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A U -statistic indexed by a Z
d0 -random walk (Sn)n is a process Un := ∑n

i,j=1 h(ξSi
, ξSj

) where h is some

real-valued function and (ξk)k is a sequence of i.i.d. random variables, which are independent of the walk.
Concerning the walk, we assume either that it is transient or that its increments are in the normal domain
of attraction of a strictly stable distribution of exponent α ∈ [d0,2]. We further assume that the distribution
of h(ξ1, ξ2) belongs to the normal domain of attraction of a strictly stable distribution of exponent β ∈
(0,2). For a suitable renormalization (an)n we establish the convergence in distribution of the sequence of
processes (U�nt�/an)t ;n ∈N to some suitable observable of a Lévy sheet (Zs,t )s,t . The limit process is the
diagonal process (Zt,t )t when α = d0 ∈ {1,2} or when the underlying walk is transient for arbitrary d0 ≥ 1.
When α > d0 = 1, the limit process is some stochastic integral with respect to Z.
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1. Introduction

Let d0 be a positive integer. Given a random walk (Sn)n≥0 on Z
d0 and a sequence of independent

identically distributed (i.i.d.) real random variables (ξk)k∈Zd0 , independent one from each other,
one can consider the random walk in random scenery Sn := ∑n

k=1 ξSk
. In particular, one is inter-

ested in the limit behavior of the sequence of renormalized processes (ν−1
n S�nt�)t≥0;n ∈ N. In

this context, the following assumptions are usually made:

(A) either Sn is transient or there exists some α ∈ [d0,2] such that n−1/αSn;n ∈ N converges
in distribution to a random variable;

(B) n−1/β
∑n

k=1 ξk;n ∈N converges in distribution to a random variable for some β ∈ (0,2].
Note that in the case α > d0 = 1 the assumption (A) implies that the sequence of stochas-

tic processes (n−1/αS�nt�)t>0;n ∈ N converges in distribution to some α-stable Lévy process
(Yt )t>0 which admits a local time (Lt (x), t ≥ 0, x ∈ R). Similarly, assumption (B) implies that
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Table 1. Limit theorems for random walks in random scenery

Cases Normalization Limit process Space of convergence in distribution

Transient νn := n1/β (d1Zt )t Finite-dimensional distributions
if β �= 1: Skorokhod space with M1-metric

α = d0 νn := n1/β(logn)1−1/β (d2Zt )t Finite-dimensional distributions
if β �= 1: Skorokhod space with M1-metric

(tightness for J1-metric iff β = 2)

α > d0 νn := n1−1/α+1/(αβ) (�t := ∫
R∗ Lt (x) dZx)t Skorokhod space with J1-metric

(n−1/β
∑�nt�

k=1 ξk)t>0;n ∈ N converges in distribution to some β-stable process (Zt )t>0.1 Subse-
quently we will use (Z−t )t>0 to denote an independent copy of (Zt )t>0.

Random walks in random scenery have been studied by many authors since the early works
of Borodin [4,5] and Kesten and Spitzer [17]. In particular, [3,7,11] complete the study of the
limit in distribution of random walks in random scenery. The asymptotic behavior of the sequence
(ν−1

n S�nt�)t>0;n ∈ N is summarized in Table 1 (where d1 and d2 are explicit constants depending
on (Sn) and on β).

In this paper, we want to do a similar investigation for U -statistics indexed by a random walk.
To introduce the objects let E be some measurable space and (ξk)k∈Zd0 an i.i.d. sequence of E-
valued random variables. Often we might abbreviate this family of random variables by ξ and call
it the scenery. Moreover, let (Sn)n≥1 be as above a random walk on Z

d0 , which is independent of
the scenery ξ . We will also use the short notation S for the random walk. For some measurable
function h : E2 → R, we consider the U -statistic indexed by S defined through

Un :=
n∑

i,j=1

h(ξSi
, ξSj

).

Consider a walker moving with respect to (Sn)n. Assume that, at each step, this walker new
connections between the site where he is located and all the other sites he has already visited
(with multiplicity). We assume that the cost of a connection between the sites x and y depends
on their respective states ξx and ξy , we denote this cost by h(ξx, ξy). We assume moreover that
the ξx ’s are i.i.d. Then Un corresponds to the total cost of the connections made up to time n.
Another motivation for the study of Un linked with charged polymers is given in the Introduction
of [15].

We are interested in results of distributional convergence for (Un)n (after some suitable nor-
malization) under the assumption that the distribution of h(ξ1, ξ2) is in the normal domain of
attraction of a β-stable distribution. Let us assume without loss of generality that h is symmetric.

If β > 1, we can introduce ϑk := E[h(ξ0, ξk)|ξ0]. Two different situations can occur. We will
say that the kernel is degenerate if ϑ1 = 0 almost surely. Otherwise, we will say that the kernel
is non-degenerate.

1To simplify notations, for every k ∈ Z, we write ξk for ξ(k,...,k).
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The case when h(ξ1, ξ2) is square integrable and centered (which implies β = 2) has been
fully studied by Guillotin-Plantard and her co-authors. In this case, only two kind of behaviors
can occur:

(a) The kernel is non-degenerate, then one can use Hoeffding decomposition to show that Un

behaves essentially as
∑n

i,j=1(ϑSi
+ ϑSj

) = 2n
∑n

i=1 ϑSi
.

(b) The kernel is degenerate, then Hilbert–Schmidt theory can be used to represent the kernel
as h(x, y) = ∑

p λpφp(x)φp(y) and to show that Un behaves as
∑

p λp(
∑n

i=1 φp(Si))
2.

This has been proved by Cabus and Guillotin-Plantard in [6] for random walks in Z
d0 with d0 ≥ 2

and by Guillotin-Plantard and Ladret in [15] for random walks in Z.
Note that the situation treated in [6] splits into the case d0 > 2, where the walk is transient,

and the singular case d0 = 2, where the random walk is null recurrent. However, in this last case
the limit process (Yt )t≥0 does not have local time. In contrast to this, the assumptions made in
[15] correspond to some null recurrent random walk with existing local time for (Yt )t≥0; that is,
α > d0 = 1.

The special form of the representations given in (a) and (b) implies that for β = 2, the study
of (Un)n can be reduced to the study of some suitable random walk in random scenery (either∑n

i=1 ϑSi
or

∑n
i=1 φp(Si)). Thus, the limits can be expressed in terms of processes which already

occurred in the random scenery situation.
In the transient case or if d0 = 2, the limit process turns out to be Brownian motion (Bt )t≥0

when the kernel is non-degenerate. In the degenerate situation, the limit has the representa-
tion

∑
p λp(B

(p)
t )2, where (B

(p)
t )t≥0;p ∈ N is a sequence of independent Brownian motions

(see [6]).
If on the other hand α > d0 = 1, then in the non-degenerate situation the limit is the usual

process �t := ∫
R∗ Lt (x) dBx , where (Bx)x>0 and (B−x)x>0 are independent one-dimensional

Brownian motions. In the degenerate case the limit takes the form
∑

p λp(
∫
R∗ Lt (x) dB

(p)
x )2,

where the pairs (B
(p)
x )x>0, (B(p)

−x )x>0 form a sequence of independent copies of the pair (Bx)x>0,
(B−x)x>0 (see [15]).

Let us further mention that (a) includes the case where h(x, y) = g(x) + g(y) and that (b)
includes the case when h(x, y) = g(x)g(y). Here g : E → R is a measurable function such that
g(ξ1) is square integrable and centered.

When 1 < β < 2, a similar behavior can occur in the non-degenerate case. For instance, in
[14], we use Hoeffding decomposition to prove the following:

(a′) If 1 < β ≤ 2 and if the distribution of ϑ1 is in the normal domain of attraction of a β-stable
distribution, then Un behaves as 2n

∑n
i=1 ϑSi

.

This holds for example, if h(x, y) = g(x) + g(y). The limit then turns out to be β-stable Lévy
process (Zt )t≥0 when the walk is transient or when α = d0. However, when α > d0 the limit
has the representation �t := ∫

R∗ Lt (x) dZx , where (Zx)x>0 and (Z−x)x>0 are independent one-
dimensional β-stable Lévy-motions (see [14]).

On the other hand in the degenerate case, when ϑ1 = 0, different limits than those described
in (b) can arise when 0 < β < 2. This is the purpose of the present paper. The limit we obtain
is the diagonal process (Z(t,t))t≥0 of a Lévy sheet (Zt,s)t,s≥0, when the walk is transient or
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Table 2. Limit theorems for U -statistics indexed by a random walk

Cases Normalization Limit process Space of convergence in distribution

Transient ν2
n = n2/β (d2

1Zt,t )t Finite-dimensional distribution
Skorokhod space with M1-metric if β < 1

α = d0 ν2
n = n2/β(logn)2−2/β (d2

2Zt,t )t Finite-dimensional distribution
Skorokhod space with M1-metric if β < 1

α > d0 ν2
n = n2−(2/α)+2/(αβ) (

∫
R2 Lt (x)Lt (y) dZx,y)t Skorokhod space with J1-metric

when α = d0, and a stochastic integral
∫
R2 Lt(x)Lt (y) dZx,y with respect to four independent

copies of the Lévy sheet introduced above, when α > d0. These limits can be understood as two-
dimensional analogues of the known limits for random walk in random scenery found by Kesten
and Spitzer (see [17]).

To be more precise, let us keep assumption (A) but replace (B) on (ξk)k by the following
assumption on (h(ξk, ξ
))k,
:

(B′) (n−1/β
∑n

k=1 h(ξ2k, ξ2k+1))n converges in distribution to a random variable with β ∈
(0,2).

This implies that if (hi,j )i,j is a sequence of i.i.d. random variables with the same distribu-

tion as h(ξ1, ξ2), then the sequence of stochastic processes (n−2/β
∑�nt�

k=1

∑�ns�

=1 hi,j )t>0;n ∈ N

converges in law to some β-stable Lévy sheet (Zs,t )s,t>0 (which we extend on R
2).

In the present paper, under assumption (B′) and some additional assumptions, we prove limit
theorems for the U -statistic which are summarized in Table 2.

The present paper is organized as follows. The assumptions and main results are stated in Sec-
tion 2. We give some examples which satisfy our assumptions in Section 3. We prove our results
concerning convergence of finite-dimensional distributions in Section 4. In the spirit of [10], our
proof relies on the convergence of a suitably defined point process to a Poisson point process
which is established by the use of Kallenberg theorem. In Section 5, we prove the tightness for
the J1-metric when α > d0. The tightness for the M1-metric when β < 1 (for transient random
walks or when α = d0) is proved in Appendix A. We complete our article with some facts on the
β-stable Lévy sheet Z in Appendix B. In particular, a construction of stochastic integrals with
respect to Z is given.

2. Main results

Let (�,F,P) be a suitable probability space and let S = (Sn)n≥0 be a Z
d0 -valued random walk

on (�,F,P) with S0 = 0 such that one of the following conditions holds:

• the random walk (Sn)n≥0 is transient,
• the random walk (Sn)n≥0 is recurrent and there exists α ∈ [d0,2] such that (n−1/αSn)n≥1

converges in distribution to a random variable Y . In this case, we further assume that ∀x ∈
Z

d0 ,∃n ∈ N : P(Sn = x) > 0.
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Recall that, in the second case, (n−1/αS�nt�)t>0;n ∈N converges in distribution to an α-stable
process (Yt )t>0 such that Y1 has the same law as Y .

In order to get a uniform notation for the different situations, we define α0 to be a number,
which is one when the random walk is transient, and which takes the value α

d0
in the recurrent

case.
Let ξ = (ξ
)
∈Zd0 be a family of i.i.d. random variables on (�,F,P) with values in some

measurable space E. We assume that the two families S and ξ are independent. Let h : E ×
E → R be a measurable function. We are interested in the properties of the U -statistics process
Un := ∑n

i,j=1 h(ξSi
, ξSj

). In this work, we assume moreover that the following properties are
satisfied.

Assumption 1. Let β ∈ (0,2).

(i) For every x ∈ E, h(x, x) = 0;
(ii) h symmetric (i.e., h(x, y) = h(y, x) for every x, y ∈ E);

(iii) There exist c0, c1 ∈ [0,+∞) with c0 + c1 > 0 such that

∀z > 0, P
(
h(ξ1, ξ2) ≥ z

) = z−βL0(z), with lim
z→+∞L0(z) = c0; (1)

and

∀z > 0, P
(
h(ξ1, ξ2) ≤ −z

) = z−βL1(z), with lim
z→+∞L1(z) = c1; (2)

(iv) There exist C0 > 0 and γ >
3β
4 such that

∀z, z′ ∈ (0,+∞),
(3)

P
(∣∣h(ξ1, ξ2)

∣∣ ≥ z and
∣∣h(ξ1, ξ3)

∣∣ ≥ z′) ≤ C0
(
max(1, z)max

(
1, z′))−γ ;

(v) If β > 1, then E[h(ξ1, ξ2)] = 0;
(vi) If β ≥ 4/3, there exists C′

0 > 0 and θ ′ > 3β
4 − 1 such that

∀M,M ′ ∈ (0,+∞),
∣∣E[

hM(ξ1, ξ2)hM ′(ξ1, ξ3)
]∣∣ ≤ C′

0

(
MM ′)−θ ′

,

where hM(x, y) := h(x, y)1{|h(x,y)|≤M} + β
β−1 (c0 − c1)M

1−β .
(vii) If β = 1, then c0 = c1 and limM→+∞E[h(ξ1, ξ2)1{|h(ξ1,ξ2)|≤M}] = 0.

Some examples satisfying the above assumptions are presented in the next section.

Remark 2. The following comments on the different points in Assumptions 1 might be of some
help:

• Item (i) can be relaxed as will be proved in Proposition 7 below.
• Item (ii) is not restrictive since one can always replace h(z, z′) by (h(z, z′) + h(z′, z))/2

without changing the sequence (Un)n.
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• Note that item (iv) is a condition which ensures that the tail behavior resulting from coupling
of the pairs (ξ1, ξ2) and (ξ1, ξ3) does not interfere with the tail behavior of the single terms
h(ξ1, ξ2). A condition with the same spirit is condition (2.1) in [10].

• If item (iii) holds and if for every x ∈ E the distribution of h(x, ξ1) is symmetric, then items
(vi) and (vii) are also satisfied. Indeed, in this case, c0 = c1 and

E
[
hM(ξ1, ξ2)hM ′(ξ1, ξ3)

]
=

∫
E

E
[
h(x, ξ2)1{|h(x,ξ2)|≤M}

]
E

[
h(x, ξ2)1{|h(x,ξ2)|≤M ′}

]
dPξ1(x) = 0.

• Note that items (iii) and (v) imply that the law of h(ξ1, ξ2) is in the domain of attraction of
a β-stable law for some β ∈ (0,2).

Let (hi,j )i,j be a sequence of i.i.d. random variables with same distribution as h(ξ1, ξ2).
Observe that the items (i), (iii), (v) and (vii) in Assumption 1 describe the classical situation,
where the sequence of random fields (n−2/β

∑�nx�
i=1

∑�ny�
j=1 hi,j )x,y>0;n ∈ N converges in law

to a β-stable Lévy sheet (Z̃x,y)x,y≥0 such that the characteristic function of Z̃x,y is given by

E[eizZ̃x,y ] = �xy(c0+c1),xy(c0−c1),β(z), with

�A,B,β(z) := exp

(
−|z|β

∫ +∞

0

sin t

tβ
dt

(
A − iB sgn(z) tan

πβ

2

))
if β �= 1 (4)

and

�A,B,1(z) := exp

(
−|z|

(
π

2
A + iB sgn(z) log |z|

))
(5)

(see [13], pages 568–569). In order to construct a continuation of the Lévy sheet Z̃ to all
of R2, we use four independent copies Z(ε,ε′) (with ε, ε′ ∈ {1,−1}) of Z̃ to introduce Zx,y :=
Z

(sgn(x),sgn(y))

|x|,|y| for all (x, y) ∈ R
2. In the following, we will need to integrate some continuous

compactly supported function ψ with respect to Z, that is,∫
R2

ψ(x, y) dZx,y.

More information on Lévy sheets and on the construction of the integral can be found in Ap-
pendix B.

When α > d0 = 1, we assume moreover that (Zx,y)x,y is independent of the α-stable pro-
cess (Yt )t .

If the random walk is transient, we write N∞ for the total number of visits of the two sided
random walk (Sn)n∈Z to zero; that is, N∞ := ∑

n∈Z 1{Sn=0}.

Theorem 3 (Transient case). Suppose (Sn)n≥0 is transient and Assumption 1. We set an := n2/β .
Then the finite-dimensional distributions of ((U�nt�/an)t>0)n converge to the finite-dimensional

distributions of (K
2/β
β Zt,t )t>0, with Kβ := E[Nβ−1∞ ].
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Moreover, if β < 1, then the convergence holds also in the Skorokhod space D([0, T ]) endowed
with the M1-metric.

In particular, the previous theorem holds for the deterministic Z-valued walk Sn = n (for which
Kβ = 1). In that case, our result boils down to a result on classical U -statistics which was es-
tablished by Dabrowski, Dehling, Mikosch and Sharipov in [10]. We emphasize this point in the
following corollary, since the link to the Lévy sheet was not mentioned in [10].

Corollary 4 (Deterministic case). Suppose Assumption 1 and set an := n2/β . The finite-
dimensional distributions of ((

∑�nt�
i,j=1 h(ξi, ξj )/an)t>0)n converge to the finite-dimensional dis-

tributions of (Zt,t )t>0.
If β < 1, then the convergence holds also in the Skorokhod space D([0, T ]) endowed with the

M1-metric.

As usual � will stand for the Gamma function. We also write Nn(x) for the occupation time
of S at x up to time n, that is,

Nn(x) :=
n∑

i=1

1{Si=x}.

We define the maximal occupation time of S up to time n through N∗
n := maxx Nn(x) and the

range of S up to time n by

Rn := #
{
y ∈ Z

d0 : Nn(y) > 0
}
.

We recall that, when α = d0, there exists c3 > 0 such that

Rn ∼ c3n/ logn a.s. as n → ∞. (6)

Theorem 5 (Recurrent case without local time). Suppose α = d0 ∈ {1,2} and Assumption 1.
We set an := n2/β(logn)2−2/β . Then the finite-dimensional distributions of ((U�nt�/an)t>0)n con-

verge to the finite-dimensional distributions of (K
2/β
β Zt,t )t>0, with Kβ := �(β + 1)/c

β−1
3 and

with c3 given by (6).
Moreover, if β < 1, then the convergence holds also in the Skorokhod space D([0, T ]) endowed

with the M1-metric.

When α > d0 (which implies d0 = 1), we prove a result of convergence in distribution in
the Skorokhod space for the J1-metric. Recall that hM(x, y) = h(x, y)1{|h(x,y)|≤M} + β

β−1 (c0 −
c1)M

1−β .

Theorem 6 (Recurrent case with local time). Assume α ∈ (1,2], d0 = 1 and Assumption 1.
We set an := n2δ with δ = 1 − 1

α
+ 1

αβ
. Then, for every T > 0, ((U�nt�/an)t∈[0,T ])n con-

verges in distribution (in the Skorokhod space D([0, T ]) endowed with the J1 metric) to
(
∫
R2 Lt (x)Lt (y) dZx,y)t∈[0,T ], where (Lt (x), t ≥ 0, x ∈ R) is a jointly continuous version of the

local time at point x at time t of (Ys)s≥0 (such that, for every t , Lt is compactly supported).



336 B. Franke, F. Pène and M. Wendler

Observe that, in every case, there exists c > 0 such that

an ∼ cn2(
E[Rn]

)2/β−2 (7)

(see, for example, [24], page 36 and [19], pages 698–703). It is worth noting that Un can be
rewritten as follows

Un =
∑

x,y∈Zd0

h(ξx, ξy)Nn(x)Nn(y).

Proposition 7. The results of convergence of finite-dimensional distributions of Theorems 3, 5
and 6 hold also if we replace item (i) of Assumption 1 by the following assumption:

(i′) E[exp(iuh(ξ1, ξ1))] − 1 = O(|u|β ′
) for some β ′ > β/2.

Observe that (i′) includes (i) and the case when h(ξ1, ξ1) is in the normal domain of attraction
of a β ′-stable distribution for some β ′ > β/2, in particular this applies if h(ξ1, ξ1) has the same
distribution as h(ξ1, ξ2).

Proof of Proposition 7. Due to Theorems 3, 5 and 6, we know that the finite-dimensional dis-
tributions of ((∑

x �=y

h(ξx, ξy)N�nt�(x)N�nt�(y)/an

)
t>0

)
n

converge. It remains to prove that (
∑

x h(ξx, ξx)N
2�nt�(x)/an)n converges in probability to 0 (for

every t > 0). We write ϕh(ξ1,ξ1) for the characteristic function of h(ξ1, ξ1). Let t > 0 and u be
two real numbers. We have

E

[
exp

(
iu

∑
x∈Zd0

h(ξx, ξx)N
2�nt�(x)

an

)]
= E

[ ∏
x∈Zd0

ϕh(ξ1,ξ1)

(
uN2�nt�(x)

an

)]
.

To conclude we just have to prove that (
∏

x∈Zd0 ϕh(ξ1,ξ1)(
uN2�nt�(x)

an
))n converges almost surely

to 1. Due to (i′), there exists C2 > 0 such that we have

∣∣∣∣ ∏
x∈Zd0

ϕh(ξ1,ξ1)

(
uN2�nt�(x)

an

)
− 1

∣∣∣∣ ≤ C2

∑
x∈Zd

|u|β ′
N

2β ′
�nT �(x)

a
β ′
n

which converges almost surely to 0 since, for every ε > 0, the following inequalities hold almost
surely, for n large enough

Rn ≤ n1/α0+ε, N∗
n ≤ n1−1/α0+ε and a−1

n ≤ n−2+2/α0−2/(α0β)+ε

(see for example [8,16,24]). �
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3. Examples

The following examples are variants of Example 2.4 from [10]. Observe that

P
(
h(ξ1, ξ2) > z

) =
∫

E

P
(
h(x, ξ2) > z

)
dPξ1(x)

and that

P
(∣∣h(ξ1, ξ2)

∣∣ > z,
∣∣h(ξ1, ξ3)

∣∣ > z′) =
∫

E

P
(∣∣h(x, ξ2)

∣∣ > z
)
P
(∣∣h(x, ξ2)

∣∣ > z′)dPξ1(x).

• When β < 1, one can take E = R
p , the distribution of ξ1 admitting a bounded density f

with respect to the Lebesgue measure on E and h(x, y) = ‖x −y‖−p/β∞ 1{x �=y}. This example
fits Assumption 1. Indeed, for every z > 0, P(h(ξ1, ξ2) < −z) = 0 and

P
(
h(x, ξ2) > z

) = P
(‖x − ξ2‖∞ < z−β/p

) ∼
z→+∞ 2pf (x)z−β and

P
(
h(x, ξ2) > z

) ≤ ‖f ‖∞2pz−β .

So

P
(
h(ξ1, ξ2) > z

) ∼
z→+∞ 2pz−β

∫
Rd

(
f (x)

)2
dx

and

P
(∣∣h(ξ1, ξ2)

∣∣ > z,
∣∣h(ξ1, ξ3)

∣∣ > z′) ≤ (
1 + ‖f ‖∞2p

)2(max(1, z)max
(
1, z′))−β

.

• Analogously, when β ≥ 1, we can take E = {±1} × R
p , h((ε, x), (ε′, y)) = εε′‖x −

y‖−p/β∞ 1{x �=y} and ξ1 = (ε1, �ξ1) with ε1 and �ξ1 independent; ε1 being centered and the dis-
tribution of �ξ1 admitting a bounded density f with respect to the Lebesgue measure on R

p .
Using the same argument as for the previous example together with Remark 2 we can verify
that this example satisfies Assumption 1.

Note that the case β = 1 contains the more concrete kernel h(x, y) = 1/(x + y) for x �= y in
association with some random variable ξ1 having a bounded symmetric density on R.

4. Convergence of finite-dimensional distributions

To prove the convergence of the finite-dimensional distributions, we prove the convergence of
their characteristic functions. To simplify notations and the presentation of the proofs, we set

|z|β+ := |z|β and |z|β− := |z|β sgn(z) (8)

for any real number z. Let m ≥ 1 and θ1, . . . , θm ∈ R and 0 = t0 < t1 < · · · < tm.
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If α0 > 1, we will prove the convergence of(
E

[
exp

(
ia−1

n

∑
x,y∈Zd0

(
m∑

i=1

θiN�nti�(x)N�nti�(y)

)
h(ξx, ξy)

)])
n∈N

. (9)

If α0 = 1, since the limit process will have independent increments, it will be more natural to
prove the convergence of(
E

[
exp

(
ia−1

n

∑
x,y∈Zd0

(
m∑

i=1

θi

(
N�nti�(x)N�nti�(y) − N�nti−1�(x)N�nti−1�(y)

))
h(ξx, ξy)

)])
n∈N

.

Setting di,n(x) := N�nti�(x) − N�nti−1�(x), we observe that

m∑
i=1

θi

(
N�nti�(x)N�nti�(y) − N�nti−1�(x)N�nti−1�(y)

) =
m∑

i,j=1

θmax(i,j)di,n(x)dj,n(y) (10)

and hence, if α0 = 1, it is sufficient to study for fixed θi,j the sequence(
E

[
exp

(
ia−1

n

∑
x,y∈Zd

m∑
i,j=1

θi,j di,n(x)dj,n(y)h(ξx, ξy)

)])
n∈N

(11)

(in view of applying the results to the particular case when θi,j = θmax(i,j)).
Therefore we have to prove the convergence of (E[exp(ia−1

n

∑
x,y∈Zd0 χn,x,yh(ξx, ξy))])n,

with

χn,x,y :=
m∑

i=1

θiN�nti�(x)N�nti�(y) if α0 > 1

and

χn,x,y :=
m∑

i,j=1

θi,j di,n(x)dj,n(y) if α0 = 1.

The basic idea is to identify the sequences in (9) and (11) as functionals of some sequence of
suitably defined point processes and then to use Kallenberg theorem to prove convergence in
law of those point processes. More precisely, we will define in Section 4.2 the sequence of point
processes on R

∗ =R \ {0} defined through

Nn(ω̃, ξ) :=
∑

x,y∈Zd0

δ
a−1
n ζn,x,y (ω̃)h(ξx ,ξy)

,

where (ζn,x,y)n,x,y are suitable random variables defined on some suitable probability space
(�̃, F̃, P̃) such that, for every integer n, the random variable

∑
x,y∈Zd0 ζn,x,yh(ξx, ξy) (with
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respect to Pξ ⊗ P̃) has the same law as
∑

x,y∈Zd0 χn,x,yh(ξx, ξy) (with respect to the original
probability measure P).

In Section 4.1, we prove that the probability space (�̃, F̃, P̃) and the family (ζn,x,y)n,x,y can
be chosen in such a way to satisfy

lim
n→+∞a−β

n

∑
x,y∈Zd0

|ζn,x,y |β± = G̃± a.s., (12)

where G̃ is a suitable random variable on (�̃, F̃, P̃). The construction will vary depending on
whether α0 = 1 or α0 > 1.

The almost sure convergence in (12) will enable us to use Kallenberg theorem in Section 4.2
to prove that for almost every ω̃ ∈ �̃ the sequence of point processes (Nn(ω̃, ·))n∈N converges in
law (with respect to Pξ ) toward a Poisson point process Nω̃ on R

∗ with the following intensity
function

z �→ β|z|−β−1 (c0 + c1)G̃
+(ω̃) + sgn(z)(c0 − c1)G̃

−(ω̃)

2
.

In Section 4.3, we will see that a−1
n

∑
x,y∈Zd0 ζn,x,y(ω̃)h(ξx, ξy) equals

∫
R∗ wNn(ω̃, ξ,

dw) which as n goes to infinity converges in distribution toward
∫
R∗ wNω̃(dw). We will

also see in Section 4.3 that this limit follows a stable law with characteristic function
�

(c0+c1)G̃
+(ω̃),(c0−c1)G̃

−(ω̃),β
. This will imply the convergence in distribution of the sequences

in (9) and (11) toward the same stable limit.

4.1. A result of convergence

4.1.1. Case α0 = 1

We define

G±
n := a−β

n

∑
x,y∈Zd0

∣∣∣∣∣
m∑

i,j=1

θi,j di,n(x)dj,n(y)

∣∣∣∣∣
β

±
and

(13)

G± := K2
β

m∑
i,j=1

|θi,j |β±(ti − ti−1)(tj − tj−1),

where Kβ is the constant defined in Theorems 3 or 5 (depending on whether the random walk
(Sn)n is transient or recurrent with α = d0).

Lemma 8. If α0 = 1, (G±
n )n converges almost surely to G±.
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Applying this lemma with θi,j = θmax(i,j), we directly obtain the following almost sure equal-
ity

lim
n→∞a−β

n

∑
x,y∈Zd0

∣∣∣∣∣
m∑

i=1

θi

(
N�nti�(x)N�nti�(y) − N�nti−1�(x)N�nti−1�(y)

)∣∣∣∣∣
β

±
(14)

= K2
β

m∑
j=1

|θj |β±
(
t2
j − t2

j−1

)
.

Proof of Lemma 8. We proceed as in [7,9].

• Let k be a nonnegative integer. Let us prove that

lim
n→+∞(bn,k)

−2
∑

x,y∈Zd0

(
m∑

i,j=1

θi,j di,n(x)dj,n(y)

)k

(15)

= (Kk)
2

m∑
i,j=1

(θi,j )
k(ti − ti−1)(tj − tj−1) a.s.,

with bn,k := n(logn)k−1 if (Sn)n is recurrent (and α = d0) and with bn,k := n if (Sn)n is
transient (extending the definition of Kβ given in Theorems 3 or 5 to any nonnegative real
number β). Due to [17], page 10 (transient case) and to [9] (null recurrent case), we know
that

∀i ∈ {1, . . . ,m}, lim
n→∞(bn,k)

−1
∑

x∈Zd0

(
di,n(x)

)k = Kk(ti − ti−1) a.s. (16)

As in [7], we observe that∣∣∣∣∣
∑

x,y∈Zd0

(
m∑

i,j=1

θi,j di,n(x)dj,n(y)

)k

−
∑

x,y∈Zd0

m∑
i,j=1

(θi,j )
k
(
di,n(x)dj,n(y)

)k

∣∣∣∣∣
=

∣∣∣∣∣
∑

x,y∈Zd0

∑
((i1,j1),...,(ik,jk))∈I

k∏

=1

(
θi
,j


di
,n(x)dj
,n(y)
)∣∣∣∣∣

≤ max
i,j

|θi,j |k
∑

((i1,j1),...,(ik,jk))∈I

∑
x,y∈Zd0

k∏

=1

di
,n(x)dj
,n(y)

≤ max
i,j

|θi,j |k
( ∑

x,y∈Zd0

(
m∑

i,j=1

di,n(x)dj,n(y)

)k

−
∑

x,y∈Zd0

m∑
i,j=1

(
di,n(x)dj,n(y)

)k

)

≤ max
i,j

|θi,j |k
(( ∑

x∈Zd0

(
N�ntm�(x)

)k
)2

−
(

m∑
i=1

∑
x∈Zd0

(
di,n(x)

)k

)2)
,
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where I denotes the set of ((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . ,m}2)k such that #{(i1, j1), . . . ,

(ik, jk)} ≥ 2. Due to (16), we conclude that this term is in o((bn,k)
2).

• Assume here that (Sn)n is recurrent and α = d0. Let us define

Wn := (c3)
2

log2 n

m∑
i,j=1

θi,j di,n(Vn)dj,n

(
V ′

n

)
,

with (Vn,V
′
n) such that the conditional distribution of (Vn,V

′
n) given S is the uniform dis-

tribution on the set {z : N�ntm�(z) ≥ 1}2. We observe that

E
[|Wn|u±|S] = c2u

3

log2u n

1

R2�ntm�

∑
x,y∈Zd0

∣∣∣∣∣
m∑

i,j=1

θi,j di,n(x)dj,n(y)

∣∣∣∣∣
u

±
(17)

for all u > 0. Recall that R�ntm� is the cardinality of {z : N�ntm�(z) ≥ 1} and that Rn ∼
c3n/ logn a.s. Due to (15) and since Kk = �(k + 1)/ck−1

3 , we conclude that, for every
nonnegative integer k, we have, almost surely,

lim
n→+∞E

[
(Wn)

k|S] = (
�(k + 1)

)2
m∑

i,j=1

(θi,j )
k ti − ti−1

tm

tj − tj−1

tm
= E

[
Wk∞

]
,

with W∞ = θV,V ′T T ′ where V ′,V ,T ,T ′ are independent random variables, T and T ′ hav-
ing exponential distribution of parameter 1, V and V ′ being such that P(V = i) = P(V ′ =
i) = ti−ti−1

tm
for every i ∈ {1, . . . ,m}. From which we conclude that, almost surely, (Wn|S)n

converges in distribution to W∞ and that

lim
n→+∞E

[|Wn|β±|S] = E
[|W∞|β±

]
a.s. (18)

The proof now follows due to (17) and (18).
• Assume now that (Sn)n is transient and set this time

Wn :=
m∑

i,j=1

θi,j di,n(Vn)dj,n

(
V ′

n

)
,

for the same choice of (Vn,V
′
n) as in the previous case. Observe that

E
[|Wn|u±|S] = 1

R2�ntm�

∑
x,y∈Zd0

∣∣∣∣∣
m∑

i,j=1

θi,j di,n(x)dj,n(y)

∣∣∣∣∣
u

±

for all u > 0. We recall now, that Rn ∼ pn with p := P(Sk �= 0,∀k ≥ 1) = 2/(E[N∞] +
1) (see [24], page 35). Due to (15) and since Kk = E[Nk−1∞ ], we obtain that, for every
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nonnegative integer k, we have almost surely

lim
n→+∞E

[
Wk

n |S] =
(
E[Nk−1∞ ]

p

)2 m∑
i,j=1

(θi,j )
k ti − ti−1

tm

tj − tj−1

tm
.

So (Wn|S)n converges in distribution to T T ′θV,V ′ where V,V ′, T ,T ′ are independent ran-
dom variables such that

∀i ∈ {1, . . . ,m}, P(V = i) = P
(
V ′ = i

) = ti − ti−1

tm

and

∀m ≥ 1, P(T = m) = P
(
T ′ = m

) = P(N∞ = m)

mp
= (1 − p)m−1p.

Indeed, setting N∞(0) := supn Nn(0), we have P(N∞(0) = k) = (1−p)kp for every integer
k ≥ 0. Note that N∞ = 1 + N∞(0) + Ñ∞(0) where Ñ∞(0) = ∑

n≤−1 1{Sn=0} which is an
independent copy of N∞(0). Hence we have

P(N∞ = m) =
∑

k,
≥0:k+
=m−1

P
(
N∞(0) = k

)
P
(
N∞(0) = 


) = mp2(1 − p)m−1,

for every integer m ≥ 1. Therefore,

lim
n→+∞E

[|Wn|β±|S] =
(
E[Nβ−1∞ ]

p

)2 m∑
i,j=1

|θi,j |β±
ti − ti−1

tm

tj − tj−1

tm
a.s.

This finishes the proof in this case. �

Since in the main proof we want to treat simultaneously the cases α0 = 1 and α0 > 1, we have
to introduce some additional notations which will have their counterparts in the case α0 > 1. So
for α0 = 1, we set Ñn,ti (x) := N�nti�(x), Ñ∗

n := N∗�ntm�, R̃n := R�ntm�, G̃±
n := G±

n and G̃± :=
G±. We fix ε > 0 such that ε < 1/(3 + 4β) and (3 + 4γ )ε <

4γ
β

− 3. If β < 4/3, we assume

moreover that 3 − 4 min(1,γ )
β

+ 7ε < 0 (with γ of item (iv) of Assumption 1). If β ≥ 4/3, we

assume that 3 − 4(θ ′+1)
β

+ (4θ ′ + 7)ε < 0 (with θ ′ of item (vi) of Assumption 1). We write F̃
for the sub-algebra generated by S. We consider the set �̃0 ∈ F̃ on which (G+

n ,G−
n , n−εN∗

n )

converges to (G+,G−,0). When α0 = 1, we will make no distinction between E and E nor
between P and P.

4.1.2. Case α0 > 1

For every b, t ≥ 0, we set

Fn,t (b) := n−1
∫ n1/αb

0
N�nt�

(�y�)dy, Fn,t (−b) := −n−1
∫ 0

−n1/αb

N�nt�
(�y�)dy,
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Ft(b) =
∫ b

0
Lt (x) dx and Ft(−b) = −

∫ 0

−b

Lt (x) dx

(recall that Ls(x) is the local time of (Yt )t at position x and up to time s). Let us define

G±
n := a−β

n

∑
x,y∈Z

∣∣∣∣∣
m∑

i=1

θiN�nti�(x)N�nti�(y)

∣∣∣∣∣
β

±
and G± :=

∫
R2

∣∣∣∣∣
m∑

i=1

θiLti (x)Lti (y)

∣∣∣∣∣
β

±
dx dy.

Lemma 9. The finite-dimensional distributions of (Fn,t1 , . . . ,Fn,tm,G+
n ,G−

n )n converge to the
finite-dimensional distributions of (Ft1, . . . ,Ftm,G+,G−), i.e. ((Fn,ti (bj ))i=1,...,m,j=1,...,q ,G+

n ,

G−
n )n converges in distribution to the random variable ((Fti (bj ))i=1,...,m,j=1,...,q ,G+,G−)n, for

every integer q ≥ 1 and every real numbers b1, . . . , bq .

Proof. Let us write Ln(t;a, b) := n−1 ∑�bn1/α�−1
x=�an1/α� N�nt�(x) for any a < b. Due to [17],

(
Ln(ti;ai, bi)

)
i=1,...,I

−→
n→+∞

(∫ bi

ai

Lti (x) dx

)
i=1,...,I

(19)

for any positive integer I and for any real numbers a1, . . . , aI , b1, . . . , bI , t1, . . . , tI satisfying
ai < bi and 0 < ti . We now follow the proof of Lemma 6 of [17]. For any real number τ > 0 and
any positive integers n and M , we define

V ±(τ,M,n) := τ 2−2β
∑

|k|,|
|≤M

∣∣T (k, 
,n)
∣∣β±,

where

T (k, 
,n) := n−2
m∑

j=1

θj

�(k+1)τn1/α�−1∑
x=�kτn1/α�

�(
+1)τn1/α�−1∑
y=�
τn1/α�

N�ntj �(x)N�ntj �(y).

As in [17], we decompose G±
n − V ±(τ,M,n) as follows

G±
n − V ±(τ,M,n) = U±(τ,M,n) + W±

1 (τ,M,n) + W±
2 (τ,M,n),

with

U±(τ,M,n) := n−2δβ
∑

(x,y)∈Aτ,M,n

∣∣∣∣∣
m∑

j=1

θjN�ntj �(x)N�ntj �(y)

∣∣∣∣∣
β

±
,

where Aτ,M,n := Z
2 \ {�−Mτn1/α�, . . . , �(M + 1)τn1/α� − 1}2,

W±
1 (τ,M,n) :=

∑
|k|,|
|≤M

∑
(x,y)∈Ek,n×E
,n

n−2δβW±
1,k,
(x, y),
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where Ek,n := {�kτn1/α�, . . . , �(k + 1)τn1/α� − 1},

W±
1,k,
(x, y) :=

∣∣∣∣∣
m∑

j=1

θjN�ntj �(x)N�ntj �(y)

∣∣∣∣∣
β

±
− n2β(#Ek,n#E
,n)

−β
∣∣T (k, 
,n)

∣∣β±
and

W±
2 (τ,M,n) :=

∑
|k|,|
|≤M

{
n2β−2δβ(#Ek,n#E
,n)

1−β − τ 2−2β
}∣∣T (k, 
,n)

∣∣β±.

The proof follows now in five steps:

(1) Observe that, due to [17], Lemma 1, there exists a function η satisfying limx→+∞ η(x) = 0
such that

sup
n

P
(
U±(τ,M,n) �= 0

) ≤ sup
n

P
(∃x : |x| ≥ Mτn1/α and N�ntm�(x) �= 0

)
(20)

= η(Mτ).

(2) We prove that there exists some K > 0 and u > 0 such that for all M > 1 one has

sup
n

E
[∣∣W±

1 (τ,M,n)
∣∣] ≤ K(Mτ)2τu. (21)

We first do the case β ≤ 1. As usual for p ≥ 1 and for a function f ∈ L
p(�,P), we write ‖f ‖p

for (E[|f |p])1/p . Using the fact that ||a|β± − |b|β±| ≤ 21−β |a − b|β , we have

2β−1
E

[∣∣W±
1,k,
(x, y)

∣∣]

≤ E

[∣∣∣∣∣
m∑

j=1

θjN�ntj �(x)N�ntj �(y) − n2(#Ek,n#E
,n)
−1T (k, 
,n)

∣∣∣∣∣
β]

≤
∥∥∥∥∥

m∑
j=1

θjN�ntj �(x)N�ntj �(y) − n2(#Ek,n#E
,n)
−1T (k, 
,n)

∥∥∥∥∥
β

2

≤ (#Ek,n#E
,n)
−β

∥∥∥∥∥
m∑

j=1

∑
(x′,y′)∈Ek,n×E
,n

θj

(
N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′))∥∥∥∥∥

β

2

≤ (#Ek,n#E
,n)
−β/2

×
(

m∑
i=1

θ2
i

m∑
j=1

∑
(x′,y′)∈Ek,n×E
,n

∥∥(
N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′))∥∥2

2

)β/2

,
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due to the Cauchy–Schwarz inequality. Now we have to estimate

∑
(x′,y′)∈Ek,n×E
,n

E
[∣∣N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′)∣∣2]

,

for (x, y) ∈ Ek,n×E
,n. To this end, we use E[|ab−a′b′|2] ≤ 2(‖a‖2
4‖b−b′‖2

4 +‖a−a′‖2
4‖b′‖2

4)

together with the fact that

sup
x

E
[(

Nn(x)
)4] = O

(
n4−(4/α)

)
and sup

y �=z

E[|Nn(y) − Nn(z)|4]
|y − z|2α−2

= O
(
n2−2/α

)

(see, for example, [16], page 77, for the last estimate). This gives,

E
[∣∣N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′)∣∣2] ≤ Cτα−1n4−4/α, (22)

for every (x, y), (x′, y′) ∈ Ek,n ×E
,n and for some C > 0 independent of (τ,M,n, k, 
). There-
fore, we obtain

E
[∣∣W±

1 (τ,M,n)
∣∣] ≤ C′(2M + 1)2τ 2+β/2(α−1),

where C′ does not depend on (τ,M,n). From this, we conclude in the case β ≤ 1.
When β > 1, we use ||a|β± − |b|β±| ≤ β|a − b|(|a|β−1 + |b|β−1) combined with the Cauchy–

Schwarz inequality and obtain

E
[∣∣W±

1,k,
(x, y)
∣∣]

≤ β(#Ek,n#E
,n)
−1

∥∥∥∥∥
m∑

j=1

θj

∑
(x′,y′)∈Ek,n×E
,n

(
N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′))∥∥∥∥∥

2

×
∥∥∥∥∥
∣∣∣∣∣

m∑
j=1

θjN�ntj �(x)N�ntj �(y)

∣∣∣∣∣
β−1

+ (
n2(#Ek,n#E
,n)

−1
∣∣T (k, 
,n)

∣∣)β−1

∥∥∥∥∥
2

≤ β(#Ek,n#E
,n)
−1

m∑
j=1

|θj |
∑

(x′,y′)∈Ek,n×E
,n

∥∥(
N�ntj �(x)N�ntj �(y) − N�ntj �

(
x′)N�ntj �

(
y′))∥∥

2

×
(∥∥∥∥∥

m∑
j=1

θjN�ntj �(x)N�ntj �(y)

∥∥∥∥∥
β−1

2(β−1)

+ n2β−2(#Ek,n#E
,n)
1−β

∥∥T (k, 
,n)
∥∥β−1

2(β−1)

)

≤ C
(
τα−1n4−4/α

)1/2
(

sup
x′

∥∥N�ntm�
(
x′)∥∥2β−2

4(β−1)

+ n2β−2(τn1/α
)2−2β

(
n−2(τn1/α

)2 sup
x′

∥∥N�ntm�
(
x′)∥∥2

4(β−1)

)β−1)
,
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due to the Cauchy–Schwarz inequality and to (22). Hence, we have

E
[∣∣W±

1,k,
(x, y)
∣∣] ≤ C′τ (α−1)/2n2−2/αn(1−1/α)2(β−1) = C′τ (α−1)/2n2β(1−1/α)

for some C′ > 0 and so

E
[∣∣W±

1 (τ,M,n)
∣∣] ≤ C′′(2M + 1)2τ 2+(α−1)/2,

where C′′ does not depend on (τ,M,n) and we conclude in the case when β > 1.
(3) We notice that

V±(τ,M) := τ 2−2β
∑

|k|,|
|≤M

∣∣∣∣∣
∫ (k+1)τ

kτ

∫ (
+1)τ


τ

m∑
j=1

θjLtj (x)Ltj (y) dx dy

∣∣∣∣∣
β

±

converge to G± as (τ,Mτ) → (0,∞), since the local times x �→ Ltj (x) are almost surely con-
tinuous and compactly supported (see [17]).

(4) We observe that, for every choice of (τ,M) the sequence (W±
2 (τ,M,n))n converges in

probability to 0 as n → ∞. Indeed, due to (19) and since T (k, 
,n) = ∑m
j=1 θjLn(tj ; kτ, (k +

1)τ )Ln(tj ;
τ, (
 + 1)τ ) we conclude that for every (k, 
) the sequence (T (k, 
, n))n converges
in distribution to

m∑
j=1

θj

∫ (k+1)τ

kτ

Ltj (x) dx

∫ (
+1)τ


τ

Ltj (y) dy.

We conclude using the fact that (n2β(1−δ)(#Ek,n#E
,n)
1−β − τ 2−2β)n converges to 0.

(5) For every choice of (τ,M), for every q and every real numbers b1, . . . , bq , the sequence
of random variables ((Fn,ti (bj ))i,j ,V

+(τ,M,n),V −(τ,M,n)))n converges in distribution to
((Fti (bj ))i,j ,V+(τ,M),V−(τ,M)). Indeed, due to (19), ((Ln(ti;0, bj ))i=1,...,m,j=1,...,q , (Ln(ti;

τ, (
 + 1)τ )i=1,...,m,|
|≤M) converges in distribution to ((

∫ bj

0 Lti (x) dx)i=1,...,m,j=1,...,q ,

(
∫ (
+1)τ


τ
Lti (x) dx)i=1,...,m,|
|≤M) (with the convention Ln(t;0,−b) = − 1

n

∑−1
x=−�n1/αb�N�nt�(x)

if b > 0). We observe that

∣∣Fn,ti (bj ) − Ln(ti;0, bj )
∣∣ ≤ N�nti�(sgn(bj )�n1/α|bj |�)

n

which converges in probability to 0. Moreover, we recall that

V ±(τ,M,n) := τ 2−2β
∑

|k|,|
|≤M

∣∣T (k, 
,n)
∣∣β±

and that T (k, 
,n) = ∑m
j=1 θjLn(tj ; kτ, (k + 1)τ )Ln(tj ;
τ, (
 + 1)τ ).

(6) Now we conclude. Let zi,j , z± ∈ R and ε > 0. Due to points 1, 2 and 3, we fix M > 1 and
τ > 0 such, for every n, we have

E
[∣∣ei(z+G+

n +z−G−
n ) − ei(z+(V +(τ,M,n)+W+

2 (τ,M,n))+z−(V −(τ,M,n)+W−
2 (τ,M,n)))

∣∣] < ε (23)
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and

E
[∣∣ei(z+V+(τ,M)+z−V−(τ,M)) − ei(z+G++z−G−)

∣∣] < ε. (24)

Due to points 4 and 5 for this choice of (M, τ), there exists n0 such that for every n ≥ n0,

E
[∣∣eiz+W+

2 (τ,M,n)+iz−W−
2 (τ,M,n) − 1

∣∣] < ε (25)

and ∣∣E[
e
i(

∑
i,j zij Fti

(bj ))+z+V+(τ,M)+z−V−(τ,M))
]

(26)
−E

[
e
i(

∑
i,j zij Fn,ti

(bj ))+z+V +(τ,M,n)+z−V −(τ,M,n))
]∣∣ < ε.

Hence, for every n ≥ n0, we have∣∣E[
e
i(

∑
i,j zij Fti

(bj ))+z+G++z−G−)
] −E

[
e
i(

∑
i,j zij Fn,ti

(bj ))+z+G+
n +z−G−

n )
]∣∣

≤ 3ε + ∣∣E[
e
i(

∑
i,j zij Fti

(bj ))+z+V+(τ,M)+z−V−(τ,M))
]

−E
[
e
i(

∑
i,j zij Fn,ti

(bj ))+z+V +(τ,M,n)+z−V −(τ,M,n))
]∣∣

≤ 4ε,

where we used (23), (24), (25) for the first inequality and (26) for the last one. �

Let C be the set of continuous functions g : R → [−tm, tm]. We endow this set with the fol-
lowing metric D corresponding to the uniform convergence on every compact:

D(g,h) :=
∑
N≥1

2−N sup
x∈[−N;N ]

∣∣g(x) − h(x)
∣∣.

Lemma 10. The sequence (Fn,t1 , . . . ,Fn,tm)n∈N is tight in (C,D)m.

Proof. It is enough to prove the tightness of Fn,ti for all i ∈ {1, . . . ,m}. To simplify notations
in this proof, we use Fn to denote Fn,ti /ti and F to denote Fti /ti . As usual, for any f ∈ C, we
denote by ω(f, ·) the modulus of continuity of f . Since Fn(0) = 0 for every n, it is enough to
prove

∀ε > 0, lim
δ→0

lim sup
n→+∞

P
(
ω(Fn, δ) ≥ ε

) = 0 (27)

(see [2], page 83). Let ε > 0 and ε0 > 0. Let M > 0 be such that P(|F(M) − F(−M)| ≤ 1 −
(ε/2)) ≤ ε0/2. Since (Fn(M) − Fn(−M))n converges in distribution to F(M) − F(−M), we
have

lim sup
n→+∞

P
(∣∣Fn(M) − Fn(−M)

∣∣ ≤ 1 − (ε/2)
) ≤ P

(∣∣F(M) − F(−M)
∣∣

(28)
≤ 1 − (ε/2)

) ≤ ε0/2.
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Let δ0 > 0 be such that, for every δ ∈ (0, δ0), P(ω(F, δ) ≥ ε/2) ≤ ε0/2 (since F is almost surely
uniformly continuous). Since the finite-dimensional distributions of (Fn)n converge to the finite-
dimensional distributions of F , we have

lim sup
n→+∞

P

(
∃k = −

⌈
M

δ

⌉
, . . . ,

⌈
M

δ

⌉
,
∣∣Fn(kδ) − Fn

(
(k + 1)δ

)∣∣ ≥ ε

2

)

≤ P

(
∃k = −

⌈
M

δ

⌉
, . . . ,

⌈
M

δ

⌉
,
∣∣F(kδ) − F

(
(k + 1)δ

)∣∣ ≥ ε

2

)
(29)

≤ P

(
ω(F, δ) ≥ ε

2

)
≤ ε0

2
.

Putting (28) and (29) together, we obtain that, for every δ < δ0, we have

lim sup
n→+∞

P
(
ω(Fn, δ) ≥ ε

) ≤ lim sup
n→+∞

P

(
∃k = −

⌈
M

δ

⌉
, . . . ,

⌈
M

δ

⌉
,
∣∣Fn(kδ) − Fn

(
(k + 1)δ

)∣∣ ≥ ε

2

)

+ lim sup
n→+∞

P
(∣∣Fn(M) − Fn(−M)

∣∣ ≤ 1 − (ε/2)
)

and so

lim sup
n→+∞

P
(
ω(Fn, δ) ≥ ε

) ≤ ε0. �

Due to Lemmas 9 and 10, the sequence (Fn,t1 , . . . ,Fn,tm,G+
n ,G−

n )n converges in distribution
to (Ft1, . . . ,Ftm,G+,G−) in (C,D)m × (R, | · |)2.

We fix ε ∈ (0, βδ/(1 + β)) such that (3 + 4β)ε < 1/α and (3 + 4γ )εα <
4γ
β

− 3 (this is pos-

sible due to γ > 3β/4). If β < 4/3, we assume moreover that 3
α

− 4 min(1,γ )
αβ

+ 7ε < 0 (with γ

of item (iv) of Assumption 1). If β ≥ 4/3, we assume also that 1
α
(3 − 4(θ ′+1)

β
) + (4θ ′ + 7)ε < 0

(with θ ′ of item (vi) of Assumption 1). Using for example, [16] for the maximal occupation time
and Appendix of [8] for the range, we know that (n−1/α−εRn,n

(1/α)−1−εN∗
n )n converges almost

surely to 0. Therefore, the sequence (Fn,t1 , . . . ,Fn,tm,G+
n ,G−

n , n−1/α−εRn,n
(1/α)−1−εN∗

n )n
converges in distribution to (Ft1 , . . . ,Ftm,G+,G−,0,0) in (C,D)m × (R, | · |)4.

Now using the Skorokhod representation theorem (see [12], page 1569) (since (C,D) and R

are separable and complete), we know that there exists a probability space (�̃, F̃, P̃) with random
variables (

F̃n,t1, . . . , F̃n,tm, G̃+
n , G̃−

n , R̃n, Ñ
∗
n

)
n

and
(
F̃t1, . . . , F̃tm, G̃+, G̃−)

defined on (�̃, F̃, P̃) such that

• for every integer n, (F̃n,t1 , . . . , F̃n,tm, G̃+
n , G̃−

n , R̃n, Ñ
∗
n ) has the same distribution (with re-

spect to P̃) as (Fn,t1 , . . . ,Fn,tm,G+
n ,G−

n ,R�ntm�,N∗�ntm�) (with respect to P) in (C,D)m ×
(R, | · |)4;

• (F̃t1, . . . , F̃tm, G̃+, G̃−) has the same distribution as (Ft1, . . . ,Ftm,G+,G−) in (C,D)m ×
(R, | · |)4;
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• the sequence (F̃n,t1 , . . . , F̃n,tm, G̃+
n , G̃−

n , n−1/α−εR̃n, n
(1/α)−1−εÑ∗

n )n converges almost
surely to (F̃t1 , . . . , F̃tm, G̃+, G̃−,0,0) in (C,D)m × (R, | · |)4.

Observe that, for every x ∈ Z and every n ≥ 1, Nn(x) : f �→ n(f ((x +1)n−1/α)−f (xn−1/α))

is a continuous functional of (C,D) and that N�nti�(x) =Nn(x)(Fn,ti ) (for every i ∈ {1, . . . ,m}).
Therefore, for every integers x and n ≥ 1, for every i ∈ {1, . . . ,m}, we define

Ñn,ti (x) := Nn(x)(F̃n,ti ).

Observe that, for every integer N ≥ 1,((
Ñn,ti (x)

)
x∈{−N,...,N};i∈{1,...,m}, Ñ

∗
n , R̃n, G̃

±
n

)
has the same distribution as((

N�nti�(x)
)
x∈{−N,...,N};i∈{1,...,m},N

∗�ntm�,R�ntm�,G±
n

)
.

In particular, Ñn,ti (x) takes integer values and 0 ≤ Ñn,ti (x) ≤ Ñn,tm(x). Moreover, we have the
following result.

Lemma 11. Let n be a positive integer. We have

sup
x∈Z

Ñn,tm(x) ≤ Ñ∗
n , (30)

#
{
x ∈ Z : Ñn,tm(x) > 0

} = R̃n (31)

and

G̃±
n = n−2βδ

∑
x,y∈Z

∣∣∣∣∣
m∑

i=1

θiÑn,ti (x)Ñn,ti (y)

∣∣∣∣∣
β

±
. (32)

Proof. (30) comes from the fact that, for every integers x and n ≥ 1, Ñ∗
n − Ñn,tm(x) has the same

distribution as N∗�ntm� − N�ntm�(x) which is nonnegative.
To prove (31), we observe that

R̃n − #
{
x ∈ Z : Ñn,tm(x) > 0

} = lim
N→+∞

(
R̃n − #

{
x ∈ {−N, . . . ,N} : Ñn,tm(x) > 0

})
.

But, for every N ≥ 1, R̃n − #{x ∈ {−N, . . . ,N} : Ñn,tm(x) > 0} has the same distribution as
R�ntm� − #{x ∈ {−N, . . . ,N} : N�ntm�(x) > 0} which converges to 0 as N goes to infinity. This
gives (31) by uniqueness of the limit for the convergence in probability.

Finally, we observe that G̃±
n − n−2βδ

∑
x,y∈Z |∑m

i=1 θiÑn,ti (x)Ñn,ti (y)|β± is the limit as N

goes to infinity of

G̃±
n − n−2βδ

∑
|x|,|y|≤N

∣∣∣∣∣
m∑

i=1

θiÑn,ti (x)Ñn,ti (y)

∣∣∣∣∣
β

±
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which has the same distribution as

G±
n − n−2βδ

∑
|x|,|y|≤N

∣∣∣∣∣
m∑

i=1

θiN�nti�(x)N�nti�(y)

∣∣∣∣∣
β

±
.

But this last random variable converges to 0 as N goes to infinity and we obtain (32). �

Let us write (�,F,P) for the original space on which ξ and S are defined. We denote Fξ

for the sub-σ -algebra of F generated by ξ and Pξ for the restriction of P to Fξ . Now we define
(�,T ,P) as the direct product of (�,Fξ ,Pξ ) with (�̃, F̃, P̃). We observe that Pξ (·) = P(·|F̃).

Lemma 12. For every integer n ≥ 1, the random variable Ãn := ∑
x,y∈Z

∑m
i=1 θiÑn,ti (x) ×

Ñn,ti (y)h(ξx, ξy) has the same distribution (with respect to P) as An := ∑
x,y∈Z

∑m
i=1 θi ×

N�nti�(x)N�nti�(y)h(ξx, ξy) (with respect to P).

Proof. We proceed as in the proof of Lemma 11. Observe that Ãn is the limit as N goes to
infinity of Ãn,N := ∑

|x|,|y|≤N

∑m
i=1 θiÑn,ti (x)Ñn,ti (y)h(ξx, ξy) which has the same distribution

as An,N := ∑
|x|,|y|≤N

∑m
i=1 θiN�nti�(x)N�nti�(y)h(ξx, ξy). But An = limN→+∞ An,N . We con-

clude by unicity of the limit for the convergence in distribution. �

Let �̃0 ⊂ �̃ be the set of P̃-measure one on which (F̃n,t1 , . . . , F̃n,tm, G̃+
n , G̃−

n , n−1/α−εR̃n,

n(1/α)−1−εÑ∗
n )n converges to (F̃t1 , . . . , F̃tm, G̃+, G̃−,0,0) in Cm ×R

4.

4.2. A conditional limit theorem for some associated point process

To simplify notations, we set

ζn,x,y :=
m∑

i=1

θiÑn,ti (x)Ñn,ti (y) if α0 > 1 (33)

and

ζn,x,y :=
m∑

i,j=1

θi,j di,n(x)dj,n(y) if α0 = 1. (34)

With these notations we have

G̃±
n = a−β

n

∑
x,y

|ζn,x,y |β±.

For every ω̃ ∈ �̃0, we consider the point process Nn on R
∗ defined by

Nn(ω̃, ξ)(dz) :=
∑

x,y∈Z:x �=y

δ
a−1
n ζn,x,y (ω̃)h(ξx ,ξy)

(dz).
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We already mentioned in (7) that an ∼ cn2(E[Rn])2/β−2 for some c > 0 and observe that in any
case

∀γ0 > 0, a−1
n = o

(
n−2+2/α0−2/(α0β)+γ0

)
. (35)

Moreover, note that for the ε > 0 which was fixed in the previous subsection we have

n1/α0−1−εÑ∗
n

a.s.−→ 0

and

n−1/α0−εR̃n
a.s.−→ 0.

In the following, we will prove that the sequence of point processes Nn;n ∈ N converges
toward some Poisson point process for P̃ almost all ω̃ ∈ �̃. We will essentially follow the notation
from [22] and denote by Mp(R∗) the set of point measures on R

∗. Further, Mp(R∗) is the
smallest σ -algebra containing all sets A of the form

A = {
m ∈ Mp

(
R

∗);m(F) ∈ B
}

for some F ∈ B(R∗) and B ∈ B([0,∞]). We introduce the following metric on R
∗

d(x, y) :=
{∣∣log(x/y)

∣∣, if sgn(x) = sgn(y);∣∣log |x|∣∣ + ∣∣log |y|∣∣ + 1, if sgn(x) �= sgn(y).

With this metric R
∗ becomes a complete separable metric space. We will denote by CK(R∗)

the space of continuous functions f : R∗ → R with compact support with respect to this metric.
A sequence of Radon measures μn is said to converge with respect to the vague topology toward
some Radon measure μ if for all f ∈ CK(R∗) one has

lim
n→∞

∫
R∗

f dμn =
∫
R∗

f dμ.

It is well known that the vague topology on the Radon measures can be generated by some
metric which turns it into a complete metric space (see [22], page 147) and that the set of point
measures is closed in the vague topology (see [22], page 145). We will say that a sequence of
point processes Nn;n ∈ N converges in distribution toward a point process N if for all bounded
vaguely continuous functions F : Mp(R∗) → R we have

lim
n→∞E

[
F(Nn)

] = E
[
F(N )

]
.

Proposition 13. For every ω̃ ∈ �̃0, Nn(ω̃, ·) converges in distribution (with respect to Pξ ) to a
Poisson process Nω̃ on R \ {0} of intensity ηω̃ given by

ηω̃

([
d, d ′)) = (

d−β − d ′−β) (c0 + c1)G̃
+(ω̃) + (c0 − c1)G̃

−(ω̃)

2
,
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and

ηω̃

((−d ′,−d
]) = (

d−β − d ′−β) (c0 + c1)G̃
+(ω̃) − (c0 − c1)G̃

−(ω̃)

2

(with convention ∞−β = 0) for every 0 < d < d ′ ≤ +∞.

Proof. Our proof is based on some method presented in [10]. Due to Kallenberg’s theorem [22],
it is enough to prove that, for any finite union R = ⋃K

i=1 Qi of intervals, where Qi := [di, d
′
i ) ⊂

(0,+∞) or Qi = (−d ′
i ,−di] ⊂ (−∞,0). We have

lim
n→+∞ E

[
Nn(R)|F̃]

(ω̃) = ηω̃(R) (36)

and

lim
n→+∞ P

(
Nn(R) = 0|F̃)

(ω̃) = e−ηω̃(R). (37)

We start with the proof of (36). By linearity, it is enough to prove it for a single interval Q. For
any interval Q = [d, d ′) ⊂ (0,+∞), since ξ is a sequence of i.i.d. random variables, we have

E
[
Nn(Q)|F̃] =

∑
x,y∈Zd0 :x �=y

(
P(An,x,y |F̃)1{ζn,x,y>0} + P(Bn,x,y |F̃)1{ζn,x,y<0}

)
,

with

An,x,y := {
and|ζn,x,y |−1 ≤ h(ξ1, ξ2) < and

′|ζn,x,y |−1}
and

Bn,x,y := {
and|ζn,x,y |−1 ≤ −h(ξ1, ξ2) < and

′|ζn,x,y |−1}.
Observe that, due to (35) and to Ñ∗

n = o(n1−1/α0+ε), we have

∀γ0 > 0, a−1
n sup

x,y
|ζn,x,y | ≤ Ca−1

n

(
Ñ∗

n

)2 ≤ n−2/(α0β)+2ε+γ0 , (38)

for n large enough (and for some constant C > 0 depending on θi or on θi,j ). Now, combining
this with item (iii) of Assumption 1, we have

∑
x,y:x �=y

P(An,x,y |F̃)1{ζn,x,y>0} = c0
(
d−β − d ′−β)

a−β
n

∑
x,y∈Zd0 :x �=y

|ζn,x,y |β sgn(ζn,x,y) + 1

2

×
(

1 + O
(

sup
z>n2/(α0β)−2ε−γ0

∣∣L0(z) − c0
∣∣))

+ o(1)

= c0
(
d−β − d ′−β)G̃+

n + G̃−
n

2
+ o(1),
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since ε < 1/(α0β) and since, for n large enough,

∑
x∈Zd0

|ζn,x,y |β ≤ n1/α0+εn2β−(2β)/α0+2εβ = o
(
aβ
n

)
,

since ε < 1/((1 + 2β)α0). Analogously, we have

∑
x,y:x �=y

P(Bn,x,y |F̃)1{ζn,x,y<0} = c1
(
d−β − d ′−β)

a−β
n

∑
x,y∈Zd0 :x �=y

|ζn,x,y |β 1 − sgn(ζn,x,y)

2

×
(

1 + O
(

sup
z>n2/(α0β)−2ε−γ0

∣∣L1(z) − c1
∣∣))

+ o(1)

= c1
(
d−β − d ′−β)G̃+

n − G̃−
n

2
+ o(1).

We obtain (36) for Q = [d, d ′) ⊂ (0,+∞) using (1), (2) and the definition of G̃±
n and of G̃±.

The proof of (36) for Q = (−d ′,−d] ⊂ (−∞,0) follows the same scheme.
Now let us prove (37). Let K ≥ 1 and let R be a union of K pairwise disjoint intervals

Q1, . . . ,QK with Qi := (di, d
′
i] ⊂ (0,+∞) or Qi := [−d ′

i ,−di) ⊂ (−∞,0). We write P ω̃
n for

the Poisson distribution of intensity ηω̃
n (R) := E[Nn(R)|F̃ ](ω̃). On �̃0, due to (36), we have

∣∣e−ηω̃(R) − P ω̃
n (0)

∣∣ = o(1).

Hence, to prove (37), we just have to prove∣∣P(
Nn(R) = 0|F̃) − Pn(0)

∣∣ = o(1). (39)

Following [1] and [10], we introduce the following notations. For every x, y ∈ Z
d0 such that

x �= y, we define the random variables

Ix,y =
K∑

i=1

1{h(ξx ,ξy)∈an(ζn,x,y )−1Qi }.

Observe that

Nn(R) =
∑

x,y∈Zd0 :x �=y

Ix,y and so ηn(R) =
∑

x,y∈Zd0 :x �=y

E[Ix,y |F̃]. (40)

We will use the following lemma, whose proof is postponed until the end of this paragraph.

Lemma 14. We have∣∣P(
Nn(R) = 0|F̃) − Pn(0)

∣∣ ≤ min
(
1,

(
ηn(R)

)−1)
(A1 + A2),



354 B. Franke, F. Pène and M. Wendler

with

A1 :=
∑

(x,y)∈M

E[Ix,y |F̃]E
[
Ix,y +

∑
(x′,y′)∈M

(1)
x,y

Ix′,y′
∣∣∣F̃]

,

A2 :=
∑

(x,y)∈M

E
[
Ix,y

(
Ix,y +

∑
(x′,y′)∈M

(1)
x,y

Ix′,y′
)∣∣∣F̃]

,

and with the notation M
(k)
x,y := {(x′, y′) ∈ M : #{x′, y′} ∩ {x, y} = k} and M := {(x, y) ∈ Z

2d0 :
x �= y}.

To conclude, we have to prove that A1 and A2 converge to 0 as n goes to infinity.
We set d := mini di .
For A1, using (1), (2) and the definition of Ix,y , we observe that, for γ0 > 0 small enough, we

have

A1 ≤ 4K2
∑

x,y∈Zd0

∑
x′∈Zd0

P
(
dan|ζn,x,y |−1 ≤ ∣∣h(ξx, ξy)

∣∣|F̃)

× P
(
dan|ζn,x,x′ |−1 ≤ ∣∣h(ξx, ξx′)

∣∣|F̃)
≤ Cd−2βa−2β

n

(‖L0‖∞ + ‖L1‖∞
)2

R̃3
n

(
Ñ∗

n

)4β

≤ O
(
n−1/α0+(4β+3)ε+γ0

) = o(1),

using ε(4β + 3) < 1/α0, (35) together with the definitions of R̃n and Ñ∗
n and with C some

constant depending on R and θj (or θi,j ).
Now let us study A2. We have, for γ0 > 0 small enough,

A2 ≤ 4K2
∑

x,y,x′∈Zd0

P
(
dan|ζn,x,y |−1 ≤ ∣∣h(ξx, ξy)

∣∣, dan|ζn,x,x′ |−1 ≤ ∣∣h(ξx, ξx′
)∣∣|F̃)

≤ 4C0R̃
3
na

−2γ
n

(
Ñ∗

n

)4γ

≤ O
(
n3/α0+(3+4γ )ε−(4γ )/(α0β)+γ0

) = o(1),

due to (3 + 4γ )εα0 <
4γ
β

− 3 (recall that this is possible since γ > 3β/4) and where C0 is a
constant depending on d , R and θj (or θi,j ). �

Proof of Lemma 14. The proof of this lemma follows the line of arguments that can be found
in [10]. Let f be defined on N by f (0) = 0 and

f (m) := eηn(R) (m − 1)!
(ηn(R))m

Pn

({0})Pn

([m,+∞)
)
.
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We will use the two following inequalities (see [1], pages 400 and 401)∣∣P(
Nn(R) = 0|F̃) − Pn(0)

∣∣ ≤ ∣∣E[
ηn(R)f

(
Nn(R) + 1

) −Nn(R)f
(
Nn(R)

)|F̃]∣∣ (41)

and

sup
m

∣∣f (m + 1) − f (m)
∣∣ ≤ min

(
1,

(
ηn(R)

)−1)
. (42)

Now we observe that, for every (x, y) ∈ (Zd0)2 such that x �= y, we have

Nn(R) =
∑

x′,y′∈Zd0 :x′ �=y′
Ix′,y′ = Ix,y +N (0)

n,x,y +N (1)
n,x,y, (43)

with N (i)
n,x,y := ∑

(x′,y′)∈M
(i)
x,y

Ix′,y′ . Starting from (41) and using (40), we have

∣∣P(
Nn(R) = 0|F̃) − Pn(0)

∣∣ ≤ A′
1 + A′

2,

with

A′
1 :=

∣∣∣∣ ∑
x,y∈Zd0 :x �=y

E[Ix,y |F̃ ]E[
f

(
Nn(R) + 1

) − f
(
N (0)

n,x,y + 1
)|F̃]∣∣∣∣

and

A′
2 :=

∣∣∣∣ ∑
x,y∈Zd0 :x �=y

E
[
Ix,yf

(
Nn(R)

)|F̃] − E[Ix,y |F̃]E[
f

(
N (0)

n,x,y + 1
)|F̃]∣∣∣∣.

Now, using (42) and (43), we obtain∣∣f (
Nn(R) + 1

) − f
(
N (0)

n,x,y + 1
)∣∣ ≤ sup

m≥0

∣∣f (m + 1) − f (m)
∣∣ × (

Nn(R) −N (0)
n,x,y

)
(44)

≤ min
(
1,

(
ηn(R)

)−1)(
Ix,y +N (1)

n,x,y

)
and so A′

1 ≤ min(1, (ηn(R))−1)A1. Observe that, conditioned with respect to F̃ , Ix,y and N (0)
n,x,y

are independent. Therefore

A′
2 =

∣∣∣∣ ∑
x,y∈Zd0 :x �=y

E
[
Ix,y

{
f

(
Nn(R)

) − f
(
N (0)

n,x,y + 1
)}|F̃]∣∣∣∣.

Now, using (42) once again, we obtain∣∣f (
Nn(R)

) − f
(
N (0)

n,x,y + 1
)∣∣ ≤ min

(
1,

(
ηn(R)

)−1)(Nn(R) −N (0)
n,x,y

)
≤ min

(
1,

(
ηn(R)

)−1)(
Ix,y +N (1)

n,x,y

)
and so A′

2 ≤ min(1, (ηn(R))−1)A2, which completes the proof of the lemma. �
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4.3. Proof of the convergence of the finite-dimensional distributions

In this paragraph, we will finish the proof of the convergence of the finite-dimensional distribu-
tions. Similarly to the proof given in [10], we will use the convergence of the associated point
process and the continuous mapping theorem. The approach is based on the following observa-
tion:

a−1
n

∑
x,y

ζn,x,yh(ξx, ξy) =
∫
R∗

w dNn(w).

However the functional is not continuous and we will have to do some truncation. This will be
the purpose of the three following propositions.

Proposition 15. Let δ > 0. For P̃ almost every ω̃ ∈ �̃0, the sequence of random variables

Zω̃
n := a−1

n

∑
x,y

ζn,x,y(ω̃)h(ξx, ξy)1{a−1
n |ζn,x,y (ω̃)h(ξx ,ξy)|>δ} =

∫
R∗

w1(δ,+∞)(|w|) dN ω̃
n (w)

converges in distribution to
∫
R∗ w1(δ,+∞)(|w|) dN ω̃(w).

Proposition 16. For every γ0 > 0, we have

lim
δ→0

lim sup
n→∞

P
(∣∣Tn(δ)

∣∣ > γ0|F̃
) = 0 P̃-a.s.,

with

Tn(δ) := a−1
n

∑
x,y

ζn,x,yh(ξx, ξy)1{a−1
n |ζn,x,yh(ξx ,ξy)|≤δ} if β ≤ 1

and

Tn(δ) := a−1
n

∑
x,y

ζn,x,yh(ξx, ξy)1{a−1
n |ζn,x,yh(ξx ,ξy)|≤δ} + (c0 − c1)

βδ1−β

β − 1
G̃−

n if β > 1.

Proposition 17 (See [23]). Let P be a Poisson process on R
∗ with intensity admitting the density

z �→ β|z|−β−1(a1{z>0} + b1{z<0}).
If β < 1, then

∫
R∗\[−δ,δ] w dP(w) converges in distribution, as δ goes to 0, to a stable random

variable with characteristic function �a+b,a−b,β with the notation of (4).
If β = 1, then

∫
R∗\[−δ,δ] w dP(w)−(a−b)

∫ +∞
δ

sinx

x2 dx converges in distribution, as δ goes to
0, to a stable random variable with characteristic function �a+b,a−b,1, with the notation of (5).

If β > 1, then
∫
R∗\[−δ,δ] w dP(w) − (a − b)

βδ1−β

β−1 converges in distribution, as δ goes to 0, to
a stable random variable with characteristic function �a+b,a−b,β with the notation of (4).

The following corollary is a consequence of Propositions 13, 15, 16 and 17.
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Corollary 18. We have

lim
n→+∞ E

[
e
ia−1

n

∑
x,y ζn,x,y (ω̃)h(ξx ,ξy)|F̃] = �

(c0+c1)G̃
+(ω̃),(c0−c1)G̃

−(ω̃),β
(1),

for P̃-almost every ω̃ in �̃ and

lim
n→+∞ E

[
e
ia−1

n

∑
x,y ζn,x,yh(ξx ,ξy)

] = E
[
�

(c0+c1)G̃
+,(c0−c1)G̃

−,β
(1)

]
.

Proof. Observe first that due to the Lebesgue dominated convergence theorem it is enough to
prove the first convergence. Let �̃1 be the subset of �̃0 on which the convergences of Proposi-
tions 15 and 16 hold and let ω̃ ∈ �̃1. To simplify notations, let us write

Vn := a−1
n

∑
x,y

ζn,x,yh(ξx, ξy) and Wn(δ) := a−1
n

∑
x,y

ζn,x,yh(ξx, ξy)1{a−1
n |ζn,x,yh(ξx ,ξy)|>δ}.

We set κ := 0 if β ≤ 1 and κ := (c0 − c1)
β

β−1 if β > 1 (recall that we assume c0 = c1 if β = 1).

We also write Wω̃(δ) := ∫
R\[−δ,δ] w dNω̃(w) (where Nω̃ is the Poisson process of Proposition 13,

which is defined on some probability space (�ω̃,Tω̃,Pω̃) endowed with the expectation Eω̃). Let
ε > 0. Due to Propositions 16, 13 and 17, we consider δ > 0 and n0 such that, for every n ≥ n0,
we have

P
(∣∣Tn(δ)

∣∣ >
ε

6

∣∣∣F̃)
(ω̃) <

ε

6
(45)

and such that ∣∣Eω̃

[
ei(Wω̃(δ)−κδ1−βG̃−(ω̃))

] − �
(c0+c1)G̃

+(ω̃),(c0−c1)G̃
−(ω̃),β

(1)
∣∣ <

ε

6
. (46)

Due to Proposition 15, we consider n1 ≥ n0 such that, for every n ≥ n1, we have

∣∣E[
eiWn(δ)|F̃]

(ω̃) − Eω̃

[
eiWω̃(δ)

]∣∣ <
ε

6
. (47)

Now, let n2 ≥ n1 such that, for every n ≥ n2, we have

∣∣eiκδ1−βG̃−(ω̃) − eiκδ1−βG̃−
n (ω̃)

∣∣ <
ε

6
. (48)

For n ≥ n2, we have∣∣E[
eiVn |F̃]

(ω̃) − �
(c0+c1)G̃

+(ω̃),(c0−c1)G̃
−(ω̃),β

(1)
∣∣

≤ ε

6
+ ∣∣E[

eiVn |F̃]
(ω̃) − Eω̃

[
ei(Wω̃(δ)−κδ1−βG̃−(ω̃))

]∣∣ due to (46)

≤ ε

6
+ ∣∣E[

ei(Vn+κδ1−βG̃−)|F̃]
(ω̃) − Eω̃

[
ei(Wω̃(δ)

]∣∣
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≤ 2ε

6
+ ∣∣E[

ei(Vn+κδ1−βG̃−
n )|F̃]

(ω̃) − Eω̃

[
ei(Wω̃(δ)

]∣∣ due to (48)

≤ 2ε

6
+ ∣∣E[

ei(Wn(δ)+Tn(δ))|F̃]
(ω̃) − Eω̃

[
ei(Wω̃(δ)

]∣∣
≤ 3ε

6
+ ∣∣E[

ei(Wn(δ)+Tn(δ)) − eiWn(δ)|F̃]
(ω̃)

∣∣ due to (47)

≤ 4ε

6
+ 2P

(∣∣Tn(δ)
∣∣ >

ε

6
|F̃

)
(ω̃) ≤ ε due to (45). �

Proof of the convergence of finite-dimensional distributions in Theorems 3, 5 and 6. Admit-
ting Propositions 15, 16 and 17 for the moment, let us end the proof of the convergence of the
finite-dimensional distributions. Due to Corollary 18, we have

lim
n→+∞ E

[
e
ia−1

n

∑
x,y ζn,x,yh(ξx ,ξy)

]
= E

[
�

(c0+c1)G̃
+,(c0−c1)G̃

−,β
(1)

]
= E

[
exp

(
−

∫ +∞

0

sin t

tβ
dt

[
(c0 + c1)G

+ − i(c0 − c1)G
− tan

πβ

2

])]
.

When α0 = 1, with the use of (10) and (14) , we obtain

lim
n→+∞E

[
e
ia−1

n

∑m
j=1 θj (U�ntj �−U�ntj−1�)]

= exp

(
−K2

β

m∑
i=1

(
t2
i − t2

i−1

)|θi |β
∫ +∞

0

sin t

tβ
dt

[
(c0 + c1) − i(c0 − c1) sgn(θi) tan

πβ

2

])

=
m∏

j=1

�(c0+c1)K
2
β(t2

i −t2
i−1),(c0−c1)K

2
β(t2

i −t2
i−1),β

(θj ).

This gives the convergence of the finite-dimensional distributions in Theorems 3 and 5.
When α0 > 1, due to Lemma 12, we obtain

lim
n→+∞E

[
e
i
∑m

j=1 θj a−1
n U�ntj �] = E

[
�(c0+c1)G

+,(c0−c1)G
−,β(1)

]
, (49)

with G± = ∫
R2 |∑m

i=1 θiLti (x)Lti (y)|β± dx dy. Let us recall that the right-hand side of (49) cor-
responds to the characteristic function of

∑m
i=1 θi

∫
R2 Lti (x)Lti (y) dZx,y evaluated at one (see,

for example, [18] and Appendix B). �

Proof of Proposition 15. To simplify notations, we also write Pω̃ for P(·|F̃)(ω̃) and Eω̃ for
E[·|F̃ ](ω̃).

We proceed in four steps:
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(1) We first use the continuous mapping theorem (see [22], page 151) to prove that for P̃-
almost all ω̃ one has∫

(−M,−δ)∪(δ,M)

z dN ω̃
n (dz)

L−→
∫

(−M,−δ)∪(δ,M)

z dN ω̃(dz). (50)

The Poisson process Ñω̃ has P̃-almost surely only a finite number of points in the interval
(−M,−δ) ∪ (δ,M). Moreover, one has P̃-almost surely that each of those points only carries
the mass one, since the Poisson process Ñω̃ is simple. Now, let μ be a point measure with only
a finite number of points with mass one in (−M,−δ) ∪ (δ,M) and let (μn)n∈N be some se-
quence of point measures which converges toward μ with respect to the vague topology on R

∗.
Let {x1, . . . , xp} be the support of μ intersected with (−M,−δ)∪ (δ,M). According to [20] (see
Lemma I.14), there exists some large N ∈ N such that for all n ≥ N the support of μn intersected
with (−M,−δ) ∪ (δ,M) in exactly p point x

(n)
1 , . . . , x

(n)
p such that

lim
n→∞x

(n)
i = xi for all i = 1, . . . , p.

It then follows that

lim
n→∞

∫
(−M,−δ)∪(δ,M)

zμn(dz) = lim
n→∞

p∑
i=1

x
(n)
i =

p∑
i=1

xi =
∫

(−M,−δ)∪(δ,M)

zμ(dz).

(2) We now prove that for P̃-almost all ω̃ one has∫
(−∞,−M)∪(M,∞)

z dN ω̃(dz)
Pω̃−→ 0 as M → ∞. (51)

This follows from the following equality which holds for P̃-almost all ω̃

Eω̃

[
exp

(
it

∫ ∞

M

zN ω̃(dz)

)]

= exp

(
(c0 + c1)G̃

+
∫ ∞

M

β
cos(tx) − 1

xβ+1
dx + i(c0 − c1)G̃

−
∫ ∞

M

β
sin(tx)

xβ+1
dx

)

and from the fact that one has∣∣∣∣(c0 + c1)G̃
+

∫ ∞

M

β
cos(tx) − 1

xβ+1
dx + i(c0 − c1)G̃

−
∫ ∞

M

β
sin(tx)

xβ+1
dx

∣∣∣∣
≤ 2M−β

(
(c0 + c1)

(∣∣G̃+∣∣ + ∣∣G̃−∣∣)).
This yields

Eω̃

[
exp

(
it

∫ ∞

M

zN ω̃(dz)

)]
−→ 1 for P̃ almost all ω̃ as M → ∞.
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The convergence in probability follows from the convergence in law of
∫ ∞
M

zN ω̃(dz) toward

zero. The other part
∫ −M

−∞ zN ω̃(dz) is treated in the same way.

(3) We now prove that for P̃-almost all ω̃ we have

sup
n∈N

Pω̃

(∫
(−∞,−M)∪(M,∞)

zN ω̃
n (dz) �= 0

)
−→ 0 as M → ∞. (52)

For this first, remember that∫
(−∞,−M)∪(M,∞)

zN ω̃
n (dz) =

∑
x,y∈Z

a−1
n ζn,x,yh(ξx, ξy)1{|a−1

n ζn,x,yh(ξx ,ξy)|>M}.

Thus this implies

Pω̃

(∫
{|z|>M}

zN ω̃
n (dz) �= 0

)

≤ Pω̃

(∃x, y ∈ Z : ∣∣a−1
n ζn,x,yh(ξx, ξy)

∣∣ > M
)

≤
∑

x,y∈Z
Pω̃

(∣∣h(ξx, ξy)
∣∣ > Man|ζn,x,y |−1)

≤
∑

x,y∈Z
C

(
Man|ζn,x,y |−1)−β

≤ CM−βa−β
n

∑
x,y∈Z

|ζn,x,y |β = CM−βG+
n −→ 0 as M → ∞,

since P-almost surely we have G+
n → G+ as n → ∞.

(4) We now use the previous findings to conclude. We consider an ω̃ which satisfies all the
requirements from points (1) to (3) of this proof. For some given t ∈ R and ε > 0, we use (52) to
find some M > 0 such that

sup
n∈N

Pω̃

(∫
(−∞,−M)∪(M,∞)

zN ω̃
n (dz) �= 0

)
≤ ε/8.

By (51), we can assume without loss of generality that the M also satisfies

Pω̃

(
t

∣∣∣∣
∫

(−∞,−M)∪(M,∞)

z dN ω̃(dz)

∣∣∣∣ ≥ ε/4

)
≤ ε/8.

Moreover, according to (50) we can find some n0 ∈N such that for all n ≥ n0 we have∣∣∣∣Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃
n (dz)

)]
− Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃(dz)

)]∣∣∣∣ ≤ ε/4.
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It now follows that∣∣∣∣Eω̃

[
exp

(
it

∫
(−∞,−δ)∪(δ,∞)

zN ω̃
n (dz)

)]
− Eω̃

[
exp

(
it

∫
(−∞,−δ)∪(δ,∞)

zN ω̃(dz)

)]∣∣∣∣
=

∣∣∣∣Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃
n (dz)

)(
1 + exp

(
it

∫
(−∞,−M)∪(M,∞)

zN ω̃
n (dz)

)
− 1

)]

− Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃(dz)

)

×
(

1 + exp

(
it

∫
(−∞,−M)∪(M,∞)

zN ω̃(dz)

)
− 1

)]∣∣∣∣
≤

∣∣∣∣Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃
n (dz)

)]
− Eω̃

[
exp

(
it

∫
(−M,−δ)∪(δ,M)

zN ω̃(dz)

)]∣∣∣∣
+ 2Pω̃

(∫
(−∞,−M)∪(M,∞)

zN ω̃
n (dz) �= 0

)
+ 2Pω̃

(
t

∣∣∣∣
∫

(−∞,−M)∪(M,∞)

zdN ω̃(dz)

∣∣∣∣ ≥ ε/4

)

+ ε

4
.

Since the right-hand side is equal to ε this finishes the proof of the proposition. �

Proof of Proposition 16.

• When β < 1, we just prove that limδ→0 lim supn→∞ E[|Tn(δ)||F̃ ] = 0. Due to item (iii) of
Assumption 1, we have

E
[∣∣Tn(δ)

∣∣|F̃] ≤
∑
x,y

E
[
a−1
n

∣∣ζn,x,yh(ξx, ξy)
∣∣1{a−1

n |ζn,x,yh(ξx ,ξy)|≤δ}|F̃
]

≤
∑
x,y

∫ δ

0
P
(
δ ≥ a−1

n

∣∣h(ξx, ξy)ζn,x,y

∣∣ > z|F̃)
dz

≤
∑
x,y

∫ δ

0
P
(∣∣h(ξx, ξy)ζn,x,y

∣∣ > anz|F̃
)
dz

≤ (‖L0‖∞ + ‖L1‖∞
)∑

x,y

∫ δ

0
a−β
n z−β |ζn,x,y |β dz

≤ (‖L0‖∞ + ‖L1‖∞
)∑

x,y

a
−β
n δ1−β

1 − β
|ζn,x,y |β

≤ (‖L0‖∞ + ‖L1‖∞
) δ1−β

1 − β
G̃+

n .
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So limδ→0 lim supn→∞ E[|Tn(δ)||F̃ ] ≤ limδ→0(‖L0‖∞ + ‖L1‖∞)δ1−β/(1 − β)G̃+ = 0,
since β < 1.

• Assume here that β ∈ (1,2). Observe that, due to item (v) of Assumption 1, we have

E
[
h(ξ1, ξ2)1{|h(ξ1,ξ2)|≤M}

]
= −E

[
h(ξ1, ξ2)1{|h(ξ1,ξ2)|>M}

]
=

∫ +∞

0
P
(
h(ξ1, ξ2) < −max(z,M)

)
dz −

∫ +∞

0
P
(
h(ξ1, ξ2) > max(z,M)

)
dz

= M
(
P
(
h(ξ1, ξ2) < −M

) − P
(
h(ξ1, ξ2) > M

)) +
∫ +∞

M

P
(
h(ξ1, ξ2) < −z

)
dz

−
∫ +∞

M

P
(
h(ξ1, ξ2) > z

)
dz.

But, due to item (iii) of Assumption 1, as x goes to infinity, we have

P
(
h(ξ1, ξ2) > x

) = c0x
−β + o

(
x−β

)
,

P
(
h(ξ1, ξ2) < −x

) = c1x
−β + o

(
x−β

)
,∫ +∞

x

P
(
h(ξ1, ξ2) > z

)
dz = c0

x1−β

β − 1
+ o

(
x1−β

)
,

∫ +∞

x

P
(
h(ξ1, ξ2) < −z

)
dz = c1

x1−β

β − 1
+ o

(
x1−β

)
and

∀x > 0,

∫ +∞

x

(
P
(
h(ξ1, ξ2) > z

)+P
(
h(ξ1, ξ2) < −z

))
dz ≤ (‖L0‖∞ +‖L1‖∞

) x1−β

β − 1
.

Therefore, we obtain

E
[
h(ξ1, ξ2)1{|h(ξ1,ξ2)|≤M}

] = M1−β

(
β

β − 1
(c1 − c0) + εM

)
, (53)

where limM→+∞ εM = 0 and supM>0 εM < ∞.
• When β = 1, due to item (vii) of Assumption 1, we have c0 = c1 and (53) holds also true.
• Assume now that β ∈ [1,2). We will prove that limδ→0 lim supn→∞ E[(Tn(δ))

2|F̃] = 0. We
have

E
[(

Tn(δ)
)2|F̃] =

∑
x,y,x′,y′∈Zd0

E[Tn,x,yTn,x′,y′ |F̃],

with

Tn,x,y := a−1
n h(ξx, ξy)ζn,x,y1{|h(ξx ,ξy)ζn,x,y |≤anδ} + a−β

n (c0 − c1)
βδ1−β

β − 1
|ζn,x,y |β−

(recall that c0 = c1 when β = 1).
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– Contribution of (x, y, x′, y′) such that {x, y} ∩ {x′, y′} =∅.
We set E1 for the set of such (x, y, x′, y′). Let (x, y, x′, y′) ∈ E1. Since h(ξx, ξy) and

h(ξx′ , ξy′) are independent conditionally to F̃ , we have

E[Tn,x,yTn,x′,y′ |F̃] = E[Tn,x,y |F̃]E[Tn,x′,y′ |F̃].
Now, due to (53), we have∣∣∣∣ ∑

x,y∈Zd0

E[Tn,x,y |F̃ ]
∣∣∣∣ ≤ δ1−β

∑
x,y∈Zd0

a−β
n |ζn,x,y |β+εanδ|ζn,x,y |−1 .

Now, due to (38), for every γ0 > 0, if n is large enough, we have

a−1
n sup

x,y∈Zd0

|ζn,x,y | ≤ n−2/(α0β)+2ε+γ0 .

Combining this with limn→+∞ G̃+
n = G̃+ and with limM→+∞ εM = 0, we obtain

lim sup
n→+∞

∑
x,y∈Zd0

E[Tn,x,y |F̃] = 0, (54)

since βε < 1/α0. This implies

∀δ > 0, lim sup
n→+∞

∑
(x,y,x′,y′)∈E1

E[Tn,x,yTn,x′,y′ |F̃] = 0.

– Contribution of (x, y, x′, y′) such that {x, y} = {x′, y′}.
Let us write E2 for the set of such (x, y, x′, y′). Observe that∑

(x,y,x′,y′)∈E2

E[Tn,x,yTn,x′,y′ |F̃] ≤ 2
∑

x,y∈Zd0

E
[
T 2

n,x,y |F̃
]
.

First, using item (iii) of Assumption 1, we notice that

a−2
n

∑
x,y∈Zd0

E
[(

h(ξ1, ξ2)ζn,x,y

)21{|h(ξ1,ξ2)ζn,x,y |≤anδ}|F̃
]

=
∑

x,y∈Zd0

∫ δ2

0
P
(√

z < a−1
n

∣∣h(ξ1, ξ2)ζn,x,y

∣∣ < δ|F̃)
dz

≤
∑

x,y∈Zd0

∫ δ2

0
P
(√

z < a−1
n

∣∣h(ξ1, ξ2)ζn,x,y

∣∣|F̃)
dz

≤ (‖L0‖∞ + ‖L1‖∞
) ∑

x,y∈Zd0

∫ δ2

0
a−β
n z−β/2|ζn,x,y |β dz
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≤ (‖L0‖∞ + ‖L1‖∞
)
a−β
n

∑
x,y∈Zd0

|ζn,x,y |β δ2(1−β/2)

1 − β/2

≤ (‖L0‖∞ + ‖L1‖∞
)
G̃+

n

δ2−β

1 − β/2
.

Therefore,

lim
δ→0

lim sup
n→+∞

a−2
n

∑
x,y∈Zd0

E
[(

h(ξ1, ξ2)ζn,x,y

)21{|h(ξ1,ξ2)ζn,x,y |≤anδ}|F̃
] = 0. (55)

Second, using (35) and the definition of Ñ∗
n and R̃n, for every γ0 > 0, for n large

enough, we have

a−2β
n

∣∣∣∣ ∑
x,y∈Zd0

(
(c0 − c1)

2 β2δ2−2β

(β − 1)2
|ζn,x,y |2β

−
)∣∣∣∣ ≤ (c0 − c1)

2 β2δ2−2β

(β − 1)2
a−2β
n R̃2

n

(
Ñ∗

n

)4β

≤ n−2/α0+2ε+4βε+γ0δ2−2β.

So, since ε > 0 satisfies (3 + 4β)ε < 1
α0

we have that

lim
δ→0

lim sup
n→+∞

a−2β
n

∑
x,y∈Zd0

(
(c0 − c1)

2 β2δ2−2β

(β − 1)2
|ζn,x,y |2β

−
)

= 0. (56)

Finally, this shows

lim
δ→0

lim sup
n→+∞

∑
(x,y,x′,y′)∈E2

E[Tn,x,yTn,x′,y′ |F̃] = 0.

– Contribution of (x, y, x′, y′) such that #({x, y} ∩ {x′, y′}) = 1.
Let us write E3 for the set of such (x, y, x′, y′). Observe that we have∑

(x,y,x′,y′)∈E3

E[Tn,x,yTn,x′,y′ |F̃] = 4
∑

x,y,z:x �=y,x �=z,y �=z

E[Tn,x,yTn,x,z|F̃ ].

∗ Assume that 1 ≤ β < 4/3. We set Un,x,y := a−1
n h(ξx, ξy)ζn,x,y1{|h(ξx,ξy)ζn,x,y |≤anδ}.

Observe that

Tn,x,y = Un,x,y + a−β
n (c0 − c1)

βδ1−β

β − 1
|ζn,x,y |β− (57)

(recall that we assume c0 = c1 if β = 1) and that, due to (53),

E[Un,x,y |F̃] = a−β
n δ1−β |ζn,x,y |β−

[
(c1 − c0)

β

β − 1
+ εanδ|ζn,x,y |−1

]
. (58)
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Now, (38) ensures that

lim
n→+∞ sup

x,y
εanδ|ζn,x,y |−1 = 0. (59)

Moreover, we observe that, due to (35) and to the definition of Ñ∗
n and of R̃n, we have,

for every γ0 > 0 and every n large enough,∑
x,y,z∈Zd0

a−2β
n |ζn,x,y |β |ζn,x,z|β ≤ R̃3

na
−2β
n

(
Ñ∗

n

)4β

≤ n−1/α0+3ε+4βε+γ0 .

Now, since (3 + 4β)ε < 1
α0

we conclude that

lim sup
n→+∞

∑
x,y,z∈Zd0

a−2β
n |ζn,x,z|β |ζn,x,y |β = 0. (60)

Observe moreover that, due to item (iv) of Assumption 1, we have

E
[|Un,x,yUn,x,z||F̃

]
≤

∫
(0,δ)2

P
(
a−1
n

∣∣h(ξ1, ξ2)ζn,x,y

∣∣ > u,a−1
n

∣∣h(ξ1, ξ3)ζn,x,z

∣∣ > v|F̃)
dudv

≤ C0

[
a−1
n |ζn,x,y | +

∫ δ

a−1
n |ζn,x,z|

u−γ a
−γ
n |ζn,x,y |γ du

]

×
[
a−1
n |ζn,x,z| +

∫ δ

a−1
n |ζn,x,z|

v−γ a
−γ
n |ζn,x,z|γ dv

]

≤ C0

[
a−1
n |ζn,x,y |1 + δ1−γ − a

γ−1
n |ζn,x,z|1−γ

1 − γ
a

−γ
n |ζn,x,y |γ

]

×
[
a−1
n |ζn,x,z| + δ1−γ − a

γ−1
n |ζn,x,z|1−γ

1 − γ
a

−γ
n |ζn,x,z|γ

]

≤ Cδa
−2γ ′
n |ζn,x,yζn,x,z|γ ′

where γ ′ = min(1, γ )

for n large enough and some Cδ > 0. Indeed, due to (38) we have a−1
n supx,y |ζn,x,y | ≤

1 for large n. Again using (38) and due to the definition of R̃n, for every γ0 > 0, we
have ∑

x,y,z∈Zd0

E
[|Un,x,yUn,x,z||F̃

] ≤ CδR̃
3
na

−2γ ′
n sup

x,y
|ζn,x,y |2γ ′

≤ n3/α0−(4γ ′)/(α0β)+7ε+γ0 ,
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for n large enough. Recall that we have chosen ε such that 3
α0

− 4γ ′
α0β

+ 7ε < 0. Hence,
we obtain

∀δ > 0, lim sup
n→+∞

∑
x,y,z

E
[|Un,x,yUn,x,z|

] = 0. (61)

Now putting (57), (58), (59), (60) and (61) all together, we conclude that

∀δ > 0, lim sup
n→+∞

∑
(x,y,x′,y′)∈E3

E[Tn,x,yTn,x′,y′ |F̃] = 0.

∗ Assume now that β ≥ 4
3 . Observe that, with the notation of item (vi) of Assumption 1,

we have

Tn,x,y = a−1
n ζn,x,yh(anδ|ζn,x,y |−1)(ξx, ξy).

Due to this item (vi), to the definition of R̃n and to (38), for every γ0 > 0, we have
almost surely∑
x,y,z∈Zd0

∣∣E[Tn,x,yTn,x,z|F̃]∣∣ ≤ C′
0a

−2
n

∑
x,y,z∈Zd0

|ζn,x,yζn,x,z|
(
a2
nδ

2|ζn,x,yζn,x′,y′ |−1)−θ ′

≤ δ−2θ ′
R̃3

n

(
a−1
n

(
Ñ∗

n

)2)2(θ ′+1)

≤ n1/α0(3−(4(θ ′+1))/β)+(4θ ′+7)ε+γ0 ,

for n large enough. Since 1
α0

(3 − 4(θ ′+1)
β

) + (4θ ′ + 7)ε < 0, we obtain

∀δ > 0, lim sup
n→+∞

∑
(x,y,x′,y′)∈E3

∣∣E[Tn,x,yTn,x,z|F̃]∣∣ = 0.

So, finally, for β ∈ [1,2), there exists C̃ > 0 such that, for every nonnegative n and every δ > 0,
we have lim supn→+∞ E[(Tn(δ))

2] ≤ C̃δ2−β . �

Proof of Proposition 17. The following proof can be assembled from [13]. We will use the
constants I0 := − ∫ ∞

0
siny

yβ dy and J0 := − tan πβ
2 I0. Due to the exponential formula, we have

E
[
e
it

∫
{|x|≥δ} x dP(x)] = exp

(∫
{|x|≥δ}

(
eitx − 1

)
(a1{x>0} + b1{x<0})β|x|−β−1 dx

)

= exp

(
(a + b)

∫ +∞

δ

cos(tx) − 1

xβ+1
β dx + i(a − b)

∫ +∞

δ

sin(tx)

xβ+1
β dx

)
.

Assume first that β < 1. Due to [13], page 568, we have

lim
δ→0

∫ +∞

δ

eitx − 1

xβ+1
β dx = −|t |β�(1 − β)e−(iπβ)/2 = |t |β(I0 + iJ0).

So limδ→0 E[eit
∫
{|x|≥δ} x dP(x)] = �a+b,a−b,β(t).
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Assume now that β = 1. Then

lim
δ→0

∫ +∞

δ

cos(tx) − 1

x2
dx =

∫ +∞

0

cos(tx) − 1

x2
dx = |t |

∫ +∞

0

cos(y) − 1

y2
dy = −π

2
|t |

and, since sin(tx) = sgn(t) sin(|t |x), we have∫ +∞

δ

sin(tx)

x2
dx = t

∫ +∞

δ|t |
siny

y2
dy

and so ∫ +∞

δ

sin(tx)

x2
dx − t

∫ +∞

δ

sinx

x2
dx = t

∫ δ

δ|t |
siny

y2
dy ∼

δ→0
t

∫ δ

δ|t |
dy

y
= −t log |t |.

Hence, we have in that case that

lim
δ→0

E

[
exp

(
it

(∫
|x|>δ

x dP(x) − (a − b)

∫ ∞

δ

sinx

x2
dx

))]
= �a+b,a−b,1(t).

Assume finally β > 1. Due to [13], pages 568–569, we have

lim
δ→0

∫ ∞

δ

eitx − 1 − itx

xβ+1
β dx =

∫ +∞

0

eitx − 1 − itx

xβ+1
β dx

= |t |β �(3 − β)e−(iπβ)/2

(2 − β)(β − 1)
= |t |β(I0 + iJ0).

So

lim
δ→0

E
[
e
it

∫
{|x|≥δ} x dP(x)−it (a−b)β(δ1−β)/(β−1)] = �a+b,a−b,β(t). �

5. Tightness when α0 > 1

Here we treat case α0 > 1 (i.e., the case where (Sn)n is recurrent and α > d0 = 1). The tightness
proof follows essentially the one given in Kesten and Spitzer [17]. We need the following lemma
from [17].

Lemma 19 (Lemma 1 of [17]). For all ε > 0 there exists some A > 0 such that for all t ≥ 1 one
has

P
(∃x ∈ Z : |x| > At1/α and Nt(x) > 0

) ≤ ε.

Lemma 20. We have

E

[∑
x∈Z

N2
n(x)

]
= O

(
n2−1/α

)
and E

[(∑
x∈Z

N2
n(x)

)2]
= O

(
n4−2/α

)
. (62)
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Proof. The first one is formula (2.13) from [17] and the second one can be found in [15],
Lemma 2.1. �

Proposition 21. The sequence of stochastic processes

Un
t := n−2δ

∑
x,y∈Z

N�nt�(x)N�nt�(y)h(ξx, ξy); t ≥ 0

is tight in D(0, T ) endowed with the J1-metric.

Proof. Fix some ε > 0. Due to Lemma 19, we fix A > 0 large enough such that

P
(∃x ∈ Z with |x| > An1/α and N�nT �(x) > 0

) ≤ ε

4
. (63)

Choose some ρ > 0 such that for all n ∈N one has

9A2n2/α
P
(∣∣h(ξ1, ξ2)

∣∣ > ρn2/(αβ)
)
<

ε

4
. (64)

This is possible since we have, by item (iii) of Assumption 1, that

lim
u→∞uβ

P
(
h(ξ1, ξ2) ≥ u

) = c0 and lim
u→∞uβ

P
(
h(ξ1, ξ2) ≤ −u

) = c1. (65)

Define

h̄(x, y) := h(x, y)1{|h(x,y)|≤ρn2/(αβ)}.

The inequality (64) now becomes

9A2n2/α
P
(
h̄(ξ1, ξ2) �= h(ξ1, ξ2)

) ≤ ε

4
. (66)

Lemma 22. There exists a constant C = C(ρ,β) > 0 such that for all n ≥ 1 one has

∣∣E[
h̄(ξ1, ξ2)

]∣∣ ≤ Cn(1−β)2/(αβ). (67)

Proof. For β < 1, we have

∣∣E[
h̄(ξ1, ξ2)

]∣∣ ≤
∫ ρn2/(αβ)

0
P
(∣∣h(ξ1, ξ2)

∣∣ > x
)
dx ≤ C

∫ ρn2/(αβ)

1
x−β dx + 1

= Cx1−β |ρn2/(αβ)

1 + 1 ∼ Cn2/(αβ)(1−β),

where C > 0 is some suitable constant. For β ∈ (1,2), this comes from (53). For β = 1, as
noticed previously, this comes from item (vii) of Assumption 1. �
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Now we define

En := n−2δ
E

[ ∑
x,y∈Z

Nn(x)Nn(y)h̄(ξx, ξy)

]
.

Since the scenery and the random walk are independent, we compute

En = n−2δ
E

[ ∑
x,y∈Z

Nn(x)Nn(y)E
[
h̄(ξx, ξy)

]] = n−2δn2
E

[
h̄(ξ1, ξ2)

]

≤ Cn−2+2/α−2/(αβ)n2n(1−β)2/(αβ) = C,

due to Lemma 22. Thus the sequence En stays bounded as n → ∞. Further, let

Ūn
t := n−2δ

∑
x,y∈Z

N�nt�(x)N�nt�(y)
(
h̄(ξx, ξy) −E

[
h̄(ξx, ξy)

])
.

It then follows

Un
t − Ūn

t − t2En = n−2δ
∑

x,y∈Z
N�nt�(x)N�nt�(y)

(
h(ξx, ξy) − h̄(ξx, ξy)

)

+ n−2δ
(�nt�2

E
[
h̄(ξ1, ξ2)

] − n2t2
E

[
h̄(ξ1, ξ2)

])
.

Since we have that E[h̄(ξ1, ξ2)] = O(n(1−β)2/(αβ)) and �nt�2 − n2t2 = O(n) the second term is
of the order

n−2δO
(
n(1−β)2/(αβ)

)(�nt�2 − n2t2) = n−2O(n) = O
(
n−1).

This implies with inequalities (63) and (66) that

lim sup
n→∞

P

(
sup

0≤t≤T

∣∣Un
t − Ūn

t − t2En

∣∣ >
η

2

)

≤ lim sup
n→∞

P

(
n−2δ

∑
x,y∈Z

N�nT �(x)N�nT �(y)
(
h(ξx, ξy) − h̄(ξx, ξy)

)
>

η

4

)

≤ lim sup
n→∞

P

( ∑
x,y∈Z

N�nT �(x)N�nT �(y)
(
h(ξx, ξy) − h̄(ξx, ξy)

) �= 0

)

≤ lim sup
n→∞

P
(∃x, y ∈ Z : |x|, |y| ≤ An1/α, h̄(ξx, ξy) �= h(ξx, ξy)

)
+ lim sup

n→∞
P
(∃x ∈ Z : |x| > An1/α,N�nT �(x) > 0

)
≤ lim sup

n→∞
(
3An1/α

)2
P
(
h̄(ξ1, ξ2) �= h(ξ1, ξ2)

) + ε

4

≤ ε

2
.
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Due to Theorem 13.5 of [2] (see also (13.14) therein) and since α > 1, it is now enough to prove
that there exists K0 > 0 such that for every r ≤ s ≤ t ≤ T and every n ≥ 1,

E
[∣∣Ūn

s − Ūn
r

∣∣ × ∣∣Ūn
t − Ūn

s

∣∣] ≤ K0|t − r|2−1/α. (68)

To this end, we prove the existence of K1 > 0 such that, for every 0 < s < t < T

E
[(

Ūn
t − Ūn

s

)2] ≤ K1

(�nt� − �ns�
n

)2−1/α

. (69)

Indeed, this will imply

∀0 < r < s < t < T, E
[∣∣Ūn

s − Ūn
r

∣∣ × ∣∣Ūn
t − Ūn

s

∣∣] ≤ K1

(�nt� − �nr�
n

)2−1/α

.

Considering separately the case t − r ≥ 1
n

(for which �nt� − �nr� ≤ 2n(t − r)) and the case
t − r < 1

n
(for which Ūn

s = Ūn
r or Ūn

s = Ūn
t ), this will give (68) with K0 := 22−1/αK1. Let us

use the notation

h̄0(ξx, ξy) := h̄(ξx, ξy) −E
[
h̄(ξx, ξy)

]
then we have

E
[(

Ūn
t − Ūn

s

)2] = n−4δ
E

[(∑
x,y

N�nt�(x)
(
N�nt�(y) − N�ns�(y)

)
h̄0(ξx, ξy)

+
∑
x,y

(
N�nt�(x) − N�ns�(x)

)
N�ns�(y)h̄0(ξx, ξy)

)2]

≤ 2n−4δ
E

[(∑
x,y

N�nt�(x)
(
N�nt�(y) − N�ns�(y)

)
h̄0(ξx, ξy)

)2]

+ 2n−4δ
E

[(∑
x,y

(
N�nt�(x) − N�ns�(x)

)
N�ns�(y)h̄0(ξx, ξy)

)2]
.

We continue the computation with the first of the two terms. In the following, we condition with
respect to G = σ(Sn;n ∈ N). We make use of the assumption h(x, x) = 0 and the fact that if
x, y,u, v are all distinct then h̄0(ξx, ξy) and h̄0(ξu, ξv) are independent and centered and we
write

E

[(∑
x,y

N�nt�(x)
(
N�nt�(y) − N�ns�(y)

)
h̄0(ξx, ξy)

)2∣∣∣G]
≤ A + B + C + D

with

A :=
∑
x,y

N2�nt�(x)
(
N�nt�(y) − N�ns�(y)

)2
E

[
h̄2

0(ξ1, ξ2)|G
]
,
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B :=
∑
x,y,z

N�nt�(x)N�nt�(z)
(
N�nt�(y) − N�ns�(y)

)2
E

[∣∣h̄0(ξ1, ξ2)h̄0(ξ2, ξ3)
∣∣|G]

,

C :=
∑
x,y,z

N2�nt�(x)
(
N�nt�(y) − N�ns�(y)

)(
N�nt�(z) − N�ns�(z)

)
E

[∣∣h̄0(ξ1, ξ2)h̄0(ξ2, ξ3)
∣∣|G]

and

D := 2
∑

x,x′,y
N�nt�

(
x′)N�nt�(x)

(
N�nt�(y) − N�ns�(y)

)(
N�nt�(x) − N�ns�(x)

)

×E
[∣∣h̄0(ξ1, ξ2)h̄0(ξ2, ξ3)

∣∣|G]
.

The Markov property together with Lemma 20 and Lemma 23 below imply

E[B] ≤ T 2n2
E

[∑
x

N2�nt�−�ns�(x)

]
Cov

(
h̄(ξ1, ξ2), h̄(ξ2, ξ3)

)

≤ C′n2n2−1/α

(�nt� − �ns�
n

)2−1/α

n−3/α+4/(αβ)

=
(�nt� − �ns�

n

)2−1/α

O
(
n4δ

)
.

Again, we see

E[C] = (�nt� − �ns�)2
E

[∑
x

N2�nt�(x)

]
Cov

(
h̄(ξ1, ξ2), h̄(ξ2, ξ3)

)

≤ n2
(�nt� − �ns�

n

)2

n2−1/αT 2−1/αn−3/α+4/(αβ)

=
(�nt� − �ns�

n

)2

O
(
n4δ

)
.

Further, we have by Cauchy–Schwarz that

E

[∑
x

N�nt�(x)
(
N�nt�(x) − N�ns�(x)

)]

≤
(
E

[∑
x

N2�nt�(x)

]
E

[∑
x

(
N�nt�(x) − N�ns�(x)

)2
])1/2

≤ C′(nt)1−1/(2α)
(�nt� − �ns�)1−1/(2α)

.
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Now Lemma 23 implies

E[D] ≤ �nt�(�nt� − �ns�)E[∑
x

N�nt�(x)
(
N�nt�(x) − N�ns�(x)

)]
Cov

(
h̄(ξ1, ξ2), h̄(ξ2, ξ3)

)

≤ C′′n
(�nt� − �ns�)(nt)1−1/(2α)

(�nt� − �ns�)1−1/(2α)
n−3/α+4/(αβ)

≤ T 1−1/(2α)C′′
(�nt� − �ns�

n

)2−1/(2α)

n4δ.

Finally for A, due to Lemma 24 below, we have

E[A] ≤
√√√√E

[(∑
x

N2
nt (x)

)2]
E

[(∑
y

N2
n(t−s)(y)

)2]
Var

(
h̄(ξ1, ξ2)

)

≤ C′′′
√

(tn)4−2/α
(�nt� − �ns�)4−2/α

E
[(

h̄(ξ1, ξ2)
)2]

≤ C̃′′′
(�nt� − �ns�

n

)2−1/α

n4−2/αn−1/α+2/(αβ)

≤ C̃′′′
(�nt� − �ns�

n

)2−1/α

n4δ.

All those inequalities together proves (69). This finishes the tightness proof. �

Lemma 23. There is some constant C > 0 such that∣∣Cov
(
h̄(ξ1, ξ2), h̄(ξ1, ξ3)

)∣∣ ≤ C′n−3/α+4/(αβ).

Proof. We first consider the case β < 4
3 . Note that by Assumption 1 part (iv) for some γ >

3β
4

(γ �= 1), we have

E
[∣∣h̄(ξ1, ξ2)h̄(ξ1, ξ3)

∣∣]
=

∫ ∞

0

∫ ∞

0
P
(∣∣h̄(ξ1, ξ2)

∣∣ > s,
∣∣h̄(ξ1, ξ3)

∣∣ > t
)
ds dt

=
∫ ρn2/(αβ)

0

∫ ρn2/(αβ)

0
P
(∣∣h(ξ1, ξ2)

∣∣ > s,
∣∣h(ξ1, ξ3)

∣∣ > t
)
ds dt

≤
∫ ρn2/(αβ)

0

∫ ρn2/(αβ)

0
C0

(
max(1, s)max(1, t)

)−γ
ds dt

= C0

(
1 +

∫ ρn2/(αβ)

1
t−γ dt

)2
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≤ C0

(
1 + 1

1 − γ

((
ρn2/(αβ)

)1−γ − 1
))2

≤ C0

(
1 − 1

1 − γ
+ ρ1−γ

1 − γ
n−3/(2α)+2/(αβ)

)2

= O
(
n−3/α+4/(αβ)

)
.

Due to Lemma 22, this implies

∣∣Cov
(
h̄(ξ1, ξ2), h̄(ξ1, ξ3)

)∣∣ = O
(
n−3/α+4/(αβ)

)
.

Now assume β ≥ 4
3 . By (53) and item (vi) of Assumption 1, we have for Mn := ρn2/(αβ) that

∣∣Cov
(
h̄(ξ1, ξ2), h̄(ξ1, ξ3)

)∣∣ = ∣∣Cov
(
hMn(ξ1, ξ2),hMn(ξ1, ξ3)

)∣∣
≤ ∣∣E[

hMn(ξ1, ξ2)hMn(ξ1, ξ3)
]∣∣ + ∣∣E[

hMn(ξ1, ξ2)
]∣∣2

≤ O
(
n−(4θ ′)/(αβ)

) + O
(
n−4/(αβ)(β−1)

)
≤ O

(
n−4/(αβ)((3β)/4−1)

)
= O

(
n−3/α+4/(αβ)

)
since θ ′ > 3β

4 − 1. �

Lemma 24. We have

E
[(

h̄(ξ1, ξ2)
)2] = O

(
n−1/α+2/(αβ)

)
.

Proof. We have

E
[(

h̄(ξ1, ξ2)
)2] =

∫ ρn2/(αβ)

0
P
(∣∣h̄(ξ1, ξ2)

∣∣2 ≥ s
)
ds =

∫ √
ρn1/(αβ)

0
P
(∣∣h̄(ξ1, ξ2)

∣∣ ≥ u
)
2udu

= O
(
n1/(αβ)(2−β)

)
,

since 2uP(|h̄(ξ1, ξ2)| ≥ u) ∼ 2(c0 + c1)u
1−β as u goes to infinity. �

Appendix A: Tightness with the M1-metric when α0 = 1
and β < 1

Assume α0 = 1 and β < 1. We follow the idea of [7]. We write h+ := max(h,0) and h− :=
max(−h,0). Recall that h = h+ − h−. We then define U±

n := ∑n
k,
=1 h±(ξSk

, ξS

). Due to the

general argument detailed before Lemma 10 of [7], it is enough to prove that for any posi-
tive integer m, for any real numbers θ1, . . . , θm, γ1, . . . , γm and any real numbers 0 = t0 < t1 <
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· · · < tm, the following sequence

(
E

[
exp

(
i

m∑
j=1

[θj (U
+
�ntj � − U+

�ntj−1�) + γj (U
−
�ntj � − U−

�ntj−1�)
an

])])
n

(70)

converges to

E

[
exp

(
iK

2/β
β

m∑
j=1

θj

(
Z+

tj ,tj
− Z+

tj−1,tj−1

))]

×E

[
exp

(
iK

2/β
β

m∑
j=1

γj

(
Z−

tj ,tj
− Z−

tj−1,tj−1

))]
,

where (Z±
s,t )s,t are two β-stable Lévy sheets such that E[eiθZ+

s,t ] = �c0st,c0st (θ) and E[eiθZ−
s,t ] =

�c1st,c1st (θ). Hence, we have to prove that the sequence (70) converges to

m∏
j=1

[
�c0K

2
β(t2

j −t2
j−1),c0K

2
β(t2

j −t2
j−1)

(θj )�c1K
2
β(t2

j −t2
j−1),c1K

2
β(t2

j −t2
j−1)

(γj )
]
. (71)

This follows from a straightforward adaptation of our proof of convergence of the finite-
dimensional distributions. Let us explain this. We define χθ

n,x,y := ∑m
j,k=1 θmax(j,k)dj,n(x)dk,n(y)

and χ
γ
n,x,y := ∑m

j,k=1 γmax(j,k)dj,n(x)dk,n(y), where we use again the notation dj,n(x) =
N�ntj �(x) − N�ntj−1�(x). With these notations, the sum appearing in (70) can be rewritten

a−1
n

∑
x,y

[
χθ

n,x,yh
+(ξx, ξy) + χ

γ
n,x,yh

−(ξx, ξy)
]
.

We then define

G±
n,θ := a−β

n

∑
x,y∈Zd0

∣∣∣∣∣
m∑

j,k=1

θmax(j,k)dj,n(x)dk,n(y)

∣∣∣∣∣
β

±

and

G±
θ := K2

β

m∑
j,k=1

|θmax(j,k)|β±(tj − tj−1)(tk − tk−1) = K2
β

m∑
k=1

|θk|β±
(
t2
k − t2

k−1

)
.

We define analogously G±
n,γ and G±

γ . With these notations, (71) can be rewritten

�c0G
+
θ ,c0G

−
θ
(1)�c1G

+
γ ,c1G

−
γ
(1).
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Due to Lemma 8, we know that (G±
n,θ ,G

±
n,γ )n converges almost surely to (G±

θ ,G±
γ ). Now we

define the sequence (N 0
n )n of point processes on R

∗ by

N 0
n :=

∑
x,y∈Zd0

(δ
a−1
n χθ

n,x,yh+(ξx ,ξy)
+ δ

a−1
n χ

γ
n,x,yh−(ξx ,ξy)

).

Following the proof of Proposition 13, we obtain that, conditionally to the random walk (Sn)n,
(N 0

n )n converges in distribution to a Poisson Process N of intensity η given by

η
([

d, d ′)) = (
d−β − d ′−β)c0(G

+
θ + G−

θ ) + c1(G
+
θ + G−

θ )

2

and

η
((−d ′, d

]) = (
d−β − d ′−β)c0(G

+
θ − G−

θ ) + c1(G
+
θ − G−

θ )

2

for every 0 < d < d ′ ≤ +∞. Following the proofs of Propositions 15, 16 (where we replace Tn(δ)

by T
θ,+
n (δ) + T

γ,−
n (δ), with T

θ,±
n (δ) := a−1

n

∑
x,y χθ

n,x,yh
±(ξx, ξy)1{a−1

n |χθ
n,x,y |h±(ξx ,ξy)≤δ|}) and

of Corollary 18, we conclude that

(
E

[
e
ia−1

n

∑
x,y [χθ

n,x,yh+(ξx ,ξy)+χ
γ
n,x,yh−(ξx ,ξy)]|(Sn)n

])
n

converges to

�c0G
+
θ +c1G

+
γ ,c0G

−
θ +c1G

−
γ
(1) = �c0G

+
θ ,c0G

−
θ
(1)�c1G

+
γ ,c1G

−
γ
(1).

Hence, (70) converges to (71), which ends the proof of the tightness for M1.

Appendix B: Stochastic integral with respect to the Lévy
sheet Z

In this section, following [18], we give a simple construction of stochastic integral with respect
to the β-stable Lévy sheet Z ([18] deals with β-stable Lévy sheet Z with c0 = c1). Let us men-
tion that the following construction is a special case of the integral constructed by Rajput and
Rosinski in [21] for infinitely divisible, independently scattered random measures. We recall that
Z satisfies the following properties:

• Z0,0 = 0;
• for any family (Ak = [ak, bk] × [a′

k, b
′
k])k of pairwise disjoint rectangles (with ak < bk

and a′
k < b′

k), the family of increments (Zbk,b
′
k
+ Zak,a

′
k
− Zak,b

′
k
− Zbk,a

′
k
)k is a family of

independent random variables;
• for any rectangle A = [a, b] × [a′, b′] (with a < b and a′ < b′), the characteristic function

of the increment Zb,b′ + Za,a′ − Za,b′ − Zb,a′ is �(c0+c1)λ(A),(c0−c1)λ(A),β , where λ is the
Lebesgue measure on R

2 and where we used the notation introduced in (4).



376 B. Franke, F. Pène and M. Wendler

For any rectangle A = [a, b] × [a′, b′] (with a < b and a′ < b′), we define the stochastic integral
of 1A with respect to the Lévy sheet as the increment of Z in this rectangle, that is,∫

R2
1A dZx,y := Zb,b′ + Za,a′ − Za,b′ − Zb,a′ . (72)

We extend this definition by linearity to any linear combination H of such indicator functions.
Observe that, if H = ∑μ

j=1 hj 1Aj
where (Aj )j is a family of pairwise disjoint rectangles and

where hj ∈R, then the characteristic function of
∫
R2 H(x,y) dZx,y is given by

E

[
exp

(
iz

∫
R2

H(x,y) dZx,y

)]

=
μ∏

j=1

E

[
exp

(
izhj

∫
R2

1Aj
(x, y) dZx,y

)]

=
μ∏

j=1

�(c0+c1)λ(Aj ),(c0−c1)λ(Aj ),β(zhj )

=
μ∏

j=1

�
(c0+c1)|hj |β+λ(Aj ),(c0−c1)|hj |β−λ(Aj ),β

(z)

= �
(c0+c1)

∑μ
j=1 |hj |β+λ(Aj ),(c0−c1)

∑μ
j=1 |hj |β−λ(Aj ),β

(z), ∀z ∈R

and so by

E

[
exp

(
iz

∫
R2

H(x,y) dZx,y

)]
(73)

= �
(c0+c1)

∫
R2 |H(x,y)|β+ dx dy,(c0−c1)

∫
R2 |H(x,y)|β− dx dy,β

(z), ∀z ∈ R.

Proposition 25 (See [18]). Let H be a continuous compactly supported function from R
2 to R.

Let (Hn)n be a sequence of linear combination of indicators over rectangles converging point-
wise to H . Assume moreover that (Hn)n is a family of uniformly bounded functions with support
in a same compact. Then the sequence (

∫
R2 Hn(x, y) dZ(x, y))n converges in probability to a

random variable with characteristic function �
(c0+c1)

∫
R2 |H(x,y)|β+ dx dy,(c0−c1)

∫
R2 |H(x,y)|β− dx dy,β

.

For a continuous compactly supported H : R2 → R, we define
∫
R2 H(x,y) dZ(x, y) as the

limit in probability given by Proposition 25 (observe that the limit does not depend on the choice
of (Hn)n).

Proof of Proposition 25. To prove the convergence in probability, it is enough to prove that

∀z ∈R, lim
n,m→+∞E

[
exp

(
iz

∫
R

(
Hn(x, y) − Hm(x, y)

)
dZx,y

)]
= 1. (74)
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Observe that, for every real number z, we have∣∣∣∣E
[

exp

(
iz

∫
R2

(
Hn(x, y) − Hm(x, y)

)
dZx,y

)]
− 1

∣∣∣∣
= ∣∣�

(c0+c1)
∫
R2 |Hn(x,y)−Hm(x,y)|β+ dx dy,(c0−c1)

∫
R2 |Hn(x,y)−Hm(x,y)|β+ dx dy,β

(z) − 1
∣∣

≤ C

∫
R2

∣∣Hn(x, y) − Hm(x, y)
∣∣β dx dy

(|c0 + c1| + |c0 − c1|
)|z|β,

using the fact that |e−a+ib − e−a′+ib′ | ≤ |a − a′| + |b − b′| for any real numbers a, b, a′, b′ such
that a > 0 and a′ > 0. Since (Hn)n converges pointwise and is uniformly bounded, we obtain (74)
by the Lebesgue dominated convergence theorem (recall that (Hn)n is a sequence of uniformly
bounded functions supported in a same compact). Now the characteristic function of the limit in
probability

∫
R2 H(x,y) dZ(x, y) is given by

E

[
exp

(
iz

∫
R2

H(x,y) dZ(x, y)

)]

= lim
n→+∞E

[
exp

(
iz

∫
R2

Hn(x, y) dZ(x, y)

)]
= lim

n→+∞�
(c0+c1)

∫
R2 |Hn(x,y)|β+ dx dy,(c0−c1)

∫
R2 |Hn(x,y)|β− dx dy,β

(z)

= �
(c0+c1)

∫
R2 |H(x,y)|β+ dx dy,(c0−c1)

∫
R2 |H(x,y)|β− dx dy,β

(z),

for every real number z. �
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