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A U-statistic indexed by a 79 _random walk (Sn)n is a process Uy, := Z? j=1 h(s;, & 5_/.) where / is some
real-valued function and (&) is a sequence of i.i.d. random variables, which are independent of the walk.
Concerning the walk, we assume either that it is transient or that its increments are in the normal domain
of attraction of a strictly stable distribution of exponent « € [d(y, 2]. We further assume that the distribution
of h(&1,&y) belongs to the normal domain of attraction of a strictly stable distribution of exponent 8 €
(0, 2). For a suitable renormalization (a, ), we establish the convergence in distribution of the sequence of
processes (U Lt /an)t; n € N to some suitable observable of a Lévy sheet (Z ;) ;. The limit process is the
diagonal process (Z; ;); when o = djy € {1, 2} or when the underlying walk is transient for arbitrary dy > 1.
When o > dy = 1, the limit process is some stochastic integral with respect to Z.
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1. Introduction

Let dy be a positive integer. Given a random walk (S,),>0 on Z% and a sequence of independent
identically distributed (i.i.d.) real random variables (i), 54, » independent one from each other,
one can consider the random walk in random scenery S, := Y ;_, &, . In particular, one is inter-
ested in the limit behavior of the sequence of renormalized processes (v, s lne)r=0; 1 € N. In
this context, the following assumptions are usually made:

either S, is transient or there exists some « € [dp, 2] suc atn— . n € N converges
A) either S, is t t or th t [do, 2] such that n= 1/ § N g
in distribution to a random variable;
n _1 &; n € N converges in distribution to a random variable for some 8 € (0, 2].
B) n=VEY T, N ges in distribution t d ble fi 0,2]

Note that in the case o > dyp = 1 the assumption (A) implies that the sequence of stochas-
tic processes (n~Ves lnt])r>0; 1 € N converges in distribution to some «-stable Lévy process
(Y;)t>0 which admits a local time (L£;(x),t > 0, x € R). Similarly, assumption (B) implies that
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Table 1. Limit theorems for random walks in random scenery

Cases Normalization Limit process Space of convergence in distribution
Transient vy = nl/B (d1Z1): Finite-dimensional distributions

if B # 1: Skorokhod space with M{-metric
a=dy vy = nl/p (log n)]fl/ B (dr Z1)s Finite-dimensional distributions

if B # 1: Skorokhod space with M{-metric
(tightness for Jy-metric iff 8 = 2)

a > dy v = plmVatl/@B) (A, = fR* Li(x)dZx); Skorokhod space with J -metric

(n=VP Z,E":t{ &r)i=0; n € N converges in distribution to some S-stable process (Z,),>o.] Subse-
quently we will use (Z_;);~0 to denote an independent copy of (Z;);~0.

Random walks in random scenery have been studied by many authors since the early works
of Borodin [4,5] and Kesten and Spitzer [17]. In particular, [3,7,11] complete the study of the
limit in distribution of random walks in random scenery. The asymptotic behavior of the sequence
(v, Is Lnt])r>0; 1 € N is summarized in Table 1 (where d; and d; are explicit constants depending
on (S,) and on B).

In this paper, we want to do a similar investigation for U -statistics indexed by a random walk.
To introduce the objects let E be some measurable space and (§k); .54, an i.i.d. sequence of E-
valued random variables. Often we might abbreviate this family of random variables by & and call
it the scenery. Moreover, let (S,),>1 be as above a random walk on Z%  which is independent of
the scenery &. We will also use the short notation S for the random walk. For some measurable
function & : E> — R, we consider the U-statistic indexed by S defined through

n

Uni= Y hiEs,. £s)).

i,j=1

Consider a walker moving with respect to (S,),. Assume that, at each step, this walker new
connections between the site where he is located and all the other sites he has already visited
(with multiplicity). We assume that the cost of a connection between the sites x and y depends
on their respective states £, and &,, we denote this cost by 2 (&, §,). We assume moreover that
the &,’s are i.i.d. Then U, corresponds to the total cost of the connections made up to time n.
Another motivation for the study of U, linked with charged polymers is given in the Introduction
of [15].

We are interested in results of distributional convergence for (U,), (after some suitable nor-
malization) under the assumption that the distribution of h(£;, &) is in the normal domain of
attraction of a -stable distribution. Let us assume without loss of generality that 4 is symmetric.

If B > 1, we can introduce ¥y := E[h(&o, &) |&0]. Two different situations can occur. We will
say that the kernel is degenerate if ; = O almost surely. Otherwise, we will say that the kernel
is non-degenerate.

ITo simplify notations, for every k € Z, we write & for & ).
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The case when h(&1, &) is square integrable and centered (which implies 8 = 2) has been
fully studied by Guillotin-Plantard and her co-authors. In this case, only two kind of behaviors
can occur:

(a) The kernel is non-degenerate, then one can use Hoeffding decomposition to show that U,
behaves essentially as ZZJ:l (s, +0s;) =2n 3 [ Vs;.

(b) The kernel is degenerate, then Hilbert—Schmidt theory can be used to represent the kernel
ash(x,y) =3, Ap¢p(x)$p(y) and to show that U, behaves as 3, A p(S)2.

This has been proved by Cabus and Guillotin-Plantard in [6] for random walks in 7% with dy > 2
and by Guillotin-Plantard and Ladret in [15] for random walks in Z.

Note that the situation treated in [6] splits into the case dy > 2, where the walk is transient,
and the singular case dy = 2, where the random walk is null recurrent. However, in this last case
the limit process (Y;);>¢ does not have local time. In contrast to this, the assumptions made in
[15] correspond to some null recurrent random walk with existing local time for (¥;),>0; that is,
oa>dy=1.

The special form of the representations given in (a) and (b) implies that for § = 2, the study
of (Uy), can be reduced to the study of some suitable random walk in random scenery (either
Yol Os or Yy ¢,(Si). Thus, the limits can be expressed in terms of processes which already
occurred in the random scenery situation.

In the transient case or if dy = 2, the limit process turns out to be Brownian motion (B;);>0
when the kernel is non-degenerate. In the degenerate situation, the limit has the representa-
tion ) » A P(Bt(p ))2, where (B,(p ))tzo; p € N is a sequence of independent Brownian motions
(see [6]).

If on the other hand o > dyp = 1, then in the non-degenerate situation the limit is the usual
process A; := fR* L;(x)dBy, where (By)y~0 and (B_y)y>0 are independent one-dimensional

Brownian motions. In the degenerate case the limit takes the form ) P o fR* Li(x)d B)((p ))2,

where the pairs (B )Ep ))x>o, (B(,';))Do form a sequence of independent copies of the pair (By) x>0,
(B—x)x>0 (see [15]).

Let us further mention that (a) includes the case where h(x,y) = g(x) + g(y) and that (b)
includes the case when h(x, y) = g(x)g(y). Here g : E — R is a measurable function such that
g(&1) is square integrable and centered.

When 1 < 8 < 2, a similar behavior can occur in the non-degenerate case. For instance, in
[14], we use Hoeffding decomposition to prove the following:

(a") If 1 < B <2 and if the distribution of 1 is in the normal domain of attraction of a B-stable
distribution, then U, behaves as 2ny ;_, Us,.

This holds for example, if 2 (x, y) = g(x) + g(y). The limit then turns out to be S-stable Lévy
process (Z;);>0 when the walk is transient or when o = dp. However, when o > dp the limit
has the representation A; := fR* Li(x)dZ,, where (Z,)x~0 and (Z_,),~0 are independent one-
dimensional B-stable Lévy-motions (see [14]).

On the other hand in the degenerate case, when ¥ = 0, different limits than those described
in (b) can arise when 0 < B8 < 2. This is the purpose of the present paper. The limit we obtain
is the diagonal process (Z ));>0 of a Lévy sheet (Z; ) s>0, when the walk is transient or
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Table 2. Limit theorems for U -statistics indexed by a random walk

Cases Normalization Limit process Space of convergence in distribution
Transient v,% =n2/B (d12 Zt .t Finite-dimensional distribution
Skorokhod space with M-metric if 8 < 1
a=dy v,zl =n2/B (log n)272/ B (d22 Zt 1)t Finite-dimensional distribution
Skorokhod space with M-metric if 8 < 1
a>dy v,% = n2~Q2/)+2/(ap) (fRz L)L (y)dZy y)e Skorokhod space with Jj-metric

when o = dp, and a stochastic integral fRZ L;(x)L;(y)dZ,,, with respect to four independent
copies of the Lévy sheet introduced above, when « > dj. These limits can be understood as two-
dimensional analogues of the known limits for random walk in random scenery found by Kesten
and Spitzer (see [17]).

To be more precise, let us keep assumption (A) but replace (B) on (& )i by the following
assumption on (h(&x, &¢))k.¢:

B (n~1/8 Y i1 (&2, E2k+1))n converges in distribution to a random variable with B €
0,2).

This implies that if (h; ;); j is a sequence of i.i.d. random variables with the same distribu-
tion as h(&1, &), then the sequence of stochastic processes (n=2/# » ,E":t{ » %’;‘]J hij)i>0;n €N
converges in law to some f-stable Lévy sheet (Z; ;)s.;>0 (Which we extend on R2).

In the present paper, under assumption (B”) and some additional assumptions, we prove limit
theorems for the U-statistic which are summarized in Table 2.

The present paper is organized as follows. The assumptions and main results are stated in Sec-
tion 2. We give some examples which satisfy our assumptions in Section 3. We prove our results
concerning convergence of finite-dimensional distributions in Section 4. In the spirit of [10], our
proof relies on the convergence of a suitably defined point process to a Poisson point process
which is established by the use of Kallenberg theorem. In Section 5, we prove the tightness for
the Jj-metric when o > dp. The tightness for the M1-metric when 8 < 1 (for transient random
walks or when o = dp) is proved in Appendix A. We complete our article with some facts on the
B-stable Lévy sheet Z in Appendix B. In particular, a construction of stochastic integrals with
respect to Z is given.

2. Main results

Let (2, F, P) be a suitable probability space and let S = (S,),>0 be a Z% -valued random walk
on (2, F, P) with Sg = 0 such that one of the following conditions holds:

o the random walk (S;),>0 is transient,

o the random walk (S,),>0 is recurrent and there exists o € [dp, 2] such that (n~1/e Sn)n>1
converges in distribution to a random variable Y. In this case, we further assume that Vx €
Z% 3n e N:P(S, =x) > 0.
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Recall that, in the second case, (n’l/ *S|ne)r>0; n € N converges in distribution to an c-stable
process (Y;);~o such that Y| has the same law as Y.

In order to get a uniform notation for the different situations, we define o to be a number,
which is one when the random walk is transient, and which takes the value 5‘—0 in the recurrent
case.

Let & = (§¢),cz4, be a family of i.i.d. random variables on (2, F,P) with values in some
measurable space E. We assume that the two families S and & are independent. Let 4 : E x
E — R be a measurable function. We are interested in the properties of the U-statistics process
U, = Z;’ j=1 h(és;, ésj). In this work, we assume moreover that the following properties are
satisfied.

Assumption 1. Let B € (0, 2).

(i) Foreveryx € E, h(x,x) =0;
(i) h symmetric (i.e., h(x,y) = h(y, x) for every x,y € E);
(iii) There exist cg, c1 € [0, +00) with co + ¢1 > 0 such that

V>0,  P(h¢1,&)=2)=2"Lo),  with lim Lo(z) = co; ()
Z—>+00
and
V2>0, P(h¢.&)<-2)=z"Li(x), with lim Li(z)=cp; )
Z—>+00

(iv) There exist Co > 0 and y > % such that
Vz,7' € (0, +00),

3)
P(|h1,&)| = z and |h(&,£3)| > ') < Co(max(1, z) max(1, 7)) "

(v) If B > 1, then E[h (&1, 62)] =0;
(vi) If B > 4/3, there exists C;y > 0 and 6’ > % — 1 such that

_0/
VM, M’ € (0, +00), |E[ha (&1 £y (61, 863)]| < Co(MM') ™,
where hy (x, y) :=h(x, Y)1{a,y)<m) + %(CO —c)M' 7B,
(vii) If B =1, then co = c1 and limp; s 1o E[h (&1, E2) 1 (jn (g, ,&)1<m}] = 0.

Some examples satisfying the above assumptions are presented in the next section.
Remark 2. The following comments on the different points in Assumptions 1 might be of some
help:

e Item (i) can be relaxed as will be proved in Proposition 7 below.
e Item (ii) is not restrictive since one can always replace h(z, z’) by (h(z,z') + h(z’,2))/2
without changing the sequence (Uy,),,.
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e Note that item (iv) is a condition which ensures that the tail behavior resulting from coupling
of the pairs (&1, &) and (&1, &3) does not interfere with the tail behavior of the single terms
h(&1, &). A condition with the same spirit is condition (2.1) in [10].

e Ifitem (iii) holds and if for every x € E the distribution of & (x, £1) is symmetric, then items
(vi) and (vii) are also satisfied. Indeed, in this case, co = c¢; and

E[hy (€1, E)ha (€1, 6)]

Z/ E[h(x, €)1 nc,e1<my JE[A (X, E2) i (x,6)1 <M1} ] AP, (x) = 0.
E

e Note that items (iii) and (v) imply that the law of k (&1, &) is in the domain of attraction of
a B-stable law for some S € (0, 2).

Let (h; ;)i ; be a sequence of ii.d. random variables with same distribution as & (&1, &2).
Observe that the items (i), (iii), (v) and (vii) in Assumption 1 describe the classical situation,

where the sequence of random fields (n~2/# Y"1 Zﬁ"zylj hi j)x,y=0;n € N converges in law
to a B-stable Lévy sheet (Z,. y)x,y=0 such that the characteristic function of Zx,y is given by

Ele'*%] = Doycyer) xy(co—en).p(2), With

+00 o
Dy B p2) = exp<—|z|/3/ S;—I;tdt<A—iBsgn(z)tan ?)) if B#1 @)
0
and
DP4.B1(2) = exp(—lzl(%A+iBsgn(z)log|z|>> %)

(see [13], pages 568-569). In order to construct a continuation of the Lévy sheet Z to all
of R?, we use four independent copies 7€) (with ¢, ¢’ € {1, —1}) of Z to introduce Z, , :=
Zz l(;lgTET S8 for a) (x,y) € R2. In the following, we will need to integrate some continuous

compactly supported function i with respect to Z, that is,

/ V(x,y)dZy,y.
R2

More information on Lévy sheets and on the construction of the integral can be found in Ap-
pendix B.

When « > dy =1, we assume moreover that (Z, y)x,y is independent of the «-stable pro-
cess (Yy);.

If the random walk is transient, we write N, for the total number of visits of the two sided
random walk (S,,),ez to zero; that is, Noo := Y, <7 1(s,=0}-

Theorem 3 (Transient case). Suppose (S,)n>0 is transient and Assumption 1. We set a,, := n/B.
Then the finite-dimensional distributions of (U|ns|/an)i>0)n converge to the finite-dimensional

distributions of (K 5/" Z; )i~0. with K := EINK 1.
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Moreover, if B < 1, then the convergence holds also in the Skorokhod space D([0, T']) endowed
with the M -metric.

In particular, the previous theorem holds for the deterministic Z-valued walk S,, = n (for which
Kp =1). In that case, our result boils down to a result on classical U -statistics which was es-
tablished by Dabrowski, Dehling, Mikosch and Sharipov in [10]. We emphasize this point in the
following corollary, since the link to the Lévy sheet was not mentioned in [10].

Corollary 4 (Deterministic case). Suppose Assumption 1 and set a, := n*'P. The finite-
dimensional distributions of ((Z}Zti 1
tributions of (Z;1)t>0.

If B < 1, then the convergence holds also in the Skorokhod space D([0, T']) endowed with the
M1 -metric.

h(&i,&j)/an)i>0)n converge to the finite-dimensional dis-

As usual I will stand for the Gamma function. We also write N, (x) for the occupation time
of S at x up to time n, that is,

n
Ny(x) = Z 1{S,-:x}-
i=1
We define the maximal occupation time of S up to time n through N’ := max, N, (x) and the
range of S up to time n by

R, :=#{y e 7% Ny (y) > O}.

We recall that, when o = d, there exists ¢3 > 0 such that
R, ~c3n/logn a.s.asn — o0. 6)

Theorem 5 (Recurrent case without local time). Suppose o = dy € {1, 2} and Assumption 1.
We set a,, := n*/P (log n)2’2/'3. Then the finite-dimensional distributions of (Ut /an)s>0)n con-
verge to the finite-dimensional distributions of (Ké/ﬂ Z:1)1>0, with Kg :=T(B + 1)/6‘571 and
with c3 given by (6).

Moreover, if B < 1, then the convergence holds also in the Skorokhod space D([0, T']) endowed
with the M -metric.

When o > dy (which implies dy = 1), we prove a result of convergence in distribution in
the Skorokhod space for the Ji-metric. Recall that hys (x, y) = A (x, y)1jncx,y) <My + %(co —

C1)M1_ﬂ.

Theorem 6 (Recurrent case with local time). Assume o« € (1,2], dy = 1 and Assumption 1.
We set a, := n? with § =1 — é + D% Then, for every T > 0, ((Uur)/an)rei0,1)n con-
verges in distribution (in the Skorokhod space D([0,T]) endowed with the Ji metric) to
(flRZ L:(xX)Li(y)dZy y)ieo,1], where (L (x),t > 0, x € R) is a jointly continuous version of the
local time at point x at time t of (Yy)s>0 (such that, for every t, L, is compactly supported).
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Observe that, in every case, there exists ¢ > 0 such that
2/B—2
an ~ cn*(B[R,1)*” 7

(see, for example, [24], page 36 and [19], pages 698-703). It is worth noting that U, can be
rewritten as follows

D hE E)Na (N ().

x,yeZdO

Proposition 7. The results of convergence of finite-dimensional distributions of Theorems 3, 5
and 6 hold also if we replace item (i) of Assumption 1 by the following assumption:

(') Elexp(iuh(€r, €)1 — 1= 0(ul?) for some ' > /2.

Observe that (i’) includes (i) and the case when h (&1, &1) is in the normal domain of attraction
of a B’-stable distribution for some B’ > B/2, in particular this applies if 4 (&1, £&1) has the same
distribution as (&1, &).

Proof of Proposition 7. Due to Theorems 3, 5 and 6, we know that the finite-dimensional dis-
tributions of

<<Zh@x,@)NLntJ(x)NWJ(y)/an) )
x£y t>0/n

converge. It remains to prove that (}_, h(&y, £, N2 ] (x)/ay), converges in probability to O (for
every t > 0). We write @y, ¢,) for the characteristic function of 2 (&1, &1). Let t > 0 and u be
two real numbers. We have

h X SXx N N
E[exp<iu ) h@ 53 LntJ(x))} [1—[ e, El)(“ Lm(x))]

xezZd 74

L”t J
An

To conclude we just have to prove that ([ ], .74 ‘Ph(él,él)(
to 1. Due to (i'), there exists C, > 0 such that we have

uNn (x) B NP (x)
‘ 1_[ Ph(&, Sl)( Lot] ) ‘ &) Z L TJ

xezd xezd “"

)),, converges almost surely

which converges almost surely to O since, for every ¢ > 0, the following inequalities hold almost
surely, for n large enough

R, < nl/a0+£’ N;: < nl*l/a0+£ and Cl;] < n72+2/a072/(a0ﬁ)+s

(see for example [8,16,24]). O
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3. Examples
The following examples are variants of Example 2.4 from [10]. Observe that
P(h(51, &) > 2) = fE P(h(x, £2) > 2) dPs, (x)
and that

P(|r(&1. &) > z.

hEL &) > 7) =fEIP(|h<x,sz>| > 2)P(|h(x, £)] > ') dPg, (x).

e When 8 < 1, one can take £ = RP”, the distribution of & admitting a bounded density f
with respect to the Lebesgue measure on E and h(x, y) = ||x — y||;§’/ﬂ1{

fits Assumption 1. Indeed, for every z > 0, P(h(§1, &) < —z) =0 and

x+y}. This example

P(h(x. &) > 2) =P(Ix —&allo <z #7) _~

002”]‘(x)z_’3 and
P(h(x,&) >z) < I flloc2PzF.
So

(1. &) >2) ~ 2777 fR (F)ax

Z

and

P(|h(E,&)| > 2, [hEL E)| > ) < (14 11 fll02?)’ (max(1, z) max(1, 7)) 7.

e Analogously, when 8 > 1, we can take E = {£1} x R?, h((s,x), (¢/,y)) = e€||x —
y||;o”/’31{x¢y} and & = (g1, g?l) with e, and 51 independent; ¢ being centered and the dis-
tribution of £, admitting a bounded density f with respect to the Lebesgue measure on R”.

Using the same argument as for the previous example together with Remark 2 we can verify
that this example satisfies Assumption 1.

Note that the case 8 = 1 contains the more concrete kernel h(x,y) = 1/(x + y) for x # y in
association with some random variable £; having a bounded symmetric density on R.

4. Convergence of finite-dimensional distributions

To prove the convergence of the finite-dimensional distributions, we prove the convergence of
their characteristic functions. To simplify notations and the presentation of the proofs, we set

2} :=1z1f and |z) :=|z” sgn(2) ®)

for any real number z. Letm > 1 and 0y, ...,6,, e Rand O =1y <t <--- <1y,.
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If g > 1, we will prove the convergence of

(E[exP<ianl > (Z@-NW,J(x)NLm,.J(w)h(sx,sy>)D : ©)
x,yeZdO i=1 neN

If ap = 1, since the limit process will have independent increments, it will be more natural to
prove the convergence of

<E|:6Xp(ianl Z <Zt9i(NLm,-J(X)NLm,-J(y)—NLm,-_IJ(X)NLm,»_IJ(y))>h(§x,§y)>:|) .
neN

x,yezdo \i=1
Setting d; ;,(x) := Nz | (X) — Nns,_,(x), we observe that

m

m
D 0 (Ninie) CON ) ) = Ny ) N ) (0)) = Y Omaxi. ydin () n () (10)
i=1 i,j=1

and hence, if a9 = 1, it is sufficient to study for fixed 6; ; the sequence

(E[exp(z’a;l > Zei,,-di,n(x)d,-,n(y>h<sx,@))D (11)
neN

x,yeZd i,j=1

(in view of applying the results to the particular case when 6; j = Omax(, j))-
Therefore we have to prove the convergence of (E[exp(ia,, ! Zx’yezdo Xnx,ynEx, €9)) Dns
with

m
Xnxy =D OiNiy ()N (v)  ifag > 1

i=1

and

m
Xnwy = D 0 jdin(®)djn(y)  ifag=1.
i,j=1

The basic idea is to identify the sequences in (9) and (11) as functionals of some sequence of
suitably defined point processes and then to use Kallenberg theorem to prove convergence in
law of those point processes. More precisely, we will define in Section 4.2 the sequence of point
processes on R* =R\ {0} defined through

No(@,8) = Z 8oty ey (@l &)

x,yeZdO

where (,, x,y)n,x,y are suitable random variables defined on some suitable probability space
(fz,f- ,P) such that, for every integer n, the random variable Zx7V€Zd0 Cn,x,yh(€x, &) (with
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respect to Pz ® T’) has the same law as nyyezdo Xnx,yh(€x,&y) (with respect to the original
probability measure P).

In Section 4.1, we prove that the probability space (€2, F,P) and the family (&n,x,y)n,x,y can
be chosen in such a way to satisfy

im ay? 3 lGayh =G as., (12)

n——+00
x,yeZdO

where G is a suitable random variable on (2, F, P). The construction will vary depending on
whether «g =1 or g > 1.

The almost sure convergence in (12) will enable us to use Kallenberg theorem in Section 4.2
to prove that for almost every @ € 2 the sequence of point processes (N, (@, -)),eN converges in
law (with respect to P¢) toward a Poisson point process N on R* with the following intensity
function

(co+c1)GT (@) + sgn(z)(co — ¢1)G (@)

2> Blz| P! >

In Section 4.3, we will see that a,! Zx’yezdo Cnox,y(@)h(Ex, &) equals [, wNL(D, §,
dw) which as n goes to infinity converges in distribution toward fR* wN; (dw). We will
also see in Section 4.3 that this limit follows a stable law with characteristic function
d>(CO DG @), (co—c)) G (@), B This will imply the convergence in distribution of the sequences
in (9) and (11) toward the same stable limit.

4.1. A result of convergence

4.1.1. Caseapg=1

We define

G

s

B

m

=a? Y 1Y 60 dian(x)dja(y)| and
x,yez%li,j=1 *

13)

m
G =K3 > 1150 — i)ty — 1;-1),
i,j=1

where Ky is the constant defined in Theorems 3 or 5 (depending on whether the random walk
(Sy), is transient or recurrent with o = dj).

Lemma8. Ifag=1, (G,ﬂf)n converges almost surely to G*.
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Applying this lemma with 6; j = Omax(, j), we directly obtain the following almost sure equal-
ity
m B
ZGi (Nint; ) )Nt 1) = Nty ) O Ny 1 ()

i=1

lim a,? E
n—od
x,yez%

m

=K}y |9j|i(t} —12)).
j=1

+
(14)

Proof of Lemma 8. We proceed as in [7,9].

e Let k be a nonnegative integer. Let us prove that

k
m
im0 ) (Z ei,jdi,n(x)dj,,,(y))
x,yeZdO i,j=1
m
=(K)® Y O =t —tj)  as,

i,j=1

5)

with b, ; := n(log n)*=1if (S,), is recurrent (and o = dp) and with bpx :=nif (Sp), is
transient (extending the definition of Kg given in Theorems 3 or 5 to any nonnegative real
number B). Due to [17], page 10 (transient case) and to [9] (null recurrent case), we know
that

Viell,...,m), nlingo(bn,k)—lZ(di,n(x))szk(t,-—t,-,]) as.  (16)

xeZ%

As in [7], we observe that

m k m
> (Z ei,jd,»,,xx)d,-,n(y)) — 3 Y G ) (din )i ()

x,yezd \i,j=1 x,yezd i,j=1

k
Z Z l—[(eiz»jldi(,n (x)djg,n (y))’

x,y€Z% (01, 1), Gk, k) €L =1

k
< max|6 ik > > Tdien®djn

(@1, 1) G jIVEL x, yezdo £=1

m k m
Enl_lﬁjl_x|9i,j|k< > (Z di,n(x>dj,n(y>> - > Z(di,n(x)dj,n(y))">

x,yezd \i,j=1 x,yeZd i,j=1

< max|6; j|"<< > (N, mo)")2 ~ (i > (dz-,n(x))"> )

xezdo i=1 yezdo
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where Z denotes the set of ((i1, j1), ..., (ix, jx)) € ({1, ..., m}*)¥ such that #{(i1, j1),...,
(i, jr)} = 2. Due to (16), we conclude that this term is in o((bn,k)z).
e Assume here that (S,), is recurrent and o = dp. Let us define

W, = Z 0;.jdin(Vi)dj (V)

with (V,,, V,}) such that the conditional distribution of (V,,, V,)) given S is the uniform dis-
tribution on the set {z : N, (2) > 1}2. We observe that

o2 1

E[| W |41S] = ﬁRz D7D b jdin)dn(y) 17

[ty ] x,yezdoli, j=1 +

for all u > 0. Recall that R|,;, | is the cardinality of {z : N, (z) > 1} and that R, ~
c3n/logn a.s. Due to (15) and since Ky = I'(k + 1)/c'3‘_1, we conclude that, for every
nonnegative integer k, we have, almost surely,

. 2 “ i —ti—11j
Jim E[(W,)!18]= (P& + D)"Y 6 ) ——~

m 1/ m

=E[Wx].
i,j=1

with Woo =0y v TT’ where V', V, T, T’ are independent random variables, T and 7" hav-
ing exponential distribution of parameter 1, V and V’ being such that P(V =i) = P(V' =
i)= t’:ﬁ forevery i € {1, ..., m}. From which we conclude that, almost surely, (W,|S),
convergrgs in distribution to W, and that

im E[WolLis] =E[Wall] s (18)

The proof now follows due to (17) and (18).
e Assume now that (S},), is transient and set this time

m
W, = Z ei,jdi,n(vn)dj,n(vy:),
ij=1
for the same choice of (V,, V,)) as in the previous case. Observe that

u

1 m
E[IWal4lS] = —7— DD b jdin)djn(y)

ntm] y yezdoli,j=1 +

for all u > 0. We recall now, that R, ~ pn with p :=P(S; Z20,Vk > 1) =2/(E[Nso] +
1) (see [24], page 35). Due to (15) and since Ky = ]E[ijo’l], we obtain that, for every
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nonnegative integer k, we have almost surely

E[NE1\? & fi—ti 1t — 1t
“zk } : ki i—11j
nEI—iI-looE[ |S] ( ) 1(91 J) tm '
i,j=

So (W,|S), converges in distribution to 77’0y v+ where V, V', T, T’ are independent ran-
dom variables such that

ti—ti—
Vie{l,...,m}, P(V:i)zp(v/zi)zlti’l
m
and
P(Ny =
Vm > 1, P(T:m):P(T’:m)=M:(1_p)m—lp
mp

Indeed, setting N (0) := sup,, N, (0), we have P(Nso (Q) =k)=(1- p)k p for every integer
k > 0. Note that Noo = 1 + N5o(0) + Noo(0) where Ny (0) = Zn§_1 1s,—0) which is an
independent copy of N (0). Hence we have

P(Now=m)= Y P(Ne(0) =k)P(Neo(0) = £) =mp*(1 — p)" ",

k>0:k+0=m—1

for every integer m > 1. Therefore,

B—1
. B _ [No '] gli— tl 10— 11
nllrfooE[|Wn|i|S] _< ) § 16;. 1% - as.

ij=1 m

This finishes the proof in this case. O

Since in the main proof we want to treat simultaneously the cases og = 1 and ¢ > 1, we have
to introduce some additional notations whicih will have their counterparts in the case ag > 1. So
for ag = 1, we set Ny, (x) := Ning (x), Ny :=NJ5 R, = RL,,,mJ, GF:=G¥F and G* :=
G*. We fix ¢ > O such that ¢ < 1/(3 +4p) and 3 +4y)e < XL — 3. If ,3 < 4/3, we assume
moreover that 3 — 4“““1’# + 7¢ < 0 (with y of item (iv) of Assumptlon 1). If B >4/3, we
assume that 3 — % + (49" + T)e < 0 (with 8’ of item (vi) of Assumption 1). We write F

for the sub-algebra generated by S. We consider the set €y € F on which (GY.G,,n"tN})
converges to (G, G~,0). When o = 1, we will make no distinction between E and E nor
between P and P.

4.1.2. Case ag > 1

For every b,t > 0, we set

nl/ep 0
Fus®) = [ Ny, Fubyi= = [ N (L) .

—n
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b 0
F;(b) = / Li;(x)dx and F;(—b)= —/ Li(x)dx
0 —b

(recall that L (x) is the local time of (¥;), at position x and up to time s). Let us define

m /B m ﬂ
G i=a,? 3 |3 0N (ON ()] and - G i= /R | 2o 0La WL, )] dxdy.
x,yeZli=1 + i=1 +
Lemma 9. The finite-dimensional distributions of (Fy 1, ..., Fu 1, G,T, G, )n converge to the
finite-dimensional distributions of (Fy,, ..., Fy,,, G, G7), i.e. (Fu(bj))i=1,...m,j=1,..q4, G\
G, )n converges in distribution to the random variable ((Fy;(b}))i=1,...m, j=1,...q G*,G ), for
every integer ¢ > 1 and every real numbers by, . . ., by.
. _ b 1/a -1
Proof. Let us write L,,(7; a,b) :=n"1 leranl/ﬂ Nins)(x) for any a < b. Due to [17],
b;
(La(t; ai, bi))l-zlwl n_)—+>oo< ; Ly (x)dx)i:] y (19)
for any positive integer / and for any real numbers ay, ...,ay, by, ..., by, t1, ...ty satisfying

a; < b; and 0 < t;. We now follow the proof of Lemma 6 of [17]. For any real number t > 0 and
any positive integers n and M, we define

Vi@, M, n):=1>"% Z |T(k,5,n)|ﬁ,

k|, |el<M
where
m [k+DnV/¥—1 [(¢+1)nl/*1—1
Tk tomy=n"23)6; > D N Ny )
Jj=1 x=[ktnl/] y=[Ltnl/a]

As in [17], we decompose G,jf — V*E(z, M, n) as follows
Gy — VE(r, M, n) = U*(x, M,n) + Wi(z, M, n) + W3 (z, M, ),

with
B

m
Ut M.n)i=n"20 3" 130N ON e (9)]
(xay)EAT,M.n j=1 +

where Ay prp =72\ {[—Mtn'/*7, ..., [((M + Dtnl/*7 = 1}?,

+ - +
Wi(z, M, n) = Z Z n Mﬂwl,k,i(x’ y),
[kl |E1=M (x,y)E€Ekn X Epn



344 B. Franke, F. Pene and M. Wendler

where Ej , == {[ktn'/*7, ..., [(k + Drn'/*]1 =1},

B

m
Wit @ 3) = |30 N ) ON ey (0| = n?P FEC#Ee )™ |T (k. )]
Jj=1 +

and

WE@ My = Y (nP P GE #EL) P - ) Tk e
kI, Jel=M

The proof follows now in five steps:

(1) Observe that, due to [17], Lemma 1, there exists a function 7 satisfying limy—, 4 7(x) =0
such that

supP(U*(z, M,n) #0) < supP(3x : [x| > Mn'/* and Ny, | (x) #0)
n n (20)
=n(Mr).

(2) We prove that there exists some K > 0 and u > 0 such that for all M > 1 one has

supE[|WE(z, M, n)|] < K (M1)*t". @1

We first do the case B < 1. As usual for p > 1 and for a function f € L7 (2, P), we write || f1|,,
for (E[| £|P1)'/7. Using the fact that ||a|} — |b|%| <2!=#|a — b|#, we have

]

20~ I]E[ Wlke(x y)|]

{3

>0 Nty ) )Nyt ) (9) — n> GEgn#Een) ™' T (k. €, )

B
m
D 0Nt ON iy (9) = n* BEx o#E )~ T (k. €, n)
Jj=1 2
m B
<HEEHEL) DD Y 0Nl s ON it (0 = Nty () Niey ()
J=1(x".y)e€EknxEpp 2

< (HEx o#Ep,) P2

812
(Z 6; Z > (Nt g GIN 1 3 = Ning ) (X)) Niwe 1 () ||§> ;

i=l1 J=1 (', y)EE  n X Eqn
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due to the Cauchy—Schwarz inequality. Now we have to estimate

S B[Nt ONpat ) = Niweyy () Niwey (0],
(X/’y/)eEk,n XEl,n

for (x, y) € Exn x Eg . To this end, we use E[lab—a''|*] <2(al|{1b—b' |5+ la—a' 51613
together with the fact that

E[|N,(y) — Nu(2)[*
supE[(Nn(x))4] =0(n4—(4/a)) and  sup [IN.(») 20:2(2)| 1_ 0 (n?2/%)
X y#z |y - Z|
(see, for example, [16], page 77, for the last estimate). This gives,
2 _1 4—
E[ [Nt 1 (Nt 10 = Ny () Niy ) (6)| 7] = €04, (22)

forevery (x, y), (x', ) € Ex.n x E¢, and for some C > 0 independent of (t, M, n, k, £). There-
fore, we obtain

E[|WE (@, M, n)|] < €M + 1)22+P2@D,

where C’ does not depend on (t, M, n). From this, we conclude in the case g < 1.
When B > 1, we use |lal% — |b]%| < Bla — b|(la]?~! + |b|P~1) combined with the Cauchy—
Schwarz inequality and obtain

E[|W1j,tk,e(x’ y)|]

SBHEHE) D0 D (Nt N () = Nty () Niws (7))

j:1 (X/ay/)eEk.nXEI{,n 2
m B-1
< |10 Nyt ) ON iy )|+ (0P GExa#Een) ™ [T k. £,m)])P !
Jj=1 2
m
< BHEx#Ec) ™' ) 161 2. | (Nt 1 CON e () = Nty ) () N 1 (3)) [

Jj=1 (x,»y/)EEk,nXELn

m B—1
_ _ -1
D 0Nt (N g () + 0P 2 HE #E) P Tk, e m) | )

g

2(8-1
i 206-1)
< C(x*Inte)? (SUP“ Nty () “421/(3ﬁ7—21)
x/

+ nzﬁfz(‘tnl/"‘)zfzﬁ (}172(‘1,'111/"‘)2 sup|| Nint,) (X/) ”i(ﬂil)ys_l),
X/
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due to the Cauchy—Schwarz inequality and to (22). Hence, we have
E[|W1:tk J(x, y)|] < Ol @ D/22=2/e, (1=1/02(B=1) _ /7 (@=1)/2,,2p(1=1/c)
for some C’ > 0 and so
E[|W1i(r’ M,n)|] < C"2M + 1)2g2HE@=D/2,

where C” does not depend on (r, M, n) and we conclude in the case when 8 > 1.
(3) We notice that

k+DT pE+DHT M B
/ / Ze £, ()L (y) dx dy
It

+

VE@ M) =12 Y
Ikl lel<M

converge to G* as (t, Mt) = (0, 00), since the local times x — £; ; (x) are almost surely con-
tinuous and compactly supported (see [17]). '

(4) We observe that, for every choice of (r, M) the sequence (Wzi(r, M, n)), converges in
probability to 0 as n — oo. Indeed, due to (19) and since T (k, £, n) = Z]”-’:l O;Ly(tj; kT, (k+
D)L, (t;; £, (£ + 1)T) we conclude that for every (k, £) the sequence (T (k, £, n)), converges
in distribution to

(k+D7 (e+D7
Ze / Ly, (x)dx / L, (y)dy.
lt

We conclude using the fact that (nzﬁ(l_‘s)(#Ek,,,#Eg,n)l_ﬁ — 12728y, converges to 0.

(5) For every choice of (t, M), for every g and every real numbers by, ..., by, the sequence
of random variables ((F, ; (D;));,;, V*(z,M,n), V= (1, M,n))), converges in distribution to
((Fy (b)), j» VH(t, M), V™ (z, M)). Indeed, due to (19), (L, (t:; 0, b)))i=1....m.j=1....q» (La(ti;
Lr, (€ 4+ 1)T)i=1,...m,e)<m) converges in distribution to ((fob‘f Ly, (x) dx)i=1,...m,j=1,...q>
(f(£+1)f Ly;(x)dx)i=1,....m,je)<m) (With the convention L, (¢; 0, —b) = —, x—l—(nl/abw N (x)
if b > 0). We observe that

Ning, ) (sgn(bj) [nV/%|b; (1)

n

| Fui, (b)) — Lu (150, b)) | <

which converges in probability to 0. Moreover, we recall that

Vi(r,M,n)::rz_z’3 Z |T(k,£,n)|i
kI, 1e|<M

and that T (k, £, n) = Z;’-’Zl O;Ly(tjskt, (k+1)T)L,(t); €, €+ 1)T).
(6) Now we conclude. Let z; j, z+ € R and ¢ > 0. Due to points 1, 2 and 3, we fix M > 1 and
T > 0 such, for every n, we have

EHei(“G'T“‘GD _ ei(1+(V+(r,M,n)+W2+(r,M,n))+z_(V’(I,M,n)JrW{(T»Ms")))|] < (23)
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and
E[iei(z+v+(r,M)+z,V—(r,M)) _ ei(z+G++z,G—)|] < 24)

Due to points 4 and 5 for this choice of (M, 1), there exists ng such that for every n > ny,
E[|eiZ+W;(r,M,n)Hz,W;(r,M,n) _ 1|] <e (25)

and

B[ i 2 Fis @iz VT (2. M)+2- V7 (2. M))]

(26)

_ E[ei(zu 2ij Fug; (b)) 424 VT (2, M n)+2- V’(r,M,n))]| .

Hence, for every n > ng, we have
,E[euz,-,_, zij Fy, (b_,‘))+z+G++sz*)] _ E[ei(Z,;, 2ij Fug; (b_,-))+z+G,j+z7G;)]’
<3¢ + |E[e! Cis 3y GV @My V™ (.M
— B[ i Py OV M)tz (e M)
<de,

where we used (23), (24), (25) for the first inequality and (26) for the last one. U

Let C be the set of continuous functions g : R — [—1,,, t,,]. We endow this set with the fol-
lowing metric D corresponding to the uniform convergence on every compact:

D(g.h):=Y 27" sup ]\g(x)—h(x)y.

N>1 x€[—N;N
Lemma 10. The sequence (Fy ., ..., Fy.1,)nen is tight in (C, D)™.
Proof. It is enough to prove the tightness of F, ; for all i € {1,..., m}. To simplify notations

in this proof, we use F, to denote F, ;,/t; and F to denote F;, /¢;. As usual, for any f € C, we
denote by w(f, -) the modulus of continuity of f. Since F,(0) = 0 for every n, it is enough to
prove

Ve > 0, lim lim supIP’(a)(Fn, 8) > 5) =0 27)

30 p—>+o00

(see [2], page 83). Let ¢ > 0 and g9 > 0. Let M > O be such that P(|F(M) — F(—-M)| <1 —
(e/2)) < &9/2. Since (F,(M) — F,(—M)), converges in distribution to F(M) — F(—M), we
have

limsupP(| F, (M) — Fy(—M)| <1 —(¢/2)) < P(|F(M) — F(—M))|
n——+00 (28)
<1—(g/2)) <e0/2.
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Let 69 > 0 be such that, for every é € (0, 89), P(w (F, §) > &/2) < go/2 (since F is almost surely
uniformly continuous). Since the finite-dimensional distributions of (F,), converge to the finite-
dimensional distributions of F, we have

. M M 3
hmsupIP’(Elk = —[?W, [?W | Fu(k8) — F((k + 1)3)| = 5)

n——+00
) (29)

o= 2} 4]

€0

5P<w<F,a) > %) <2

F(ks) — F((k + 1)8)| =

N ™

Putting (28) and (29) together, we obtain that, for every § < §p, we have

. . M M £
limsupP(w(F,, 8) > ¢) < hmsupIP’(Elk =— [—W e [—W F,(k8) — Fy(tk + 1)8)| = —>
n—+00 n——+00 ) 3 2
+limsupP(| F, (M) — F,(—M)| <1 — (¢/2))
n——+00
and so
limsup]P’(a)(F,,, 8) > 8) < &p. 0
n—-+00
Due to Lemmas 9 and 10, the sequence (Fy ¢, ..., Fus,» G;f, G,, ) converges in distribution

to (Fy,....F,,GT,G7)in (C. D)™ x (R, |- ).
We fix ¢ € (0, 86/(1 + B)) such that 3 +4B)e < 1/a and 3 +4y)ea < %’ — 3 (this is pos-
sible due to y > 38/4). If B < 4/3, we assume moreover that % - %g‘y) + 7¢ < 0 (with y

of item (iv) of Assumption 1). If 8 > 4/3, we assume also that é(S — 4(9%1)) + (46" +TNe <0
(with 6’ of item (vi) of Assumption 1). Using for example, [16] for the maximal occupation time
and Appendix of [8] for the range, we know that (n~1/*~¢R,, n(/®)—1-¢ N;¥), converges almost
surely to 0. Therefore, the sequence (Fy ..., Fus,,Gl, Gy, n~l/e—¢R, n(l/"‘)_l_gN;l")n
converges in distribution to (F;,, ..., Fy,, G*,G~,0,0)in (C, D)" x (R, |- |)4.

Now using the Skorokhod representation theorem (see [12], page 1569) (since (C, D) and R
are separable and complete), we know that there exists a probability space (€2, F, P) with random
variables

(Fuis-eos Fnty. GGy Ra N) - and (Fy,.... F,,,GT.G™)

defined on (2, F, ]f”) such that

e for every integer n, (ﬁn,,l, e, Fn,tm, G,J{, G;, Ién, IV,T) has the same distribution (with re-
spect to P) as (Fy4ys ..., Fuy,» GF, G, Rinty)s Ny, ) (With respect to P) in (C, D)™ x
®RIDY

o (Fy,..., F,,G",G7) has the same distribution as (Fy,, ..., F;,,,G",G7) in (C, D)" x
®, |- D%
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o the sequence (ﬁn,g . I:“,,;,m, G, G, n Vet R, nM/@=1=¢ N*) - converges almost
surely to (Fy,, ..., F,,, G*,G~,0,0) in (C, D)" x (R, |- )*.

Observe that, for every x € Z andevery n > 1, M, (x) : f > n(f((x+ Dn= V%) — f(xn=1/%))
is a continuous functional of (C, D) and that N, | (x) = 9, (x)(Fy, ;) (foreveryi e {1,...,m}).
Therefore, for every integers x and n > 1, for every i € {1, ..., m}, we define

Nty (x) := Ny (%) (Fp p)).-
Observe that, for every integer N > 1,

(W (x))xe{—N ,,,,, NYiie(l,...m)’ Ny, Ru. G7)

.....

In particular, IVM,. (x) takes integer values and 0 < Nn,ti x) < Nn,,m (x). Moreover, we have the
following result.

Lemma 11. Let n be a positive integer. We have

sup Ny i, (x) < N¥, (30)
X€Z
#{x €Z: Ny, (x) >0} =R, (€29)
and
m p
G=n"P 3 "1 0Ny, ()N () (32)
x,yeZli=1 +

Proof. (30) comes from the fact that, for every integers x and n > 1, N; — ]\7,,, 1 (X) has the same
distribution as N\, — N, (x) which is nonnegative.
To prove (31), we observe that

Ién—#{er:l\?n, (x)>0}: lim (Ié,,—#{xe{—N,...,N}:Nn,tm(x)>0}).

1
" N——+o00

But, for every N > 1, Ié,, —#{x e{—N,...,N}: Nn,tm (x) > 0} has the same distribution as
Rint,) —#x € {=N,..., N} : Ny, (x) > 0} which converges to 0 as N goes to infinity. This
gives (31) by uniqueness of the limit for the convergence in probability.

Finally, we observe that G,jf —n2p8 Zx,yeZ >0, QiNn,t,- (x)Nn,t,- (y)|i is the limit as N
goes to infinity of
B

m
> 0N 1 (N 1, ()

i=1

S

x|, lyl<N

+
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which has the same distribution as

B
m
Gy =nP 3" 1Y 0N i) N s ()
IxI,ly|<Nli=1 +
But this last random variable converges to 0 as N goes to infinity and we obtain (32). ]

Let us write (2, F,P) for the original space on which & and S are defined. We denote F
for the sub-o-algebra of F generated by £ and P¢ for the restriction of P to F:. Now we define

(R, T, P) as the direct product of (Q2, Fz, P¢) with (Q, F, P). We observe that P¢(-) = P(-| F).

Lemma 12. For every integer n > 1, the random variable 2, := > oxyer S 6i Ny, (x) X
Nn,t,- ("h(Ex, &) has the same distribution (with respect to P) as 2, = Zx,yEZ Y6 x
Ning; | () Ning | (W) h(Ex, Ey) (with respect to P).

Proof. We proceed as in the proof of Lemma 11. Observe that 2, is the limit as N goes to
infinity of 2, v := ZIXI,I}'\SN Y1 0iNy i (X) Ny, () (6x, §y) which has the same distribution

as mﬂ,N = Z|x|,|y|§N Zlmzl eiNLnt,'j (X)NLntiJ OMh(Ey, %—y)' But 2, =limy_ 4 an,N- We con-
clude by unicity of the limit for the convergence in distribution. (|

Let Qo C 2 be the set of P-measure one on which (F,,, ..., Fny,, G, G, n~/*¢R,,
n(/0=1=¢ Ny converges to (Fy,, ..., F;,, GT,G™,0,0) in C" x R*.

4.2. A conditional limit theorem for some associated point process

To simplify notations, we set

m
Gnxy =D OiNpy(ONwy () ifag>1 (33)
i=1
and
m
Gy = Y Oijdin@)dja(y)  ifag=1. (34)
i,j=1

With these notations we have
~ 1 _
Gn = an 4 Z |§n,x,y|fﬂc-
x,y

For every @ € 2o, we consider the point process A/, on R* defined by

Na@.)d2) = Y Sty e s, (@2)-

X, YEL:XxFY
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We already mentioned in (7) that a,, ~ cn®(E[R,1)*#~2 for some ¢ > 0 and observe that in any
case

Yy > 0, a;l= 0(n72+2/°‘072/(“°’3)+”°). (35)
Moreover, note that for the ¢ > 0 which was fixed in the previous subsection we have
plfeo=t=e e 25
and
n~lVwo—eR 250,

In the following, we will prove that the sequence of point processes N,;n € N converges
toward some Poisson point process for P almost all & € Q. We will essentially follow the notation
from [22] and denote by M,(IR*) the set of point measures on R*. Further, M ,(R*) is the
smallest o -algebra containing all sets A of the form

A={meM,(R*);m(F) € B}

for some F € B(R*) and B € B([0, co]). We introduce the following metric on R*

[log(x/y)], if sgn(x) = sgn(y);

d(x,y):=
) [|10g|x||+|10g|y||+1, if sgn(x) # sgn(y).

With this metric R* becomes a complete separable metric space. We will denote by Cg (R*)
the space of continuous functions f : R* — R with compact support with respect to this metric.
A sequence of Radon measures 1, is said to converge with respect to the vague topology toward
some Radon measure y if for all f € Cx (R*) one has

lim fd,un=/ fdup.
It is well known that the vague topology on the Radon measures can be generated by some
metric which turns it into a complete metric space (see [22], page 147) and that the set of point
measures is closed in the vague topology (see [22], page 145). We will say that a sequence of
point processes NV,;; n € N converges in distribution toward a point process A if for all bounded
vaguely continuous functions F : M, (R*) — R we have

lim E[FWN) ] =E[FW)].

Proposition 13. For every @ € Qo, Nu(@, ) converges in distribution (with respect to Pg) to a
Poisson process Nz on R\ {0} of intensity ng given by

(co+c)GH(@) + (co — )G (&)

no((d. ) = (@ =) :
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and

(co+c1)GH(@) — (co — c1)G™ (D)

(= ~a) = @ =) .

(with convention oo™P = 0) for every 0 < d < d’ < +oo0.

Proof. Our proof is based on some method presented in [10]. Due to Kallenberg’s theorem [22],
it is enough to prove that, for any finite union R = Ulel Q; of intervals, where Q; :=[d;, dl-/ ) C
(0, +00) or Q; = (—d!, —d;] C (=00, 0). We have

im E[N, (R)IF](@) = na(R) (36)
and
Jim PN, (R) = 0|1F) (&) = e "B, (37)

We start with the proof of (36). By linearity, it is enough to prove it for a single interval Q. For
any interval Q = [d,d") C (0, +00), since £ is a sequence of i.i.d. random variables, we have

EN(OIF]= > (P(Aury Py, -0 + PBury| O, , <o)
x,yeZ%:x+y
with
An,x,y = {and|§n,x,y|_l <h(¢1,%) < and/|§n,x,y|_l}

and
Bn,x,y = {and|€n,x,y|_l <—h(1,%) < and/|§n,x,y|_l}~

Observe that, due to (35) and to 1(7,;‘ = o(n'~1/20t#) we have

Vyo >0,  a;'suplury < Cay ' (NF)? <n 2 @P+2e4n, 38)

X,y

for n large enough (and for some constant C > 0 depending on 6; or on ¢; ;). Now, combining
this with item (iii) of Assumption 1, we have

sgn(&p,x,y) +1

> Pyl Py =cold? —d Pa? ST gyl >

X, yixgy x,y€Z% xy

X (l+0( sup |Lo(z)—co|))+0(1)

7>n2/(@P)=2e=1g

d/_,g) G,T + G,

=co(d™F - S o),
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since ¢ < 1/(apB) and since, for n large enough,

Z (e y P < n/0te g 2B=CO/0+258 _ (1),

xeZ%

since ¢ < 1/((1 4+ 28)ap). Analogously, we have

~ - N 1 —sgn(&n,x,y)
> PBuay Pl o =i —dPal YT gyl
X,Y:XFEY x,y€Z% x £y
X (1+0 sup ‘Ll(z)—c1|))+o(1)
7>n2/(@P)=2e=1p
5. GH -G
:Cl(diﬂ—d/ ﬂ)% +0(1)

We obtain (36) for Q = [d,d") C (0, +00) using (1), (2) and the definition of G,jf and of G*.
The proof of (36) for Q = (—d’, —d] C (—00, 0) follows the same scheme.

Now let us prove (37). Let K > 1 and let R be a union of K pairwise disjoint intervals
O1,..., 0k with Q; := (d;,d!] C (0, +00) or Q; := [—dl.’, —d;) C (—00,0). We write P,f’ for

1

the Poisson distribution of intensity n;‘;’ (R) :=E[N, (R)|f 1(®). On Qo, due to (36), we have
e (R — P2 (0)| = 0(1).
Hence, to prove (37), we just have to prove
[P(NV,(R) =0|F) — P,(0)| = 0o(1). (39)

Following [1] and [10], we introduce the following notations. For every x,y € Z4% such that
x # y, we define the random variables

K
Loy = ) Vner 6)eanGrrn)-1 011
i=1

Observe that

N, (R) = Z I,y andso 7,(R)= Z E[L | F]. (40)

x,y€Z% x+y x,y€Z4% x £y

We will use the following lemma, whose proof is postponed until the end of this paragraph.

Lemma 14. We have

[P(No(R) = 01F) — P, (0)| < min(1, (. (R)) ") (A1 + A2,
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ﬁ},

with

A=Y E[Ix,y|f-]E[1x,y+ Yo Loy

(x,y)eM (x’,y’>€M<5,1;
A= Y EI:Ix’y(Ix,y-i- > Ix/’y/>‘]3}
(x.n)eM ' yhem®

and with the notation M)Ek; ={(x,y) e M #{x',y}N{x,y} =k} and M :={(x, y) € Z* :
x #yh

To conclude, we have to prove that A; and A, converge to 0 as n goes to infinity.

We set d := min; d;.

For Ay, using (1), (2) and the definition of I, ,, we observe that, for y > 0 small enough, we
have

AL <4K* Y0 N P(daglin x|t < |he E)]IF)
x,yeZ x'eZ

x P(dan|Gp x| < [R(Ex, E0)

< Cd™ a7 (ILolloo + 1 L1 100) R (M)

< O(n~ oot @PEIEtN) = (1),

| F)

using (48 + 3) < 1/ag, (35) together with the definitions of Ién and ]\7;[k and with C some
constant depending on R and 6; (or 6; ;).

Now let us study A,. We have, for yy > 0 small enough,
| F)

Ay < 4K2 Z P(dan|§n,x,y|_l = ’h(g)w gy) adanMn,x,x/rl = |h(gx’gx’)

x,y,x’eZdU

<4CoR3ay™ (N3)Y

< O(n3/010+(3+4)’)6*(4V)/(a0ﬂ)+3/0) =o(1),

due to (3 +4y)eag < %’ — 3 (recall that this is possible since y > 38/4) and where Cj is a
constant depending on d, R and 6; (or 6; ;). ]

Proof of Lemma 14. The proof of this lemma follows the line of arguments that can be found
in [10]. Let f be defined on N by f(0) =0 and

Fmy = em® =D b 101) By (1, +00)).

(1 (R))™
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We will use the two following inequalities (see [1], pages 400 and 401)
[P(No(R) = 01F) = Pu(O)| < [E[1a(R) f (N (R) + 1) = Nu(R) (NG (R))IF]| (4D

and

. -1
sup| f(m + 1) — f(m)| < min(1, (n.(R)) ). 42)
m
Now we observe that, for every (x, y) € (Z%)? such that x # y, we have

Na®y= D0 Loy = Loy + N0+ MR “3)

X,y
X!,y ez x' £y
with Nn(l))cy = Z(x/,y/)eM}{)v I, . Starting from (41) and using (40), we have

[P(NV,(R) = 0.F) — P,(0)] < A} + A),

with
A@;:‘ > E[Ix,y|ﬁ]E[f(Nn(R)+1)—f(/\/n(?,g,yﬂ)lﬁ]‘
x,yeZ: x+y
and
Aim| X B[l fN(R)IF] - B FIEL (G, + DIF]
x,yeZ% x £y

Now, using (42) and (43), we obtain

[N R +1) = FN - 1)] = sup| o+ 1) = fom)] > (Na(R) =N )
> (44)
< min(1, (1 (R) ") (Fey + NS )

and so A} < min(l, (1, (R))"1)A;. Observe that, conditioned with respect to F, I,y and Nn(f),?,y
are independent. Therefore

A/zz‘ > B[ {r @) = N, + DJIF]

X,y€Z% x4y

Now, using (42) once again, we obtain
[N (R) = FNG2, + )] < min(L, (nn(R) ™) (N (R) = N2 )
< min(1, (12(R)) ) (e +AE,)

and so A’2 < min(1, (n,(R))~!)A,, which completes the proof of the lemma. [l
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4.3. Proof of the convergence of the finite-dimensional distributions

In this paragraph, we will finish the proof of the convergence of the finite-dimensional distribu-
tions. Similarly to the proof given in [10], we will use the convergence of the associated point
process and the continuous mapping theorem. The approach is based on the following observa-
tion:

'Y G e &) = / wdN; ).

X,y R

However the functional is not continuous and we will have to do some truncation. This will be
the purpose of the three following propositions.

Proposition 15. Let § > 0. For P almost every & € Q, the sequence of random variables

23 = s MM e = [ W00 (0D AN ()
X,y

converges in distribution to fR* w5, +00) (W) AN® (w).

Proposition 16. For every yy > 0, we have

lim lim supP(|Tn(8)‘ > yolf) =0 P-a.s.,
s n—00

—0
with
L) =ay"' ) GnehCr 8yt heenizsy  FB=1
X,y
and
» 2 A
To®) =, ' ) Gy G 50 o aer y1=s) T+ (€0 1) 5-10n  WB>1L

x,y

Proposition 17 (See [23]). Let P be a Poisson process on R* with intensity admitting the density
i .8|Z|_ﬁ_l(a1{z>0} + bl{z<0})-

If B <1, then fR*\[—a,al wdP(w) converges in distribution, as é goes to 0, to a stable random
variable with characteristic function ®q4p 4—p g With the notation of (4).

If B =1, then fR*\[—a,S] wdP(w)—(a—>b) f;_oo ‘;% dx converges in distribution, as § goes to
0, to a stable random variable with characteristic function ®,p 4—p.1, with the notation of (5).

1-p
If B > 1, then fR*\[—a,a] wdP(w) — (a—Db) ﬁg_l converges in distribution, as & goes to 0, to
a stable random variable with characteristic function ®41p q—p, g With the notation of (4).

The following corollary is a consequence of Propositions 13, 15, 16 and 17.



Convergence of U-statistics to integrals of Lévy sheet 357
Corollary 18. We have

lim E[eia,,—l Loy brxy @hE060| F] =

n——+00

(cotenGH@).(co—enG-@).p (1>

for P-almost every & in Q and

lim E[eia;l Zx,y fn,x,yh(éx»éy)] — E[@

N> +00 (Co-‘rc'l)(;*,(Co—Cl)Giﬁ(1)]'

Proof. Observe first that due to the Lebesgue dominated convergence theorem it is enough to
prove the first convergence. Let §2; be the subset of 2y on which the convergences of Proposi-
tions 15 and 16 hold and let @ € 2. To simplify notations, let us write

Vi = an_l Zé‘n,x,yh@x» &) and W,(d):= an_l Z Sn,x,yh 6y, Ey)l{a;l|§n’x’yh(§h5y)‘>5}-

X,y X,y

Wesetk :=0if 8 <1andx := (co — cl)% if B > 1 (recall that we assume co = c; if 8 =1).
We also write W (8) := fR\[—M] w dNg(w) (Where N is the Poisson process of Proposition 13,
which is defined on some probability space (€2, 75, P;) endowed with the expectation E;). Let
& > 0. Due to Propositions 16, 13 and 17, we consider § > 0 and nq such that, for every n > no,
we have

P<|Tn(8)| > %)ﬁ) @ <z 45)

and such that

[Ba Mo — 0 i crmeni-@ns D] < ¢ (46)
Due to Proposition 15, we consider n; > ng such that, for every n > n|, we have
[E[¢!""®| F](@) — Ea[e!"o®]| < %. (47)
Now, let no > n1 such that, for every n > ny, we have
R (48)

For n > ny, we have

'Vn T bt ~ ~
|[E[e' ™| F]@) - q’(co+c1>G+<¢b),(co—c.>G*(£)>,ﬂ(1)|

< = + |E[¢!"|F](@) — Eg[l Wa®—3"FCT@] | due to (46)

< = + [E[e/ VP00 Fl(@) — B[l o]

AN ™ N ™



358 B. Franke, F. Pene and M. Wendler
2 , B A~ .
< Fg + |E[ez(vn+/«81 ‘an)|]-‘](5)) _ E(;)[e’(wd)(‘s)]} due to (48)

- %8 + |E[e WO+ T F (@) — E5[el Mo ®]|
S%HE[ei(Wn(&mw)) — Wi | Fl@)|  dueto 47)

4e £ ~\, .
§€+2P<|Tn(8)]>g|}">(w)§8 due to (45). 0

Proof of the convergence of finite-dimensional distributions in Theorems 3, 5 and 6. Admit-
ting Propositions 15, 16 and 17 for the moment, let us end the proof of the convergence of the
finite-dimensional distributions. Due to Corollary 18, we have

lim E[eia;l Zx_y {n.x,yh(éxfy)]

n——+00

= E[¢(co+c1)é+,(c0—cl)éaﬁ (1)]

+00 1
=E|exp —/ wdt (co+c1)G+—i(co—cl)G_tanﬁ .
0 th 2

When o = 1, with the use of (10) and (14) , we obtain

-
lim E[elan Z’/)‘l:19j(ULntjj*ULntj_1j)]
n—+o0

N0 g [T sint , 7B
exp _KﬁZ(ti —1i_1)16;] A t—ﬁdt (Co+61)—l(Co—Cl)SgH(Qi)taHT

i=1

m
=1 ®wrenmze—2 pcocoriar— s OD-
j=1

This gives the convergence of the finite-dimensional distributions in Theorems 3 and 5.
When o > 1, due to Lemma 12, we obtain

P -1 .
lim ]E[elZF'B'/a" 0] = B[® ey 6+ (—enG-p (D] (49)

n——+00
with G* = [ [ Y0 6,L, (%)L, (y)|i dx dy. Let us recall that the right-hand side of (49) cor-

responds to the characteristic function of Zf”zl 0; fRz Ly (x) Ly, (y)dZy,y evaluated at one (see,
for example, [18] and Appendix B). ]

Proo~f of Proposition 15. To simplify notations, we also write Py for P(~|f)(cb) and E; for
E[|Fl(®).
We proceed in four steps:



Convergence of U-statistics to integrals of Lévy sheet 359

(1) We first use the continuous mapping theorem (see [22], page 151) to prove that for P-
almost all @ one has

/ zd/\/‘“(dz)—> / ZdN®(dz). (50)
(—M,—8)U(8,M) M,—8§)U(S,M)

The Poisson process N has P-almost surely only a finite number of points in the interval
(—M, —68) U (8, M). Moreover, one has P-almost surely that each of those points only carries
the mass one, since the Poisson process N is simple. Now, let ;o be a point measure with only
a finite number of points with mass one in (—M, —6) U (6, M) and let (u,),eN be some se-
quence of point measures which converges toward p with respect to the vague topology on R*.
Let {x1, ..., xp} be the support of u intersected with (—M, —6) U (§, M). According to [20] (see
Lemma I.14), there exists some large N € N such that for all n > N the support of ., intersected

with (—M, —6§) U (8, M) in exactly p point x( ), ..,xg') such that

hmx()zxi foralli=1,...,p

n— 00

It then follows that

14 p
nlrgo Zpn (dz) =n1ggo Elxi" = E lxz' =/ zu(dz).
= =

(—M,—8)U(8,M) (—M,—8)U(8,M)
(2) We now prove that for P-almost all & one has

/ 2dNP(d7) 250 as M — oo. 1)
(—00,—M)U(M,00)

This follows from the following equality which holds for P-almost all &

E; |:exp <it /OO ZN&(dZ)>i|
M

:exp<(co+cl)é+/M ﬁ%dx—i—z(co—cl)G / ﬁsmﬁ(f:) x)

and from the fact that one has

~ * cos(tx) — 1 sin(zx)
(co+cl)G+/M ,Bde—i-l(co—cl)G / B—pr dx

<2M P ((co+ e (|G| +|G7])).

This yields

oo ~ ~
E; [exp(z’t / zN“’(dz)>] — 1 for P almost all @ as M — oo.
M
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The convergence in probability follows from the convergence in law of || ;Io ZN®(dz) toward
zero. The other part f__ojg ZN®(dz) is treated in the same way.

(3) We now prove that for P-almost all @ we have

sup P (f zN,iZ’(dz) #* 0) —0 as M — oo. (52)
neN (—00,—M)U(M,00)

For this first, remember that

NP = ) ay G yh G 60 o e =y

X,YEZL

/(oo,M)U(M‘oo)

Thus this implies

P; < / N®(dz) # 0)
{lz|>M}

<Py(3x,y €Z:|ay ¢ur yh(Ex, §)| > M)

< Y Po(|he. &) > May|Gnxy ™)

X,YEZL

< Y C(Maylgusy) )"

X,YEZL

<CMPa P 3" gy lP=CMPGH— 0 as M — oo,
X,yeZ

since P-almost surely we have G;F — G as n — oc.

(4) We now use the previous findings to conclude. We consider an @ which satisfies all the
requirements from points (1) to (3) of this proof. For some given # € R and ¢ > 0, we use (52) to
find some M > 0 such that

sude)(/ N@(dz) ;é()) <¢/8.
neN (—00,—M)U(M,00)

By (51), we can assume without loss of generality that the M also satisfies

P; (l

Moreover, according to (50) we can find some ng € N such that for all n > ny we have

E; |:exp<it/ zN,f’(dz))] —E; [exp(it/ ZJ\/"D(dZ))}
(=M, —8)U(5, M) (=M, —8)U(8, M)

2dN®(dz)

> s/4> <eg/8.

~/(—oo,—M)U(M,oo)

<e/4.
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It now follows that

E; |:exp<it/ Z/V;?(dz))} —Eg,[t:xp(itf zN‘%dz))]’
(=00, —8)U(8,00) (=00, —8)U(8,00)
E; [exp(it/ ZN,f’(dZ)) (1 + exp(it/ an‘b(dz)) — l)]
(=M, —8)U(S, M) (=00, — M)U(M,00)
—E; |:exp (it / ZNd)(dZ))
(=M, —8)U(s, M)
X (1 —l—exp(it/ z./\f‘b(dz)> - l)”
(—00,— M)U(M,00)
E; [exp(z’t / z/\/,f)(dz))} —E; |:exp (it / zN‘%dz))} ‘
(=M, —8)U(S, M) (=M, —8)U(s, M)

=<

+2P; ( / N@(dz) # o) +2P; <t / dN®(dz)| > ¢ /4)
(—00,—M)U(M ,00) (—00,—M)U(M ,00)
. e
1
Since the right-hand side is equal to ¢ this finishes the proof of the proposition. ]

Proof of Proposition 16.

e When B < 1, we just prove that lims_,o limsup,_, . E[|T, (5)||]:'] = 0. Due to item (iii) of
Assumption 1, we have

E[|T.O|IF] < > E[ay  onryhGe 60N ne ez ]

X,y

) ~
< Z/o P(5 > ay ' [h(Ex. £y | > 21 F) dz

X,y

6 ~
=3 /O P((Ee 6600y | > anzlF) dz
X,y

8
< (IlLolloo + ||L1||oo)2/0 ay PPy yIP dz
X,y

an_’gSI_ﬂ 8
< (IlLolloo + IL1llo0) Y T ol
X,y

1-p

) ~
< (ILolloe + 1L loo) ;=5 G
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So lims_qlimsup,,_, o E[|7,(8)||1F] < lims_o(|Lolloo + [IL1llee)8'#/(1 — $)GT =0,
since 8 < 1.
e Assume here that 8 € (1, 2). Observe that, due to item (v) of Assumption 1, we have

E[h(1, &)1 &)1<m)]
= —E[h(1, &)1 6)1=m)]

+00 +0
= [ B8 < —max(ewn)az = [ B(hier. &) > maxcz. M) dz
0 0
+00
= M(B(h(61, 8 < ~M) —B(h(61. &) > M) + [ Plhter ) <) dz

+oo
_f P(h(&1, &) > z)dz.
M

But, due to item (iii) of Assumption 1, as x goes to infinity, we have

P(h(£1, &) > x) = cox P +o(x7F),
P(h(£), &) < —x) = cix P +0(x*/3),
1-g

+00

/ P(h($1,$2)>z)dz=co;_l +o(x'P),
+00 xlfﬂ

/ P(h(1, &) <—z)dz=clﬂ_1 +o(x'P)

and

+oo 1-p
Vx>0, / (P(h (€1, 82) > 2) + P(h(1. &) < —2))dz = (ILolloo + I L1ll0) a

B—1

Therefore, we obtain

_ B
E[h (&1, )1 ne . e1<my] = M ﬁ(ﬁ(cl —co)+eyu ), (53)
where limps_, {00 €7 =0 and supy,.gem < 0.
e When 8 =1, due to item (vii) of Assumption 1, we have cp = c¢1 and (53) holds glso true.
e Assume now that 8 € [1, 2). We will prove that lims_,o limsup,,_, . E[(T, (8))2|F1=0. We

have 5 - _
E[(T@®)1F]= Y. EllixyThwylFl.
x,y,x’,y’eZdO
with
-1 -B §'F B
Tn,x,y =a, h(&x, S}')Cn,x,y1{|h(§x,§)v)§n,xu\‘|§an5} +a, (co—c1) B_1 |§n,x,y|—

(recall that co = ¢y when 8 =1).
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— Contribution of (x, v, x’,y’) such that {x, y} N {x', y'} = @.
We set E for the set of such (x, y,x’, y). Let (x, y,x",y") € E. Since h(&,, ) and
h(&,,&,) are independent conditionally to F, we have

E[Tn,x,yTn,x/,y/L]}] = E[Tn,x,y|ﬁ]E[Tn,x/,y/|ﬁ]‘

Now, due to (53), we have

> ElT .yl F]

x,yeZdO

1— _
58 P Z anﬁ|§"’x’y|‘ﬁ~‘80n5‘§n,x,)'|7l'

x,yeZdO
Now, due to (38), for every yp > 0, if n is large enough, we have

-1 -2 2o+
a, sup |Cn,x,y|§” /(o B)+2e Y0

x,yez%
Combining this with lim,_, yo G;" = G* and with limy_, 4~ ey = 0, we obtain

limsup > E[T,...,[F]1=0, (54)

—+00
" x,yeZdO
since Be < 1/ag. This implies

V8 >0, lim sup Z E[Ty 1y Ty | F1=0.

nteo (x,y.x",y)€E)

— Contribution of (x, v, x',y') such that {x, y} = {x', y'}.
Let us write E; for the set of such (x, y, x’, y). Observe that

Z E[Y;z,x,yTn,x’,y’U—:.] <2 Z E[Tnz,x,ylf]

(x,y,x",y")€E, x,yez%

First, using item (iii) of Assumption 1, we notice that

a2 > E[(hEL ) y) e £ sl<ant) 1 F]

x,yeZdO

82 ~
= ¥ [ BWE<a i gy | < 817)

x,yeZdO

82
= Y [ B(VE< o her 06 |1 F) dz
x,yEZdO 0
82
< (Lolls + 1200) 2 [ @ PaPPig 1P 2

x,yeZdO
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§200=p/2)

< (ILolloo + IL1lI0)ay? > |zn,x,y|ﬁm
x,yeZdO
§2F

Therefore,

2 ~
lim limsupa,? 3 7 E[((E1,€)2n.v.) Wit &2y 100 F] =0. (55)

>0 p—+oc0
x,yeZ%

Second, using (35) and the definition of ]\7: and Rn, for every yp > 0, for n large
enough, we have

25228 25228 -
> ((co—cl)zﬁg—l)zwnmﬂ)‘_@o—cl) D RN

an—Zﬁ B — 1)2 a
x,yez%

< n—2/a0+28+4f58+y082—2,3 )

So, since ¢ > 0 satisfies (3 +48)e < 0[1—0 we have that

252-
lim limsupa,, 2 Z ((60—61)2ﬂ )2|§nxy| >= (56)

§—0
—Yn—+oo x.yeZ o (,3
Finally, this shows

lim lim sup Z E[Tn,x,yTn,x/,y’|f] =0.

§—0
oo (x,y,x",y)€E?

— Contribution of (x, y,x’, y'") such that #({x, y} N {x’, y'}) = 1.
Let us write E3 for the set of such (x, y, x, y’). Observe that we have

> ElliyThvylFl=4 > E[Ty .y Tnx.c| 1.
(x,y,x",y)€EE3 XV, ZXFEY, XFZ,VF#Z

* Assume that 1 < 8 < 4/3. We set Uy, x y := an_lh(i:)méj-y)é‘n,x,y1{|h(.§x,Sy);,,‘xvy|§a,,8}'
Observe that

_ ps'~?
Tn,x,y = Un,x,y +a, ﬂ(CO —c)———r 5 — |§n X,y |ﬂ (57)

(recall that we assume cy = ¢ if 8 = 1) and that, due to (53),

E[Un’x’yu?] :a;ﬁ&l—ﬁwn’x’yﬁ[(cl — Co)% + 8“n5|§n,x,yli|' (58)
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Now, (38) ensures that

i L =o. 59
nBTwi‘ffeanam,x,w 0 (59)

Moreover, we observe that, due to (35) and to the definition of N,’{ and of ﬁn, we have,
for every yp > 0 and every n large enough,

_ 53 0p nd
Z a, 2ﬂ|§n,x,y|ﬂ|§n,x,z|ﬂSRgan Zﬁ( ;:) 4

x,y,z€2%

< n—l/a0+3£+4ﬁe+yo .

Now, since (3 +48)¢e < L we conclude that

g
limsup Y ay P |tn 0zl 6wy P =0. (60)
n— 400 d
x,y,z€Z

Observe moreover that, due to item (iv) of Assumption 1, we have

E[| Un,x,y U}’L,X,Z | |ﬁ]

< f«) E)ZP(a;1|h<sl,sz>;n,x,y| >u, a, (€1, E3)Cnx.2| > vIF) dudv

r §
-1

<Co a, |§n,x,y|+/ .
a

n1on,x.zl

u—yanﬂ/ |§n,x,y|y du:|

B )

-1
X |a, |§n,x,z|+/l
a

v—ya;V [Sn,x,z 14 dvi|

L ; ‘;ll,x,z‘
— _ —1 1—
81V —ay oY
-1 1 n n,X,2
<o a, |§n,x,y| + 1—y any|§n,x,y|y
- _ —1 1—
877 —ay on '
-1 n n,x,z y
X ay [Cnx,zl + an |§n,x,z|y
i I—y
—2y/ v , .
<Csan ™" Cn,x,yCn,x.zl where y* = min(1, y)

for n large enough and some Cs > 0. Indeed, due to (38) we have an’1 supy y [&n,x,y| <

1 for large n. Again using (38) and due to the definition of Iém for every yp > 0, we
have

~ ~ —2 / ’
Z ]E[|Un,x,yUn,x,z||f] =< CﬁRgan v Sup|§n,x,y|2y

x,y
x,y,2€Z%

< n3/010*(4V/)/(0!0ﬂ)+7€+V0’
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for n large enough. Recall that we have chosen ¢ such that = — —/3 + 7¢ < 0. Hence,
we obtain

Vs >0, lim sup Z [1Un,x,yUn,x.21] =0. (61)

n—400 X,9.2
Now putting (57), (58), (59), (60) and (61) all together, we conclude that
¥6>0, limsup > E[Tx,ThwylFl=
n——+00
(x,y,x",y)€E3

* Assume now that S > > 4. Observe that, with the notation of item (vi) of Assumption 1,
we have

-1
Thxy =ay é.nﬁx,}'h(anﬂ{,,"m,\*1)(€xa &y)-

Due to this item (vi), to the definition of ﬁn and to (38), for every yp > 0, we have
almost surely

Z }E[Tn X,y n X Z|]:]| = C/ 72 Z |§n,x,y§n,x,z|(ay%(szkn,x,y{n,x’,y’|7])70/

x,y,z€Z% x,y,z€Z%
20" 537 —1/x\2\2(0'+1)
<8 Ry (a, (N)))
< n1/ao(3—(4(9’+1))/ﬁ)+(49/+7)s+y0’

for n large enough. Since %0(3 — 4(9;%1)) + (40’ 4+ 7)e < 0, we obtain

V8 >0, lim sup Z |E[Tn,x,yTn,x,z|f]| =0.

oo (x,y,x",y")€E3

So, finally, for B € [1, 2), there exists é‘ > ( such that, for every nonnegative n and every § > 0,
we have limsup,,_, , . E[(7},(8))%] < C8>7. O

Proof of Proposition 17. The following proof can be assembled from [13]. We will use the
constants Io := — [¢ Sly% dy and Jy := —tan %Io. Due to the exponential formula, we have

E[ei’f(\xlzé)XdP(x>] = exp(/ (ei’x - 1)(a1{x>o} +bl{x<0}),3|)c|_’3_1 dx)
{lx|>38}

T cos(tx) — 1 i 00 sin(tx)
:eXp((d+b)/8 T,de—i-l(a—b)/a ﬂ+l ,Bd )

Assume first that § < 1. Due to [13], page 568, we have

+00 eztx _

i _111P ~nB)/2 _ || ;
Jim A ﬂdX— [t1°T(1 = Ble = 11" (Io + i Jo).

itf“x‘zs)xdp(x)] _

So lims_oE[e Doipab,pt).
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Assume now that 8 = 1. Then

+00 t -1 +o00 t -1 +00 -1
limf de:/ desz Mdy:_im
§—0Js x2 0 x2 0 y2 2

and, since sin(fx) = sgn(¢) sin(|#|x), we have

+00 +00 4
sin(tx sin

/ —(2 )dxzt/ —zydy
$ X 8lt] y

% sin(tx) T sinx 3 siny S dy
P} dx —t —2dX=t _Zdy ~ t —=—t10g|t|.
8 X s X st Y =0 Jsir Y

Hence, we have in that case that

. * sinx
lim E[exp(it(/ xdP(x)—(a— b)f — dx))} =Duip.a—b10).
§—0 |x|>8 k) X

Assume finally 8 > 1. Due to [13], pages 568-569, we have

, OOe"”c—l—itxﬂd +°°ei’x—1—itxﬂd
im — — —Bdx= — — — Bdx
§—0Js xB+1 0 xB+1

and so

ra-— ﬁ)e—(iﬂﬂ)/Z
2-pB-1

=|t|P =1tP(Io +iJo).

So

sli_I)IE)E[e”f”x‘Z‘”Xdp(x) it(a=b)BE =) /(B 1)]=(Da+b,a7b,/3(t)- 0

5. Tightness when ¢ > 1

Here we treat case og > 1 (i.e., the case where (S,), is recurrent and @ > dop = 1). The tightness
proof follows essentially the one given in Kesten and Spitzer [17]. We need the following lemma
from [17].

Lemma 19 (Lemma 1 of [17]). For all ¢ > 0 there exists some A > 0 such that for all t > 1 one
has

P(3x € Z: x| > At"* and N,(x) > 0) <e.

Lemma 20. We have

E[Z N}%(x)} —0(n>%) and E[(Z N,%(x)>2:| = 0(n*2), 62)

X€Z xX€Z



368 B. Franke, F. Pene and M. Wendler

Proof. The first one is formula (2.13) from [17] and the second one can be found in [15],
Lemma 2.1. U

Proposition 21. The sequence of stochastic processes

Ut i=n"2 3" NpjONpy Db &) 120
X,YEZL

is tight in D(0, T) endowed with the Ji-metric.

Proof. Fix some ¢ > 0. Due to Lemma 19, we fix A > 0 large enough such that

P(3x € Z with [x| > An'/% and Nju7)(x) > 0) < Z. (63)
Choose some p > 0 such that for all n € N one has
9A2n Y P(|h(E), £2)| > pn? @P)) < %. (64)
This is possible since we have, by item (iii) of Assumption 1, that
lim u’P(h(&1,6)>u)=co and lim u’P(h(&1, &) < —u) =c. (65)
u— o0 u— 00
Define
h(x, ) = e, )i pn2son)
The inequality (64) now becomes
_ &
9ATn* P (h(E1, &) #h(E1, £)) < 7. (66)
Lemma 22. There exists a constant C = C(p, B) > 0 such that for all n > 1 one has
|E[h(1,6)]| < Cnll =P/ @), (67)

Proof. For 8 < 1, we have

pn?/@B) pn/ (@)

[E[A G &)]| 5/0 (k&) >X)dx§C/1 P41
= Cx! AP 1 ~ cn/ D=5

where C > 0 is some suitable constant. For 8 € (1, 2), this comes from (53). For 8 =1, as
noticed previously, this comes from item (vii) of Assumption 1. ]
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Now we define
En = HZSE[ Z Nn(.X)Nn(y)]/_l(é)rv ‘i:y)i|
X,YEL

Since the scenery and the random walk are independent, we compute

E,= n28E|: > Na)Nay(E[A(Er, sy)]} =n"Pn’E[h(€, &)]

X,YEL
< Cn~2+2/a=2/(@p), 2, (1=$)2/(@p) _ C,

due to Lemma 22. Thus the sequence E,, stays bounded as n — oo. Further, let
U =n"2 " Ny )Ny 0) (i Ex £)) — B[R (E¢. £))]).
X, V€L

It then follows

Ul =08 = Ep=n"2 Y Niug ON iy 0) (h(Ers &) — 6, £)))
x,yeZ

+n~ 3 (|nt )P E[h(&1, £)] — n**E[h (&1, £)]).

Since we have that E[h (&1, £)] = O(n1=P2/@B)y and |nt|? — n%t* = O(n) the second term is
of the order

n_2‘sO(rz(l_ﬁ)z/("‘ﬂ))(Lntj2 — nztz) = n_20(n) = O(n_l).
This implies with inequalities (63) and (66) that

1imsup]P’< sup |U — U/ —t2En| > g)

n— 00 0<t<T

< limsupIP’(n% Z N\_nTj (X)NI_nTJ (y)(h(éx, é:y) - }_l(gx» S))) > g)

n—00
X,YEZL

=< 1imSUPIP( Z Ninr | (X)N|n1) (y)(h(Ex,Ey) - E(Eméy)) 5’50)

n—oo

X,YEL
< ligs;pp(ax, yEZ:|xl, Iyl < An'/% h(Ec &) # h(Er &)
+limsupIP’(EIx €Z:|x| > An'/®, Ninr)(x) > O)
00
< limsup(34n" ) "B 1. £2) # h(&r. £2)) + 5
&

<=,
-2
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Due to Theorem 13.5 of [2] (see also (13.14) therein) and since « > 1, it is now enough to prove
that there exists Ko > 0 such that for every r <s <t < T and every n > 1,

E[|Ur — U x |0 = U] < Kolt —r*~"/2. (68)
To this end, we prove the existence of K1 > 0 such that, forevery 0 <s <t < T

lnt] — |ns] )2‘”"‘

n

(07 - 7)) < (69)

Indeed, this will imply
2—1/a
- - - - l‘ J—
VOo<r<s<t<T, E[‘U;’—Uﬂx‘U{’—Uﬂ]g[ﬁ(M) .
n

Considering separately the case ¢t — r > % (for which |nt] — |nr] <2n(t — r)) and the case
t —r < L (for which U" = U or U = U}"), this will give (68) with Ko := 2>~"/*K|. Let us
use the notation

]’_10(5)6, Ey) = }_l(%-x» éy) - E[l'_l(%-x: Sy)]

then we have

E[(0; - 07)] = n—“E[(Z Nine ) Q) (Nt (9) = Ninsj (0)hoEx, &)

X,y

2
+ D (Nint g () = Ny (1)) Nins (9B K, Ey)> }

X,y

2
< 2"451@[(2 Nt ) (Nt (0) = Nins () o 6, ;3-)) }

X,y

2
+ 2n48E|:<Z(NLmJ (x) — NI_nsJ (x))NL"SJ (y)l;()(g:x’ fy)) :|

X,y

We continue the computation with the first of the two terms. In the following, we condition with
respect to G = o (Sy; n € N). We make use of the assumption A (x,x) = 0 and the fact that if
x,y,u,v are all distinct then ho(&y, &) and ho(&,,&,) are independent and centered and we
write

2
E[(Z Nine) @) (N () = Nips ) (0)) o (& Ey)) ’g} <A+B+C+D
x’y
with

A=Y N2, ) (Npuey ) — Nis) ) E[R3 (61, £2)1G].

X,y
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B =" Niuy@)Nie) @) (Niuty () = Nine ) °E[ | o €1 €200 (2. £3)|1G].

X,¥,2

C:= Z me ) (Npne) (7) = Ning) 0)) (Nine) (@) = Ning) (@) E[ | o (&1, E2)ho (62, £3) |16 ]

X,¥,Z

and

D=2 Z Nt (XI)NLMJ (x)(NI_ntJ (y) — Nins) ()’))(NLntJ (x) — Nins) (X))

x,x'y

x E[|ho(1. 62)ho (52, 63)[1G]-

The Markov property together with Lemma 20 and Lemma 23 below imply
E[B] < Tzan[Z N ns) (x)} Cov(h(&1. £2). (2. £3))
X

2—1/a
< Cp2n2- Ve < nt] — Lns ) ) 3t/ @h)
n

(L g,

n

Again, we see
E[C] = (Lnt] — LHSJ)ZIE[Z N, (x)} Cov(h(&1, &), h(2, £3))

2
_ nz( lnt| — LnSJ> 2V p2=1/a, ~3/a+4/(@p)
- n

_ (@)0()

n

Further, we have by Cauchy—Schwarz that

E[Z Nine) () (Njni () = Nipg) (x))}

12
< (]E[Z Ny, (x)i|E|:Z(NLmJ (X) = Nins) (X))2D

<C'(nt)' 7O ([nt] — [ns])' 7Y,
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Now Lemma 23 implies
E[D] < [nt](|nt] — |ns]) [Z Nt () (N ey (x) = NI_nsJ(x))] Cov(h(&1, &), h(&2, &3))

< C”n(LntJ _ LnsJ)(nt)l—l/(Za)(LntJ _ LnsJ)1—1/(2‘1)n—3/a+4/(0¢ﬁ)

2—1/(2
- Tl_l/(Za)C”< |nt| — Lnsj) /( oz)n4(S
n

Finally for A, due to Lemma 24 below, we have

E[A] < [(Z ,(x)” [(ZN,%O_S)@)Z}Var(ﬁ(él,&»

< C”’\/(tn)4_2/"‘(LntJ _ |_i’lSJ)4_2/aE[(f_l(§1, 52))2]

2—1
//< nt] — LnSJ) /an4—2/ozn—1/ot+2/(a,3)
n

/,<Lntj Lnsj>2 Ve s
—n n

All those inequalities together proves (69). This finishes the tightness proof. ]

IA
Qx

IA
Qz

Lemma 23. There is some constant C > 0 such that

|Cov(h(&1, &), h(Er,&))| < C'n/et/@h),

Proof. We first consider the case B < 3. Note that by Assumption 1 part (iv) for some y > —ﬁ
(y # 1), we have

B[, &)h(E, )]

:/OOO/OOOIP(M@I,&H >,

on2/@B) 1 pp2/(@p)

LE3)| > 1)dsdt

o
=f0 f P(|h(E1. &) > 5. £)| > 1) dsdr
o2/ pnz/«xm
5/ / Co(max(1, s)max(1,1)) " dsdt
o2/ @B) 2
= Co(l + 7 dt)
1
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2
< Co(l +1r _1 ((on/ @) =7 1))

Y

1—y 2
- Co<1 1 + P —3/(2a)+2/(otﬂ)> = O (n 3/ By

Due to Lemma 22, this implies
|Cov(h(&1, &), h(E1,&))| = O (n =/« H/P)),
Now assume 8 > > 4 3- By (53) and item (vi) of Assumption 1, we have for M, := ,onz/ @) that

|Cov(h(&1, &), h(&1,8))| = |Cov(hy, (§1. &), hay, (€1, £3))]

< |E[hu, (1, &)hy, (51, &)]| + [E[ha, &1, 52)]|2
0=/ @)) | 0 (n=H@H(E-D)

(
O (n~4@P)(3B)/4-1)
(n3/et4/p))

since 0’ > 3’3 ) O

Lemma 24. We have
E[(R(€1,8))"] = O(n~ /e 2@,

Proof. We have

on/@h) Jpnlfan)
E[(h(51. &)’ / P(|i e, &) = ) ds /0 P, &) = u)2u du
_ O(nV/ PP,
since 2ulP(|h (€1, &)| > u) ~ 2(co 4+ c)u' P asu goes to infinity. [l

Appendix A: Tightness with the M{-metric when og =1
and 8 <1

Assume og = 1 and 8 < 1. We follow the idea of [7]. We write A" := max(h,0) and 7~ :=
max(—h, 0). Recall that h = h* — h™. We then define U := Y} ,_; h*(£s,. &s,). Due to the
general argument detailed before Lemma 10 of [7], it is enough to prove that for any posi-
tive integer m, for any real numbers 61, ..., 6y, ¥1, ..., ¥m and any real numbers 0 =1y < #] <
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-+ < t, the following sequence

(g tstactas)) o
j=1 " n

converges to

E[exp(lK /ﬂze z 4 _Z::_u,tj_l))i|
j=l1
m
2 - -
xE[exp(zKﬂ/ﬂZyj(Z,j,tj _ijlstjl))j|’

j=1

where (Zf[)s’, are two f-stable Lévy sheets such that E[eieZIf] = Dcosr,cps:(0) and E[e!?%s.1] =
D 51,c50(0). Hence, we have to prove that the sequence (70) converges to

m

[ @22 parze— ) ONPxi-i ) arie-ie @] (71)
j=1

This follows from a straightforward adaptation of our proof of convergence of the finite-
dimensional distributions. Let us explain this. We define X,?’x’y = Z;-'szl Omax(j,k)dj,n (X)dkn (y)
and X,y y = > ket Yimax(jodjn ()i n (y), where we use again the notation dj,(x) =
N Lnt; ] (x) — N, Lntj 1] (x). With these notations, the sum appearing in (70) can be rewritten

an_l Z[Xl?,x,yh+(éx’ Ey) + Xr)l/,x,yh_(éx, éy)]

X,y

We then define

B
m
Grjﬁe =a,”’ Z Z Omax(j.k)djn (X)dk n (y)

x,yeZdO Jk=1 +

and

Gy =K} Z Omax o |2t — tj-1) (1 — ti 1)—Kﬁ2|9k|i —1).
jk=1 k=1

We define analogously G,jf’y and Gf. With these notations, (71) can be rewritten

(DC()G:;,C()G; (1)(D6‘1G;;,L‘1G; (1)
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Due to Lemma 8, we know that (G;fe, G,fy)n converges almost surely to (Gi, G)jf). Now we
define the sequence (N,?)n of point processes on R* by

M= 30 Curtnt ity T oar gl i )

x,yeZdO

Following the proof of Proposition 13, we obtain that, conditionally to the random walk (Sy,),
(N?),, converges in distribution to a Poisson Process A of intensity 7 given by

co(Gy + Gy) +c1(Gf +Gp)
2

n([d.d))= (" ~d"™")

and
c0(Gy —Gy) +c1(Gy — Gy)

2
forevery 0 < d < d’ < +o0. Following the proofs of Propositions 15, 16 (where we replace T}, (8)
by T (8) + T (8), with T/ 5(8) == a; ' Yooy xi e yh T s 8t 0 e ) gy)) A0
of Corollary 18, we conclude that o

n((~d'.d])= (" —a"™")

(B[ Tro iy Gt bl sh™ Gob))| g, ),

converges to

¢COG;+C16¢,COG;+C10;(1) = qDCOGJ,COG;(1)q’qc¢,qa;(l)-

Hence, (70) converges to (71), which ends the proof of the tightness for M.

Appendix B: Stochastic integral with respect to the Lévy
sheet Z

In this section, following [18], we give a simple construction of stochastic integral with respect
to the B-stable Lévy sheet Z ([18] deals with B-stable Lévy sheet Z with c¢o = c¢1). Let us men-
tion that the following construction is a special case of the integral constructed by Rajput and
Rosinski in [21] for infinitely divisible, independently scattered random measures. We recall that
Z satisfies the following properties:

® Zpo=0;

e for any family (Ax = [ak, bk] X [a,/(, b;(])k of pairwise disjoint rectangles (with ay < by
and a; < b;), the family of increments (Zoy b, + Zay.a, = Zay b, — Ziy.a )k is a family of
independent random variables;

o for any rectangle A = [a, b] x [d’, b'] (with a < b and a’ < b’), the characteristic function
of the increment Zy jy + Zy o — Zapy — Zp,a' 18 P(cote1)i(A), (co—c1)r(A), B> Where A is the
Lebesgue measure on R? and where we used the notation introduced in (4).
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For any rectangle A = [a, b] x [a’, b’] (with a < b and a’ < b’), we define the stochastic integral
of 14 with respect to the Lévy sheet as the increment of Z in this rectangle, that is,

Aéz 14 de,y = Zb,b/ + Za,a/ - Za,b’ - Zb,a/- (72)

We extend this definition by linearity to any linear combination H of such indicator functions.
Observe that, if H = Z’;:l hjla; where (Aj); is a family of pairwise disjoint rectangles and
where /1 € R, then the characteristic function of f]RZ H(x,y)dZy,,y is given by

E[exp(iz/ H(x,y)de,y>]

R2

E[exp(izhj[ 1Aj(x,y)dzx,y>]
R2

@ (cp+enn(A)), (co—enra),p(zh )

I
1=

~.
I
—_

Il
1=

j=1
0
- H] P coren i P aA ) tco—eniij P 1.6
J=
= P ot S g aa . co—en Xl i Paap 0 VEER
and so by
]E|:exp<iz/ H(x,y)de,y>i|
, )
¥ (73)
Vz e R.

- q’(co+c1>fR2 |H )l dxdy.(co—c) 2 |H@. )| dx ay,p @)

Proposition 25 (See [18]). Let H be a continuous compactly supported function from R? to R.
Let (Hy), be a sequence of linear combination of indicators over rectangles converging point-
wise to H. Assume moreover that (H,), is a family of uniformly bounded functions with support
in a same compact. Then the sequence ( fRz H,(x,y)dZ(x,y)), converges in probability to a

random variable with characteristic function ® .
f (coter) fgz |H@ I dxdy.(co—c1) o |H@. )| dxdy.p

For a continuous compactly supported H : R?> — R, we define fRZ H(x,y)dZ(x,y) as the
limit in probability given by Proposition 25 (observe that the limit does not depend on the choice

of (Hy)n).

Proof of Proposition 25. To prove the convergence in probability, it is enough to prove that

vz eR, lim E[exp(iz/ (Hu(x, y) = Hp (x, y))dzx,y>] =1. (74)
R

n,m——4+o0o
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Observe that, for every real number z, we have

‘]E|:6XP<iZ/ (Hu(x,y) — Hm(x,y))de,y>] - 1‘
R2

‘q)(cwcl)sz | Hy ()= Hun e )| dx dy . (co—c1) fga [Hn (. y)—Hyn (x.9)[ dx ay.p @~ 1

< [ |Haro) = el dxdy(ieo+ el +leo = il 21
R

using the fact that [e =+ — ¢=4'+10'| <|q — 4'| + |b — b/| for any real numbers a, b, a’, b’ such

thata > 0 and @’ > 0. Since (H,,), converges pointwise and is uniformly bounded, we obtain (74)
by the Lebesgue dominated convergence theorem (recall that (Hy,), is a sequence of uniformly
bounded functions supported in a same compact). Now the characteristic function of the limit in
probability fRz H(x,y)dZ(x,y) is given by

E[exp(iz/ H(x,y)d2<x,y)>]
R2

= lim E[exp(iz/ Hn(X,y)dZ(X’y)>]
n——+00 R2

=, Jm @ e Jea G dx dy,(co—e1) foa |Ha o) dxdy.p @)

= P icorer) fop IHC I dxdy (co—cr) o 1H G 0)IE dxdy,p

for every real number z. O
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