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The paper derives saddlepoint expansions for conditional expectations in the form of E[X|Y = a] and
E[Yﬁ > a] for the sample mean of a continuous random vector (X, YT) whose joint moment generat-
ing function is available. Theses conditional expectations frequently appear in various applications, par-
ticularly in quantitative finance and risk management. Using the newly developed saddlepoint expansions,
we propose fast and accurate methods to compute the sensitivities of risk measures such as value-at-risk
and conditional value-at-risk, and the sensitivities of financial options with respect to a market parameter.
Numerical studies are provided for the accuracy verification of the new approximations.

Keywords: conditional expectation; risk management; saddlepoint approximation; sensitivity estimation

1. Introduction

The saddlepoint method is one of the most important asymptotic approximations in statistics. It
approximates a contour integral of Laplace type in the complex plane via the steepest descent
method after a deformation of the original contour in such a way to contain the path of the steep-
est descent near the saddlepoint. Since the development of saddlepoint approximations for the
density of the sample mean of # i.i.d. random variables by Daniels [8], there have been numer-
ous articles, treatises, and monographs on the topic. Their practical values have been particularly
emphasized due to both high precision and simple explicit formulas.

Barndorff-Nielsen and Cox [1] and Reid [29] initiated statistical applications of the saddle-
point method in inference such as approximating the densities of maximum likelihood estimators,
likelihood ratio statistic or M-estimates. The widespread applicability in statistics also includes
Bayesian analysis (Tierney and Kadane [34], Reid [30]) and bootstrap inference (Booth, Hall and
Wood [2], Butler and Bronson [5]). Another important application is on financial option pricing
and portfolio risk measurements in quantitative finance. From the opening paper of Rogers and
Zane [31], the saddlepoint method has been successfully applied in various contexts such as Lévy
processes (Carr and Madan [7]), affine jump-diffusion processes (Glasserman and Kim [12]),
credit risk models (Gordy [13]) or value-at-risk (Martin et al. [26]), just to name a few. In such
applications, one is usually concerned with obtaining approximate formulae for the density or
tail probabilities of a target random variable.

Relevant to this paper, pricing of collateralized debt obligations and computation of condi-
tional value-at-risk requires evaluating the expectation in the form of E[Y1[y>4]] for a random
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variable Y and a constant a. Saddlepoint approximations to this expectation are derived in Mar-
tin [25] and Huang and Oosterlee [16]. See Section 2.2 for more details. Along the same line,
the conditional expectations of the forms E[X|Y = a] and E[X|Y > a] for a bivariate random
vector (X, Y) also appear in financial applications, but their saddlepoint approximations are not
yet developed to the best of our knowledge.

Let (X, Y") be a continuous random vector where X is a one-dimensional random variable
and Y is a d-dimensional random vector. The objective of this paper is to derive saddlepoint
expansions for conditional expectations in the form of E[YW =a] and E[YW > a] for the sam-
plemean X =n~!'Y 7"  X;and Y=n"'3"_|Y,; withae R?. Here, the events [Y = a] and
[Y > a] indicate the intersections of the respective univariate events. The derivation postulates
the classical assumption of the existence of the joint density and the joint cumulant generating
function Ky y(y, ) of (X,Y) which is analytic at the origin. We impose an additional assump-
tion of an analytic property for the first derivative of the joint cumulant generating function with
respect to the component of X evaluated at zero, KC), (1)) 29/0y{Kx.y(y,n)} ly=0-

Our first contribution is the derivation of saddlepoint approximations to the conditional expec-
tations when d = 1 up to the order O(n2). As illustrated via several examples, the expansions
are simple to apply and very accurate even for the case n = 1. The terms in the expansions only
require the knowledge of the saddlepoint for the variable Y and the derivatives of the cumulant
generating function Ky (n) of ¥ and K, () evaluated at the saddlepoint.

The second contribution is that the saddlepoint expansions for d = 1 are extended to the mul-
tivariate setting for d > 2. While the saddlepoint method for E[X |Y = a] can be directly handled
as in the case d = 1, a major difficulty arises when deriving an expansion of E[X|Y > a] due to
the pole of the integrand. To resolve this problem, we adopt the ideas presented in Kolassa [21]
and Kolassa and Li [18] where the authors study multivariate saddlepoint approximations. We
decompose our target integrals into certain forms, for each of which the existing methods can be
exploited.

Last but not least, our saddlepoint approximations are demonstrated to be quite valuable in risk
management. Either for portfolio risk measurements or hedging of financial contracts, it is im-
portant for a risk manager to know their sensitivities with respect to a specific parameter in order
to make decisions in a responsive manner. Specifically in this work, we focus on the two widely
popular risk measures, value-at-risk and conditional value-at-risk, and propose fast computa-
tional methods for their sensitivities by applying the newly developed saddlepoint expansions.
Additionally, we show that sensitivities of an option based on multiple assets can be computed
via the saddlepoint method. Numerical examples illustrate the effectiveness of our expansions in
comparison with simulation based estimates.

The rest of this paper is organized as follows. Section 2 first reviews classical saddlepoint
approximations. Section 3 derives saddlepoint approximations to the target conditional expecta-
tions for d = 1. The results in Section 3 are then extended to the multivariate setting in Section 4.
Section 5 presents various applications in risk management with numerical studies. Finally, Sec-
tion 6 concludes the paper.
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2. Preliminaries

2.1. Classical saddlepoint approximation

Let Yq,...,Y, beiid. copies of a continuous random vector Y in R? defined on a given prob-
ability space (€2, F, P). We assume that Y has a bounded probability density function (PDF)
and that its moment generating function (MGF) m (y) exists for y in some domain I' ¢ R? con-
taining an open neighborhood of the origin. The cumulant generating function (CGF) of Y is
k(y) =logm(y) defined in the same domain T'.

To describe classical saddlepoint techniques, we begin by recalling the inversion formula of
the PDF and the tail probability of Y: for y € R?,

1 \¢ pr+ico
fr(y) = <%> / _ exp(k(y) — yTy) dy where 7 € R?; (1)
d pr+ioo T
PIY > y] = (%) [ eI, @)
Tl T—i00 Hj:l Vi

where y; is the j-th component of y and 7 > 0 € R?. We consider those values of y for which
there exists the saddlepoint y = p(y) that solves the following saddlepoint equation

£'(y)=y.

Throughout the paper, f'(x) and f”(x) of a multivariate function f(x) denote its gradient and
Hessian, respectively. The derivation of saddlepoint approximations first makes use of defor-
mation of the original contour in the inversion formulas onto another contour containing the
steepest descent curve that passes through the saddlepoint. After a suitable change of variable,
asymptotic expansions of Laplace-type integrals are obtained with the help of Watson’s lemma
in Watson [36].

LetY=n"! > ', Y; be the mean of n i.i.d. observations. One classical saddlepoint approxi-
mation to the PDF of Y for d = 1, known as Daniels’ formula in Daniels [8], reads

A A2
oy [ ak—yi| o (P 503) . }
) = ) [1 +- < e )T o(n=?)|, 3)

where p, = p, () =k (P) /" (P)/? is the standardized cumulant of order r evaluated at the
saddlepoint p.

For the tail probability of Y, the Lugannani—Rice formula developed in Lugannani and
Rice [24] states

P[Y > y] = ®(v/nd) @

o)1 1 11 1 p3 . (ps S5pF\1 o
VO D — — — — LA A 10
T [ A+n<d)3 3 +<8 2 )z) o)
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for y away from zero where @ = sign(y)/2(yy —k(y)) and Z = y/«”(y). When y is near
zero, both @ and Z go to zero. Thus, a different saddlepoint expansion should be employed in
this case, for example, the formula (3.11) in Daniels [9]. The symbol g(n) = O (n*) means that
there exists a positive constant C such that |g(n)| < Cn® as n goes to infinity. The symbols ¢ (-)
and ®(-) denote the PDF and the cumulative distribution function (CDF) of a standard normal
random variable, respectively. Lastly, O()=1—d().

Such approximations for the PDF and the tail probability have their versions in the multivariate
setting. A multivariate saddlepoint expansion of the PDF for a random vector Y can be easily
derived by extending Daniels’ formula, and is presented as follows:

n \4expln(c () — 7yl 1 (64 &135 0 5
O 1+ (-2 ) 00?2, &
W <2ﬂ> et ()] [+n< >+ (n )] ©)

where the quantities 04, 013, and 073 are multivariate skewness and kurtosis, defined by

N niiplA A
ba= Y KPRk p1,

i,j,p,l

~ niipAlmo~ ~ A

013 = E KYPRMOR iR pikmo  and
i,j,p,l.m,o

~ niipAlmor ~ A

023 = E KYPRMOR 1K jmK o
i,j,p.l.m,o

Here, the superscripted £ denotes the cumulants of the tilted distribution, that is, the derivatives
of k(y) — y "'y evaluated at . For example, £"/P = 83K(y)/8y,- d¥;jd¥ply=p. The subscripted Kij
refers to the (i, j)-entry of the inverse of the matrix formed by £/ The derivation of the terms
is found in McCullagh [27].

On the other hand, the multivariate extension of saddlepoint expansions for the tail probability
is somewhat difficult to achieve. Recently, Kolassa [21] and Kolassa and Li [18] develop sad-
dlepoint techniques to obtain an expansion up to the order O(n~'); for a bivariate vector, see
Wang [35]. Details are omitted here, but the key approaches of Kolassa [21] and Kolassa and Li
[18] appear in the multivariate version of our results in Section 4.

For a detailed account of saddlepoint techniques, the reader is referred to Jensen [17], Ko-
lassa [19] or Butler [4].

2.2. Saddlepoint approximation to E[Y|Y > a]

Interestingly, saddlepoint approximations to one special case of conditional expectation have
been investigated, regarding the computation of conditional value-at-risk or also known as ex-
pected shortfall, a well-known risk measure defined as E[L|L > vy (L)] for a continuous random
loss L and value-at-risk vy (L) of L at level .

When L =Y as in Section 2.1, one approach is to apply saddlepoint techniques to the integral

/ v dy.
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We first write E[Y1 (Vza)] 3 1 — f o Wf7(¥)dy, n = E[Y], and replace fy by Daniels’ for-
mula (3). And then an approximation to the integral of the form

\/zL/ ey, (0 de
T J—c0

for some function ¥, can be employed from Temme [33]. This leads to the following formula
which is also observed in Martin [25] up to the order 0(n=3/?%):

ElY L. q) = n®(v/nd)

U Ja w U/w a ap; pa 5P3

|zt (2 _ =I5 L — 6
+¢(ﬁw)\/ﬁ|:2 c?)+n<aﬁ 23 272 z<8 24 +7/2 ©
+0(n™?).

Moreover, Butler and Wood [6] obtain approximations to the MGF and its logarithmic deriva-
tives of a truncated random variable X, ) with the density fx (x)1(4, 5 (x)/(Fx(b) — Fx(a))
for a distribution Fx of X. Setting b = oo and X =Y and evaluating their approximation for the
logarithmic derivative at zero produce another expansion:

= 1 1 - 1
Y1y F=al = u®(/nd) +¢(ﬁ&))\/_ﬁ|:% - % + ;<Mé)3a + %>i| + 0(11_5/2).

Broda and Paolella [3] summarize the above mentioned methods in detail.

3. Saddlepoint approximation to conditional expectations

Consider a continuous multi-dimensional random vector (X,Y ") € R¢t! where X is a one-
dimensional random variable and Y is a d-dimensional random vector. We define the multivariate
MGF of (X,Y") to be Mxy(y,n) = Elexp(y X + nTY)] and the corresponding CGF to be
Kxvy(y,n) =logMxy(y,n) for y e R and 5 € R¢. Classical assumptions are imposed: the
joint PDF of (X, Y') exists and the convergence domain of the CGF Ky y(y, n) contains an
open neighborhood of the origin. The marginal CGFs of X and Y are denoted by x(y) and
Ky (n), respectively.

The goal of this section is to derive saddlepoint approximations to conditional expecta-
tions in the form of E[X|Y = a] and E[X|Y > a] for a € R? where X =n~! Z?:l X; and
Y=n"! Y ', Y; are the means of n i.i.d. copies of X and Y, respectively. Thanks to the known
formulas for PDFs and tail probabilities, the problem is reduced to utilizing saddlepoint tech-
niques for E[X1~ [Y=a] ] and E[X 1% [Y>a] ].

We first derlve multivariate inversion formulas for E[ X 1[y—a)] and E[X1[y>a)] which resemble
(1) and (2), respectively. We adopt the measure change approach of Huang and Oosterlee [16].
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Lemma 3.1. For a continuous multivariate random vector (X, YT) e R4 the following rela-
tions hold for t in the domain of Ky.

1 d T+ioco P
E[XI[Y_a]]=<_>/ —VICX,Y(VJT)

al
5 3 exp(Ky(n) —a'n)dy ()

=0

fortT e RY: and

LY ¥ g exp(Ky(n) —a'y)
E[X1jy=a)] = (—) / “Kxy(rom| O dn @®)
2mi T—ico OV =0 szl n;
for T > 0 where n; is the j-th component of 3).
Proof. See Appendix A. |

In Sections 3.1 and 3.2, we focus only on a bivariate random vector (X,Y) where d = 1
for its practical importance. In general, bivariate saddlepoint approximation requires to have a
pair of saddlepoints that solve a system of saddlepoint equations, each of which depends on its
respective variable. See, for example, Daniels and Young [10]. However, in our development,
only one saddlepoint of y () is needed. Throughout the section, the saddlepoint 7 = 7)(a) of
Ky (n) is assumed to exist as a solution of the saddlepoint equation

oK
8—Y(n) —a. )
n

The conditions for the existence of a saddlepoint are discussed in Section 6 of Daniels [8].

3.1. Saddlepoint approximation to E[X|Y = a]

Before moving onto the derivation of an approximation to E[Yl[yz 1> We shall present Watson’s

lemma which is the main technique to obtain an asymptotic expansion in powers of n~! in the
classical approach. Our derivation relies on Watson’s lemma applied to our new inversion formula
in Lemma 3.1. Here, its rescaled version is stated.

Lemma 3.2 (Lemma 4.5.2 in Kolassa [19]). If 9 (w) is analytic in a neighborhood of v = @
containing the path (—Ai + @, Bi + &) with0 < A, B < 00, then

/2 (Bi+& % i 9(27) (2
i n no _ N (D9 (@)
i (271) / exp( 2(a) ) )ﬁ(w)da)— E @il

—Ai+d i

is an asymptotic expansion in powers of n~', provided the integral converges absolutely for
some n.



Saddlepoint methods for conditional expectations 1487

From the inversion formula (7) and the relations Ky y(y,n) = nKx y(y/n,n/n) and
K3(n) = nKy(n/n), the first target integral (7) is changed to

. n T+ioo
ElX1y_]=— f —Kxy(,m|  exp[n(Ky(n) —an)]dn (10)
27Tl T—i00 8)/ y=0
for some t € R. For notational simplicity, we define
A O
Ky =—Kxy.m
a)/ y=0

We exploit the classical results to approximate (10) but need to be careful when dealing with
K, (1) in front of the exponential term. The next theorem is our first saddlepoint expansion for
conditional expectation.

Theorem 3.3. Suppose that K, () is analytic in a neighborhood of 7). The conditional expec-
tation E[X|Y = a] of a continuous bivariate random vector (X,Y) can be approximated via
saddlepoint techniques by

— 1 n exp[n(Ky (1) — na)l
E[X|Y =a] = V-
fy(a) 2 /K:/;(ﬁ)
R 1 IoA4 5A2> /33

St (5 =57 ) Kot b 2 2K

x{ y () n|:<8 " (M NG o y(m) -

1 92 _2

TG e Ky (1) nzﬁ}+o(n )},

where 7] is the saddlepoint that solves (9) and p, = IC;r) (m/Ky (7)'7? is the standardized cumu-
lant of order r evaluated at 7).

Furthermore, if fy is also approximated by Daniel’s formula (3), we have the following simple
expansion:

E[X|Y =al = Ky (1)

2 ficp 7 e 2K G "

Proof. We integrate on the exactly same contour that is used in Daniels [8]. In Section 3 of
Daniels [8], the original path of integration is deformed into an equivalent path containing the
steepest descent curve through the saddlepoint. On the steepest descent curve, the imaginary part
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of Ky (n) — na is a constant and its real part decreases fastest near 7). The contribution of the rest
of the path to the target integral is negligible since some of them contribute a pure imaginary part
and the others are bounded and converge to zero geometrically as n goes to infinity.
Rewrite (10) using the closed curve theorem as
— n N ~
E[X1y_] = 5— exp[n(Ky () — fa)]

2mi (12)

f+ioo
x / ICyy (n) exp[n(Ky (n) — na — Ky (i) + fia)] dn.
n

—ioo

The quantity in the exponent of the integrand, Ky (1) — na — Ky (1}) + 7ja, is an analytic function,
and at 7 it is zero and has zero first derivative.

Handling of the integrand in (12) can be done via the classical approach well documented in,
for example, Kolassa [19]. Specifically, we make the same substitution (3.2) in Daniels [8] so

that we have
& = sign(f)/2(fa — Ky (@),

() = &+ (1~ D)y/2[Ky () — na — Ky () + fa) /(g — D)2.

Note that w(#) is an analytic function of 5 for | — 7| < § for some §, and by inverting the series
of w(n) we obtain an expansion of 1(w), the inverse of w(n). Furthermore, it can be shown that

an _ 1= (/3 — &) + ((5/24)53 — (1/8)p8) (@ () — &)* + O((w(n) — &)?)

5 , (13)
@ Ky (i)

whose verification is outlined in page 86 of Kolassa [19].
Then we re-parameterize (12) in terms of w as

w+ioo 9
/%exp[n(Ky(ﬁ)—ﬁa)] i~ /%/GHOO /cy(n(w))exp[%(w(n)—@)1%&». (14)

Define

A 1o 8
Hw) 2 K, (n()) icy(rnﬁ.

From the assumption on XC,, and the composition theorem of analytic functions, KC), (1(w)) has an
expansion in a neighborhood of 7j. And together with (13), such an expansion leads us to conclude
that ¥ (w) has a convergent series expansion in ascending powers of w. Then an asymptotic
expansion of (14) is obtained directly from Lemma 3.2, by inserting the expansion of ¥ (w) in
(14) and integrating term-by-term:

_ Ky(®) —7 N T, . _
EX1y_, 1= /ziexp[n( Y(’?)A na)]{ﬁ(w)_z_ﬁ &)+ 0(n 2)}_
g Ky @) 8
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The first coefficient is ¢ (&) = Ky, (). The second term is calculated from
2

el I on\* 9 oy 8% 0%
_ﬁ// — e —_— _— =
@ Ky(n){anz’CV(”)<aw> LRFTIE A P +’CV(”("’))aw3}’

differentiating (13) with respect to w, and evaluating ¢”(w) at @. Detailed computations are
omitted as they are straightforward. O

In what follows, we illustrate some elementary examples in which the conditional expectation
can be exactly calculated.

Example 3.4 (Independent case). When X and Y are independent, we have E[X|Y = a] =
E[X]. Since Kx y(y,n) = Kx(y) + Ky(n), we have K, () = Ky (0) and (3/ank, (n) =
(8%2/01*)K,, (1) = 0. Then (11) turns out to be K (0) = E[X] which is exact.

Example 3.5. When Y = X, E[X|X = a] = a. In that case, Kx y(y,n) = Kx(y + n) and
Ky (1) = K’y (1). By computing (3/9m)C, (n) = K’y (n) and (82/857%)K,, () = K (1), the nu-

merator of the second term in (11) is zero; thus (11) also results in a.

Example 3.6 (Bivariate normal with correlation p). Let (X, Y) be a bivariate normal random
variable, say N (1, 2, 012, 022, p), with the CGF

Kx.y(v.n) = m1y + pan + 3 (ofy? +2po100yn + o317)
and correlation p = Cov(X, Y)/010,. Note that (X, Y) ~ N (w1, u2, 02 /n, 03 /n, p). Thus,
E[X|Y =a]l=pn1 + p—(a — n2).
o0
On the other hand, K, (7)) = w1 + poioan, (3/dn)K, (n) = poioy and (3%/3nHK, () = 0.

The saddlepoint 7(a) is 1 = (a — u2) /022 and the 3rd order standardized cumulant p3 is zero.
Therefore, (11) yields the exact result as E[X|Y =a] = Ky ().

3.2. Saddlepoint approximation to E[X|Y > a]

Under the setting of Section 3.1, the second target integral can be rewritten by the inversion
formula (8) as

. 1 T+ioo K _
E[Xl[?za]]: <_>/ le(n)eXp[n( Y:?) an)] dn (15)

2mi —ioo
for T > 0. Following the approach in Martin [25], we divide the singularity in the integrand as

’Cy (m _ IC)/ ) + IC;/(’)) - ,Cy 0)
n n n '
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Then, (15) becomes the sum of two tractable parts, namely, for t > 0

— - 1 [THR K, () — Ky (0)
ElX1y5 1=Ky (0)-P[Y = a]+ %/ —

T—i00 n

xp[n(Ky (1) — an)]dn. (16)
The second complex integral is treated in the similar fashion as in Theorem 3.3, using Lemma 3.2.
Theorem 3.7. Suppose that IKC,, (1)) is analytic in a neighborhood of ) and that Y is continuous

at a. The conditional expectation E[X|Y > a] of a continuous bivariate random vector (X, Y)
can be approximated via saddlepoint techniques by

_ 1 1
E[X|Y —E[X]4+ —— Ky®) — 7
[X|Y > a] =E[ ”p[yza]m”p[”( y(H) — ha)]

Ky () = Ky©) 1Ty =Ky ©) (p 553 f3 1

z n z 8 24 27 32
1 5y 1 9 1 92 an
03
+—F—\ 5tz =K ey~
IC/y’(ﬁ)<2 Z> o, " 2 e n—ﬁ}

+ O(n_z)},

where 1) solves (9), 2 =1,/ Ky (1), and p, = ’Cg)(ﬁ)/’q; )2

When 1 = 0, we have an expansion

1 —IC (1) + 0(n‘3/2).

[27nK/}(0) - P[Y > a] " =0

Proof. Leta = K, () and first we suppose that /) > 0, or equivalently E[Y] > a. Again, we only
focus on the integration on the steepest descent curve and take the new variables @ and @ as in
the proof of Theorem 3.3. To expand (1/1)(dn/dw), we closely follow the approach in page 92
of Kolassa [19]. First, we integrate the expansion in (13) to obtain

E[X|Y > a] = E[X]+

5.,
72

1 1
n=1i+ [(w &) = P =) +( 24p4)<w @) +0((w—a) )]- (18)

Ky @)
Then, dividing (13) by (18) yields

19dn o3 1 . 5 1 31 1 a2

(=2 _ _ - — _

n 9w [ (3 +2>(a’ “’)Jr<24p3 8 pot 2 2 +22)(w 2

0((w— @)3)}/2,

19)
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where z = 14/Ky (). Note that the coefficients of the odd order terms of w — & should be
determined since it does not disappear in our derivation, whereas they are removed in the classical
approach. See (101) of Kolassa [19].

Define
. 19
9(@) £ (K5, ) = Ky ) 8—”

whose convergent series exists at @ by (19) and the analytic property of /C,, (). Then the second
term in (16) becomes

S ex [n(Ky () — 7a)] i~ 1/(Z)+iooex "= &) |9 () do
2n CPLPAY D 2w ) P2
1 e (DT (@)
= g Rl B =) 2,

by Watson’s lemma. The coefficients in the expansion (20) are calculated by expanding ¥ (w)
about @. By combining (13), (18) and (19), and taking their derivatives, we compute 9 (®) =
Ky (M) — K, (0))/2, and

(20)

. Ky —-K,0 (5 ., 1. p 1
3" —p v YAV 52~ o,
(@) 5 uli gttt
1 2\ @ 2
- ,53+7>'—K (m) + o Ky ()
3 /K?(ﬁ)( A T R SO R T

n=n

The desired result is then immediate.
Now suppose that 1 < 0. We set Z = —Y and observe that

E[YIIYZM] = E[Yllfffu]] =E[X] - E[Yllfzfal].

For the second term on the right-hand side, the saddlepoint that satisfies ', (-) = —a is —7 > 0.
Working with the CGF of (X, Z) and transforming back to Y, an expansion for 7 < O can be
found. And the final formula turns out to be the same formula as (17).

When 7 = 0, equivalently & = 0, lim,,—.¢ (@) = 0 and

- K, 1
lim Ky 00 = 1oy ( )—g" - .—aa Ky (n)
— w
@ '7 Ky o1

n=0

Thus, ¥ (w) is analytic at @ = 0. This yields the following approximation to (20) for 7 = 0 by
applying Watson’s lemma centered at @ = O:

1 d

— +0(n ).
V2 - K ) 1 )

n=0 O

IC)/ (m
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Remark 3.8. The saddlepoint approximation to the lower-tail expectation E[Yl[y <q1] can be
obtained simply by considering E[X] — E[ X1+ (7>q)] and by using (17) for the second term. Al-
ternatively, we can obtain an approximation to the integral directly by applying (17) by replacing
Y with —Y. In either case, the resulting formula is the same.

Example 3.9 (Bivariate normal with correlation p). Consider Example 3.6 where (X, Y) ~
N, na, 012, 022, p). Evaluating (16) gives us

T+ioco

EIXIT = a1 =1+ pononz [ exoln(Ky o —an)] dn/PIY = a

2 py(a)/PLY > a]

where ¢y is the PDF of Y. On the other hand, it is easy to check that (17) yields the same value
by

EIX|Y > al = 1 + 22 ¢ (Vudo)/PIY = al,
NG

where & = sign(1)/2(fla — Ky (1)) = sign(a — p2)(a — u2)/oa.

Remark 3.10. By approximating P[Y > a] with the Lugannani—Rice formula (4), the expansion
(17) for E[Xl[yza]] is reduced to

S L TK,®) 1Ky (s 503 p3 1
M¢(ﬁw)+¢(ﬁw)—[VT—%+—( A (%——3—”—3—3 + L

n 24 2
Jn Z 2 z z @ @
1 03 1) d ‘ 1 0 >i|
+ 5tz =Km — e a3 Ky (M) )
zc/y’(m(z &) o 2Ry o

where 1 = E[X]. When X =7, it becomes exactly the same as (6).

Discussions about the accuracy of the expansions in Theorems 3.3 and 3.7 are deferred to
Section 5 where numerical studies are provided in the context of risk management.

4. Multivariate extension

In this section, we consider the case d > 2. The saddlepoint 7 = #j(a) of Ky(n) is assumed to
exist as the solution to the system of saddlepoint equations

oy
an;

) = ai, (22)
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where a= (ay,...,ag) and g = (1, ...,nq) fori =1,...,d. As before, define

0
K, ()= 5 Kxx(v.m
Y y:()

4.1. Extension of Theorem 3.3

Finding an analog of Theorem 3.3 for the case d > 2 raises no additional difficulty because we
can utilize a multivariate version of Watson’s lemma, which is also useful when deriving multi-
variate saddlepoint approximations to multivariate PDFs. To be specific, we take a differentiable
function @(n) via the change of variable

lw-&)T(@-&) =Ky —n"a—Ky@) +7'a, (23)

which is employed in Kolassa [20]. This function is proved to be analytic for @ in a neighborhood
of @, and the detailed construction will be given for d = 2 in the next subsection. Using the
change of variable (23) in (8) with (X, Y), and applying multivariate Watson’s lemma B.1 with
a particular care for IC), (1), we arrive at the following result.

Theorem 4.1. Let i) be a solution to the saddlepoint equation (22) and suppose that K, ()

is analytic in a neighborhood of . The conditional expectation E[X|Y = a] of a continuous
random vector (X, Y) can be approximated via saddlepoint techniques by

E[X|]Y =a] =

1 (i)‘“z expln(Ky (i) — i "a)]
Jy@ \27 [det[ K4 ()]

{ic @)+ 5= [/c OF ﬁ(n>+2 ﬁi@)

+Za i91;

The coefficients B, i, and B ; evaluated at i) satisfy

&,(n)}w( )}

d

piy=-3 |2 ey
=1 3(1)]% ® 0=0 Y ’
~(A)——de{32""m+28”’( g il d t[lC”m]} d
PO == 25, o | 9w, VI an
d
on; d
Bty ==Y = ”J( @),

k=1
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respectively.
Furthermore, if f3(a) is also approximated by Daniel’s formula (5), we have the following

simple expansion:

E[X|Y =a] =K, (#)

3 92
+Y —«x i +y ——K
(Z - yw)‘”:ﬁﬂ ) ZJ Ty <

Bij (ﬁ))
=i
/(211 +B@M) + O(n_z).
Proof. See Appendix B. O

On the other hand, a major concern arises when deriving the extension of Theorem 3.7. Due
to the factor in the denominator of (2) which is apparently not a simple pole, multivariate sad-
dlepoint approximation to the tail probability is difficult to compute. Among various methods to
tackle the problem, Kolassa and Li [18] suggest an approach to extend the method of Lugannani
and Rice [24] to the multivariate case. The authors obtain a tractable formula up to the relative
order O(n~"). We essentially adopt their framework but particular attention should be paid to
the multiplying factor /C), () in computing E[Yl[?za]]' Under a suitable assumption on /C,, (),
we decompose K, () in such a way that each corresponding integral can be approximated sep-
arately. In the next subsection, the extension of Theorem 3.7 is stated for the case d = 2 for
an illustration and practical usefulness. The entire idea is still applicable when d > 2 but it is
computationally heavy.

4.2. Extension of Theorem 3.7

With Y € R2, the inversion formula is written as

2 pr+ico - —
1)/ expln(Ky (n1, n2) — mai nzaZ)]dﬂ, (24)

ElXlgoyl=— K, (m,
[ [Yza]] <Z7Ti T—i00 (o) nn2

for T > 0. In order to identify the pole in the integrand of (24), we adopt the following explicit
functions constructed in Kolassa and Li [18].

Define 775(n1) as the minimizer of Ky (11, n2) — n1a; — n2a when the first component 7 is
fixed, that is,

() = argn’17i2n{ICy(m, M) — mai — maz}.
The analytic function w(n) satisfying (23) is further specified as
—307 = Ky (i, i2) — frar — fpaz — (Ky (0, 712(0)) = 2 (0)a),

— 31— &1)? = Ky (i1, i) — ar — faaz — (Ky (1, iz () — may — iia(n1)az),
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—3 = Ky(0,12(0)) — 72(0)az,
w2 — &) = Ky(n1. o)) — mar — iiz()az — (Ky (1. m2) — mar — npa).

The sign of @ is chosen for w; to be increasing in 7n;. By the inverse function theorem, there
exists an inverse function 5(w). To identify the pole after a change of variable, define a function
@>(w1) to be the value of w; that makes 7, zero when w is fixed, that is,

n2 (w1, @2(w1)) =0.

Since w is defined not to depend on 17, the determinant of |dw/dn| is the product of its diago-

nals. We can now rewrite (24) as

@+ioco P 9
am

- exp[ng (w1, w2)]
E[ X1~ = _—
| [Yza]] / dw1 0wy

o—ico  Qmi)Pnim

_ /‘“*"‘” explng (1, @)]
b—ico 2mi)2w1 (w2 — @n(w1))

Ky (m(on), m(w1, @2)) -
(25)

Ky (i, m)F (1, m)do,

where
1.2 1.2  ~ -
q(w1, w2) = 0] + 705 — O] — W2
and

w1 I @y —@z(wy) 92
Fimm)=—r— ——""°"-—.
N1 dw n ow;

We closely follow the program set by Kolassa and Li [18] and Li [22], but we face additional
difficulties because of the term KC,, (171, n2). Decompose F (11, 12) as

F=H°+H'+H>+H",

where H'(n1,m) = F(0,0), H'(n1,m) = F(1,0) — F(0,0), H*(n1,m) = F(0,m) —
F(0,0), and H12(771,772) = F(m,n) — F(n1,0) — FO,n2) + F(0,0). It is proved that
F(0,0) =1 and that

H] H2 H12

, ——— and ————
] Wy — w(wy) w1 (wy — w2 (wr))

H,
are analytic. Then, (25) is decomposed into four terms denoted by [ 0 71,12, and 1'2, depending
on the respective superscript of H.

In order to compute each integral, we impose the assumption that XC), (11, 12) is analytic in a
neighborhood of (71, 72) containing (71, 0), (0, 72(0)), and (0, 0). The simplest part, I'? and 12,
can be obtained by applying multivariate Watson’s lemma after modifying the integrand of 2.
High-order terms of (26) can be computed, but since the order of / Oand 1! is limited to O (n~1),
we present the result up to O (n™").
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Lemma 4.2. The sum of integrals I' and I1'? is expanded as

1 - R n -
>+ 172 = ﬁdD(\/ﬁwl)qﬁ(x/ﬁwz)/Cy (0, 72(0))

(26)
1 1 _1
X —— |+ O(n )
712(0),/ K0, 72(0))  “?2
Proof. See Appendix C. O

For 1% and I', wedo a change of varialgle with (v, 12) = (w1, w2 — @2 (w1)) and set V] = @1,
U2 = @y — @2(®1), and U2(0) = Wy. Let Ky, (v1, v2) denote the function /C,, in terms of (vy, v2).
After the change of variable (w1, w2 — @2(w1)) — (v1, v2), [ 0and I' are written as

V+ioo 1 -
1= / el L g ) vydv and @7
V—ioo @mi) v1v2

4% explng (v, v2)] 1 -
7= explngi vl 1 & ) dv. N
v/f’—ioo (2mi)? vy y (U1, v2)h(vr) dv (28)

respectively, where v = (v1, v2), g(v1, v2) = v} /2+ (V2 +@2(v1))%/2 — 1V — 2 (V2 + @2 (v1)),
and an analytic function

F(n(v),0) —1 I dnp 1

h(vy) = = — .
: ol mn dvi o)

Now, we decompose K, (v, v2) into four terms as

K, (i, v2) = K, (0,0) +[Ky (v1,0) — K, (0,0)] + [K, (0, v2) — K, (0,0)] 09)
+[K

y (01, v2) — Ky (v1,0) = Ky (0, v2) + K, (0, 0)].
By the assumption on /), (11, #2) and by the composition theorem of complex variables, there
exists a region A such that IC,, (v1, v2) is analytic in A and A contains (91, 02), (01, 0), (0, 72(0)),

and (0, 0). Partial derivatives 3K, (v1, v2)/dv1, 3K, (v1, v2)/dv2, and 82K, (v1, v2)/dv1dv, are
also analytic in 4. Furthermore,

K, (v1,0) — K, (0, 0) K, (0, v2) — K, (0, 0)
V] ’ v2

and

K, (v1,v2) — K, (v1,0) — K, (0, v2) + K, (0, 0)
V1v2
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are analytic as well. By plugging (29) into (27) and (28), the integral /° + I can be rewritten as

exp[ng(vi, v2)] 1
(2mi)? V1V

B V+ioo
10411 :IC,,(0,0)[ ‘
V—100

V+ioco 1
+/ eXp[ng(l')lz, vl 1, (1) dv (30)
V—ico (2ri) v2

V+ioo 1
+ / explrgu vl Ly yyav+ 0(n),
v

i—ico Qri)? v

where

K, (1,0) — K, (0,0) - 1 d 1
ki = L0 KO0 o) an_
v ny) dvy v

and

Ky (0,v2) = K, (0,0)
1%) ’

ka(v2) =

The terms with analytic integrands disappear as we apply multivariate Watson’s lemma since
their contributions are of order O (n~1).

The importance of the decomposition (30) lies in that 7° and I' are now the sum of certain
integrals such that each term can be treated separately via, e.g., the method proposed in Ko-
lassa [21]. The special case for a bivariate random vector is well described in Chapters 3 and 5
of Li [22]. To approximate the first term in (30), the author approximates w;(w;)/w; by a lin-
ear function of wy, namely @y (w|)/w| = by + b1 (w] — @) since @, (wy) is usually intractable.
Then it is proved that the derived saddlepoint expansion using the linear function is equivalent
to the saddlepoint expansion without the linear approximation up to the order O(n~'). As for
the second and third integrals, one can expand g(vy, vp) about (01, 07) and integrate termwise,
dropping the terms that contribute the error of O (n~") with » > 1. The same treatments applied
to It} and 7% in Li [22] lead us to saddlepoint expansions of the second and third integrals,
respectively. We do not report the procedure in detail, but summarize the outcome below.

In the rest of this section, we define some auxiliary variables that appear in our expansion. Let
wy = @y(w1) and let @) and @] be the first and second derivative of @, evaluated at @;. They
can be specifically computed as

Wy =+ Sign(—ﬁz)\/—Z[/CY(ﬁl . 12) — May — ipay — (Ky (71, 0) — far) ],

. . dn
0)/2 = (’C%((Ul,o) _al)d—a)l

/ (@) — @) and
1

~ I A A A ~ ~ ~ N d
o = [(K%}(nl, 0) — K¥ (. ) — K2y, 772)77/2(771))<d—z)11

2
&)1)

d*m
+ (KL (1, 0) — ap) 21

_ ((1)/2)2]/(&)2 — ).

w1
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Here,
dn 1 o K32 (i, fi2)
d— ) = T~ = A~ o A Wlth’lz(’h):— 22 A A and
1 |4, Ky (11, 12) + Ky (01, 12)75 (1) Ky (1, 02)
d*m NI A A
— Z_{(1“@unﬁ+2K“%m,mmﬂm)+K¥%m,mM%mV
da)l o
dnt 2 Hon A 128 A Nl on
+ K3 (it 1) iy (A1) dor |- /CKK&(nhnﬁ—%KY(nhnﬁnﬂnDD
)

with 715 (A1) = —[K3 2 (A1, 2) + 2K (i, )5 (1) + K322 (A1, 12)715 (51)*1/K3 (A1, 12). Then

A

we have by = &) — @y ®1/2 and by = &} /2. Moreover, let £ = /n(®1 + bo@»)/\/1+ b3, § =

Vi, p=bo/\/1+b3,f=n/1 +boa)1, and g = (@2 — @y@1)(W2/2 — Dhd1/2 — ).
The extension of Theorem 3.7 for d = 2 is presented by summarizing the above arguments in
Theorem 4.3.

Theorem 4.3. Let i solve the equation (22) with 7; > 0 for i = 1,2, and suppose that Ky () is
analytic in a neighborhood of i containing (7)1, 0), (0, 772(0)), and (0, 0). With all the notation
defined above, E[Yl[Yza]] of a continuous random vector (X,Y) € R can be approximated via
saddlepoint techniques by

X E[X]b
Mgt =185, + S0 1609 25
—p

— (o5 - p2 = si+ )8 S2L )[4, (0.720)

V1—p?
1 1 _
—}q&(ﬁ@rb(ﬁa}n + explng]

J o
712(0),/ K3 (0, 2 (0)) 2
X[ ki(@1) ¢(ﬁ[(1+<cb2)2)@1+w2(wz—wz>]> (f(wz—am)

J1+ (@h)? 1+ (@))? I+ (@))?

+ ko (@2)¢ (v (1 + @ — d)z))é(«/ﬁfol)” + 0(71_1),

where

. Ky (01,0) — K, (0,0) . 1 1
ki (@) = K, (1,0 1
1(@1) = B y (M )[A — — wl}
Ny Ky (01, 02) + Ky (1, 12) 105 (1)
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and
_ Ky (0,12(0)) — K, (0,0)
= o

ko (@)

for §§ > 0. Here, ®(x,y, p) =1 — ®(x,y, p) with the CDF ®(x, y, p) of a bivariate standard
normal variable N'(0,0,1, 1, p).

Remark 4.4. We omit the cases where ) = 0 or at least one component of 7 is negative due
to complexity. However, both can be argued just as bivariate saddlepoint approximations, after
applying the decomposition (30).

5. Applications in risk management

Saddlepoint techniques have been successfully applied in various problems of quantitative fi-
nance such as vanilla option pricing, portfolio risk measurements. The newly developed saddle-
point approximations allow us to extend the applicability to other important problems in risk
management. In particular, we consider fast and accurate computations of risk and option sensi-
tivities which are indispensable in responsive decision making.

First of all, we consider a random portfolio loss L, and compute the sensitivities of certain risk
metrics utilizing Theorems 3.3 and 3.7. We particularly investigate Euler contributions to risk
measures in Section 5.1 and risk sensitivities with respect to an input parameter under a delta—
gamma portfolio model in Section 5.2. The second application is on option sensitivities. This
exercise is done under two different asset pricing models as described in Section 5.3. Numerical
illustrations shall confirm the accuracy and effectiveness of saddlepoint approximations.

5.1. VaR and CVaR risk contribution

Suppose that there is a portfolio with continuous random loss L, consisting of m assets or sub-
portfolios L;’s with u; units of asset (portfolio) i fori =1,...,m, so that L = Z:":l u;L;. For
a risk measure, say v(L), it is important to know how much the sub-portfolio L; contributes
to v(L) from a risk management point of view. Risk measures of our interest are the most fre-
quently used measures, namely, value-at-risk (VaR) v,, a quantile function of the distribution of
L, and conditional value-at-risk (CVaR) ¢y, also called expected shortfall (ES). Fix o € (0, 1),
typically taken to be 0.95 or 0.99. Then v, and ¢, are given by v, = inf{{/|P(L <[) > «} and
cq = E[L|L > vy ]. If necessary, we write v, (L) or ¢4 (L) to specify the underlying random loss
variable.

For a risk measure that is homogeneous of degree 1 and differentiable in an appropri-
ate sense, the Euler allocation principle can be applied. We refer the reader to Tasche [32]
for more information where the author defines the Euler contributions to VaR and CVaR as
Vo (Li|L) = E[L;|L = vo] and co(Li|L) = E[L;|L = vq].

As such risk metrics have drawn much attention from researchers and practitioners, saddle-
point approximations to VaR and CVaR risk contributions have been studied in the literature. For
example, see Martin et al. [26] or Muromachi [28]. The VaR risk contribution formula in Martin
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et al. [26] is simple to apply and is nothing but the first order approximation. On the other hand,
the approximations provided in Muromachi [28] are rather complex to compute. In particular,
the expansions make use of an auxiliary function which acts like a CGF, and thus it is difficult to
guarantee the existence of saddlepoints.

5.1.1. A portfolio composed of correlated normals

Suppose that random losses {L;};=1, .. follow a multivariate normal distribution A/ (s, ) with
an m-dimensional mean vector g = (1, ..., um)T and an m X m covariance matrix X whose
entries are X;; = oiz and X;; = Xj; = p;jo;0; with p;; = pj;. We apply Theorems 3.3 and 3.7
to the Euler contributions with n = 1. The resulting formulas are actually the same as the true
values:

llT Zi T
u' Zu (Ua -

Tyi -
ELLI|L > vo] = i + o . (@)

+ ° FNNE]
T VuTzu 1 - 0@)

where X/ is the i-th column of ¥, u= (uy,...,up)" and @ = (vo —u' p)/vu' Tu.
For comparison, we note that the approach of Martin ef al. [26] yields the same result whereas
Muromachi’s formula for the VaR contribution results in

u' Xu (llT[L — )2 1 5
Kyu@m) — 1 14 —panr——p%. 1.
VK7 C )eXP|: u u + Ky (m) nMva:|< + gP4M 24,03,M>

Here, Ky is defined as K, + log(a/Cr (17)/du;) — logn, different from the CGF Ky, of L. In this
example, it is given by

E[L;|IL =vq] = pi +

1
Kum =u"pn+ EUTZUHZ + 10g[#m + <Z Uk Pik0k0; + Miffiz) 772] —logn.
P

Moreover, 7 is the saddlepoint of /Cyy, that is, the solution of the following cubic polynomial
equation
(uT)Su +u'p— va)uTEin3 + (ui (uTZu +u'p— Vo) + 2uTZ")n2
+ (i +u" )+ p; =0.

Lastly, p, pm is the standardized cumulant for &y of order r evaluated at 77y.

5.1.2. A portfolio of proper generalized hyperbolic distributions

Consider a proper generalized hyperbolic (GH) distribution which is a GH distribution with the
restricted range of parameters L € R, > 0, 8 € (—«, @), § > 0, and u € R. This excludes some
cases such as variance gamma distribution, but still continues to nest hyperbolic and normal
inverse gaussian distributions. Let X ~ pGH(A, «, 8, 8, ) denote a random variable that has a
proper GH distribution with the parameter set (A, «, 8, 8, ). The MGF of the proper GH X is
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expressed as

iy BLOVa? — (B +y)?) ( i )“2
B (/a2 —pY) \a?2—(B+y)?)
Here, B, (1) is the modified Bessel function of the third kind with index XA for [ > 0.

Let L; ~ pGH(};, a4, Bi, 8i, ti) be independent random variables. The target portfolio loss L
is given by L = Y /_ u;L; where u; > 0 for each i. By the scaling property of GH distribu-
tions, it is not difficult to check that u; L; has the proper GH distribution with the parameter set
(Ai, o /ui, Bi/ui, uidi, uj i) and that the CGF is given by

KuiL; () = uipin +log By, (wi Qi () — log By, (w;) — A; log Qi (n),

where Q; (1) = /1 — Quifin + (win))/ (@7 — 7). Finally, K1.(7) = S/, Ky, (). Thanks
to the relation

—2B; (x) = By—1(x) + By41(x)

for » € R and x € R, the first derivative of Ky, , is seen to be

i Bi +un {2 B, —1(5i Qi(m) + By, +1(si Qi (M) A }

Koz, () = ui i + +
) =ikt @ — B

2 By, (5i Qi(m) Qi(m)

where ¢; = 8,-‘/0(,.2 — ,61.2. The saddlepoint 7 needs to be numerically computed by solving
IC} (1) = vy The solution is unique in the convergence interval of the CGF of L, (max(—a; /u; —

Bi/ui), min(e; /u; — Bi/u;)).

The VaR or CVaR risk contribution of the portfolio L for the asset L;, 1 <i < m, requires to
compute the joint CGF of (L;, L) in order to apply Theorems 3.3 and 3.7. The joint CGF can be
easily derived as

Keoly.m= Y Kjm+ui@n+y)+logB,, (si0(y.m)
j=1.j#i
—log By, (si) — Ailog Oy, m),

where

Oty — \/1 _ 2Bulinty) b win 4y
ai — B
Then a bit of work shows that
d
ay

Bi+uin+y
Oy, n)(e? — B2
5 {2Bxi—1(§ié(%77))+BA,-+1(§1‘Q(7/, m ki }
2 B, (i Oy, m) Oy, )’

KriLty,m =pi +
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Figure 1. (i) VaR contribution of L3 over « using SPAs and IPA estimator and (ii) the estimated differences
and relative differences of our SPAs to IPA estimator.

which yields ), (n) = ,C;iLi (n)/u; so that I, (n) is analytic at 7. By calculating the cumulants
needed for Theorems 3.3 and 3.7, we can obtain the VaR and CVaR risk contributions analytically
except for the saddlepoint 7 which can be efficiently found by any root-finding method.

For the rest of this subsection, we conduct some numerical experiments with an NIG distribu-
tion which is a special case of proper GH distributions. The CGF of u; L; is reduced to

Kuors 0 =wigtin + ;o = B7 = \Jo = (B +uim?).

The cumulants of L at 5 are easily computed. We also have E[L;] = u; + 8; Bi /4 /Otl-2 — ,Biz.

More specifically, we set m =3, u = (0.2,0.4,0.4) and L; ~ pGH(—-1/2,2,0.1,1.8,0.2),
L, ~ pGH(—-1/2,3,0.3,0.5,0.3), and L3 ~ pGH(—1/2,2.5,-0.2,1,0.5). Figures 1 and 2
show the estimated risk contributions of VaR and CVaR for L3. We obtain two estimates of
VaR vy (L) using Monte Carlo simulation and saddlepoint techniques, denoted by “MC-VaR”
and “SPA-VaR”, respectively. Then the VaR contribution is computed first using MC—VaR, de-
noted by “SPA from MC-VaR”, and second using SPA—VaR, denoted by “SPA from SPA—VaR”.
We also plot the approximate VaR contribution, “Martin—SPA”, given in Martin et al. [26]. For
comparison, we compute Monte Carlo estimates based on infinitesimal perturbation analysis, or
simply IPA estimates, developed in Hong [14] using 2 - 10’ random outcomes. The batch size for
each VaR contribution estimate is set equal to 2 - 10,

Figure 1 shows that our approximation formulas give very accurate values and that there is a
notable difference between Martin—SPA and the others. For a better comparison, the differences
between the SPA based estimates and the IPA estimates are shown in the right panel (ii) of
Figure 1. In the monitoring interval of «, those absolute or relative differences stay small. For
example, the average relative difference between the IPA estimates and SPA from SPA—VaR is
6.0147 x 1073, The fluctuating behavior of the difference between the estimates is due to the
strong dependence of the IPA estimator on the batch size.
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Figure 2. (i) CVaR contribution of L3 over « using SPAs and IPA estimator and (ii) the estimated differ-
ences and relative differences of our SPAs to IPA estimator.

Figure 2 plots the CVaR sensitivities computed by saddlepoint approximations using two VaR
estimates, MC—VaR and SPA-VaR, and the results are again denoted by SPA from MC-VaR
and SPA from SPA-VaR, respectively. As seen from the figure, our SPA formulas from both
MC-VaR and SPA-VaR provide highly accurate approximations to the CVaR contribution. For
instance, the average relative difference between the IPA estimates and SPA from SPA-VaR is
2.4469 x 1073.

5.2. VaR and CVaR sensitivities of delta—gamma portfolios

A delta—gamma portfolio can be understood as a quadratic approximation to portfolio returns
and it has been widely employed in quantitative risk management. For example, it is useful in
computing VaR of a portfolio loss that could occur in a short period of time. In this section, we
extend the existing results on delta—gamma portfolios by computing VaR and CVaR sensitivities
with respect to an input parameter.

Hong [14] and Hong and Liu [15] show that the sensitivities of v, and ¢, with respect to a
general input parameter can be described as conditional expectations. Let the random loss of a
portfolio L(0) = ¢ (6, Z) be a function of § and a random variable Z, where 6 is the parameter
with respect to which we differentiate. Under certain technical assumptions in Hong [14], the
VaR sensitivity with respect to 6 can be written as

e _ IV o o], 2) =
00 | ag DW= |

On the other hand Hong and Liu [15] prove that the CVaR sensitivity with respect to 6 is simply

Oca _ [0V 4 4 V6, Z) >
dca _ [ 3Y D=u
36 | 96 *
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as long as certain conditions are met. And the authors develop IPA based estimators using Monte
Carlo sampling.

5.2.1. Delta—gamma portfolios

We first present a setting for a delta—gamma portfolio according to Feuerverger and Wong [11].
Let a random vector X = (X1, ..., Xm) " represent the m underlying risk factors in a financial
market over a given time period. As often done in the literature, we assume that X follows a
multivariate normal distribution with mean vector g and covariance matrix X. These parameters
are assumed to be known, but in practice they need to be estimated from either historical data
or market data. We are concerned with a portfolio loss due to the random factor X, which we
simply denote by f(X) for some functional f.

Taking the Taylor expansion of f(X) at X = 0 up to the second order yields a delta—gamma
portfolio loss Y for the given time horizon as

Y =f(X)=f(0)+a' X+X'BX, 31)

where a is an m x 1 column vector and B is a symmetric m x m matrix. In order to compute the
CGF of Y, rewrite Y with zero-mean vector multivariate Gaussian X as

Y=r0)+a’(u+Xo)+ (n+Xo) B +Xo) =c+ (a+2Bp) " Xo + X/ BXo,

where c = f(0)+a' pu+ pu Bu. Let X = HZ with an m x 1 column vector Z of independent
standard normal random variables using an m x m matrix H such that ¥ = HH' . Performing an
eigenvalue decomposition gives us H' BH = PAP T, where A =diag(A1, ..., A,) is the diagonal
matrix of eigenvalues, and P is an orthonormal matrix whose i-th column is the i-th eigenvector
associated with the i-th eigenvalue A;. This decomposition finally allows us to have

Y=c+(a+2Bp)"HZ +Z H BHZ
—c+(@a+2Bp) HPP'Z +Z"PTAPZ
=c+d'Z+7ZTAZ,

whered =P TH' (a+ 2Bp) and Z = PTZ. Note that Z consists of independent standard normal
entries Z; fori =1,...,m.

Writing ¥ =c+ Zl 1(diZi+ A Z2) where d; stands for the i-th element of d, we can compute
the MGF My (n) and the CGF le(n) of Y as follows:

m _1/2 m
1
—(TTa —2x -
My () (E( n)) eXP(Cn +5 ; . —2kﬂ7> and
y s (32)

1« 1
Ky(m =cn—=Y log(l=2xn)+ 5> ———.
y(m =cn 22 og( m)+2i_1 T—2hm

Note that both of them are analytic near the origin and we can explicitly obtain the convergence
region. The saddlepoint 7 of Ky (1) is obtained by solving K}, (17) = ve(Y), which turns out to
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be equivalent to solving an (n + 2)-th order polynomial equation. The existence of a unique
saddlepoint in a delta—gamma portfolio is always guaranteed.

5.2.2. VaR and CVaR sensitivities with respect to the mean vector

In this subsection, we obtain more detailed formulas for risk sensitivities by specifying 8 as
the mean vector u. In addition to the direct implications that risk sensitivities provide, such
computations are helpful in assessing the robustness of the estimates of risk measures when the
estimation error of u; is not negligible as pointed out by Hong and Liu [15].

The variable of our interest is then

Y ¢ [/ ad B
= +Z< $Zi+ ka)

i o =1 o Mi

(33)

m m
—a;+2) b+ Y [2PTH'B],, Z,
k=1 k=1
where q; is the i-th element of a, b;j is the (i, k)-th component of B, and [M]; represents the

(k, i)-th component of a matrix M. The joint CGF of a bivariate random vector (0Y/ou;, Y) is
evaluated using the representation (33) as

Kovy(v.m = <az + ZszkMk)y +en—3 ZIOg(l — 2hkm)

k=1

1 i (2PTHBliy + din)?
) — 1 —2xkn ’

Here, we denote dY /du; as 0;Y for brevity. Furthermore, we directly get

[2PTHBlyidin }

m
K =gqj 2b;
y(n) ai +];{ ikMk + 1— 20

which can be shown to be analytic at 7. Consequently, we have

8IC m THTB], 2 THTB],
(77) Z (2P H Blide 9 /C (77) Z 4r[2P H ' Blyidy
— (1 —2hm)? (1 = 2am)?

k=1

Now, we are ready to compute the VaR sensitivity and CVaR sensitivity with respect to w; as

dca(¥) _E[a_Y

o o

v (Y) E[ Y
I o

Y= va(Y):| and

Y > va(Y)i|.

All the assumptions in Hong [14] and Hong and Liu [15] are satisfied in this setting. Any root-
finding algorithm can be applied to locate the unique saddlepoint 7. Once we find 7 with the
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CGF (32) of Y, we are able to derive saddlepoint approximations of risk sensitivities utilizing
Theorems 3.3 and 3.7, as summarized in the following theorem.

Theorem 5.1. The VaR and CVaR sensitivities with respect to |, the mean of a risk factor, of a
delta—gamma portfolio loss Y in (31) are approximated via saddlepoint techniques by

Bva(Y) 2P TH Blidi . s
ai; 2 1 T <~ A~ a2 1 - Z)L
o +Z{ bikpi + (0= 200 1( k1)
K @0 (1 = 2x4h) — 40K () ]}
20Ky ()2 + P () — S0 )2/ ()
and
aca(Y) p(Vnd) [2PTH'Blydy

_I_

Zl{zb”‘“” VR

A+1 1,
X — —
A=\ ghs—

5 A2 ,53
24

2

1—2x7

1>A
2)"

| <@+1)— =l
Ky -2mip N2 2/ 2@ =2 1)

respectively. The saddlepoint 1) is the unique solution of

"o
>

i=1

V2(Ma—-Ky(m), z = n,/Ky(), and the standardized cumulants are

= KD G/ )32, py= K (/K ()2

—2xin) +d? (1 —
(1 —2xn)?

rimn

ot(Y)_C

Here, o =

To check numerical performances of our expansions, let us take the same example as appeared
in Section 5.1 in Hong and Liu [15]. Let f(0) = 0.3, a=1[0.8,1.5]" and B =[ 7 "%]. The

risk factor X follows A/ (g, £) with w = [0.01,0.03]T and X = [8_8% 8_8;]. For comparison, we
compute IPA estimates using 107 observations of ¥ with the batch size 2000. An asymptotically
valid 100(1 — B)% confidence interval of the VaR sensitivity is also reported, see Section 6 in
Hong [14].

Figure 3(i) depicts the VaR sensitivities with respect to p; varying o from 0.9 to 0.99. As in
Section 5.1, two saddlepoint approximations are given based on VaR estimates using simulation
and saddlepoint techniques; We denote them by “SPA from MC-VaR” and “SPA from SPA-
VaR”, respectively. The solid line is the IPA estimates together with 95% confidence interval;
“CI Upper” (Upper dash-dot line) for the upper bound and “CI Lower” (Lower dash-dot line) for
the lower bound of the interval. The batch size k has been chosen to make the sample variance
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1.35 - - - T 5%
SPA from MC-VaR —SPA from MC VaR
- SPA from SPA-VaR| < SPAfrom SPA-VaR|]|
—IPA o
@ 3
1.3 IPA 95% CI Upper 1
IPA 95% CI Lower £ 2p
T
= 0
© 0.9 0.99
oc® a
o
> 4t
© e SPA from MC VaR
s SPA from SPA-VaR|{
3
a 2-
2]
I
—1f
Q
0.99 0.9 096 099

(i) (ii)

Figure 3. (i) VaR sensitivity with respect to i1 over « using SPAs and IPA estimator and (ii) the estimated
differences and relative differences of our SPAs to IPA estimator.

reasonably small, specifically, 0.0055. The differences and relative differences of SPA based
estimates compared to IPA estimates are shown in Figure 3(ii). This figure tells us that Theorem
5.1 provides a highly accurate approximation to the sensitivity of VaR regardless of whether we
use saddlepoint methods or Monte Carlo simulation for the estimation of vy (Y). For example, the
averaged relative difference for SPA from MC—-VaR is reported as 1.6462 x 1073, The average
(relative) difference between the two VaR sensitivities from MC-VaR and SPA-VaR is even
smaller as 3.4591 x 10™* (2.9550 x 10~%).

Figure 4(i) plots the CVaR sensitivities with respect to p; varying « from 0.9 to 0.99. Simi-
larly as above, we estimate v, (Y) by IPA or saddlepoint methods, denoting the results by SPA
from MC-VaR, SPA from SPA-VaR. We also draw IPA estimates as well as interval estimates.
Part (ii) of the figure shows the errors and the relative differences of saddlepoint approximations
compared to IPA estimates. As seen from Figure 4, we again see that the expansion in Theo-
rem 5.1 gives very fast and accurate results. We, however, note that there are larger differences
between the two SPA based estimates (MC—VaR vs. SPA-VaR) than in the case for the VaR sen-
sitivity. The average difference between SPA from MC-VaR and the IPA estimates is 7.2 x 10™#
whereas SPA from SPA-VaR gives 1.58 x 1073.

5.3. Option sensitivity

Computing sensitivities or greeks of an option price with respect to market parameters is another
important application in financial risk management. An option price is typically expressed in
terms of the expectation of a payoff functional of underlying asset prices under the risk neutral
measure. And its sensitivities can also be expressed as expectations of derivatives of the payoff
functional. For instance, Theorem 1 in Hong and Liu [23] proves that under certain technical
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SPA from MC-VaR

4 25k —— SPA from MC-VaR
1471+ SPA from SPA-VaR / : SPA from SPA-VaR

<
—IPA / s,
1.381 IPA 95% CI Upper £ ,
IPA 95% CI Lower £ <
1.36 & a
&
~ 1.34f £
=
&
2 12t -~
3
1.3F r»
> 3l
o i
© 128} o
1.26 -« g
o <
Sl o
124 o 7]
L I
a -
122F e
091 092 093 094 095 096 097 098 0.99 09 091 092 093 094 095 096 097 098 099
o o
(i) (ii)

Figure 4. (i) CVaR sensitivity with respect to 11 over « using SPAs and IPA estimator and (ii) the estimated
differences and relative differences of our SPAs to IPA estimator.

conditions the sensitivity of p(0) = E[g(S)1[x(s)>0;] With respect to a parameter 6 is given by

)

Ip©) _ E[ag(s)
y=0

a0 a6

3 An(S)
Linesy=o1 | — 5E 8($) =~ Lin(s)zy1

where S = {S(#)}o<:<7 denotes the underlying asset process. This problem has been extensively
studied in the literature both by academics and practitioners. Popular methods include finite dif-
ference scheme, the pathwise method (equivalent to IPA), the likelihood ratio method, Malliavin
calculus, etc. Our objective is to tackle the problem by employing our saddlepoint expansions.

We choose to work on financial options with two underlying assets and study their sensitivities
with respect to volatilities, so called vega. This is for an illustrative purpose and we note that there
are many other possibilities. Furthermore, a bivariate geometric Brownian motion process and
an exponential variance gamma model are adopted for the underlying asset processes.

5.3.1. Two-asset correlation call option under geometric Brownian motions

Suppose that an underlying asset (S1(¢), S2(¢)) of an option is a bivariate geometric Brownian
motion such that each price process is given by

Si(t) = Si(0)exp((ri — 307)t +0; W; (1)),

where W; is a standard Brownian motion with E[W;(¢)W,(¢)] = pt for i = 1,2 under the risk
neutral measure P. We consider an option based on (S;(#), S2(#)) whose price is

C=e"TE[(S1(T) — K) N5,y 1)
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Then the sensitivity of C with respect to o1 can be computed by

9C _ rrg[9S1(T)
30’1 301

11S1<T>>K11152<T)>H1}

e 2
= $1(0)e = RDTHE[W, (T)e™ M D Ly, (1)~ w1y 1]
— o1 TE[¢" ' DLy, ()= 1wy ()= m] )

where k = (log(K/S1(0)) — (r; — 012/2)T)/01 and h = (log(H/$2(0)) — (r2 — 022/2)T)/02.
Let X = W((T) and Y = (Y1, Y2) = (W (T), W»(T)). Under P, the CGF of Y is given by
K, m) = T(n]2 /2+ pnina + 77% /2). Let Q be defined by the Radon—Nikodym derivative

dQ X
dP ~ E[emX]’
It then follows that
aC e 2
Sor = S1(0)e "1 =W/DoDT RO BRI X 11y, 1 jy,2p] — 01 TPO[Y] > k, Y2 > K1} (34)

Thus, we can approximate the expectation under Q in (34), EQ, by Theorem 4.3. The second term
is also approximated by the existing multivariate tail probability approximation and thus we skip
its discussion.

The CGFs of Y and (X, Y) under Q are computed as follows:

Ky 1, n2) = K(o1 +n1,1m2) — K(01,0)  and
Kxy(,n,m) =Ko +y +n1,m) — Ko, 0).
The saddlepoint of Ky (11, n2) is obtained as

k— ph h — pk
T(1—p>) ' TA=pH)

(ﬁl,ﬁ2)=<

Similarly, 72(n1) =h/T — p(n1 +01) and 772(0) = h/ T — poy. The assumption of Theorem 4.3
is satisfied since /Cy, (1, n2) = T (1 + o1 + pn2) is analytic at (7)1, 72). All the variables that
appear in Theorem 4.3 can be explicitly computed in this setting.

As the saddlepoint equation is solved analytically and the CGFs under consideration are at
most quadratic functions, the relations among the variables 3, @, and v are tractable. There-
fore, we can easily compute @;(w1) = pwi/+y/1 — p? so that F = 0. In addition, IC), (v1, 1) =
Toy + \/Tvl/\/l —p2+ pﬁvz by employing the inverse functions of vy (n1) and v2(n1, 72),

which are ki (v1) = /T/(1 — p?) and k2(v2) = p/T. With n = 1, £ = k//T — ~/To| and
$ =h/NT — /T poy. Finally, we arrive at the following saddlepoint expansion:

EQ[X 11y, >111[v,>n1]

~ o TOR, 3, +«/T[ A@(gﬁ—m?)jL Ai(L_pyﬂ.
o T®(X, 3, p) d(x) N PP (y) N

(35)
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The true value of EQ[X 1iy,>k11{v,>n1] can be computed as Y follows a bivariate normal distri-
bution N' (01T, poT, T, T, p) under Q, namely,
_ o0 o0
E Xy -t lraon] = 78G5 ) +VT [ [T nigpiomanan, G6)
£ Jy
where ¢, (y1, y2) is a joint PDF of A/(0,0, 1, 1, p). And it turns out that (35) and (36) coincide.

5.3.2. Exchange option under exponential variance gamma models

In the second example, we consider an exchange option whose risk neutral valuation formula is
given by

C=e"TE[(S1(T) — $2(T)) ]

based on two assets (S1(¢), S2(¢)). Each §;(¢) is assumed to be an exponential variance gamma
process, for example, S; () = S;(0) exp(r;t + 0; X;(t)) where X;(¢) is an independent variance
gamma process. The CGF of X;(T) under the risk neutral measure P is

T 1
Ki(y) = —510g<1 —biviy — EKiUiV2>
]

for the parameter set (6;, «;, v;). Note that X; () can be interpreted as a time-changed Brownian
motion such that X;(t) = 6,G;(t) + k; W; (G (t)) where G;(¢) is a gamma process independent
of W; with unit drift and volatility v;. We also denote the CGF of (X1(T), X>(T)) under P by
K1, m2).

We are interested in the sensitivity of the option price C with respect to o7. It can be computed
by

aC a81(T)
tor = i (O)EI:I—I[SI(T)>SZ(T)]i|

37
:Sl(O)e(rl_r)T+’Cl(Ul)Eo[Xl(T)l[alXI(T)faQXZ(T)>k]]» (37)
where k = 1log(52(0)/S1(0)) + (r — r1)T and Q is again defined by the Radon—Nikodym
derivative dQ/dP = e X1(1) JE[¢21X1(T)] Take X = X|(T) and ¥ = 01 X(T) — 02 X(T).
The CGF of X is Kx(y) = Ki(y 4+ 01) — Ki(o1); the CGF of Y is Ky(n) = K((1 +
n)o1, —noa) — K(o1, 0); and the joint CGF of (X, Y) then is obtained by Kx y(y, n) = K(o1 +
y 4+ o1n, —oan) — K(o1, 0) under Q.

The convergence domain of the above CGFs contain zero. And the saddlepoint 7 of Y is
the solution of a polynomial equation of degree four, which can be numerically found by the
Newton—-Raphson method. Moreover, K, (1) is an analytic function in the convergence domain
of Ky and is given by

T (61 +krvio1(1+ 1))
1= 6vio1(1+n) —kjvio2(1+n)2/2

IC)/ (m) =
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Table 1. Parameter set of Figure 5

$1(0) $,(0) T r r r o) v] v2 K1 K2

90 100 1 0.02 0.2 0.4 1 0.2 0.25 0.1 0.32

Then by applying the saddlepoint formula (21) in Remark 3.10, we can finally compute
EQ[X; (T) 16, X, (T)—02 X2(T)>k1] in (37). We omit the details of this computation due to its com-
plexity.

Figure 5 shows numerical results of the sensitivity of C with respect to o1 under the parameter
set given in Table 1 with 6; = 0 for brevity. IPA estimates are obtained based on 10° simulated
samples of the variance gamma processes under P. The average of the estimated relative differ-
ences of two approaches is reported as 1.5 x 1073, which also shows great performance of the
developed approximations.

6. Conclusion

Saddlepoint approximations for E[X|Y = a] and E[X|Y > a] were derived for the sample mean
of a continuous bivariate random vector (X, Y) whose joint moment generating function is
known. The extensions of the approximations to the case of a random vector Y were also in-
vestigated. The newly developed expansions were applied to several problems associated with
risk measures and financial options. We specifically focused on risk contributions of asset port-
folios and risk sensitivities of delta—gamma portfolios. Sensitivities of an option based on two
assets with respect to a market parameter were also computed via the proposed saddlepoint ap-
proximations. We have performed numerical experiments, showing that the new approximations

20

—IPA
181 SPA

0.2 0.4 0.6 0.8 1 1.2 1.4

g
Z 10 o
S x10°
e 6
of £
g
4r 7]
I ob
ol -
o . . . . . . . o . . . . . . .
0.2 0.4 06 0.8 1 1.2 1.4 0.2 0.4 06 0.8 1 1.2 1.4

% %

(i) (ii)

Figure 5. (i) The sensitivity of an exchange option with respect to o via the sadddlepoint method and the
IPA estimator and (ii) the differences and the relative differences of the two values.
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are not only computationally efficient but also very accurate compared to simulation based esti-
mates. As a whole, our developments have broadened the applicability of saddlepoint techniques
by providing explicit and accurate approximations to certain conditional expectations.

Appendix A: Proof of Lemma 3.1

We first prove the second inversion formula (8). Suppose that X has a non-negative lower bound.

E[X1jy>a)] = E[X] / —fXY(X y)dxdy =E[X]-Pp[Y = a],
[Y>a] E[X]

where the density of Y under Py, is h(y) = fooo(x/E[X])fx,Y(x, y)dx.
The MGF of Y under Py, is then

M) = f & h(y) dy
]Rd

T

MY(ﬂ)
/R/ s Ty dxdy

_MY(’?) My ()
~Ex J Txgds = Exy el

where My () denotes the MGF of Y under P, g(x) = fRd (eyT”/My(n))fx,Y(x, y)dy, and E,
denotes the integration under the new probability P, having the density g(x). The third equality
holds by the Fubini theorem due to the non-negativity of the integrand.

On the other hand, the MGF of X under P, can also be computed as

My = [ T g dx = 7Mj\‘4’i((f7’)")-
Therefore,
Eg[X]=M,(0) = Ml - iMX,Y(Vs n)
y(m 9y y=0
so that
Mu(p) = L iMx y(v.m
E[X] dy ™ y=0

Thus we obtain the CGF K, () under P, as

— log E[X],
y=0

0
Kn(n) = Ky(n) +log EICX,Y(% n)
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since IMx y(y,n)/dy =0Kx v(y,n)/dy - Mx y(y, n). By substituting K, () to the inversion
formula (2), i.e.

’

1 )" /’+"°° exp(K(m) —a'n) |
n
T

Py,lY =a]l=( —
W=l <2”i —i00 H?:N?j

we have the desired result.

In the case that X has a negative lower bound —B with B > 0, define Z = X + B so that Z
has a non-negative lower bound. Then the marginal CGF of Z is Kz(y) = Kx(y) + By and the
joint CGF of Z is Kz y(y.n) = Kx y(y,n) + By where Kx(y) denotes the CGF of X. Note
that

E[X1y=a)l = E[(Z — B)ljy=a)] = E[Z1;y>a)] — BP[Y > a]

1 d pr+ico 9
=(— —K ,
(37) [ oo
exp(Ky(n) —a'n)
x d
[ j=11j
from the result for the non-negative case. This immediately leads to (8).
Finally, for an unbounded X, we take X = max(X, C) where C is a constant. The assumption

imposed on the MGF of (X, Y) implies that the MGF M. y also exists in an open neighbor-
hood of the origin. Since X¢ is bounded from below,

1\ [7H> 3 exp(—a'n)
E[XCI[Yza]]Z(%> f 5MXC,Y(V, | Py, (3%
T—ioo y=0

+B}
y=0

dn — BP[Y > a]

But, we have

0
WMXC,Y()A ”)
o0 T
=/H;d/ (x vV C)e? VOINY £y (x,y)dx dy
—o0
C T 00 T
=[] e pmaxdy+ [ [ e vy dxay
R J—00 R JC

a C
2 Myxam+ / / (Ce?€ — xe?™ )™ fy y(x.y) dxdy.
ay R4 J -0

The change of integration and differentiation in the first equality is justified by the continuity of
the integrand. Thus, with y = 0 it decreases monotonically as C decreases, and as C — —oo we
have

9
- —Mxy(y,n)
dy

0
2 M ’
3y xe, Y, m)

y=0 y=0
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Since X ¢ converges to X almost surely and monotonically as C — —oo, we obtain (8) by ap-
plying the monotone convergence theorem to both sides of (38).

The first formula (7) follows similarly with ease. But, we do not need to set T to be positive
since the inversion formula (1) holds for any 7 in a suitable domain, and the convergence for an
unbounded case can be proved after a simple adjustment.

Appendix B: Proof of Theorem 4.1

We first demonstrates a rescaled and multivariate version of Watson’s lemma, Theorem 6.5.2 in
Kolassa [19].

Lemma B.1. Suppose that 0;(w)’s are analytic functions from a domain Q C C4 1o C for 0 <
Jj <k, and let

k
On(@) =) 6;(@)/n’.

j=0

Take & € Q such that & + i[—¢, €]? C Q. Then

n \4/2 O1+ie Ogtie n d k—1
(—) i_d/ / exp| = Y (0 — &) [Da(@do=Y_ An~* +0(n"),
2n w1—ie Dg—ie 2 i—1 =0
where
d
(_2)_2/':1”] 82v1+--~+2vd .
As—; Ul'Ud' 82U1w1"'82vdwd9siz‘]gzlvj (w)

for Ty ={(v1,...,va) € N?vy, ..., 04 >0, Zj’»=1 vj <s}.

Ey a change of variable in (8) with (X,Y) and by the closed curve theorem, we write
E[X1y_,]as

B s
= (1) et -7
dj2 @+ioo (39)
xi_d< ”) f E(w—cb)T(w—@)/Cy(n(w))‘g—l‘dw.

g o—ico 2

We take 6 (@) = 0 unless j =0 and 6y(w) = K, (1(@))|07/dw|. Applying Lemma B.1 to (39)
with k =2, Ag = 6p(@) and A; = — Y% (3269/dw?)(@)/2. Obtaining A; only requires to
compute the first and second derivatives of det[dn/dw] and 5 with respect to wy, evaluated
at 7). Since computation of coefficients is messy, we here omit the details but report the following
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formula in Kolassa [19]:

d an . 1 il A A N
()= %(w){l =3 2 D&k @ — o)

moi,jl

1 1 i oAb A 1 moiln Ahina
FIT Y[ X i g S #ei

m,n o,l g.hi,j g hi,j
1 sijol p  |~mam A ~ .
-7 ZK Rij |00 (W — Om)(@n — &n) § + O(llw — ).
iJ

From this formula, all the desired quantities can be derived in a messy but straightforward man-
ner.

Appendix C: Proof of Lemma 4.2

The sum of two integrals 1'% 4+ I? is expressed as

/(:,Jrioo explng (w1, w2)]  H2(n1,m2) Ky, m)de
y 9

d—ico (2mi)? w1 (wy — dn(w))

N f‘;’“‘” explng (w1, w2)] H(n1,m2)
H—ioo Qri)w;  wy —dn(w)

(40)

Ky (1, m)do.

Let 03 (w1, @2) = H*(n1,m)Ky (01, m2)/ (w2 — @2(w1)) as a function of (w1, w)); next we
decompose 03 /w1 as

O 02) _ 650.02)  G5(wr @) =650 02)

w] w1 w]

Then (40) can be computed as

/(1)+ioo exp[nq(a)l, 0)2)] { H12(771, 772)IC)/ (771, ;72) 93(601, CUZ) — 93(0, CUZ) } dw

H—ioo (2mi)? o1 (wy — @ (w1)) ]
1 @1+ioco 1 ) 1
+—_/ exp[n(—a)l —c?)la)1>j|—da)1
2mi Jo—ico 2 w1
1 wy+ioco 1 ) . )
X T oo exp|:n<§w2 — w2w2>:|00 0, w2)dwy

1 n N 2 ~ A ~
= n eXp[n(lcy(m ,M2) —may — nzaz)]%z(wl ,n)

1 -
T 7 O Wb)g (Vndn 0.62) + 0(n ).
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where

12 . H (1, m)K, (1, m) 02 (wr, w2) — 62(0, w2)
0y (w1, w2) = = .
w1 (w2 — w2 (wy)) ]

The last equality holds by applying multivariate and univariate Watson’s lemma, namely Lem-
mas B.1 and 3.2. This can be done because Géz(a)l, wy) and 93(@1, wy) are analytic near
(@1, @7); then we retain the first order terms only.

The proof ends by evaluating the meaningful coefficient as

F(0,12(0, »2)) — F(0,0)
@2

030, &) = K, (0, 12(0, )

I om
712(0) den

=Ky (0. ﬁz(O))[

1 }
0,7(0)) @2

See (3.1.5) and (3.1.14) of Li [22] for more details.
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