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Markov combinations for structural meta-analysis problems provide a way of constructing a statistical
model that takes into account two or more marginal distributions by imposing conditional independence
constraints between the variables that are not jointly observed. This paper considers Gaussian distributions
and discusses how the covariance and concentration matrices of the different combinations can be found via
matrix operations. In essence, all these Markov combinations correspond to finding a positive definite com-
pletion of the covariance matrix over the set of random variables of interest and respecting the constraints
imposed by each Markov combination. The paper further shows the potential of investigating the properties
of the combinations via algebraic statistics tools. An illustrative application will motivate the importance of
solving problems of this type.
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1. Introduction

Markov combinations of distributions (or families of distributions) are operators that define a new
distribution (or family) starting from two initial ones by imposing conditional independences be-
tween the variables that are not jointly observed. If the original families are Gaussian, the Markov
combinations are Gaussian themselves and if no other constraints are added, then the only con-
straints are the conditional independencies arising from imposing the Markov combination. If the
initial families encode other types of constraints between their variables, then those constraints
need to be taken into account as well. For example, if the families are Gaussian graphical mod-
els, a Markov combination takes into account all constraints imposed by each Gaussian graphical
model and proposes a new model that combines the information provided by both models. Dif-
ferent Markov combinations will make different use of the covariance/concentration structures
of the models to be combined.

The Markov combination for consistent distributions and the meta-Markov combination for
meta-consistent families of distributions were introduced by [3] while defining a framework for
Bayesian inference for graphical models. Given the set of cliques and separators of a decompos-
able graph and a set of pairwise consistent distributions defined over the cliques of the graph, the
Markov combination can be used to construct a Markov distribution with respect to the graph.

In [10], the setting of Markov combinations was exploited for building distributions over a
union of two sets of random variables specifying two distinct statistical models. The lower, up-
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per, super Markov combinations were introduced together with an investigation of their use when
the initial information is represented by Gaussian graphical models. In this setting, the combina-
tion of evidence was named structural meta-analysis because the initial information was repre-
sented by structures of conditional independence. In [9], it was shown via simulation studies that
combination of information may be effective also in model selections problems.

The aim of this paper is to provide an algebraic characterization of these types of combinations
for Gaussian distributions and families of distribution. We will present a matrix representation
of the Markov combination for distribution and the lower, upper and super Markov combina-
tions for families of distributions, showing how the covariance and concentration matrices of the
different combinations can be computed from the covariance and concentration matrices of the
initial Gaussian models. These types of combinations correspond to finding a positive definite
completion of suitable defined covariance matrices over the set of random variables of interest.
Further an algebraic representation of each combination will be given in terms of polynomial
ideals [11]. This is particularly useful when we want to look more in depth at the combination
of equality and inequality constraints imposed by conditional independence relations, stationary
constraints or positive definiteness requirements, for example. Finally, an illustrative example
using real data will be presented.

2. Preliminaries

This section reviews some background notation and definitions. It briefly revisits some types of
Markov combinations as defined in [10] and some aspects of conditional independence.

2.1. Markov combinations

Assume v ∈ [n] = {1, . . . , n} and let Yv denote the random variable indexed by v. For A,B ⊆ [n],
let YA denote the vector (Yv)v∈A. If f is a density over Y[n], let fA be the marginal density for
YA and fA|B the conditional density of YA\B given YB = yB where yB = (yb)b∈B .

A non-degenerate multivariate Gaussian distribution Nn(μ,�) is specified by its mean vector
μ and its covariance matrix � ∈ S+

n , where S+
n is the set of symmetric positive definite matrices

with n rows. Assume two non-degenerate Gaussian families F and G for the random vectors
YA∪C and YC∪B , respectively with A,B,C a partition of [n]. Markov combinations are defined
for the joint random vector YA∪C∪B . If F and G are Gaussian, so are their combinations and this
is the setting of the paper.

Two distributions f ∈F and g ∈ G are said to be consistent if fC = gC . The Markov combina-
tion of two consistent densities f and g is defined as f �g = f ·g/fC . See Definitions 3.1 and 4.1
in [10] and references therein. Let F↓A denote the marginal family of distributions induced by
F on the vector (Ya)a∈A. The families of distributions F and G are said to be meta-consistent if
F↓C = G↓C .

Definition 2.1. Let A,B,C be a partition of [n] and let F and G be two Gaussian families,
defined for the random vectors YA∪C and YC∪B , respectively. Their Markov combinations are
defined for YA∪C∪B as follows.
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Meta ([3]). If F and G are meta-consistent, their meta-Markov combination is defined as

F � G = {f �g|f ∈ F, g ∈ G}.
Lower (Definition 4.4 in [10]). The lower Markov combination of F and G is defined as

F �G = {f �g|f ∈ F, g ∈ G, f and g consistent}.
Upper (Definition 4.5 in [10]). The upper Markov combination of F and G is defined as

F �G =
{

f g

fC

,
f g

gC

∣∣∣f ∈ F, g ∈ G
}
.

Super (Definition 4.7 and Proposition 4.14 in [10]). The super Markov combination of F and
G is defined as

F ⊗ G = {fA|ChCgB|C with f ∈F , h ∈ F ∪ G and g ∈ G}.

These combinations are called Markov combinations because they are obtained by imposing
the conditional independence relation YA ⊥⊥ YB |YC (Proposition 4.3 of [10]). To simplify nota-
tion, we write A ⊥⊥ B|C instead of YA ⊥⊥ YB |YC .

Clearly F �G ⊆F �G ⊆F ⊗G. Proposition 4.6 in [10] states that the lower Markov combina-
tion reduces or preserves the marginal families, namely (F �G)↓(A∪C) ⊆F and (F �G)↓(C∪B) ⊆
G. The reduction is strict when for example a distribution f in a family is not consistent with any
element in the other family. The set

H = {h density over A ∪ C ∪ B|hA∪C ∈F, hC∪B ∈ G and A ⊥⊥ B|C}
equals F �G. Indeed, F �G ⊆H follows from Propositions 4.1 and 4.3 in [10], while H ⊆F �G
follows from the fact that h = hA∪C � hC∪B , for every h ∈H.

The upper Markov combination F �G preserves or extends the original families whereas the
super Markov combination is the largest set of distributions over A ∪ C ∪ B which preserves
or extends the original families. Furthermore, we have (F �G)↓(A∪C) ⊆ F ⊆ (F �G)↓(A∪C) and
(F �G)↓(C∪B) ⊆ G ⊆ (F �G)↓(C∪B).

2.2. Gaussian independence models

A conditional independence statement imposes polynomial constraints on the elements of the
variance-covariance matrix as shown in Proposition 2.1 below (see [12]).

Proposition 2.1. Let A,B,C be disjoint subsets of [n] and consider the non-degenerate Gaus-
sian random vector Y ∼Nn(μ,�). Then the following statements are equivalent

1. Y satisfies the conditional independence constraint YA ⊥⊥ YB |YC ;
2. the sub-matrix �A∪C,B∪C has rank equal to the number of elements in C (|C| in the fol-

lowing);
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3. all size |C| + 1 minors of �A∪C,B∪C are zero;
4. �AB = �AC(�CC)−1�CB .

When possible we write �AB instead of �A,B for a matrix � and A,B ⊂ [n].
The random vector Y satisfies the conditional independence statement YA ⊥⊥ YB |YC if it sat-

isfies simultaneously the inequality constraints expressed by � ∈ S+
n and the polynomial con-

straints in item 3 of Proposition 2.1.
A popular class of conditional independence models is based on simple undirected graphs G

with vertex set indexed by the elements of [n]. A graphical model with graph G gives a statistical
model for the random vector Y = (Yi)i∈[n] if and only if Yi and Yj are independent given Y[n]\{i,j}
whenever there is no edge between vertices i and j [6]. This is called the pairwise Markov
property for graphical models. For non-degenerate Gaussian distributions (as those considered
in this paper) it is equivalent to the local Markov property, the global Markov property and the
factorisation of the distribution over the cliques of the graph. Hence, a Gaussian graphical model
with graph G is defined by assigning a mean vector μ and a matrix � ∈ S+

n where the entry (i, j)

of �−1 is zero if and only if the edge (i, j) is not in the graph.

3. Matrix representation of Markov combinations for
Gaussian distributions

In this section, we study the matrix representation of the Markov combination and its properties.
In the following we assume a zero mean vector for all the Gaussian families under consideration.
Let A,B,C be a partition of [n]. Consider two non-degenerate Gaussian random vectors, YA∪C

defined on A ∪ C and YC∪B defined on C ∪ B . Hence, YA∪C ∼ N|A∪C|(0,�) and YC∪B ∼
N|C∪B|(0,�) with � and � partitioned matrices as

� =
(

�AA �AC

�CA �CC

)
, � =

(
�CC �CB

�BC �BB

)
,

where (�CA)T = �AC , (�BC)T = �CB and T indicates transpose. Let K = �−1 and L = �−1.
In the following, f and g will denote the density of YA∪C and YC∪B , respectively.

For n1, n2 ⊂ [n] and a |n1| × |n2| matrix M = (mij )i∈n1,j∈n2 , let [M][n] be

[M][n] =
{

mij , if i ∈ n1, j ∈ n2,

0, otherwise.

For example, [�][n] is a n×n matrix with zero entries in rows and columns indexed by elements
in A and the elements of � in {C ∪ B} × {C ∪ B}. Its first |A| rows and columns will be indexed
by (elements in) A, subsequent rows and columns by C and then by B .

When f and g are Gaussian distributions, the operation f · g/gC returns a Gaussian dis-
tribution with covariance and concentration matrices given in the following lemma which is a
generalisation of Lemma 5.5 in [6].
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Lemma 3.1. The quantity f · g/gC is a density of a Gaussian random vector YA∪C∪B ∼
N|A∪C∪B|(0,�) with concentration matrix, �−1,

�−1 = Con

(
f · g
gC

)
= [K][n] + [L][n] − [

(�CC)−1][n] (3.1)

and covariance matrix �

� = Cov

(
f · g
gC

)
= [�][n] + [�][n] + [G][n] − [M][n], (3.2)

where

G =
(

0 GAB

GBA 0

)
, M =

(
MCC MCB

MBC MBB

)
and

GAB = −�ACLCB(LBB)−1,

MCB = (�CC − �CC)LCB(LBB)−1,

MBB = −(LBB)−1LBCMCB.

Here G and M are block symmetric matrices, that is, GBA = (GAB)T , MBC = (MCB)T . By
construction MCC = �CC .

The matrix GAB expresses the conditional independence constraint A ⊥⊥ B|C, MBB can also
be written as MBB = (LBB)−1LBC(�CC − �CC)LCB(LBB)−1 and for consistent distributions
MBB = MCB = 0. A visually expressive re-writing of equations (3.1) and (3.2) is

Con

(
f · g
gC

)
=

⎛
⎝KAA KAC 0

KCA KCC 0

0 0 0

⎞
⎠ +

⎛
⎝0 0 0

0 LCC LCB

0 LBC LBB

⎞
⎠ −

⎛
⎝0 0 0

0 (�CC)−1 0

0 0 0

⎞
⎠ ,

Cov

(
f · g
gC

)
=

⎛
⎝�AA �AC 0

�CA �CC 0

0 0 0

⎞
⎠ +

⎛
⎝0 0 0

0 �CC �CB

0 �BC �BB

⎞
⎠ +

⎛
⎝ 0 0 GAB

0 0 0

(GAB)T 0 0

⎞
⎠

−
⎛
⎝0 0 0

0 �CC MCB

0 (MCB)T MBB

⎞
⎠ .

In the literature, f ·g/gC is known as the operator of right combination and indicated as f 
g,
and f · g/fC is known as the operator of left combination, defined as f � g := g 
 f (see [10]
and references therein).

Lemma 3.1 provides the concentration and covariance matrices of the operator of right com-
bination. They will be indicated in the rest of the paper as Con(f 
 g) and Cov(f 
 g), respec-
tively. The concentration and covariance matrices of the operator of left combination, indicated
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as Con(g 
f ) and Cov(g
f ), are obtained by the natural changes in Lemma 3.1. Equation (3.1),
together with the facts that the conditional distribution of a non-degenerate Gaussian on some of
its margins is still Gaussian and non-degenerate, and that sum of strictly positive definite matrices
is strictly positive definite, shows that the right (left) combination of non-degenerate Gaussian
distributions is non-degenerate.

If f and g are consistent, the operators of left and right combinations are equivalent to the
Markov combination (see page 244 in [10]) and their covariance matrix follows from Lemma 3.1.

Proposition 3.1. If f and g are consistent, that is, �CC = �CC , the covariance matrix of the
Markov combination is

Cov(f � g) = |�|[n] + |�|[n] + [G][n] − [�CC][n]

and the concentration matrix is

Con(f � g) = |K|[n] + |L|[n] − [�CC][n].

Proposition 3.1 also gives the covariance and concentration matrices of the Markov combi-
nation when C = ∅. Under this constraint, f and g are consistent and independent and the
concentration and covariance matrices of the Markov combination are respectively

Con(f � g) = [
�−1][n] + [

�−1][n] and Cov(f � g) = |�|[n] + |�|[n].

A submatrix of the covariance matrix of the right combination is the covariance matrix of
the distribution not appearing in the denominator. The same applies for the left combination.
For the Markov combination, both initial matrices are submatrices of the covariance matrix of
the combination. For left, right and Markov combinations, the concentration matrices have zeroes
elements in the concentration matrices corresponding to the conditional independence A ⊥⊥ B|C.
Indeed, the covariance matrix is filled with elements so that this constraint is satisfied, see also
Proposition 4.3 in [10].

Example 3.1. Let YA∪C = {Y1, Y2} and YC∪B = {Y2, Y3} with |A| = |B| = |C| = 1, � = (
a b
b c

)
and � = (

d e
e f

)
.

(a) For x = a

ac−b2 + f

df −e2 − 1
c
, the covariance and concentration matrices for the left combi-

nation are

Cov(g 
 f ) =

⎛
⎜⎜⎝

a + b2d

c2
− b2

c
db/c eb/c

db/c d e

eb/c e f

⎞
⎟⎟⎠ ,
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Con(g 
 f ) =

⎛
⎜⎜⎜⎜⎜⎝

c

ac − b2

−b

ac − b2
0

−b

ac − b2
x

−e

df − e2

0
−e

df − e2

d

df − e2

⎞
⎟⎟⎟⎟⎟⎠ .

The initial matrix � is a sub-matrix of the covariance matrix of Cov(g 
 f ).
(b) Under the consistency assumption c = d , the combinations are all equal and their covari-

ance matrix is

Cov(f � g) =
⎛
⎝ a b eb/c

b c e

eb/c e f

⎞
⎠ .

The concentration matrix is as in (a) after substituting the consistency assumption. Both initial
matrices � and � are sub-matrices of Cov(f � g).

Remark 3.1. The covariance matrix of the marginal distribution of any combination over a subset
D ⊂ [n] is

Cov
(
(f ∗ g)↓D

) = [
Cov(f ∗ g)

]
DD

,

where ∗ is any of {�,
, �}. This follows from the usual results of the marginal distribution of
a multivariate normal distribution and is particularly useful when dealing with super Markov
combinations.

4. Matrix representation of Markov combinations for
Gaussian families

In this section, we study the matrix representation of the lower, upper, super Markov combina-
tions (see Definition 2.1) so that only matrix operations will be necessary to work quickly with
the combinations.

Proposition 4.1. Let A,B,C be a partition of [n]. Let F be a Gaussian model on A ∪ C and G
on C ∪ B . Let � (resp. �) be a positive definite covariance matrix for F (resp. G) and K (resp.
L) its inverse.

1. The sets of concentration matrices Con(F �G) ∈ S+
n representing the lower Markov com-

binations and upper Markov combination of F and G are respectively,

Con(F �G) = {[K][n] + [L][n] − [
(�CC)−1][n]|�CC = �CC,� ∈ Cov(F) and � ∈ Cov(G)

}
,

Con(F �G) = {[K][n] + [L][n] − [
(�CC)−1][n]|� ∈ Cov(F) and � ∈ Cov(G)

}
∪ {[K][n] + [L][n] − [

(�CC)−1][n]|� ∈ Cov(F) and � ∈ Cov(G)
}
.
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2. A matrix T ∈ S+
n belongs to Cov(F �G) if and only if:

(a) TA∪C,A∪C ∈ Cov(F) and TC∪B,C∪B ∈ Cov(G),
(b) TAB = TAC(TCC)−1TCB .

3. A matrix T ∈ S+
n belongs to Cov(F �G) if and only if:

(a) TAB = TAC(TCC)−1TCB ,
(b) TA∪C,A∪C ∈ Cov(F) and
(c) there exists � ∈ Cov(G) such that

TCB = −(TCC − �CC)(�CC)−1�CB,

TBB = �BC(�CC)−1(TCC − �CC)(�CC)−1�CB

or

(a) TAB = TAC(TCC)−1TCB ,
(b) TC∪B,C∪B ∈ Cov(G) and
(c) there exists � ∈ Cov(F) such that

TCA = −(TCC − �CC)(�CC)−1�CA,

TAA = �AC(�CC)−1(TCC − �CC)(�CC)−1�CA.

Proof. 1. Follows from the definition of lower and upper Markov combinations and by the gen-
eralisation of Lemma 3.1 to families of distributions.

2. Necessity: by definition of lower Markov combination and its properties. Sufficiency:
items (2a) imply that there exists f1 ∈ F and g1 ∈ G with covariance matrices TA∪C,A∪C and
TC∪B,C∪B , respectively. This together with item (2a) guarantees that f1 �g1 is the Markov combi-
nation and since f1 �g1 ⊂F �G it follows that Cov(f1 �g1) ∈ Cov(F �G). Also Cov(f1 �g1) = T

by Lemma 3.1.
3. The proof is similar to the one in 2 and is not reported here. �

Proposition 4.1 indicates how to compute the families of concentration and covariance matri-
ces of lower and upper combinations by assembling concentration and covariance matrices of
the original families. Only the submatrices �CC and �CC related to the variables common to F
and G need inverting.

Determining Markov combinations is equivalent to finding a positive definite completion of
the covariance/concentration matrix defined over A ∪ C ∪ B . Such a completion is found impos-
ing the constraint A ⊥⊥ B|C that holds for all Markov combinations and the specific constraints
imposed by each Markov combination. Lemma 3.1 and Proposition 4.1 show that the first con-
straint impacts the entries of the covariance/concentration matrices corresponding to variables in
A ∪ B and the second constraint takes into account the covariance/concentration structure of the
initial families over A ∪ C and B ∪ C.

Remark 4.1. As every distribution in F �G and F �G is multivariate normal, the covariance
matrix of the marginal distribution of any combination of Gaussian families of distributions over
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a subset D ⊂ [n] is

Cov
(
(F ∗ G)↓D

) = [
Cov(F ∗ G)

]
DD

,

where ∗ is any of {�, �}.

Proposition 4.2 gives the concentration matrices of the super Markov combination. One way
of defining it is via (F �G)↓(A∪C) �(F �G)↓(B∪C) (see Definition 4.7 in [10]) and therefore
we can apply the formula for the upper Markov combination in Proposition 4.1 to the models
(F �G)↓(A∪C) and (F �G)↓(C∪B).

Proposition 4.2. The set of concentration matrices Con(F ⊗ G) ∈ S+
n representing the super

Markov combination of F and G is Con(F ⊗ G) = Con1 ∪ Con2 with

Con1 = [(
Cov(F �G)A∪C,A∪C

)−1][n] + [(
Cov(F �G)C∪B,C∪B

)−1][n]

− [(
Cov(F �G)A∪C,A∪C

)−1
CC

][n]
,

Con2 = [(
Cov(F �G)A∪C,A∪C

)−1][n] + [(
Cov(F �G)C∪B,C∪B

)−1][n]

− [(
Cov(F �G)C∪B,C∪B

)−1
CC

][n]
.

Proof. By Remark 4.1, Cov((F �G)↓(A∪C)) = [Cov(F �G)]A∪C,A∪C and Cov((F �G)↓(C∪B)) =
[Cov(F �G)]C∪B,C∪B . The thesis is obtained by using Proposition 4.1 and replacing K

with [(Cov(F �G))A∪C,A∪C]−1, L with [(Cov(F �G))C∪B,C∪B ]−1, �CC with [(Cov(F �

G))A∪C,A∪C]CC and �CC with [(Cov(F �G))C∪B,C∪B ]CC . �

The following example highlights which elements of the initial covariance matrices are pre-
served in each Markov combination, which are completed by the conditional independence con-
straint A ⊥⊥ B|C and which correspond to the constraints imposed by the combination.

Example 4.1 (Example 3.1 continued). Consider the Gaussian families F and G with covari-
ances matrices � and � as in Example 3.1, but this time � and � are families of covariance
matrices in S+

2 (R) that is the entries a, b, c, . . . take a number of values. Since for every f ∈ F
there exist a g ∈ G such that fC = gC (it is sufficient to take c = d) F and G are meta-consistent.
Hence, the lower Markov and meta Markov combinations are the same and are given by the
family of distributions with covariance matrix given in part (c) of Example 3.1. Moreover, the
covariance matrices of the lower-meta-upper-super-Markov combinations are all equal to

Cov(F � G) =
⎧⎨
⎩

⎛
⎝ a b eb/c

b c e

eb/c e f

⎞
⎠

⎫⎬
⎭ .

If F and G are such that c = d for all � ∈ Cov(F) and � ∈ Cov(G), then the families are not
meta-consistent, the meta-Markov combination is not defined and the lower Markov combination
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is empty. The covariance matrices of the upper Markov combination are given by the set formed
by the matrices for the left and right combinations of Example 3.1, i.e.,

Cov(F �G) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝a + b2d

c2
− b2

c
db/c eb/c

db/c d e

eb/c e f

⎞
⎟⎠ ,

⎛
⎜⎜⎝

a b be/d

b c ce/d

be/d ce/d f − e2

d
+ e2c

d2

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

The covariance matrices of (F �G)↓(A∪C) and (F �G)↓(C∪B) are

Cov
(
(F �G)↓(A∪C)

) =
⎧⎨
⎩

⎛
⎝a + b2d

c2
− b2

c
db/c

db/c d

⎞
⎠ ,

(
a b

b c

)⎫⎬
⎭ ,

Cov
(
(F �G)↓(C∪B)

) =
⎧⎨
⎩

(
d e

e f

)
,

⎛
⎝ c ce/d

ce/d f − e2

d
+ e2c

d2

⎞
⎠

⎫⎬
⎭ .

This shows that (F �G)↓(A∪C) and (F �G)↓(C∪B) are meta-consistent as expected from Proposi-
tion 4.10 in [10] and that Cov(F ⊗ G) = Cov(F �G).

Example 4.2. Two Gaussian families F and G where the lower Markov combination is the empty
set and the super Markov combination is different from the upper Markov combination are F =
{f1, f2} defined over YA∪C = {Y1, Y2, Y3} and G defined over YC∪B = {Y2, Y3, Y4} with

Cov(f1) =
⎛
⎜⎝

4 2 3

2 7 3
2

3 3
2 5

⎞
⎟⎠ , Cov(f2) =

⎛
⎜⎝

6 1
2 5

1
2 1 5

12

5 5
12 10

⎞
⎟⎠ and Cov(G) =

⎛
⎜⎝

8 2
3 2

2
3 2 3

2 3 9

⎞
⎟⎠ .

Variance and covariance matrices of the upper combination are found by suitable substitutions in
Example 4.1.

5. Polynomial ideal representation of Markov combinations for
Gaussian families

In this section, we study the Markov combinations with tools from algebraic statistics. We con-
struct polynomial ideals for the Markov combinations from polynomial ideals of two original
Gaussian families which admit polynomial representation. To make our aims clear, we remark
that we wish to provide pointers to the usefulness of representing Gaussian models by polyno-
mial ideals in order to study the properties of Markov combinations. For the full power of such a
representation, we refer the interested reader to e.g. [4,7].

For Gaussian families conditional independence statements correspond to polynomial equality
constraints on the entries of the covariance matrices. Inequality constraints are implicit in the
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positive definiteness of covariance matrices and correspond to imposing that all eigenvalues of
the covariance matrices are positive. Equality constraints are mapped into polynomial ideals and
the inequality constraints are imposed by intersecting with the set of positive definite matrices.

We adopt the following notation: R[x] = R[x1, . . . , xn] indicates the set of all polynomials
with real coefficients and n free variables (or indeterminates) x1, . . . , xn and C[x] when the
coefficients are complex number. For K =R or K=C

〈f1, . . . , fk〉 =
{

k∑
i=1

sifi : si ∈ K[x], i = 1, . . . , k

}

is the polynomial ideal generated by f1, . . . , fk ∈ K[x]; V(I ) = {v ∈K
n : f (v) = 0 for all v ∈ I }

is the algebraic variety associated with a polynomial ideal I ⊂ K[x]; and I (V) = {f ∈ K[x] :
f (v) = 0 for all v ∈ V} is the vanishing ideal associated to an algebraic variety V . If V is not an
algebraic variety, I (V) can still be defined as above and its zero set is a superset of V . For more
background information on ideals and varieties, see [1] or other textbooks on algebraic geometry.

Let A,B,C be a partition of [n]. Proposition 2.1 states that the ideal corresponding to the
variety YA ⊥⊥ YB |YC is generated by the polynomials det(V ) where V varies among all (|C| +
1)× (|C|+1) submatrices of �A∪C,B∪C and det stands for determinant. Given a Gaussian family
F , we will denote with IF the conditional independence ideal generated by F and with V(IF )∩
S+

n the variety of positive definite covariance matrices in V(IF ).
Not all Gaussian families F are algebraic varieties. Gaussian independence models, such as

undirected graphical models, are a large class of statistical models which are algebraic varieties.
This follows straightforwardly from Proposition 2.1.

5.1. Lower Markov combination

Let F (resp. G) be a Gaussian (independence) model for YA∪C ∼N|A∪C|(0,�) with � ∈ S+
|A∪C|

(resp. YC∪B ∼ N|C∪B|(0,�) with � ∈ S+
|C∪B|) and let IF (resp. IG ) be the corresponding (con-

ditional independence) ideal. The set of covariance matrices of the Gaussian model F can be
embedded in S+

n , simply by augmenting it with unknown parameters.

Example 5.1. For F = {Y2 ⊥⊥ Y3|Y1} and n = 4

Cov(F)3 =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ12σ13/σ11

σ13 σ12σ13/σ11 σ33

⎞
⎠ ∈ S+

3

becomes

Cov(F)4 =

⎛
⎜⎜⎝

σ11 σ12 σ13 σ14

σ12 σ22 σ12σ13/σ11 σ24

σ13 σ12σ13/σ11 σ33 σ34

σ14 σ24 σ34 σ44

⎞
⎟⎟⎠ ∈ S+

4 .
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Ignoring inequality constraints, by Proposition 2.1 and the obvious lifting, Cov(F)4 can be
seen as the variety corresponding to the ideal 〈σ12σ13 − σ23σ11〉 in the polynomial ring with 10
variables R[σij : 1 ≤ i ≤ j ≤ 4]. Namely Cov(F)4 is the “cylinder” in a 10 dimensional space
whose elements are (a, σ14, σ24, σ34, σ44) with a = (ai)i=1,...,6 such that

⎛
⎝a1 a2 a3

a2 a4 a5

a3 a5 a6

⎞
⎠ ∈ Cov(F)3

and σi4 ∈R for i = 1, . . . ,4. In the language of algebraic geometry, Cov(F)4 is the join between
the variety σij = 0 (i, j = 1,2,3) and the variety{

σi4 = 0, i = 1,2,3,4,

σ12σ13 − σ23σ11 = 0,

where the join of two algebraic varieties is the smallest algebraic variety containing both.
With slight abuse of notation we call IF the ideal both in the smaller and larger set of variables,

R[σij : 1 ≤ i ≤ j ≤ |A|] and R[σij : 1 ≤ i ≤ j ≤ n] respectively, as the two ideals are generated
by the same polynomials.

We showed in Section 2.1 that F �G is equal to

H = {h density over A ∪ C ∪ B|hA∪C ∈ F, hC∪B ∈ G and A ⊥⊥ B|C}
and Proposition 4.1 substantially identifies the structure of H suggesting to intersect Cov(F)n
with Cov(G)n and with the variety corresponding to A ⊥⊥ B|C. But intersection of algebraic
varieties corresponds to (the variety of the) sum of ideals. Hence, we have proven that:

Proposition 5.1. The polynomial ideal representation of F �G is

IF �G = IF + IG + IA⊥⊥B|C ⊂R[σij : 1 ≤ i ≤ j ≤ n]
and the closure (in the Zariski topology) of F �G is

V(IF �G) = V(IF ) ∩ V(IG) ∩ V(IA⊥⊥B|C).

The construction above embodies the fact that Cov(F)n and Cov(G)n are two “cylinders” in
R

n(n+1)/2 with coordinates σij , 1 = i ≤ j ≤ n, orthogonal to the non-common variables with
respect to the standard scalar product in R

n. Their intersection corresponds to consistent dis-
tributions and in turn it has to be intersected with the variety corresponding to the conditional
independence statement A ⊥⊥ B|C.

The following examples can be checked with a computer algebra software, e.g. the Polynomi-
alIdeals package in Maple [8]. Computations among ideals are performed over the complex field
and then intersection with the real numbers is applied.

The Gaussian families F and G are written by means of the conditional independence relations
between the random variables. The conditional independence relations are written in terms of the
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◦1

◦ 2

◦ 3 ◦3

◦2

Figure 1. From left to right, the two Gaussian graphical models F = {Y2 ⊥⊥ Y3|Y1} and G = {Y2 ⊥⊥ Y3}.

matrices of the covariance matrix of the Gaussian distributions associated with the combination.
For simplicity, the elements of Cov(F �G) will be indicated as {σij } with 1 ≤ i ≤ j ≤ n. Of
course, as we have seen in the previous sections, they belong to either Cov(F) or Cov(G) and
for a non-empty lower Markov combination we need consistency over the elements belonging to
both Cov(F) and Cov(G).

The ideal generated by zero, which is the identity for the operation sum-of-ideals, is the condi-
tional independence ideal of a saturated model, meaning that no polynomial constraint is imposed
on the entries of the model covariance matrices.

Example 5.2. The conditional independence ideals of the Gaussian families F = {Y2 ⊥⊥ Y3|Y1}
and G = {Y2 ⊥⊥ Y3} in Figure 1 are

IF = IY2⊥⊥Y3|Y1 = 〈σ23σ11 − σ12σ13〉 and IG = IY2⊥⊥Y3 = 〈σ23〉.
The polynomial ideal representation of F �G is

IF �G = IF + IG + 〈0〉 = IY2⊥⊥Y3|Y1 + IY2⊥⊥Y3 = 〈σ23σ11 − σ12σ13, σ23〉.
The primary decomposition of IF �G is

IF �G = 〈σ23, σ12〉 ∩ 〈σ23, σ13〉 = IY2⊥⊥Y{1,3} ∩ IY3⊥⊥Y{1,2} .

The Zariski closure of F �G is then

V(IF �G) = V(IY2⊥⊥Y3|Y1 ∩ IY2⊥⊥Y3) = V(IY2⊥⊥Y{1,3}) ∪ V(IY3⊥⊥Y{1,2}).

This shows that F �G is the union of two Gaussian graphical models given by Y{1,3} ⊥⊥ Y2 and
Y{1,2} ⊥⊥ Y3. In particular, F �G is not a graphical combination, that is, F �G is not a graphical
model.

The singular locus of V(IF �G), intuitively the points where the tangent line fails to exist, can
now be computed as

V(IY2⊥⊥Y{1,3}) ∩ V(IY3⊥⊥Y{1,2}) = {σ12 = σ13 = σ23 = 0}
giving the complete independence model Y1 ⊥⊥ Y2 ⊥⊥ Y3. For the usefulness of this type compu-
tation in, for example, likelihood ratio tests see [4].
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Example 5.3. The three saturated Gaussian families for (Y1, Y2) (say F ), for (Y2, Y3) (say G)
and for (Y3, Y4) (say K) do not satisfy the conditions for associativity given in [10], page 244.
Non associativity can be shown algebraically in a straightforward manner. According to Propo-
sition 5.1 and recalling that IF = IG = IK = 〈0〉, we need to compare the varieties of the two
ideals

I(F �G) �K = (IY1⊥⊥Y3|Y2) + IY4⊥⊥(Y1,Y2)|Y3

= 〈σ12σ23 − σ13σ22, σ13σ24 − σ23σ14, σ13σ34 − σ33σ14, σ23σ34 − σ33σ24〉,
IF �(G �K) = IY1⊥⊥(Y3,Y4)|Y2 + (IY2⊥⊥Y4|Y3)

= 〈σ12σ23 − σ13σ22, σ12σ24 − σ14σ22, σ13σ24 − σ14σ33, σ23σ34 − σ33σ24〉.

They are radical ideals and are different, hence so are their varieties. Indeed the underlined poly-
nomials are in both ideals, but the polynomial constraint σ12σ24 −σ14σ22 must be satisfied by the
entries of covariance matrices for F �(G �K) and is not satisfied by models in (F �G) �K. In-
deed the normal form [1] of σ12σ24 −σ14σ22 with respect to I(F �G) �K is not zero. In conclusion
(F �G) �K =F �(G �K).

Example 5.4. The ideal of the lower Markov combination of the non-graphical model H given
by Y{1,3} ⊥⊥ Y2 and Y{1,2} ⊥⊥ Y3, obtained in Example 5.2, with the graphical model K = {Y2 ⊥⊥
Y3|Y4} is given by

IH�K = IF �G + IK + IY1⊥⊥Y4|Y{2,3}

= IF �(G �K).

This is the particular case discussed in [10], page 244, where associativity of Markov combina-
tions holds. We have

IH�K = 〈σ23σ11 − σ12σ13, σ23〉 + 〈σ23σ44 − σ24σ34〉
+ 〈

σ23(σ13σ24 − σ14σ23) − σ22(σ13σ34 − σ14σ33) + σ12(σ23σ34 − σ24σ33)
〉

= 〈
σ23, σ12σ13, σ24σ34, σ22(σ13σ34 − σ14σ33) + σ12σ24σ33

〉
.

As σii = 0, i = 1, . . . ,4 by equating to zero simultaneously the above generators of IH�K we
find that in the lower Markov combination H �K there are four types of symmetric matrices each
one of which is defined by one of the following lines

0 = σ23 = σ12 = σ24 = σ13σ34 − σ14σ33,

0 = σ23 = σ12 = σ14 = σ34,

0 = σ23 = σ13 = σ14 = σ24,

0 = σ23 = σ13 = σ34 = σ12σ24 − σ14σ22.



640 M.S. Massa and E. Riccomagno

5.2. Upper and super Markov combinations

Proposition 5.2. The polynomial ideal representation of F �G is

IF �G = (IF ∩ IG) + IA⊥⊥B|C ⊂R[σij : 1 ≤ i ≤ j ≤ n]
and its closure (in the Zariski topology) is

V(IF �G) = (
V(IF ) ∪ V(IG)

) ∩ V(IA⊥⊥B|C).

Proof. The result is proven with similar arguments of Proposition 5.1. The densities in F �G sat-
isfy the conditional independence statement and their marginal belong to F or G, thus identifying
F �G with

K = {h density over A ∪ B|hA ∈ F or hB ∈ G and A ⊥⊥ B|C}. �

Proposition 5.3. The polynomial ideal representation of F ⊗ G is

IF⊗G = (IA∪C ∩ IC∪B) + IA⊥⊥B|C ⊂R[σij : 1 ≤ i ≤ j ≤ n]
where IA∪C = √

IF �G ∩C[xA] and IC∪B = √
IF �G ∩C[xB ] are elimination ideals of the vari-

ables in B and in A, respectively. Also, the closure (in the Zariski topology) of F ⊗ G is

V(IF �G) = (
V(IA∪C) ∪ V(IC∪B)

) ∩ V(IA⊥⊥B|C).

Proof. We already observed that F ⊗ G = (F �G)↓(A∪C) �(F �G)↓(B∪C). The polynomial rep-
resentation of (F �G)↓(A∪C) is given by IA∪C (see, e.g., [12]). The ideal representation of the
super Markov combination then follows from Proposition 5.2. �

From a computational view point Proposition 5.3 is less useful than the two analogue proposi-
tions for lower and upper Markov combinations because it involves elimination ideals which are
better computed over the algebraically closed field C (see [1], Chapter 3).

Example 5.5 (Example 5.2 continued). The polynomial ideal for F �G is

IF �G = IF ∩ IG = IY2⊥⊥Y3|Y1 ∩ IY2⊥⊥Y3 = 〈
σ23(σ23σ11 − σ12σ13)

〉
.

Its Zariski closure is a non-graphical Gaussian model. Comparison with Example 5.2 gives a clear
example of the inclusion reversing relationship between ideals and varieties: F �G ⊂ F �G while
IF �G ⊃ IF �G . In particular, F �G contains Gaussian densities for which Y2 ⊥⊥ Y3 (σ23 = 0) or
Y2 ⊥⊥ Y3|Y1 (σ23σ11 − σ12σ13 = 0), while F �G contains Gaussian densities for which Y2 ⊥⊥ Y3
and Y2 ⊥⊥ Y3|Y1. The polynomial ideal representation of F ⊗ G is

IF⊗G = (IA∪C ∩ IC∪B) + IA⊥⊥B|C = 〈0〉,
and its Zariski closure is a saturated Gaussian graphical model.
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6. An illustrative example

In [2], the covariance between variables that are not jointly observed is estimated via a factor
analysis model. A sample of women (n = 25 118) were examined in a test composed by 5 sec-
tions: two maths and two verbal sections of the Scholastic Aptitude Test followed by one section
of the Test of Standard Written English (TSWE in the following) denoted as M1, M2, V1, V2,
T1, respectively. A subsample (n1 = 12 761) were given Section 2 of the TSWE, and another
subsample (n2 = 12 357) were given Section 3. They are denoted as T2 and T3, respectively.
No examinee was given both T2 and T3. The covariance matrix of (M1, M2, V1, V2, T1, T2),
called T2F, and the covariance matrix of (M1, M2, V1, V2, T1, T3), called T3F, are shown in
Table 1 together with their correlations (in the upper diagonal part of the matrices). They are
taken from Table 6 (sections (b) and (d), respectively) of [5]. The estimate of Cov(T2,T3) is
needed to equate tests based on these sections.

We estimate the joint covariance matrix of (M1, M2, V1, V2, T1, T2, T3) using the Markov
combinations. Table 2 shows the upper Markov combination (identical to the super Markov com-
bination) of T2F and T3F. The values of Cov(T2,T3) of the left and right combinations are very
similar (66.99 and 66.47, respectively) and not too dissimilar from the estimate of [2] which is
given as 72.71 (see Table 3 of [2]). In [2], the result is obtained by assuming a factor analysis
joint model of (M1, M2, V1, V2, T1, T2, T3) and three correlated hidden factors.

Suppose now we are interested in investigating a different scenario based on this framework.
Let us impose some constraints on T2F and T3F to reflect the fact that certain blocks of T2F
and T3F contain very similar covariances (and correlations) which can be assumed equal (see
Table 1). The polynomial representation of the constrained Gaussian models are given by the

Table 1. (a) Covariance and correlation matrices for T2F data; (b) covariance and correlation matrices for
T3F data

(a) T2F

M1 M2 V1 V2 T1 T2

M1 32.47 0.813 0.638 0.639 0.627 0.610
M2 39.23 51.85 0.625 0.628 0.629 0.619
V1 31.66 39.23 75.85 0.838 0.764 0.737
V2 26.67 33.12 53.41 53.53 0.768 0.738
T1 37.25 47.26 69.41 58.62 108.63 0.861
T2 33.35 42.78 61.50 51.83 86.07 91.90

(b) T3F

M1 33.59 0.814 0.640 0.649 0.632 0.601
M2 34.58 53.70 0.628 0.638 0.637 0.607
V1 32.49 40.33 76.74 0.841 0.772 0.741
V2 27.76 34.54 54.39 54.48 0.772 0.749
T1 38.17 48.62 70.46 59.37 108.53 0.859
T3 31.81 40.63 59.36 50.55 81.79 83.49
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Table 2. Covariance matrices obtained via the upper Markov combination (identical results for the super
Markov combination). (a) Covariance matrix corresponding to the operator of left combination; (b) covari-
ance matrix corresponding to the operator of right combination

(a) Left combination

M1 M2 V1 V2 T1 T2 T3

M1 33.59
M2 34.58 53.70
V1 32.49 40.33 76.74
V2 27.76 34.54 54.39 54.48
T1 38.17 48.62 70.46 59.37 108.53
T2 33.07 44.89 62.48 52.66 86.38 92.77
T3 31.81 40.63 59.36 50.55 81.79 66.99 83.49

(b) Right combination

M1 32.47
M2 39.23 51.85
V1 31.66 39.23 75.85
V2 26.67 33.12 53.41 53.53
T1 37.25 47.26 69.41 58.62 108.63
T2 33.35 42.78 61.50 51.83 86.07 91.90
T3 31.23 39.48 58.44 49.78 81.54 66.47 83.09

ideals

IT2F = 〈σ1k = σ2k = c, σ3l = σ4l = d〉, IT3F = 〈σ1m = σ2m = c, σ3n = σ4n = d〉,

with k = {3,4,5,6} and l = {5,6}, m = {3,4,5,7}, n = {5,7}. The parameter σ11 corresponds
to the variance on M1, σ66 to the variance on T2 and σ77 to the variance on T3. The meaning
of all other σ ’s follows now easily. Inequalities constraints might be added by further assuming
σij > 0, i, j = {1, . . . ,7}. The two ideals of the lower and upper Markov combinations are

(IT2F + IT3F) + IT2⊥⊥T3|(M1,M2,V1,V2,T1) and (IT2F ∩ IT3F) + IT2⊥⊥T3|(M1,M2,V1,V2,T1),

respectively. Here IT2⊥⊥T3|(M1,M2,V1,V2,T1) is the ideal generated by the determinant of �A∪C,B∪C

with A = {T2},B = {T3},C = {M1,M2,V1,V2, T1}.
Inspection of a generating set of these ideals shows that the stationarity constraints in

both Gaussian families act on the homogeneous polynomial generated by imposing T2 ⊥⊥
T3|(M1,M2,V1,V2, T1). Furthermore any 7 × 7 matrix of the lower Markov combination has
σ1k = σ2k = c for k = {3,4,5,6,7} and σ3l = σ4l = d for l = {5,6,7}. Any matrix of the up-
per combination has σ1k = σ2k = c for k = {3,4,5} and σ3l = σ4l = d for l = 5. In the upper
Markov combinations there are models obtained from the lower Markov combination by relax-
ing any subset of the four constraints for k, l = 6 (and by symmetry also k, l = 7). Finally from
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the structure of the polynomial ideals of both combinations, we can see that they not depend on
the variances of T2 and T3.

All the necessary computations have been carried out in Maple [8] as in previous examples.
With more refined computations the singularities and other properties of the models can be elu-
cidated.

Knowing the algebraic structure and properties of the statistical models of the combinations
could help in determining the right assumptions to be made and in choosing the appropriate
combination in different applied contexts.

7. Conclusion

This paper provides two algebraic representations of the Markov combinations for structural
meta-analysis problems described in [10]. Lemma 3.1 and Proposition 4.1 give the covariance
and concentration matrices for the different types of combinations in terms of the entries of the
covariance and concentration matrices of the models to be combined, for Gaussian distributions
and for Gaussian statistical models, respectively. The Markov combinations set to zero the entries
of the concentration matrices corresponding to variables not jointly observed. This expresses
conditional independence between these variables and is a particular case of matrix completion.

An algebraic/geometric setting can be useful in studying the constraints imposed by each ini-
tial model and those arising in the joint model. Proposition 5.1 describes how to construct the
polynomial ideal for the lower Markov combination starting from the ideals of the models to
be combined. similar reasoning to that adopted in Proposition 5.1 leads to the polynomial rep-
resentations of upper and super Markov combinations in Section 5.2. Examples show uses of
the obtained independence ideals to derive information on the corresponding statistical models.
These uses have the same computational limits as the available softwares for handling polyno-
mials.

Besides the independence constraints related to Markov combinations, other types of polyno-
mial constraints can be imposed on a Gaussian statistical model as shown in Section 6 where
equality constraints have been imposed. This paper gives only pointers to the usefulness of rep-
resenting Gaussian models by polynomial ideals and it is besides its aim to show the full power
of such representation for which we refer to for example, [4,7].
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