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Correlation matrices play a key role in many multivariate methods (e.g., graphical model estimation and
factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of
Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good
properties under Gaussian models, it is not an effective estimator when facing heavy-tailed distributions.
As a robust alternative, Han and Liu [J. Am. Stat. Assoc. 109 (2015) 275–287] advocated the use of a
transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent
generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transel-
liptical family assumes that after unspecified marginal monotone transformations, the data follow an ellip-
tical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation
matrix and its transformed version proposed in Han and Liu [J. Am. Stat. Assoc. 109 (2015) 275–287] for
estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix un-
der both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of
“effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for
the first time present a “sign sub-Gaussian condition” which is sufficient to guarantee that the rank-based
correlation matrix estimator attains the fast rate of convergence. In both cases, we do not need any moment
condition.

Keywords: double asymptotics; elliptical copula; Kendall’s tau correlation matrix; rate of convergence;
transelliptical model

1. Introduction

Covariance and correlation matrices play a central role in multivariate analysis. An efficient
estimation of covariance/correlation matrix is a major step in conducting many methods, in-
cluding principal component analysis (PCA), scale-invariant PCA, graphical model estimation,
discriminant analysis, and factor analysis. Large covariance/correlation matrix estimation re-
ceives a lot of attention in high dimensional statistics. This is partially because the sample co-
variance/correlation matrix is an inconsistent estimator when d/n � 0 (d and n represent the
dimensionality and sample size).

Given n observations x1, . . . ,xn of a d-dimensional random vector X ∈ R
d with the popula-

tion covariance matrix �, let Ŝ be the Pearson’s sample covariance matrix calculated based on

1350-7265 © 2017 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/15-BEJ702
mailto:fhan@jhu.edu
mailto:hanliu@princeton.edu


24 F. Han and H. Liu

x1, . . . ,xn. For theoretical analysis, we adopt a similar double asymptotic framework as in Bickel
and Levina [4], where we write d to be the abbreviation of dn, which changes with n. Under this
double asymptotic framework, where both the dimension d and sample size n can increase to
infinity, Johnstone [23], Baik and Silverstein [1] and Jung and Marron [24] pointed out settings
such that, even when X follows a Gaussian distribution with identity covariance matrix, Ŝ is an
inconsistent estimator of � under spectral norm. In other words, letting ‖ · ‖2 denote the spectral
norm of a matrix, typically for (n, d) → ∞, we have

‖̂S − �‖2 � 0.

This observation motivates different versions of sparse covariance/correlation matrix estimation
methods. See, for example, banding method (Bickel and Levina [4]), tapering method (Cai et
al. [9], Cai and Zhou [10]), and thresholding method (Bickel and Levina [5]). However, al-
though the regularization methods exploited are different, they all use the Pearson’s sample
covariance/correlation matrix as a pilot estimator, and accordingly the performance of the es-
timators relies on existence of higher order moments of the data. For example, letting ‖ · ‖max
and ‖ · ‖2,s denote the element-wise supremum norm and restricted spectral norm (detailed defi-
nitions provided later), in proving

‖̂S − �‖max = OP

(√
logd

n

)
or ‖̂S − �‖2,s = OP

(√
s log(d/s)

n

)
(1.1)

(here, d and s are the abbreviation of dn and sn and OP (·) is defined to represent the stochas-
tic order with regard to n), it is commonly assumed that, for d = 1,2, . . . ,X = (X1, . . . ,Xd)T

satisfies the following sub-Gaussian condition:

(marginal sub-Gaussian) E exp(tXj ) ≤ exp

(
σ 2t2

2

)
for all j ∈ {1, . . . , d} or

(1.2)

(multivariate sub-Gaussian) E exp
(
tvT X

) ≤ exp

(
σ 2t2

2

)
for all v ∈ S

d−1,

for some absolute constant σ 2 > 0. Here, Sd−1 is the d-dimensional unit sphere in R
d .

The moment conditions in (1.2) are not satisfied for many distributions. To elaborate how
strong this condition is, we consider the student’s t distribution. Assuming that T follows a
student’s t distribution with degree of freedom ν, it is known (Hogg and Craig [20]) that

ET 2k = ∞ for k ≥ ν/2.

Recently, Han and Liu [17] advocated to use the transelliptical distribution for modeling and
analyzing complex and noisy data. They exploited a transformed version of the Kendall’s tau
sample correlation matrix �̂ to estimate the latent Pearson’s correlation matrix �. The transellip-
tical family assumes that, after a set of unknown marginal transformations, the data follow an el-
liptical distribution. This family is closely related to the elliptical copula and contains many well-
known distributions, including multivariate Gaussian, rank-deficient Gaussian, multivariate-t ,
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Cauchy, Kotz, logistic, etc. Under the transelliptical distribution, without any moment constraint,
they showed that a transformed Kendall’s tau sample correlation matrix �̂ approximates the la-
tent Pearson’s correlation matrix � in a parametric rate:

‖�̂ − �‖max = OP

(√
logd

n

)
, (1.3)

which attains the minimax rate of convergence.
Although (1.3) is inspiring, in terms of theoretical analysis of many multivariate methods,

the rates of convergence under spectral norm and restricted spectral norm are more desired.
For example, Bickel and Levina [5] and Yuan and Zhang [37] showed that the performances of
principal component analysis and a computationally tractable sparse PCA method are determined
by the rates of convergence for the plug-in matrix estimators under spectral and restricted spectral
norms. A trivial extension of (1.3) gives us that

‖�̂ − �‖2 = OP

(
d

√
logd

n

)
and ‖�̂ − �‖2,s = OP

(
s

√
logd

n

)
,

which are both not tight compared to the parametric rates (for more details, check Lounici [30]
and Bunea and Xiao [7] for results under the spectral norm, and Vu and Lei [34] for results under
the restricted spectral norm).

In this paper, we push the results in Han and Liu [17] forward, providing improved results
of the transformed Kendall’s tau correlation matrix under both spectral and restricted spectral
norms. We consider the statistical properties of the Kendall’s tau sample correlation matrix T̂ in
estimating the Kendall’s tau correlation matrix T, and the transformed version �̂ in estimating �.

First, we considering estimating the Kendall’s tau correlation matrix T itself. Estimating
Kendall’s tau is of its self-interest. For example, Embrechts et al. [12] claimed that in many
cases in modeling dependence Pearson’s correlation coefficient “might prove very misleading”
and advocated to use the Kendall’s tau correlation coefficient as the “perhaps best alternatives to
the linear correlation coefficient as a measure of dependence for nonelliptical distributions.” In
estimating T, we show that, without any condition, for any continuous random vector X,

‖T̂ − T‖2 = OP

(
‖T‖2

√
re(T) logd

n

)
,

where re(T) := Tr(T)/‖T‖2 is called effective rank. Moreover, we provide a new term called
“sign sub-Gaussian condition,” under which we have

‖T̂ − T‖2,s = OP

(
‖T‖2

√
s logd

n

)
.

Secondly, under the transelliptical family, we consider estimating the Pearson’s correlation
matrix � of the latent elliptical distribution using the transformed Kendall’s tau sample correla-
tion matrix �̂ = [sin(π

2 T̂jk)]. Without any moment condition, we show that, as long as X belongs
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to the transelliptical family,

‖�̂ − �‖2 = OP

(
‖�‖2

{√
re(�) logd

n
+ re(�) logd

n

})
,

which attains the nearly optimal rate of convergence obtained in Lounici [30] and Bunea and
Xiao [7]. Moreover, provided that the sign sub-Gaussian condition is satisfied, we have

‖�̂ − �‖2,s = OP

(
‖�‖2

√
s logd

n
+ s logd

n

)
,

which attains the nearly optimal rate of convergence obtained in Vu and Lei [34].

1.1. Discussion with related works

Our work is related to a vast literature in large covariance matrix estimation, with different set-
tings of sparsity assumptions (Cai et al. [8,9], Cai and Zhou [10], Vu and Lei [34]), or without
any sparsity assumption (Bunea and Xiao [7], Lounici [30]). In particular, this work is closely
related to Lounici [30] and Bunea and Xiao [7] with regard to the theoretical analysis of the spec-
tral norm convergence, and the work of Vu and Lei [34] with regard to the theoretical analysis of
the restricted spectral norm convergence.

However, there are various new contributions made in this paper given the aforementioned
results. We emphasize the advantage of rank-based statistics over moment-based statistics. One
new message delivered in this paper is, via resorting to the rank-based statistics, the statistical
efficiency attained by the aforementioned methods under some stringent moment constraints, can
be attained under some more flexible models. Moreover, we believe that the technical develop-
ments built in this paper, including the analysis of U -statistics, the concentration of matrix-value
functions, and the verification of the sign sub-Gaussian condition for several particular models,
are distinct from the existing literature and of self-interest.

Our work is also closely related to an expanding literature in extending copula models to the
high dimensional settings. These include the use of the nonparanormal (Gaussian copula) and
the transelliptical (elliptical copula) distribution families. Methodologically, the Spearman’s rho
is recommended in the analysis of the nonparanormal family for conducting graphical model
estimation (Liu et al. [27], Xue and Zou [36]), classification (Han et al. [18]), and PCA (Han
and Liu [16]). The Kendall’s tau is recommended in the analysis of the transelliptical family for
conducting graphical model estimation (Liu et al. [28]) and PCA (Han and Liu [17]).

Our work is motivated from the aforementioned results. But, different from the existing ones,
we give a more general study on the convergence of the Kendall’s tau matrix itself, and provide
more insights into the rank-based statistics. We characterize three types of convergence with
regard to the Kendal’s tau matrix T̂ and its transformed version �̂: The element-wise supremum
norm (�max), the spectral norm (�2), and the restricted spectral norm (�2,s ). In comparison, the
existing results only exploited the �max convergence result, which we find is not sufficient in
showing the statistical efficiency of many rank-based methods. It is also worth noting that the
new theories developed here with regard to the �2 and �2,s convergence have broad implications.
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They can be easily applied to the study of factor model, sparse PCA, robust regression and many
other methods, and can lead to more refined statistical analysis.

In an independent work, Wegkamp and Zhao [35] proposed to use the same transformed
Kendall’s tau correlation coefficient estimator to analyze the elliptical copula factor model and
proved a similar spectral norm convergence result as in Theorem 3.1 of this paper. The proofs
are different and these two papers are independent work.

1.2. Notation system

Let M = [Mij ] ∈ R
d×d and v = (v1, . . . , vd)T ∈R

d . We denote vI to be the subvector of v whose
entries are indexed by a set I . We also denote MI,J to be the submatrix of M whose rows are
indexed by I and columns are indexed by J . Let MI∗ and M∗J be the submatrix of M with rows
indexed by I , and the submatrix of M with columns indexed by J . Let supp(v) := {j : vj 	= 0}.
For 0 < q < ∞, we define the �0, �q , and �∞ vector (pseudo-)norms as

‖v‖0 := card
(
supp(v)

)
, ‖v‖q :=

(
d∑

i=1

|vi |q
)1/q

and ‖v‖∞ := max
1≤i≤d

|vi |.

Let λj (M) be the j th largest eigenvalue of M and �j (M) be a corresponding eigenvector.
In particular, we let λmax(M) := λ1(M). We define S

d−1 := {v ∈ R
d : ‖v‖2 = 1} to be the d-

dimensional unit sphere. We define the matrix element-wise supremum norm (�max norm), spec-
tral norm (�2 norm), and restricted spectral norm (�2,s norm) as

‖M‖max := max
{|Mij |

}
, ‖M‖2 := sup

v∈Sd−1
‖Mv‖2 and ‖M‖2,s := sup

v∈Sd−1∩‖v‖0≤s

‖Mv‖2.

We define diag(M) to be a diagonal matrix with [diag(M)]jj = Mjj for j = 1, . . . , d . We also
denote vec(M) := (MT∗1, . . . ,MT∗d)T . For any two vectors a,b ∈ R

d , we denote 〈a,b〉 := aT b
and sign(a) := (sign(a1), . . . , sign(ad))T , where sign(x) = x/|x| with the convention 0/0 = 0.

1.3. Paper organization

The rest of this paper is organized as follows. In the next section, we briefly overview the transel-
liptical distribution family and the main concentration results for the transformed Kendall’s tau
sample correlation matrix proposed by Han and Liu [17]. In Section 3, we analyze the conver-
gence rates of Kendall’s tau sample correlation matrix and its transformed version with regard
to the spectral norm. In Section 4, we analyze the convergence rates of Kendall’s tau sample
correlation matrix and its transformed version with regard to the restricted spectral norm. The
technical proofs of these results are provided in Section 5. More discussions and conclusions are
provided in Section 6.
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2. Preliminaries and background overview

In this section, we briefly review the transelliptical distribution and the corresponding latent
generalized correlation matrix estimator proposed by Han and Liu [17].

2.1. Transelliptical distribution family

The concept of transelliptical distribution builds upon the elliptical distribution. Accordingly, we
first provide a definition of the elliptical distribution, using the stochastic representation as in

Fang et al. [14]. In the sequel, for any two random vectors X and Y, we denote X d= Y if they are
identically distributed.

Definition 2.1 (Fang et al. [14]). A random vector Z = (Z1, . . . ,Zd)T follows an elliptical

distribution if and only if Z has a stochastic representation: Z d= μ + ξAU. Here μ ∈ R
d ,

q := rank(A), A ∈ Rd×q , ξ ≥ 0 is a random variable independent of U, U ∈ Sq−1 is uni-
formly distributed on the unit sphere in R

q . In this setting, letting � := AAT , we denote
Z ∼ ECd(μ,�, ξ). Here, � is called the scatter matrix.

The elliptical family can be viewed as a semiparametric generalization of the Gaussian family,
maintaining the symmetric property of the Gaussian distribution but allowing heavy tails and
richer structures. Moreover, it is a natural model for many multivariate methods such as principal
component analysis (Boente et al. [6]). The transelliptical distribution family further relaxes the
symmetric assumption of the elliptical distribution by assuming that, after unspecified strictly
increasing marginal transformations, the data are elliptically distributed. A formal definition of
the transelliptical distribution is as follows.

Definition 2.2 (Han and Liu [17]). A random vector X = (X1, . . . ,Xd)T follows a transellipti-
cal distribution, denoted by X ∼ TEd(�, ξ ;f1, . . . , fd), if there exist univariate strictly increas-
ing functions f1, . . . , fd such that(

f1(X1), . . . , fd(Xd)
)T ∼ ECd(0,�, ξ) where diag(�) = Id and P(ξ = 0) = 0.

Here Id ∈ R
d×d is the d-dimensional identity matrix and � is called the latent generalized cor-

relation matrix.

We note that the transelliptical distribution is closely related to the nonparanormal distribution
(Liu et al. [27,29], Xue and Zou [36], Han and Liu [16], Han et al. [18]) and meta-elliptical
distribution (Fang et al. [13]). The nonparanormal distribution assumes that after unspecified
strictly increasing marginal transformations the data are Gaussian distributed. It is easy to see
that the transelliptical family contains the nonparanormal family. On the other hand, it is subtle to
elaborate the difference between the transelliptical and meta-elliptical. In short, the transelliptical
family contains meta-elliptical family. Compared to the meta-elliptical, the transelliptical family
does not require the random vectors to have densities and brings new insight into both theoretical
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analysis and model interpretability. We refer to Liu et al. [28] for more detailed discussion on the
comparison between the transelliptical family, nonparanormal and meta-elliptical families.

2.2. Latent generalized correlation matrix estimation

Following Han and Liu [17], we are interested in estimating the latent generalized correla-
tion matrix �, i.e., the correlation matrix of the latent elliptically distributed random vector
f (X) := (f1(X1), . . . , fd(Xd))T . By treating both the generating variable ξ and the marginal
transformation functions f = {fj }dj=1 as nuisance parameters, Han and Liu [17] proposed to use
a transformed Kendall’s tau sample correlation matrix to estimate the latent generalized correla-
tion matrix �. More specifically, letting x1, . . . ,xn be n independent and identically distributed
observations of a random vector X ∈ TEd(�, ξ ;f1, . . . , fd), the Kendall’s tau correlation coeffi-
cient between the variables Xj and Xk is defined as

τ̂jk := 2

n(n − 1)

∑
i<i′

sign
(
(xi − xi′)j (xi − xi′)k

)
.

Its population quantity can be written as

τjk := P
(
(Xj − X̃j )(Xk − X̃k) > 0

)− P
(
(Xj − X̃j )(Xk − X̃k) < 0

)
, (2.1)

where X̃ = (X̃1, . . . , X̃d)T is an independent copy of X. We denote

T := [τjk] and T̂ := [̂τjk]
to be the Kendall’s tau correlation matrix and Kendall’s tau sample correlation matrix.

For the transelliptical family, it is known that �jk = sin(π
2 τjk) (check, e.g., Theorem 3.2

in Han and Liu [17]). A latent generalized correlation matrix estimator �̂ := [�̂jk], called the
transformed Kendall’s tau sample correlation matrix, is accordingly defined by

�̂jk = sin

(
π

2
τ̂jk

)
. (2.2)

Han and Liu [17] showed that, without any moment constraint,

‖�̂ − �‖max = OP

(√
logd

n

)
,

and accordingly by simple algebra we have

‖�̂ − �‖2 = OP

(
d

√
logd

n

)
and ‖�̂ − �‖2,s = OP

(
s

√
logd

n

)
. (2.3)

The rates of convergence in (2.3) are far from optimal (check Lounici [30], Bunea and Xiao [7],
and Vu and Lei [34] for the parametric rates). In the next two sections, we will push the results
in Han and Liu [17] forward, showing that better rates of convergence can be built in estimating
the Kendall’s tau correlation matrix and the latent generalized correlation matrix.
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3. Rate of convergence under spectral norm

In this section, we provide the rate of convergence of the Kendall’s tau sample correlation matrix
T̂ to T, as well as the transformed Kendall’s tau sample correlation matrix �̂ to �, under the
spectral norm. The next theorem shows that, without any moment constraint or assumption on
the data distribution (as long as it is continuous), the rate of convergence of T̂ to T under the
spectral norm is ‖T‖2

√
re(T) logd/n, where for any positive semidefinite matrix M ∈R

d×d ,

re(M) := Tr(M)

‖M‖2

is called the effective rank of M and must be less than or equal to the dimension d . For notational
simplicity, in the sequel we assume that the sample size n is even. When n is odd, we can always
use n − 1 data points without affecting the obtained rate of convergence.

Theorem 3.1. Let x1, . . . ,xn be n observations of a d-dimensional continuous random vector X.
Then when re(T) logd/n → 0, for sufficiently large n and any 0 < α < 1, with probability larger
than 1 − 2α, we have

‖T̂ − T‖2 ≤ 4‖T‖2

√ {re(T) + 1} log(d/α)

3n
. (3.1)

Theorem 3.1 shows that, when re(T) logd/n → 0, we have

‖T̂ − T‖2 = OP

(
‖T‖2

√
re(T) logd

n

)
.

This rate of convergence we proved is the same parametric rate as obtained in Vershynin [33],
Lounici [30], and Bunea and Xiao [7] when there is not any additional structure.

In the next theorem, we show that, under the modeling assumption that X is transelliptically
distributed, which is of particular interest in real applications as shown in Han and Liu [17], we
have that a transformed version of the Kendall’s tau sample correlation matrix can estimate the
latent generalized correlation matrix in a nearly optimal rate.

Theorem 3.2. Let x1, . . . ,xn be n observations of X ∼ TEd(�, ξ ;f1, . . . , fd). Let �̂ be
the transformed Kendall’s tau sample correlation matrix defined in (2.2). We have, when
re(�) logd/n → 0, for n large enough and 0 < α < 1, with probability larger than 1 − 2α − α2,

‖�̂ − �‖2 ≤ π2‖�‖2

(
2

√ {re(�) + 1} log(d/α)

3n
+ re(�) log(d/α)

n

)
. (3.2)

Theorem 3.2 indicates that, when re(�) logd/n → 0, we have

‖�̂ − �‖2 = OP

(
‖�‖2

√
re(�) logd

n

)
.
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By the discussion of Theorem 2 in Lounici [30], the obtained rate of convergence is minimax
optimal up to a logarithmic factor with respect to a suitable parameter space. However, compared
to the conditions in Lounici [30], and Bunea and Xiao [7], which require strong multivariate sub-
Gaussian modeling assumption on X (which implies the existence of moments of arbitrary order),
�̂ attains this parametric rate in estimating the latent generalized correlation matrix without any
moment constraints.

Remark 3.3. The logd term presented in the rate of convergence of T̂ and �̂ is an artifact of
the proof, and also appears in the statistical analysis of the sample covariance matrix under the
sub-Gaussian model (see, e.g., Proposition 3 in Lounici [30] and Theorem 2.2 in Bunea and
Xiao [7]). If we would like to highlight the role of the effective rank, re(T) and re(�), to our
knowledge there is no work that can avoid the logd term. On the other hand, in estimating T
using T̂, a OP (

√
d/n) rate of convergence can be attained under the condition of Theorem 4.11

provided in the next section. In estimating � using �̂, a OP (
√

d/n) rate of convergence is also
attainable under the condition of Theorem 4.11 when d(logd)2 = O(n).

4. Rate of convergence under restricted spectral norm

In this section, we analyze the rates of convergence of the Kendall’s tau sample correlation matrix
and its transformed version under the restricted spectral norm. The main target is to improve the
rate OP (s

√
logd/n) shown in (2.3) to the rate OP (

√
s log(d/s)/n). Such a rate has been shown

to be minimax optimal under the Gaussian model (via combining Theorem 2.1 and Lemma 3.2.1
in Vu and Lei [34]). Obtaining such an improved rate is technically challenging since the data
could be very heavy-tailed and the transformed Kendall’s tau sample correlation matrix has a
much more complex structure than the Pearson’s covariance/correlation matrix.

In the following, we lay out a venue to analyze the statistical efficiency of T̂ and �̂ under the
restricted spectral norm. In particular, we characterize a subset of the transelliptical distributions
for which T̂ and �̂ can approximate T and � in an improved rate. More specifically, we provide
a “sign sub-Gaussian” condition which is sufficient for T̂ and �̂ to attain the nearly optimal rate.
This condition is related to the sub-Gaussian assumption in Vu and Lei [34], Lounici [30], and
Bunea and Xiao [7] (see Assumption 2.2 in Vu and Lei [34], e.g.). Before proceeding to the
formal definition of this condition, we first define an operator ψ :R→R as follows.

Definition 4.1. For any random variable Y ∈R, the operator ψ :R→R is defined as

ψ(Y ;α, t0) := inf
{
c > 0: E exp

{
t
(
Yα −EYα

)}≤ exp
(
ct2), for |t | < t0

}
. (4.1)

The operator ψ(·) can be used to quantify the tail behaviors of random variables. We recall that
a zero-mean random variable X ∈ R is said to be sub-Gaussian if there exists a constant c such
that E exp(tX) ≤ exp(ct2) for all t ∈ R. A zero-mean random variable Y ∈ R with ψ(Y ;1,∞)

bounded is well known to be sub-Gaussian, which implies a tail probability

P
(|Y −EY | > t

)
< 2 exp

(−t2/(4c)
)
,
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where c is the constant defined in equation (4.1). Moreover, ψ(Y ;α, t0) is related to the Orlicz
ψ2-norm. A formal definition of the Orlicz norm is provided as follows.

Definition 4.2. For any random variable Y ∈ R, its Orlicz ψ2-norm is defined as

‖Y‖ψ2 := inf
{
c > 0: E exp

(|Y/c|2)≤ 2
}
.

It is well known that a random variable Y has ψ(Y ;1,∞) to be bounded if and only if ‖Y‖ψ2

in Definition 4.2 is bounded (van de Geer and Lederer [32]). We refer to Lemma A.1 in the
Appendix for a more detailed description on this property.

Another relevant norm to ψ(·) is the sub-Gaussian norm ‖ · ‖φ2 used in, for example, Ver-
shynin [33]. A former definition of the sub-Gaussian norm is as follows.

Definition 4.3. For any random variable X ∈R, its sub-Gaussian norm is defined as

‖X‖φ2 := sup
k≥1

k−1/2(
E|X|k)1/k

.

The sub-Gaussian norm is also highly related to the sub-Gaussian random variables. In partic-
ular, we have if EX = 0, then E exp(tX) ≤ exp(Ct2‖X‖2

φ2
).

Using the operator ψ(·), we now proceed to define the sign sub-Gaussian condition. For math-
ematical rigorousness, the formal definition is posed on {Fd, d = 1,2, . . .}, where Fd represents
a set of probability measures on R

d . Here for any vector v = (v1, . . . , vd) ∈ R
d , we remind that

sign(v) := (sign(v1), . . . , sign(vd))T . In the following, a random vector X is said to be in a set of
probability measures F ′ if its distribution is in F ′.

Definition 4.4 (Sign sub-Gaussian condition). For d = 1,2, . . . , let Fd be a set of probability
measures on R

d such that infinitely many sets Fd are nonempty and F :=⋃∞
d=1 Fd . F is said

to satisfy the sign sub-Gaussian condition if and only if for any X in F , we have

sup
v∈Sd−1

ψ
(〈

sign(X − X̃),v
〉;2, t0

)≤ K‖T‖2
2, (4.2)

where X̃ is an independent copy of X, K is an absolute constant, and t0 is another absolute
positive number such that t0‖T‖2 is lower bounded by an absolute positive constant. We remind
that here T can be written as

T := E sign(X − X̃) · (sign(X − X̃)
)T

.

To gain more insights about the sign sub-Gaussian condition, we point out two sets of proba-
bility measures of interest that satisfy the sign sub-Gaussian condition.

Proposition 4.5. Suppose the set of probability measures F satisfies that for any random vector
X in F and X̃ being an independent copy of X, we have

sup
v∈Sd−1

∥∥〈sign(X − X̃),v
〉2 − vT Tv

∥∥
ψ2

≤ L1‖T‖2, (4.3)
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where L1 is a fixed constant. Then F satisfies the sign sub-Gaussian condition by setting t0 = ∞
and K = 5L2

1/2 in equation (4.2).

Proposition 4.6. Suppose the set of probability measure F satisfies that for any random vector
X in F and X̃ being an independent copy of X, we have there exists an absolute constant L2 such
that ∥∥vT sign(X − X̃)

∥∥2
φ2

≤ L2‖T‖2

2
for all v ∈ S

d−1. (4.4)

Then F satisfies the sign sub-Gaussian condition with t0 = c‖T‖−1
2 and K = C in equation (4.2),

where c and C are two fixed absolute constants.

In the following, for clarity of presentation, we abuse notation a little and write that X satisfies
the sign sub-Gaussian condition if there exists a set of probability measures F satisfying the sign
sub-Gaussian condition such that for d = 1,2, . . . ,X ∈R

d is in F .
Proposition 4.6 builds a bridge between the sign sub-Gaussian condition and Assumption 1 in

Bunea and Xiao [7] and Lounici [30]. More specifically, saying that X satisfies equation (4.4) is
equivalent to saying that sign(X− X̃) satisfies the multivariate sub-Gaussian condition defined in
Bunea and Xiao [7]. Therefore, Proposition 4.6 can be treated as an explanation of why we call
the condition in equation (4.2) “sign sub-Gaussian.” However, by Lemma 5.14 in Vershynin [33],
the sign sub-Gaussian condition is weaker than that of equation (4.4), that is, a set of probability
measures satisfying the sign sub-Gaussian condition does not necessarily satisfy the condition in
Proposition 4.6.

The sign sub-Gaussian condition is intuitive due to its relation to the Orlicz and sub-Gaussian
norms. However, it is extremely difficult to verify whether a given set of distributions satisfies this
condition. The main difficulty lies in the fact that we must sharply characterize the tail behavior
of the summation of a sequence of possibly correlated discrete Bernoulli random variables, which
is much harder than analyzing the summation of Gaussian random variables as usually done in
the literature.

In the following, we provide several examples of sets of distributions that satisfy the sign sub-
Gaussian condition. The next theorem shows that the transelliptically distributed random vector
X ∼ TEd(�, ξ ;f1, . . . , fd) such that � = Id (i.e., the underlying is a spherical distribution) for
d = 1,2, . . . satisfies the sign sub-Gaussian condition. The proof of Theorem 4.7 is in Section 5.4.

Theorem 4.7. Suppose that, for d = 1,2, . . . ,X ∼ TEd(Id , ξ ;f1, . . . , fd) is transelliptically dis-
tributed with a latent spherical distribution. Then X satisfies the sign sub-Gaussian condition.

In the next theorem, we provide a stronger version of Theorem 4.7. We call a square matrix
compound symmetric if the off-diagonal values of the matrix are equal. The next theorem shows
that the transelliptically distributed X ∼ TEd(�, ξ ;f1, . . . , fd), with � a compound symmetric
matrix, satisfies equation (4.4) and, therefore, satisfies the sign sub-Gaussian condition.

Theorem 4.8. Suppose that for d = 1,2, . . . ,X ∼ TEd(�, ξ ;f1, . . . , fd) is transelliptically dis-
tributed such that � is a compound symmetric matrix (i.e., �jk = ρ for all j 	= k). Then if
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0 ≤ ρ := �12 ≤ C0 < 1 for some absolute positive constant C0, we have that X satisfies the sign
sub-Gaussian condition.

Although Theorem 4.7 can be directly proved using the result in Theorem 4.8, the proof of
Theorem 4.7 contains utterly different techniques which are more transparent and illustrate the
main challenges of analyzing binary sequences even in the uncorrelated setting. Therefore, we
still list this theorem separately and provide a separate proof in Section 5.4. Theorem 4.8 leads
to the following corollary, which characterizes a subfamily of the transelliptical distributions
satisfying the sign sub-Gaussian condition.

Corollary 4.9. Suppose that for d = 1,2, . . . ,X ∼ TEd(�, ξ ;f1, . . . , fd) is transelliptically dis-
tributed with � a block diagonal compound symmetric matrix, that is,

� =

⎛⎜⎜⎜⎝
�1 0 0 . . . 0
0 �2 0 . . . 0
...

. . . · · · · · · ...

0 0 0 . . . �q

⎞⎟⎟⎟⎠ , (4.5)

where �k ∈ Rdk×dk for k = 1, . . . , q is compound symmetric matrix with ρk := [�k]12 ≥ 0. We
have, if q is upper bounded by an absolute positive constant and 0 ≤ ρk ≤ C1 < 1 for some
absolute positive constant C1, X satisfies the sign sub-Gaussian condition.

We call the matrix in the form of equation (4.5) block diagonal compound symmetric matrix.
Corollary 4.9 implies that transelliptically distributed random vectors with a latent block diag-
onal compound symmetric latent generalized correlation matrix satisfy the sign sub-Gaussian
condition.

Remark 4.10. The sub-Gaussian condition is an artifact of the proof. Right now, we are not aware
of any transelliptical distribution that does not satisfy this condition. More investigation on the
necessity of this condition is challenging due to the discontinuity issue of the sign transformation
and will be left for future investigation.

Using the sign sub-Gaussian condition, we have the following main result, which shows that
as long as the sign sub-Gaussian condition holds, improved rates of convergence for both T̂ and
�̂ under the restricted spectral norm can be attained.

Theorem 4.11. For d = 1,2, . . . , let x1, . . . ,xn be n observations of X ∈R
d , for which the sign

sub-Gaussian condition holds. We have, when s log(d/s)/n → 0, with probability larger than
1 − 2α,

‖T̂ − T‖2,s ≤ 4(2K)1/2‖T‖2

√
s(3 + log(d/s)) + log(1/α)

n
. (4.6)
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Moreover, when we further have X ∼ TEd(�, ξ ;f1, . . . , fd), with probability larger 1−2α−α2,

‖�̂ − �‖2,s ≤ π2
(

2(2K)1/2‖�‖2

√
s(3 + log(d/s)) + log(1/α)

n
+ s log(d/α)

n

)
. (4.7)

The results presented in Theorem 4.11 show that under various settings the rate of conver-
gence for �̂ under the restricted spectral norm is OP (

√
s log(d/s)/n), which is the parametric

and minimax optimal rate shown in Vu and Lei [34] within the Gaussian family. However, the
Kendall’s tau sample correlation matrix and its transformed version attains this rate with all the
moment constraints waived.

5. Technical proofs

We provide the technical proofs of the theorems shown in Sections 3 and 4.

5.1. Proof of Theorem 3.1

Proof. Reminding that xi := (xi1, . . . , xid)T , for i 	= i′, let

Si,i′ := (sign(xi,1 − xi′,1), . . . , sign(xi,d − xi′,d )
)T

.

We denote �̂i,i′ to be n(n − 1) random matrices with

�̂i,i′ := 1

n(n − 1)

(
Si,i′S

T
i,i′ − T

)
.

By simple calculation, we have T̂ − T =∑i,i′ �̂i,i′ and T̂ − T is a U -statistic.
In the following we extend the standard decoupling trick from Hoeffding [19] from the U -

statistic of random variables to the matrix setting. The extension relies on the matrix version of
the Laplace transform method. For any square matrix M ∈R

d , we define

exp(M) := Id +
∞∑

k=1

Mk

k! ,

where k! represents the factorial product of k. Using Proposition 3.1 in Tropp [31], we have

P
[
λmax(T̂ − T) ≥ t

]≤ inf
θ>0

e−θt
E
[
Tr eθ(T̂−T)

]
, (5.1)

and we bound E[Tr eθ(T̂−T)] as follows.
The trace exponential function

Tr exp : A → Tr eA
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is a convex mapping from the space of self-adjoint matrix to R
+ (see Section 2.4 of Tropp [31]

and reference therein). Let m = n/2. For any permutation σ of 1, . . . , n, let (i1, . . . , in) :=
σ(1, . . . , n). For r = 1, . . . ,m, we define Sσ

r and �̂
σ

r to be

Sσ
r := Si2r ,i2r−1 and �̂

σ

r := 1

m

(
Sσ

r

[
Sσ

r

]T − T
)
.

Moreover, for i = 1, . . . ,m, let

Si := S2i,2i−1 and �̂i := 1

m

(
SiST

i − T
)
.

The convexity of the trace exponential function implies that

Tr eθ(T̂−T) = Tr eθ
∑

i,i′ �̂i,i′

= Tr exp

{
1

card(Sn)

∑
σ∈Sn

θ

m∑
r=1

�̂
σ

r

}
(5.2)

≤ 1

card(Sn)

∑
σ∈Sn

Tr eθ
∑m

r=1 �̂
σ
r ,

where Sn is the permutation group of {1, . . . , n}. Taking expectation on both sides of equa-
tion (5.2) gives that

ETr eθ(T̂−T) ≤ ETr eθ
∑m

i=1 �̂i . (5.3)

According to the definition, �̂1, . . . , �̂m are m independent and identically distributed random
matrices, and this finishes the decoupling step.

Combing equations (5.1) and (5.3), we have

P
[
λmax(T̂ − T) ≥ t

]≤ inf
θ>0

e−θt
ETr eθ

∑m
i=1 �̂i . (5.4)

Recall that E�̂i = 0. Following the proof of Theorem 6.1 in Tropp [31], if we can show that
there are some nonnegative numbers R1 and R2 such that

λmax(�̂i ) ≤ R1,

∥∥∥∥∥
m∑

i=1

E�̂
2
i

∥∥∥∥∥
2

≤ R2,

then the right-hand side of equation (5.4) can be bounded by

inf
θ>0

e−θt
ETr eθ

∑m
i=1 �̂i ≤ d exp

{
− t2/2

R2 + R1t/3

}
.

We first show that R1 = 2d
m

. Because ‖�̂i‖max ≤ 2/m, by simple calculation, we have

λmax(�̂i ) ≤ ‖�̂i‖1 ≤ d · ‖�̂i‖max ≤ 2d

m
.
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We then calculate R2. For this, we have, because X is continuous,

m∑
i=1

E�̂
2
i = 1

m
E
(
S1ST

1 − T
)2 = 1

m

(
E
(
dS1ST

1

)− T2)= 1

m

(
dT − T2).

Accordingly, ∥∥∥∥∥
m∑

i=1

E�̂
2
i

∥∥∥∥∥
2

≤ 1

m

(
d‖T‖2 + ‖T‖2

2

)
,

so we set R2 = 1
m

(d‖T‖2 + ‖T‖2
2).

Thus, using Theorem 6.1 in Tropp [31], for any

t ≤ R2/R1 = d‖T‖2 + ‖T‖2
2

2d
,

we have

P
{
λmax(T̂ − T) ≥ t

}≤ d · exp

(
− 3nt2

16(d‖T‖2 + ‖T‖2
2)

)
.

A similar argument holds for λmax(−T̂ + T). Accordingly, we have

P
{‖T̂ − T‖2 ≥ t

}≤ 2d · exp

(
− 3nt2

16(d‖T‖2 + ‖T‖2
2)

)
.

Finally, when

n ≥ 64d2 log(d/α)

3(d‖T‖2 + ‖T‖2
2)

,

we have √
16(d‖T‖2 + ‖T‖2

2) log(d/α)

3n
≤ d‖T‖2 + ‖T‖2

2

2d
.

This completes the proof. �

5.2. Proof of Theorem 3.2

To prove Theorem 3.2, we first need the following lemma, which connects
√

1 − �2
jk to a Gaus-

sian distributed random vector (X,Y )T ∈ R
2 and plays a key role in bounding ‖�̂ − �‖2 by

‖T̂ − T‖2.

Lemma 5.1. Provided that (
X

Y

)
∼ N2

(
0,

[
1 σ

σ 1

])
,
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we have

E|XY | = EXYE sign(XY) + 2

π

√
1 − σ 2.

Proof. We recall that σ := sin(π
2 τ) with τ the Kendall’s tau correlation coefficient of X,Y .

Without loss of generality, assume that σ > 0, τ > 0 (otherwise show for −Y instead of Y ).
Define

β+ = E|XY |I (XY > 0), β− = E|XY |I (XY < 0),

where I (·) is the indicator function. We then have

E|XY | = β+ + β−, EXY = σ = β+ − β−. (5.5)

To compute β+, using the fact that

X
d=
√

1 + σ

2
Z1 +

√
1 − σ

2
Z2, Y

d=
√

1 + σ

2
Z1 −

√
1 − σ

2
Z2,

where Z1,Z2 ∼ N1(0,1) are independently and identically distributed.
Let FX,Y and FZ1,Z2 be the joint distribution functions of (X,Y )T and (Z1,Z2)

T . We have

β+ =
∫

xy>0
|xy|dFX,Y (x, y)

=
∫

xy>0

(x + y)2 − (x − y)2

4
dFX,Y (x, y)

=
∫

z2
1>((1−σ)/(1+σ))z2

2

(
1 + σ

2
z2

1 − 1 − σ

2
z2

2

)
dFZ1,Z2(z1, z2)

=
∫ +∞

0

∫ α

−α

2

{
1 + σ

2
r2 cos2(θ) − 1 − σ

2
r2 sin2(θ)

}
· 1

2π
e−r2/2r dθ dr,

where α := arcsin(

√
1+σ

2 ). By simple calculation, we have∫ ∞

0
r3e−r2/2 dr = 1

2

∫ ∞

0
ue−u/2 du = 2.

Accordingly, we can proceed the proof and show that

β+ =
∫ +∞

0

∫ α

−α

(
cos(2θ) + σ

) · r3 1

2π
e−r2/2 dθ dr

(5.6)

= 1

π

(
sin(2α) + 2ασ

)
.
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Since sin(2α) = √
1 − σ 2 = cos(πτ/2) and α ≥ arcsin(

√
1/2) ≥ π/4, we have that 2α = π

2 (1 +
τ), and then equation (5.6) continues to give

β+ = σ

2
(1 + τ) + 1

π

√
1 − σ 2.

Combined with equation (5.5) gives the equality claimed. �

Using Theorem 3.1 and Lemma 5.1, we proceed to prove Theorem 3.2.

Proof of Theorem 3.2. Using Taylor expansion, for any j 	= k, we have

sin

(
π

2
τ̂jk

)
− sin

(
π

2
τjk

)
= cos

(
π

2
τjk

)
π

2
(̂τjk − τjk) − 1

2
sin(θjk)

(
π

2

)2

(̂τjk − τjk)
2,

where θjk lies between τjk and τ̂jk . Thus,

�̂ − � = E1 + E2,

where E1,E2 ∈ R
d×d satisfy that for j 	= k,

[E1]jk = cos

(
π

2
τjk

)
π

2
(̂τjk − τjk),

[E2]jk = −1

2
sin(θjk)

(
π

2

)2

(̂τjk − τjk)
2,

and the diagonal entries of both E1 and E2 are all zero.
Using the results of U -statistics shown in Hoeffding [19], we have that for any j 	= k and

t > 0,

P
(|̂τjk − τjk| > t

)
< 2e−nt2/4.

For some constant α, let the event �2 be defined as

�2 :=
{
∃1 ≤ j 	= k ≤ d,

∣∣[E2]jk

∣∣> π2 · log(d/α)

n

}
.

Since |[E2]jk| ≤ π2

8 (̂τjk − τjk)
2, by union bound, we have

P(�2) ≤ d2

2
· 2e−2 log(d/α) = α2.

Conditioning on �C
2 , for any v ∈ S

d−1, we have

∣∣vT E2v
∣∣≤√∑

j,k∈J

[E2]2
jk · ‖v‖2

2 ≤
√

d2

(
π2 · log(d/α)

n

)2

= π2 · d log(d/α)

n
. (5.7)
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We then analyze the term E1. Let W = [Wjk] ∈ R
d×d with Wjk = π

2 cos(π
2 τjk) and T̂ = [T̂jk]

be the Kendall’s tau sample correlation matrix with T̂jk = τ̂jk . We can write

E1 = W ◦ (T̂ − T),

where ◦ represents the Hadamard product. Given the spectral norm bound of T̂ − T shown in
Theorem 3.1, we now focus on controlling E1. Let Y := (Y1, . . . , Yd)T ∼ Nd(0,�) follow a
Gaussian distribution with mean zero and covariance matrix �. Using the equality in Lemma 5.1,
we have, for any j 	= k,

E|YjYk| = τjk�jk + 2

π

√
1 − �2

jk.

Reminding that

cos

(
π

2
τjk

)
=
√

1 − sin2
(

π

2
τjk

)
=
√

1 − �2
jk,

we have

Wjk = π

2
cos

(
π

2
τjk

)
= π2

4

(
E|YjYk| − τjk�jk

)
.

Then let Y′ := (Y ′
1, . . . , Y

′
d)T ∈R

d be an independent copy of Y. We have, for any v ∈ S
d−1 and

symmetric matrix M ∈ R
d×d ,

∣∣vT M ◦ Wv
∣∣ = ∣∣∣∣∣

d∑
j,k=1

vjvkMjkWjk

∣∣∣∣
=
∣∣∣∣Eπ2

4

∑
j,k

vj vkMjk

(|YjYk| − YjYk sign
(
Y ′

j Y
′
k

))∣∣∣∣
≤ π2

4
E

(∣∣∣∣∑
j,k

vj vkMjk|YjYk|
∣∣∣∣+ ∣∣∣∣∑

j,k

vj vkMjkYjYk sign
(
Y ′

j Y
′
k

)∣∣∣∣)
(5.8)

≤ π2

4
‖M‖2 ·E

(
2
∑
j

v2
j Y

2
j

)

= π2

4
‖M‖2 ·

(
2
∑
j

v2
j

)

= π2

2
‖M‖2.

Here, the second inequality is due to the fact that for any M ∈ R
d×d and v ∈ R

d , |vT Mv| ≤
‖M‖2‖v‖2 and the third equality is due to the fact that EY 2

j = �jj = 1 for any j ∈ {1, . . . , d}.
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Accordingly, we have

‖E1‖2 = ∥∥W ◦ (T̂ − T)
∥∥

2 ≤ π2

2
‖T̂ − T‖2. (5.9)

The bound in Theorem 3.2, with � being replaced by T, follows from the fact that

‖�̂ − �‖2 = ‖E1 + E2‖2 ≤ ‖E1‖2 + ‖E2‖2

and by combining equations (3.1), (5.7) and (5.9). Finally, we prove that ‖T‖2 ≤ ‖�‖2. We have
Tjk = 2

π arcsin(�jk). Using the Taylor expansion and the fact that |�jk| ≤ 1 for any (j, k) ∈
{1, . . . , d}, we have

T = 2

π

∞∑
m=0

(2m)!
4m(m!)2(2m + 1)

(� ◦ · · · ◦ �)︸ ︷︷ ︸
2m+1

.

By Schur’s theorem (see, e.g., page 95 in Johnson [22]), we have for any two positive semidefinite
matrices A and B,

‖A ◦ B‖2 ≤
(

max
j

Ajj

)
‖B‖2.

Accordingly, using the fact that �jj = 1 for all 1 ≤ j ≤ d , we have∥∥(� ◦ · · · ◦ �)︸ ︷︷ ︸
2m+1

∥∥
2 ≤ ‖�‖2,

implying that

‖T‖2 ≤ ‖�‖2 · 2

π

∞∑
m=0

(2m)!
4m(m!)2(2m + 1)

(5.10)

= ‖�‖2 · 2

π
arcsin 1 = ‖�‖2.

Accordingly, we can replace T with � in the upper bound and have the desired result. �

5.3. Proofs of Propositions 4.5 and 4.6

Proposition 4.5 is a direct consequence of Lemma A.1. To prove Proposition 4.6, we first intro-
duce the subexponential norm. For any random variable X ∈R, ‖X‖φ1 is defined as follows:

‖X‖φ1 := sup
k≥1

1

k

(
E|X|k)1/k

.
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Let S := sign(X − X̃). Because vT S is sub-Gaussian and EvT S = 0, using Lemma 5.14 in Ver-
shynin [33], we get ∥∥(vT S

)2 −E
(
vT S

)2∥∥
φ1

≤ ∥∥(vT S
)2∥∥

φ1
+ ∥∥vT Tv

∥∥
φ1

≤ 2
∥∥vT S

∥∥2
φ2

+ vT Tv

≤ (L2 + 1)‖T‖2.

Since (vT S)2 − E(vT S)2 is a zero-mean random variable and vT S is sub-Gaussian, using
Lemma 5.15 in Vershynin [33], there exist two fixed constants C′, c′ such that if |t | ≤
c′/‖(vT S)2 −E(vT S)2‖φ1 , we have

E exp
(
t
((

vT S
)2 −E

(
vT S

)2))≤ exp
(
C′t2

∥∥(vT S
)2 −E

(
vT S

)2∥∥2
φ1

)
.

Accordingly, by choosing t0 = c′(L2 + 1)−1‖T‖−1
2 and K = C′(L2 + 1)2 in equation (4.2),

noticing that t0‖T‖2 = c′(L2 + 1)−1, the sign sub-Gaussian condition is satisfied.

5.4. Proof of Theorem 4.7

In this section, we provide the proof of Theorem 4.7. In detail, we show that for any transellip-
tically distributed random vector X such that f (X) ∼ ECd(0, Id , ξ), we have that X satisfies the
condition in equation (4.2).

Proof. Because for any strictly increasing function g :R→ R and x, y ∈ R, sign(g(x)−g(y)) =
sign(x − y), sign(ξx) = sign(x) (a.s.) for any ξ with P(ξ > 0) = 1, and the fact that the elliptical
family is closed to the independent sums (Lindskog et al. [26]), we only need to consider the
random vector X ∼ Nd(0, Id). For X = (X1, . . . ,Xd)T ∼ Nd(0, Id) and X̃ as an independent
copy of X, we have X − X̃ ∼ Nd(0,2Id). Reminding that the off-diagonal entries of Id are all
zero, defining X0 = (X0

1, . . . ,X
0
d)T = X − X̃ and

g
(
X0,v

) :=∑
j,k

vj vk sign
(
X0

jX
0
k

)
,

we have {
vT sign(X − X̃)

}2 −E
{
vT sign(X − X̃)

}2 = g
(
X0,v

)−Eg
(
X0,v

)
.

Accordingly, to bound ψ(〈sign(X − X̃),v〉;2), we only need to focus on g(X0,v). Letting S :=
(S1, . . . , Sd)T with Sj := sign(Y 0

j ) for j = 1, . . . , d . Using the property of Gaussian distribution,
S1, . . . , Sd are independent Bernoulli random variables in {−1,1} almost surely. We then have

g
(
Y0,v

)−Eg
(
Y0,v

)=∑
j,k

vj vk sign
(
Y 0

j Y 0
k

)− 1 = (vT S
)2 − 1.
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Here, the first equality is due to the fact that ‖v‖2 =∑d
j=1 v2

j = 1.

We then proceed to analyze the property of (vT S)2 − 1. By the Hubbard–Stratonovich trans-
form (Hubbard [21]), for any η ∈ R,

exp
(
η2)= ∫ ∞

−∞
1√
4π

e−y2/4+yη dy. (5.11)

Using equation (5.11), we have that, for any t > 0,

E exp
[
t
{(

vT S
)2 − 1

}] = e−t
Eet (vT S)2

= e−t

√
4πt

∫ +∞

−∞
e−y2/4t

Eey
∑d

j=1 vj Sj dy

= e−t

√
4πt

∫ +∞

−∞
e−y2/4t

d∏
j=1

1

2

(
eyvj + e−yvj

)
dy.

For any number z ∈ N, we define z! to represent the factorial product of z. Because for any a ∈ R,
by Taylor expansion, we have

{
exp(a) + exp(−a)

}
/2 =

∞∑
k=0

a2k/(2k)! and exp
(
a2/2

)= ∞∑
k=0

a2k/
(
2k · k!).

Because (2k)! > 2k · k!, we have{
exp(a) + exp(−a)

}
/2 ≤ exp

(
a2/2

)
.

Accordingly, we have for any 0 < t < 1/4,

E exp
[
t
{(

vT S
)2 − 1

}] = e−t

√
4πt

∫ +∞

−∞
e−y2/4t

d∏
j=1

1

2

(
eyvj + e−yvj

)
dy

≤ e−t

√
4πt

∫ +∞

−∞
e−y2/4te

∑d
j=1(1/2)y2v2

j dy

= e−t

√
4πt

∫ +∞

−∞
e−y2/4t+(1/2)y2

dy

= e−t

√
1 − 2t

.

By Taylor expansion of log(1 − x), we have that

1√
1 − 2t

= exp

{
1

2

∞∑
k=1

(2t)k

k

}
,
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which implies that for all 0 < t < 1/4,

e−t

√
1 − 2t

= exp

(
t2 + 1

2

∞∑
k=3

(2t)k

k

)
≤ exp

(
2t2).

This concludes that for 0 < t < 1/4,

E exp
[
t
{(

vT S
)2 − 1

}]≤ exp
(
2t2). (5.12)

Due to that (vT S)2 ≥ 0, we can apply Theorem 2.6 in Chung and Lu [11] to control the term
E exp[t{1 − (vT S)2}]. In detail, suppose that the random variable Y satisfying EY = 0, Y ≤ a0,
and EY 2 = b0 for some absolute constants a0 and b0. Then for any 0 < t < 2/a0, using the proof
of Theorem 2.8 in Chung and Lu [11], we have

EetY ≤ exp
{
3b0/2 · t2}. (5.13)

For Y = 1 − (vT S)2, we have

a0 = 1 and b0 = E
(
vT S

)4 − 1 = 2 − 2
d∑

j=1

v4
j < 2. (5.14)

Here, we remind that E(vT S)2 =∑j v2
j = 1. Combining equations (5.13) and (5.14) implies that

for any t > 0,

E exp
[
t
{
1 − (vT S

)2}]≤ exp
{
3t2}. (5.15)

Combining equations (5.12) and (5.15), we see that equation (4.2) holds with K = 3/4 and
t0 = 1/4 (reminding that here ‖T‖2 = 1). �

5.5. Proof of Theorem 4.8 and Corollary 4.9

In this section, we prove Theorem 4.8 and Corollary 4.9. Using the same argument as in the proof
of Theorem 4.7, we only need to focus on those random vectors that are Gaussian distributed.

Proof of Theorem 4.8. Assume that � ∈R
d×d is a compound symmetric matrix such that

�jj = 1 and �jk = ρ for j 	= k.

By the discussion on page 11 of Vershynin [33], to prove equation (4.4) holds, we only need to
prove that for 0 ≤ ρ ≤ C0 where C0 is some absolute constant, X = (X1, . . . ,Xd)T ∼ Nd(0,�)

and v ∈ S
d−1, we have

exp
(
tvT sign(X − X̃)

)≤ exp
(
c‖T‖2t

2),
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for some fixed constant c. This result can be proved as follows. Let η0, η1, . . . , ηd be i.i.d. stan-

dard Gaussian random variables, then Z := X− X̃ can be expressed as Z d= (Z′
1, . . . ,Z

′
d)T , where

Z′
1 = √

2ρη0 +√2 − 2ρη1,

Z′
2 = √

2ρη0 +√2 − 2ρη2,

· · ·
Z′

d = √
2ρη0 +√2 − 2ρηd.

Accordingly, we have

E exp
(
tvT sign(X − X̃)

) = E

(
exp

(
t

d∑
j=1

vj sign(
√

2ρη0 +√2 − 2ρηj )

))

= E

(
E

(
exp

(
t

d∑
j=1

vj sign(
√

2ρη0 +√2 − 2ρηj )

)∣∣∣η0

))

Moreover, we have √
2ρη0 +√2 − 2ρηj |η0 ∼ N1(

√
2ρη0,2 − 2ρ). (5.16)

Letting μ := √
2ρη0 and σ := √

2 − 2ρ, equation (5.16) implies that

P(
√

2ρη0 +√2 − 2ρηj > 0|η0) = �

(
μ

σ

)
,

where �(·) is the CDF of the standard Gaussian. This further implies that

sign(
√

2ρη0 +√2 − 2ρηj )|η0 ∼ Bern

(
�

(
μ

σ

))
,

where we denote Y ∼ Bern(p) if P(Y = 1) = p and P(Y = −1) = 1 − p. Accordingly, letting
α := �(μ/σ), we have

E
(
exp
(
tvj sign(

√
2ρη0 +√2 − 2ρηj )

)|η0
)= (1 − α)e−vj t + αevj t .

Letting β := α − 1/2, we have

E
(
exp
(
tvj sign(

√
2ρη0 +√2 − 2ρηj )

)|η0
)= 1

2 e−vj t + 1
2 evj t + β

(
evj t − e−vj t

)
.

Using that fact that 1
2 ea + 1

2 e−a ≤ ea2/2, we have

E
(
exp
(
tvj sign(

√
2ρη0 +√2 − 2ρηj )

)|η0
)≤ exp

(
v2
j t

2/2
)+ β

(
evj t − e−vj t

)
.
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Because conditioning on η0, sign(
√

2ρη0 + √
2 − 2ρηj ), j = 1, . . . , d , are independent of each

other, we have

E

(
exp

(
t

d∑
j=1

vj sign(
√

2ρη0 +√2 − 2ρηj )

)∣∣∣∣η0

)

≤
d∏

j=1

{
exp
(
v2
j t

2/2
)+ β

(
evj t − e−vj t

)}

= et2/2

(
1 +

d∑
k=1

βk
∑

j1<j2<···<jk

∏
j∈{j1,...,jk}

evj t − e−vj t

ev2
j t2/2

)
.

Moreover, for any centered Gaussian distribution Y ∼ N1(0, κ) and t ∈R, we have

P
(
�(Y) > 1/2 + t

) = P
(
Y > �−1(1/2 + t)

)
= P
(
Y > −�−1(1/2 − t)

)
= P
(
Y < �−1(1/2 − t)

)
= P
(
�(Y) < 1/2 − t

)
.

Combined with the fact that �(Y) ∈ [0,1], we have

E
(
�(Y) − 1/2

)k = 0 when k is odd.

This implies that when k is odd,

Eβk = 0 = E
(
�
(√

ρ/(1 − ρ)η0
)− 1

2

)k = 0.

Accordingly, denoting ε = E exp(t
∑d

j=1 vj sign(
√

2ρη0 + √
2 − 2ρηj )), we have

ε ≤ et2/2
(

1 +
∑

k is even

Eβk
∑

j1<j2<···<jk

∏
j∈{j1,...,jk}

evj t − e−vj t

ev2
j t2/2

)
.

Using the fact that

∣∣ea − e−a
∣∣ = ∣∣∣∣∣

∞∑
j=1

aj

j ! −
∞∑

j=1

(−a)j

j !

∣∣∣∣∣
= 2

∣∣∣∣∣
∞∑

m=0

a2m+1

(2m + 1)!

∣∣∣∣∣
= 2|a| ·

∣∣∣∣∣
∞∑

m=0

a2m

(2m + 1)!

∣∣∣∣∣



Latent generalized correlation matrix estimation 47

≤ 2|a| exp
(
a2/2

)
,

we further have

ε ≤ et2/2
(

1 +
∑

k is even

Eβk
∑

j1<j2<···<jk

∏
j∈{j1,...,jk}

2|vj t |
)

= et2/2
(

1 +
∑

k is even

Eβk
(
2|t |)k ∑

j1<j2<···<jk

|vj1 · · ·vjk
|
)

.

By Maclaurin’s inequality, for any x1, . . . , xd ≥ 0, we have

x1 + · · · + xn

n
≥
(∑

1≤i<j≤n xixj(
n
2

) )1/2

≥ · · · ≥ (x1 · · ·xn)
1/n.

Accordingly,

et2/2
(

1 +
∑

k is even

Eβk
(
2|t |)k ∑

j1<j2<···<jk

|vj1 · · ·vjk
|
)

≤ et2/2
(

1 +
∑

k is even

Eβk
(
2|t |)k{(n

2

)
· (‖v‖1/d

)k}) (5.17)

≤ et2/2
(

1 +
∑

k is even

Eβk
(
2|t |)kdk/2(e/k)k

)
.

The last inequality is due to the fact that ‖v‖1 ≤ √
d‖v‖2 = √

d and
(
n
2

)≤ (ed/k)k .
Finally, we analyze Eβ2m for m = 1,2, . . . . Reminding that

β := �

(√
ρ

1 − ρ
η0

)
− 1

2
,

consider the function f (x) :x → �(
√

ρ/(1 − ρ)x), we have∣∣f ′(x)
∣∣=√ ρ

1 − ρ
· 1√

2π
exp

(
− ρ

2(1 − ρ)
x2
)

≤
√

ρ

2π(1 − ρ)
.

Accordingly, f (·) is a Lipschitz function with a Lipschitz constant K0 :=
√

ρ
2π(1−ρ)

. By the

concentration of Lipschitz functions of Gaussian (Ledoux [25]), we have

P
(|β| > t

)= P
(∣∣f (η0) −Ef (η0)

∣∣> t
)≤ 2 exp

(−t2/
(
2K2

0

))
.

This implies that, for m = 1,2, . . . ,

Eβ2m = 2m

∫ ∞

0
t2m−1

P
(|β| > t

)
dt
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≤ 4m

∫ ∞

0
t2m−1 exp

(−t2/
(
2K2

0

))
dt

= 4m(
√

2K0)
2m

∫ ∞

0
t2m−1 exp

(−t2)dt

= 2m
(
2K2

0

)m ∫ ∞

0
tm−1 exp(−t)dt.

Using the fact that
∫∞

0 exp(−t)dt = 1 and for any m ≥ 1,

m

∫ ∞

0
tm−1 exp(−t)dt =

∫ ∞

0
exp(−t)dtm =

∫ ∞

0
tm exp(−t)dt,

we have for m ∈ Z
+,
∫∞

0 tm exp(−t)dt = m!. Accordingly,

Eβ2m ≤ 2m
(
2K2

0

)m
(m − 1)! = 2

(
2K2

0

)m
m!.

Plugging the above result into equation (5.17), we have

ε ≤ et2/2

(
1 +

∞∑
m=1

2
(
2K2

0

)m
m!(2t)2mdm

(
e/(2m)

)2m

)

= et2/2

(
1 +

∞∑
m=1

(
K2

0 d
)m · m!2(2

√
2et)2m/(2m)2m

)
.

Reminding that ρ ≤ C0 and K0 :=
√

ρ
2π(1−ρ)

≤
√

ρ
2π(1−C0)

, we have

ε ≤ et2/2

(
1 +

∞∑
m=1

(
K2

0 d
)m · m!2(2

√
2et)2m/(2m)2m

)

≤ et2/2

(
1 +

∞∑
m=1

m!2
(

2

√
dρ

π(1 − C0)
et

)2m

/(2m)2m

)
.

Finally, we have for any m ≥ 1

2m! · m! ≤ (2m)2m,

implying that

ε ≤ et2/2 · exp
(
4dρe2/π · t2)= exp

{(
1

2
+ 4dρe2

π(1 − C0)

)
t2
}
, (5.18)

where the term 1
2 + 4dρe2

π(1−C0)
is in the same scale of ‖T‖2 = 1 + (d − 1) · 2

π arcsin(ρ). This
completes the proof. �
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Corollary 4.9 can be proved similar to Theorem 4.8.

Proof of Corollary 4.9. Letting Jk = {1 +∑k−1
j=1 dj , . . . ,

∑k
j=1 dj }. By the product structure of

the Gaussian distribution, we have

E exp
(
tvT sign(X − X̃)

)= q∏
k=1

E exp
(
tvT

Jk
sign(X − X̃)Jk

)
.

Here we note that the bound in equation (5.18) also holds for each E exp(tvT
Jk

sign(X − X̃)Jk
) by

checking equation (5.17). Accordingly,

q∏
k=1

E exp
(
tvT

Jk
sign(X − X̃)Jk

) ≤
q∏

k=1

exp

{(
1

2
+ 4dkρke2

π(1 − C1)

)
t2
}

≤ exp

{
t2
(

q

2
+ 4e2q

π(1 − C1)
max

k
(dkρk)

)}
.

Because q is upper bounded by a fixed constant, we have vT sign(X − X̃) is sub-Gaussian. This
completes the proof. �

5.6. Proof of Theorem 4.11

Proof. We first prove that (4.6) in Theorem 4.11 holds. Letting ζ := K‖T‖2
2, we aim to prove

that with probability larger than or equal to 1 − 2α,

sup
b∈Ss−1

sup
Js∈{1,...,d}

∣∣bT [T̂ − T]Js ,Js b
∣∣≤ 2(8ζ )1/2

√
s(3 + log(d/s)) + log(1/α)

n
. (5.19)

For the sphere S
s−1 equipped with Euclidean metric, we let Nε be a subset of Ss−1 such that

for any v ∈ S
s−1, there exists u ∈ Nε subject to ‖u − v‖2 ≤ ε. The cardinal number of Nε has

the upper bound

card(Nε) <

(
1 + 2

ε

)s

.

Let N1/4 be a (1/4)-net of Ss−1. Then the cardinality of N1/4 is bounded by 9s . Moreover, for
any symmetric matrix M ∈R

s×s ,

sup
v∈Ss−1

∣∣vT Mv
∣∣≤ 1

1 − 2ε
sup

v∈Nε

∣∣vT Mv
∣∣.

This implies that

sup
v∈Ss−1

∣∣vT Mv
∣∣≤ 2 sup

v∈N1/4

∣∣vT Mv
∣∣.
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Let β > 0 be a constant defined as

β := (8ζ )1/2

√
s(3 + log(d/s)) + log(1/α)

n
.

We have

P

(
sup

b∈Ss−1
sup

Js⊂{1,...,d}
∣∣bT [T̂ − T]Js ,Js b

∣∣> 2β
)

≤ P

(
sup

b∈N1/4

sup
Js⊂{1,...,d}

∣∣bT [T̂ − T]Js ,Js b
∣∣> β

)

≤ 9s

(
d

s

)
P

(∣∣bT [T̂ − T]Js ,Js b
∣∣> (8ζ )1/2

√
s(3 + log(d/s)) + log(1/α)

n
,

for fixed b and Js

)
.

Thus, if we can show that for any fixed b and Js holds

P
(∣∣bT [T̂ − T]Js ,Js b

∣∣> t
)≤ 2e−nt2/(8ζ ), (5.20)

then using the bound
(
d
s

)
< {ed/(s)}s , we have

9s

(
d

s

)
P

(∣∣bT [T̂ − T]Js ,Js b
∣∣> (8ζ )1/2

√
s(3 + log(d/s)) + log(1/α)

n
, for fixed b and J

)
≤ 2 exp

{
s(1 + log 9 − log s) + s logd − s(3 + logd − log s) − log(1/α)

}
≤ 2α.

It gives that with probability greater than 1 − 2α the bound in equation (5.19) holds.
Finally, we show that equation (5.20) holds. For any t , we have

E exp
{
t · bT [T̂ − T]Js ,Js b

}
= E exp

{
t ·
∑

j 	=k∈Js

bj bk(̂τjk − τjk)

}

= E exp

{
t · 1(

n
2

)∑
i<i′

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}
.

Let Sn represent the permutation group of {1, . . . , n}. For any σ ∈ Sn, let (i1, . . . , in) :=
σ(1, . . . , n) represent a permuted series of {1, . . . , n} and O(σ ) := {(i1, i2), (i3, i4), . . . ,
(in−1, in)}. In particular, we denote O(σ0) := {(1,2), (3,4), . . . , (n − 1, n)}. By simple calcu-
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lation,

E exp

{
t · 1(

n
2

)∑
i<i′

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}

= E exp

{
t · 1

card(Sn)

∑
σ∈Sn

2

n

∑
(i,i′)∈O(σ )

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}
(5.21)

≤ 1

card(Sn)

∑
σ∈Sn

E exp

{
t · 2

n

∑
(i,i′)∈O(σ )

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}

= E exp

{
t · 2

n

∑
(i,i′)∈O(σ0)

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}
.

The inequality is due to the Jensen’s inequality.
Let m := n/2 and remind that X = (X1, . . . ,Xd)T ∼ TEd(�, ξ ;f1, . . . , fd). Let X̃ =

(X̃1, . . . , X̃d)T be an independent copy of X. By equation (4.2), we have that for any |t | < t0
and v ∈ S

d−1,

E exp
[
t
{(

vT sign(X − X̃)
)2 −E

(
vT sign(X − X̃)

)2}]≤ eζ t2
.

In particular, letting vJs = b and vJC
s

= 0, we have

E exp

{
t
∑

j 	=k∈Js

bj bk

(
sign

(
(X − X̃)j (X − X̃)k

)− τjk

)}≤ eζ t2
. (5.22)

Then we are able to continue equation (5.21) as

E exp

{
t · 2

n

∑
(i,i′)∈O(σ0)

∑
j 	=k∈Js

bj bk

(
sign

(
(xi − xi′)j (xi − xi′)k

)− τjk

)}

= E exp

{
t

m

m∑
i=1

{ ∑
j 	=k∈Js

bj bk

(
sign

(
(x2i − x2i−1)j (x2i − x2i−1)k

)− τjk

)}}
(5.23)

= (Ee(t/m)(sign((X−X̃)j (X−X̃)k)−τjk)
)m

≤ eζ t2/m,

where by equation (4.2), the last inequality holds for any |t/m| < t0. Accordingly, choosing
t = βm/(2ζ ), by Markov inequality, we have for sufficiently large n,

P
(
bT [T̂ − T]Js ,Js b > β

)≤ e−nβ2/(8ζ ) for all β < 2ζ t0. (5.24)

Because t0‖T‖2 > C for some generic constant C, we have 2ζ t0 ≥ 2CK1/2ζ 1/2, and hence as
long as β ≤ 2CK1/2ζ 1/2, (5.24) holds.
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By symmetry, we have the same bound for P(bT [T̂ − T]Js ,Js b < −β) as in equation (5.24).
Together they give us equation (5.20). This completes the proof of the first part.

Using (4.6), we can now proceed to the quantify the term

sup
v∈Sd−1,‖v‖0≤s

∣∣vT (�̂ − �)v
∣∣.

We aim to prove that, under the conditions in Theorem 4.11, we have with probability larger than
or equal to 1 − 2α − α2,

sup
b∈Ss−1

sup
Js∈{1,...,d}

∣∣bT [�̂ − �]Js ,Js b
∣∣

(5.25)

≤ π2(8ζ )1/2

√
s(3 + log(d/s)) + log(1/α)

n
+ π2 · s log(d/α)

n
.

Using a similar argument as in the proof of Theorem 3.2, we let E1,E2 ∈R
d×d , satisfying that

for j 	= k,

[E1]jk = cos

(
π

2
τjk

)
π

2
(̂τjk − τjk),

[E2]jk = −1

2
sin(θjk)

(
π

2

)2

(̂τjk − τjk)
2,

where θjk lies between τjk and τ̂jk . We then have

�̂ − � = E1 + E2.

Let the event �2 be defined as

�2 :=
{
∃1 ≤ j 	= k ≤ d,

∣∣[E2]jk

∣∣> π2 log(d/α)

n

}
.

Using the result in the proof of Theorem 3.2, we have P(�2) ≤ α2. Moreover, conditioning on
�2, for any Js ∈ {1, . . . , d} and b ∈ S

s−1,

∣∣bT [E2]Js ,Js b
∣∣ ≤ √ ∑

j,k∈Js

[E2]2
jk · ‖b‖2

2

≤ s · π2 · log(d/α)

n
(5.26)

= π2 · s log(d/α)

n
.

We then proceed to control the term |bT [E1]Js ,Js b|. Using a similar argument as shown in
equation (5.8), for Y = (Y1, . . . , Yd)T ∼ Nd(0,�), any symmetric matrix M ∈ R

d×d , W with
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Wjk = π
2 cos(π

2 τjk) and v ∈ S
d−1 with ‖v‖0 ≤ q , we have

∣∣vT M ◦ Wv
∣∣ ≤ π2

4
E

(∣∣∣∣∑
j,k

vj vkMjk|YjYk|
∣∣∣∣+ ∣∣∣∣∑

j,k

vj vkMjkYjYk sign
(
Y ′

j Y
′
k

)∣∣∣∣)

≤ π2

4
sup

b∈Sd−1,‖b‖0≤q

∣∣bT Mb
∣∣ ·E(2

∑
j

v2
j Y

2
j

)

= π2

4
sup

b∈Sd−1,‖b‖0≤q

∣∣bT Mb
∣∣ ·(2

∑
j

v2
j

)

= π2

2
sup

b∈Sd−1,‖b‖0≤q

∣∣bT Mb
∣∣.

Accordingly, we have

sup
b∈Ss−1

sup
Js∈{1,...,d}

∣∣bT [E1]Js ,Js b
∣∣≤ π2

2
sup

b∈Ss−1
sup

Js∈{1,...,d}
∣∣bT [T̂ − T]Js ,Js b

∣∣.
Combined with equations (4.6), (5.26) and (5.10), we have the desired result in (4.7).

�

6. Discussions

This paper considers robust estimation of the correlation matrix using the rank-based correlation
coefficient estimator Kendall’s tau and its transformed version. We showed that the Kendall’s
tau is an very robust estimator in high dimensions, in terms of that it can achieve the parametric
rate of convergence under various norms without any assumption on the data distribution, and
in particular, without assuming any moment constraints. We further consider the transelliptical
family proposed in Han and Liu [17], showing that a transformed version of the Kendall’s tau
attains the parametric rate in estimating the latent Pearson’s correlation matrix without assuming
any moment constraints. Moreover, unlike the Gaussian case, the theoretical analysis performed
here motivates new understandings on rank-based estimators as well as new proof techniques.
These new understandings and proof techniques are of self-interest.

Han and Liu [15] studied the performance of the latent generalized correlation matrix estimator
on dependent data under some mixing conditions and proved that �̂ can attain a s

√
logd/(nγ )

rate of convergence under the restricted spectral norm, where γ ≤ 1 reflects the impact of non-
independence on the estimation accuracy. It is also interesting to consider extending the re-
sults in this paper to dependent data under similar mixing conditions and see whether a similar√

s logd/(nγ ′) rate of convergence can be attained. However, it is much more challenging to
obtain such results in dependent data. The current theoretical analysis based on U -statistics is
not sufficient to achieve this goal.
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A problem closely related to the leading eigenvector estimation is principal component detec-
tion, which is initiated in the work of Berthet and Rigollet [2,3]. It is interesting to extend the
analysis here to this setting and conduct sparse principal component detection under the transel-
liptical family. It is worth pointing out that Theorems 3.2 and 4.11 in this paper can be exploited
in measuring the statistical performance of the corresponding detection of sparse principal com-
ponents.

Appendix

In this section, we provide a lemma quantifying the relationship between Orlicz ψ2-norm and the
sub-Gaussian condition. Although this result is well known, in order to quantify this relationship
in numbers, we include a proof here. We do not claim any original contribution in this section.

Lemma A.1. For any random variable Y ∈R, we say that Y is a sub-Gaussian random variable
with factor c > 0 if and only if for any t ∈ R, E exp(tY ) ≤ exp(ct2). We than have Y is sub-
Gaussian if and only if ‖Y‖ψ2 is bounded. In particular, we have that if Y is sub-Gaussian
with factor c, then ‖Y‖ψ2 ≤ √

12c. If ‖Y‖ψ2 ≤ D ≤ ∞, then Y is sub-Gaussian with factor
c = 5D2/2.

Proof. If Y is sub-Gaussian, then for any m > 0, we have

E exp
(|Y/m|2) = 1 +

∫ ∞

0
P

(
Y 2

m2
> t

)
et dt

= 1 +
∫ ∞

0
P
(|Y | > m

√
t
)
et dt.

By Markov inequality, we know that if Y is sub-Gaussian, then for any t > 0

P
(|Y | > t

)≤ 2 exp
(−t2/(4c)

)
.

Accordingly, we can proceed the proof

E exp
(|Y/m|2) ≤ 1 + 2

∫ ∞

0
e−m2t/(4c) · et dt

= 1 + 2
∫ ∞

0
e−(m2/(4c)−1)t dt

= 1 + 2

m2/(4c) − 1
.

Picking m = √
12c, we have E exp(|Y/m|2) ≤ 2. Accordingly, ‖Y‖ψ2 ≤ √

12c. On the other
hand, if ‖Y‖ψ2 ≤ ∞, then there exists some m < ∞ such that E exp(|Y/m|2) ≤ 2. Using inte-
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gration by part, it is easy to check that

exp(a) = 1 + a2
∫ 1

0
(1 − y)eay dy.

This implies that

E exp(tX) = 1 +
∫ 1

0
(1 − u)E

[
(tX)2 exp(utX)

]
du

≤ 1 + t2
E
(
X2 exp

(|tX|))∫ 1

0
(1 − u)du

≤ 1 + t2

2
E
(
X2e|tX|).

Using the fact that for any a, b ∈R, |ab| ≤ a2+b2

2 and a ≤ ea , we can further prove that

E exp(tX) ≤ 1 + t2

2
E
(
X2e|tX|)

≤ 1 + m2t2em2t2/2
E

(
X2

2m2
eX2/(2m2)

)
≤ 1 + m2t2em2t2/2

EeX2/m2

≤ (1 + 2m2t2)em2t2/2

≤ e5m2t2/2.

The last inequality is due to the fact that for any a ∈ R, 1 + a ≤ ea . Accordingly, X is sub-
Gaussian with the factor c = 5m2/2. �
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