1
i

)
,�n,hn,2

)|Fn,1
i

]
= �′

r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n,hn,2

)+ O
(
u2

n

)
.

Hence,

[T/3dun]−1∑
i=0

(
E
[
ξ

n,2
i ξ

n,2
i |Fn,1

i

]− �′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n,hn,2

)) P−→ 0.

Since ξ
n,1
i is Fn,2

i -measurable, Fn,1
i ⊆ Fn,2

i and E[ξn,2
i |Fn,2

i ] = 0, we can deduce that

E[ξn,1
i ξ

n,2
i |Fn,1

i ] = 0. It follows along the lines of the proof of Lemma 6.7 that

9d2un

[T/3dun]−1∑
i=0

(
�′

r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n, gn,1

)− �′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,g,1

)) P−→ 0,

9d2un

[T/3dun]−1∑
i=0

(
�′

r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�n,hn,2

)− �′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,h,2

)) P−→ 0.

By a Riemann approximation argument similar to the one used to show (6.25), one can deduce
that

9d2un

[T/3dun]−1∑
i=0

�′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,g,1

)− 3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,g,1) ds
P−→ 0,

9d2un

[T/3dun]−1∑
i=0

�′
r

(
σ

n,1
i , σ̃ , v

n,1
i , b

n,1
i ,�,h,2

)− 3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,h,2) ds
P−→ 0

which gives (6.31).
(iii) We will show (6.32) by proving that

E
[
ξ

n,1
i

(
Wm

3(i+1)dun
− Wm

3idun

)|Hn,1
i ∨ σ

(
W ′)] = 0, (6.36)

E
[
ξ

n,2
i

(
Wm

3(i+1)dun
− Wm

(3i+1)dun

)|Hn,2
i ∨ σ

(
W ′)] = 0. (6.37)
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Indeed, for κ = 1, (6.36) directly implies (6.32). For κ = 2, we use the relationship

E
[
ξ

n,1
i

(
Wm

3(i+1)dun
− Wm

3idun

)|Fn,1
i

]
= E

[(
Wm

(3i+1)dun
− Wm

3idun

)
E
[
ξ

n,2
i

∣∣Fn,2
i

]∣∣Fn,1
i

]
+E

[
E
[(

Wm
3(i+1)dun

− Wm
(3i+1)dun

)
ξ

n,2
i |Hn,2

i ∨ σ
(
W ′)]|Fn,1

i

]
.

Since E[ξn,2
i |Fn,2

i ] = 0, showing (6.37) implies (6.32) in this case. Similar to the proof of
Lemma 6.5 one can write ξ

n,κ
i as function of the form

�
(
ω,

(
W(ω)(3i+κ−1)dun+t − W(ω)(3i+κ−1)dun

)
t≥0

)
,

where � is a (Hn,κ
i ∨ σ(W ′)) ⊗ Cq -measurable function on � × C(R+,Rq). We have already

seen that A(g)
n,κ
i,j and B(g)

n,1
i,κ can also be considered as function of the form (6.4) where

A(g)
n,κ
i,j is an odd function and B(g)

n,κ
i,j is an even function. Since ξ

n,κ
i consists of squared

determinants, the function � in (6.4) is always even in the sense that �(ω, (x1, . . . , xq)) =
�(ω,−(x1, . . . , xq)), no matter if r is even or odd. Consequently the map

(x1, . . . , xq) �→ xm�
(
ω, (x1, . . . , xq)

)
is odd such that (6.36), (6.37) follow by a standard argument.

(iv) Lemma 6.2 implies that E[‖ξn
i ‖4|Fn,1

i ] ≤ Ku2
n, such that (6.33) follows by a standard

argument.
(v) The proof of (6.34) is somewhat more involved than the previous steps. First, we in-

troduce two filtrations: (F (0)
t )t∈[0,T ] which is generated by all processes appearing in Assump-

tion (A) plus the Brownian motion W ′. In contrast, the filtration (F (1)
t )t∈[0,T ] is generated by the

noise process ε only. Note that due to Assumption (E), F (0)
t and F (1)

t are independent. Following
the proof of [7], Lemma 5.7, it is sufficient to show (6.34) for all one-dimensional bounded mar-
tingales in a set N =N 0 ∪N 1. Here, N 0 consists of all (F (0)

t )-martingales which are orthogonal
to (W,W ′). The set N 1 comprises all (F (1)

t )-Lévy-martingales N , such that there exists an in-
teger m ≥ 1, time points 0 ≤ t1 < · · · < tm ≤ T and a bounded Borel-function f̃ : (Rd)m → R

with the relation

Nt = E
[
N∞|F (1)

t

]
, N∞ = f̃ (εt1 , . . . , εtm). (6.38)

Let N ∈ N 0. With a similar argumentation like in point (iii), (6.34) follows by proving that

E
[
ξ

n,κ
i (N3(i+1)dun − N(3i+κ−1)dun)|Hn,κ

i

]= 0. (6.39)

By assumption, N is independent of ε so N is also orthogonal to (W,W ′) conditionally on
Hn,κ

i . The variable ξ
n,κ
i can be considered as a Hn,κ

i ⊗ Cq ⊗ Cd -measurable function on � ×
C(R+,Rq) × C(R+,Rd) of the form

�
(
ω,

(
W(ω)(3i+κ−1)dun+t − W(ω)(3i+κ−1)dun

)
t≥0,(

W ′(ω)(3i+κ−1)dun+t − W ′(ω)(3i+κ−1)dun

)
t≥0

)
.
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By virtue of the representation theorem (see [13], Proposition V.3.2), we can – condition-
ally on Hn,κ

i – write � as the sum of a constant and a stochastic integral over the interval
((3i + κ − 1)dun,3(i + 1)dun] with respect to (W,W ′) for a suitable (q + d)-dimensional pre-
dictable integrand. Then, thanks to the Itô-isometry and the fact that the covariation of N and
any component of (W,W ′) vanishes, one ends up with (6.39).

Now, let N ∈ N 1 with the representation (6.38). If {t1, . . . , tm} ∩ (3idun,3(i + 1)dun] = ∅,
then ξ

n,κ
i and (N3(i+1)dun − N3idun) are independent conditionally on Fn,1

i , so we obtain that

E[ξn,κ
i (N3(i+1)dun − N3idun)|Fn,1

i ] = 0. If {t1, . . . , tm} ∩ (3idun,3(i + 1)dun] �=∅, the fact that
f̃ is bounded plus Lemma 6.2 imply that

E
[∣∣ξn,κ

i (N3(i+1)dun − N3idun)
∣∣|Fn,1

i

]≤ K
√

un.

Since the intervals (3idun,3(i + 1)dun] are disjoint for different i, the number of such intervals
having a non-empty intersection with {t1, . . . , tm} is bounded by m. Consequently, we end up
with

[T/3dun]−1∑
i=0

E
[∣∣ξn,κ

i (N3(i+1)dun − N3idun)
∣∣|Fn,1

i

]≤ mK
√

un,

which gives us (6.34). This completes the proof of Lemma 6.8 and therefore the proof of Theo-
rem 4.13. �

The proof of Proposition 4.14 is somewhat simpler in comparison to the proof of Theo-
rem 4.13. Regarding Lemma 6.5, part (i) of Proposition 4.14 follows by showing the following
lemma.

Lemma 6.9. Assume Assumptions (A1), (E). Let r ∈ {0, . . . , d}, κ, κ ′ = 1,2 and g,h be any
weight functions. Then, on �

≤r
T , we have that

V (r, g,h)
n,κκ ′
T

P−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,g,1) + �r(σs, σ̃ , vs, bs,�,g,1)2 ds,

if κ = κ ′ = 1,

3d

∫ T

0
�′

r (σs, σ̃ , vs, bs,�,h,2) + �r(σs, σ̃ , vs, bs,�,h,2)2 ds,

if κ = κ ′ = 2,

3d

∫ T

0
�r(σs, σ̃ , vs, bs,�,g,1)�r(σs, σ̃ , vs, bs,�,h,2) ds,

if κ = 1, κ ′ = 2.

(6.40)
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Proof. Define the variables

ρ(g,h)
n,κκ ′
i =

⎧⎪⎨⎪⎩
γr

(
A(g)

n,1
i ,B(g)

n,1
i

)4
, if κ = κ ′ = 1,

γr

(
A(h)

n,2
i ,B(h)

n,2
i

)4
, if κ = κ ′ = 2,

γr

(
A(g)

n,1
i ,B(g)

n,1
i

)2
γr

(
A(h)

n,2
i ,B(h)

n,2
i

)2
, if κ = 1, κ ′ = 2,

which is the ith summand in the right-hand side of (6.18). Define the variables

ρ′(g,h)
n,κκ ′
i = E

[
ρ(g,h)

n,κκ ′
i |Fn,1

i

]
, ρ′′(g,h)

n,κκ ′
i = ρ(g,h)

n,κκ ′
i − ρ′(g,h)

n,κκ ′
i .

Using Lemma 6.4, we get that

ρ′(g)
n,κ
i = �′

r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)+ �r

(
σ

n,κ
i , σ̃ , v

n,κ
i , b

n,κ
i ,�n, gn, κ

)2
.

Just as in the proof of (6.31) we can deduce that 9d2un

∑[T/3dun]−1
i=0 ρ′(g,h)

n,κκ ′
i converges in

probability to the right-hand side of (6.40). By construction, the sequence (ρ′′(g,h)
n,κκ ′
i )i≥0 is a

(Fn,1
i )-martingale. Hence, we can use Doob’s inequality and a calculation similar to the one in

(6.21) to end up with

9d2un

[T/3dun]−1∑
i=0

ρ′′(g,h)
n,κκ ′
i

P−→ 0,

which completes the proof of (6.40). �

Part (ii) of Proposition 4.14 essentially follows by the next lemma.

Lemma 6.10. Assume Assumptions (A1), (E). Let r ∈ {0, . . . , d} and g,h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on �r

T , we have that

R̂(g,h)nT − r√
un

− U(r, g,h)
n,1
T − U(r, g,h)

n,2
T

log 2S(r, g)1
T

P−→ 0. (6.41)

Proof. Using the fact that S(r, g)1
T = S(r,h)2

T , we obtain by an elementary calculation that, on
�r

T ,

R̂(g,h)nT − r = log(1 + √
unU(r, g,h)

n,1
T /S(r, g)1

T ) − log(1 + √
unU(r, g,h)

n,2
T /S(r, g)1

T )

log 2
.

Due to (4.19) the sequence U(r, g,h)nT is tight. By a Taylor expansion, one obtains that log(1 +
x) = x + O(x2) for |x| < 1, so we get (for n sufficiently large)

log
(
1 + √

unU(r, g,h)
n,κ
T /S(r, g)1

T

)= √
unU(r, g,h)

n,κ
T /S(r, g)1

T + OP(un).

This readily implies (6.41). �
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The continuous mapping theorem for stable convergence then implies that, on �r
T ,

U(r, g,h)
n,1
T − U(r, g,h)

n,2
T

log 2S(r, g)1
T

dst−→ U ′′(r, g,h)1
T − U ′′(r, g,h)2

T

log 2S(r, g)1
T

, (6.42)

where U ′′(r, g,h)T is the limit in (4.19) (see also equation (6.35)). The right-hand side of (6.42)
is mixed normal with G-conditional mean 0 and G-conditional variance

3d
∫ T

0 �′
r (σs, σ̃ , vs, bs,�,g,1) ds + 3d

∫ T

0 �′
r (σs, σ̃ , vs, bs,�,h,2) ds

(S(r, g)1
T log 2)2

> 0.

The positivity of the variance is a consequence of (4.13) in Lemma 4.7. At this stage, (4.28)
follows by part (i) of Proposition 4.14, Theorem 4.8 and the delta method for stable convergence.

6.5. Proof of Corollary 4.16

The implication at (4.32) is a direct consequence of the stable convergence at (4.28). To prove
the consistency at (4.33), it is sufficient to show that for any r ′ �= r we have that

P
(
Cn,=r

α ∩ �r ′
T

)→ P
(
�r ′

T

)
.

Let � be the right-hand side of (4.28). Then we have by Proposition 4.14(ii) that

P
(
Cn,=r

α ∩ �r ′
T

)− P̃

({∣∣∣∣� + r ′ − r√
unV (n,T ,g,h)

∣∣∣∣> z1−α/2

}
∩ �r ′

T

)
→ 0.

By Proposition 4.14, Theorem 4.8 and Lemma 4.7, V (n,T ,g,h) converges in probability to a

positive-valued limit, such that unV (n,T ,g,h)
P−→ 0 and hence

P̃

({∣∣∣∣� + r ′ − r√
unV (n,T ,g,h)

∣∣∣∣> z1−α/2

}
∩ �r ′

T

)
→ P

(
�r ′

T

)
,

which shows (4.33). To show (4.34), let A ⊂ �
≤r
T with P(A) > 0. Then we obtain

P
(
Cn,≤r

α |A)=
∑
r ′≤r

P
(
Cn,≤r

α ∩ �r ′
T |A)≤

∑
r ′≤r

P
(
Cn,≤r ′

α ∩ �r ′
T |A)

→
∑
r ′≤r

P̃
({� > za−α} ∩ �r ′

T |A)= αP
(
�

≤r
T |A)= α.

We essentially used the convergence at (4.28) as well as the fact that � is independent of G and
�r ′

T ∈ G. The consistency result at (4.35) follows in the same manner as (4.33).
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