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In this paper, we establish a large deviation principle for two-dimensional stochastic Navier—Stokes equa-
tions driven by multiplicative Lévy noises. The weak convergence method introduced by Budhiraja, Dupuis
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1. Introduction

Let D be a bounded open domain in R? with smooth boundary 3 D. Denote by u and p the veloc-
ity and the pressure fields. The Navier—Stokes equation, an important model in fluid dynamics,
is given as follows:

oou—vAu+u-Vu+Vp=h in D x [0, T], (1.1)
with the conditions
V-u=0 in D x[0,T],
u=0 in D x [0,T], (1.2)

u(0) =x e L3(D),

where v > 0 is the viscosity, / stands for the external force.

To formulate the Navier—Stokes equations, we introduce the following standard spaces. Let V
be the space of infinitely differentiable two-dimensional vector fields g(-) on D with compact
support, satisfying div(g(-)) = 0. Denote by V,, the closure of V in [H¥(D)]?, for o > 0, where
[H* (D)]2 stands for the Sobolev space of order «. Set in particular

H=1V,, V=V.

We denote by || - ||z and (-, -) gy the norm and inner product in H. Identifying H with its dual
space H’, and denoted by V,, the dual space of V,, we consider equation (1.1) in the framework
of Gelfrand triples: VC H=H' Cc V.
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Define the Stokes operator A in H by
Au=—PyAu, VueD(A)=[HXD)] NV,

where the linear operator Py (Helmhotz—Hodge projection) is the projection operator from
[L2(D)]? into H. Since V coincides with D(A'/2), we can endow V with the norm |lully =
| A'/2u|| . Because the operator A is positive self adjoint with compact resolvent, there is a com-
plete orthonormal system {ej, e2, ...} in H made of eigenvectors of A, with corresponding eigen-
values 0 < A <Ay <---— 00 (Ae; = Aje;). We will use fractional powers of the operator A,
denoted by A%, as well as their domains D(A%) for « € R. Note that D(A%) = {u = Z,Oil uj-e:
Z;’il Al?“ul? < 00}. We may endow D(A®) with the inner product (u, v) pa«)y = (A%u, A%v)y.
So D(A%) is a Hilbert space with the inner product (-, -) p(a=) and {e; /A }ien is a complete
orthonormal system of D(A%). By Riesz representation theorem, D(A™%) is the dual space of
D(A%).
Let B(u,v):V x V — (VN [L%(D)]?) be the bilinear operator defined as (cf. Lions [22])

<B(u,v),z):/ 2(x) - (u(x) - V)v(x) dx
D

forall z € V N[L3(D)]?. Set B(u, v, z) = (B(u, v), z), and for u = v, we write B(u) = B(u, u).
By the incompressibility condition,

(B(u,v),v)=0, (B(u,v),z)=—(B(u,z),v). (1.3)

By Visik and Fursikov [35], B can be expanded to a continuous operator

B:Hx H— D(A™°) (1.4)
for some ¢ > 1. And we have
1/2 1/2 1/2 1/2
| B, v, w)| < 20ully/> - Jull - 1ol - ol - lwlly. (1.5)

We also need the following inequalities(cf. e.g., BrzeZniak, Liu and Zhu [5], Temam [33])

|(Bu) — B(v),u — U)v’,v|

=|(Bw —v),v),, | (1.6)
v 2 32 4 2
< Sl = oIy + S0l gy e = vl wvEV,
and
l74pgey < 205 I0IT, — veV. (1.7)

By applying the operator Py to each term of the above Navier—Stokes equation (NSE) (1.1),
we can rewrite the NSE in the following abstract form:

du(t) + vAu(t)dt + B(u(r))dt = f in L*([0, T1; V'), (1.8)
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with the initial condition
u(0)=x in H. 1.9)

In this paper, we consider stochastic Navier—Stokes equations (SNSE) driven by the multi-
plicative Lévy noise, that is, the following random perturbations of Navier—Stokes equation:

du® (t) = —vA(u (1)) dt — B(u (1)) dt + /eo (t,u® (1)) dB(t)
+e/ G(t,uf (1), v) N*' (dr dv); (1.10)
ut(0)=x¢ H.X

Here X is a locally compact Polish space. {8(¢),t > 0} is a H-cylindrical Brownian motion
admitting the following representation:

B =Y Bi(D)ex,

k=1

where Bi(t), k > 1 are independent standard Brownian motions. N ¢”! is a Poisson random mea-
sure on [0, T] x X with a o-finite intensity measure e~ar @ ©, A is the Lebesgue measure
on [0, T] and ¥ is a o -finite measure on X. N* ' ([0,¢] x O) = Ne! ([0,¢] x 0) — e~ 119 (0),
YO € B(X) with ¥ (0) < o0, is the compensated Poisson random measure. o, G are measurable
mappings specified later.

Stochastic Navier—Stokes equations have been intensively studied since the work of Bensous-
san and Temam [2]. A good reference for stochastic Navier—Stokes equations driven by additive
Gaussian noise is the book Da Prato and Zabczyk [15] and the references therein. The existence
and uniqueness of solutions for the two dimensional stochastic Navier—Stokes equations with
multiplicative Gaussian noise were obtained in Flandoli and Gatarek [18], Mikulevicius and Ro-
zovskii [25], Sritharan and Sundar [31]. The ergodic properties and invariant measures of the 2-D
stochastic Navier—Stokes equations were studied in Flandoli [17] and Hairer and Mattingly [19].

The purpose of this paper is to establish a large deviation principle (LDP) for SNSEs driven
by multiplicative Lévy noises, that is, a LDP for the solution of (1.10) as ¢ — 0 on D([0, T']; H),
the space of H-valued right continuous functions with left limits on [0, T'].

Large deviations for stochastic evolution equations and stochastic partial differential equa-
tions driven by Gaussian processes have been investigated in many papers, see, for example,
Chow [13], Sowers [30], Chenal and Millet [12], Cardon-Weber [10], Zhang [39], Cerrai and
Rockner [11], Bessaih and Millet [3], Budhiraja, Dupuis and Maroulas [8], Duan and Millet
[16], Manna, Sritharan and Sundar [24], Wang and Duan [36], Liu [23], Rockner, Zhang and
Zhang [29], Zhang [40], and references therein. The situations for stochastic evolution equations
and stochastic partial differential equations driven by Lévy noise are drastically different because
of the appearance of the jumps. There is not much study on this topic so far. The first paper on
large deviations of SPDEs of jump type is Rockner and Zhang [28] where the additive noise
is considered. The case of multiplicative Lévy noise was studied in Swiech and Zabczyk [32]
and Budhiraja, Chen and Dupuis [6] where the large deviation was obtained on a larger space
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(hence, with a weaker topology) than the actual state space of the solution. Recently, Yang, Zhai
and Zhang [38] obtained the large deviation principles on the actual state space of stochastic
evolution equations with regular coefficients driven by multiplicative Lévy noise.

Large deviation principles for the two-dimensional stochastic Navier—Stokes equations driven
by Gaussian noise have been established in Sritharan and Sundar [31], Chueshov and Millet [14].
Regarding LDP for the 2-D stochastic Navier—Stokes equation driven by Lévy noise, to the best
of our knowledge, Xu and Zhang [37] is the first paper on this topic, where additive Lévy noise
is considered. Our main concern in this paper is SNSEs driven by multiplicative Lévy noises.

To obtain the large deviation principle, we will use the weak convergence approach/criterions
introduced by Budhiraja, Dupuis and Maroulas [9] for the case of Poisson random measures (see
Section 2 for details) and by Budhiraja, Dupuis and Maroulas [8] for the case of Gaussian noises
(and also in the earlier work Budhiraja and Dupuis [7]). This approach is now a powerful tool
which has been applied by many people to prove large deviation principles for various dynam-
ical systems driven by Gaussian noises, see, for example, Budhiraja and Dupuis [7], Ren and
Zhang [27], Ren and Zhang [26], Sritharan and Sundar [31], Zhang [40], Budhiraja, Dupuis and
Maroulas [8], Bessaih and Millet [3], Duan and Millet [16], Manna, Sritharan and Sundar [24],
Wang and Duan [36], Rockner, Zhang and Zhang [29], Liu [23], Chueshov and Millet [14]. The
weak convergence method was first used in Budhiraja, Chen and Dupuis [6] to obtain large de-
viation principles for SPDEs on co-nuclear spaces driven by Lévy noises and in Yang, Zhai and
Zhang [38] for SPDEs on Hilbert spaces with regular coefficients.

For the two-dimensional stochastic Navier—Stokes equations driven by multiplicative Lévy
noise, in addition to the difficulties caused by the jumps, much of the problem is to deal with
the nonlinear term B(u, ). To obtain the LDP, similarly as in Budhiraja, Chen and Dupuis [6],
among other things we need to study the weak convergence of the solutions of random perturba-
tions (in certain directions) of the equation (1.10). This is highly nontrivial. We first establish the
tightness of the solutions of the perturbed SNS equations in a larger space D([0, T]; D(A™9))
and then via the Skorohod representation theorem we are able to show that the weak convergence
actually takes place in the space D([0, T]; H).

The organization of this paper is as follows. In Section 2, we will recall the general criteria
for a large deviation principle obtained in Budhiraja, Dupuis and Maroulas [9]. In Section 3, we
prove a preliminary result on two-dimensional deterministic Navier—Stokes equation, which will
play an important role in the rest of the paper. The entire Section 4 is devoted to establishing the
large deviation principle for the stochastic Navier—Stokes equation.

We end this section with some notations. Denote by N, R, R*, R¢ the set of positive integers,
real numbers, positive real numbers and d-dimensional real vectors respectively. For a topolog-
ical space &, denote the corresponding Borel o-field by B(£). For a metric space Y, denote
by My (Y), Cp(Y) the space of real valued bounded B(Y)/B(R)-measurable maps and real val-
ued bounded continuous functions respectively. For p > 0, a measure © on Y, and a Hilbert
space H, denote by L”(Y, u; H) the space of measurable functions f from Y to H such that
fY ||f(v)||ﬁu(dv) < 00, where | - ||y is the norm of H. We say a collection {X¢} of Y-valued
random variables is tight if the probability distributions of X¢ are tight in P(Y) (the space of
probability measures on Y). We will use the symbol “=" to denote convergence in distribution.
For a Polish space X, denote by C ([0, T'], X), D([0, T'], X) the space of continuous functions and
right continuous functions with left limits from [0,T] into X, respectively.
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2. Preliminaries

In this section, we will recall the general criteria for a large deviation principle given in Budhiraja,
Dupuis and Maroulas [9]. To this end, we closely follow the framework and the notations in
Budhiraja, Chen and Dupuis [6] and Budhiraja, Dupuis and Maroulas [9].

2.1. Large deviation principle

Let {X?, e > 0} be a family of random variables defined on a probability space (2, F,P) and
taking values in a Polish space £. Denote expectation with respect to P by E. The large devia-
tion principle is concerned with exponential decay of P(X¢ € O) as ¢ — 0. Now we recall the
definition.

Definition 2.1 (Rate function). A function I:E — [0, 00] is called a rate function on &, if for
each M < oo the level set {x € £ : [ (x) < M} is a compact subset of €. For O € B(E), we define
I1(0) =infyco I (x).

Definition 2.2 (Large deviation principle). Let I be a rate function on . The sequence {X°}
is said to satisfy the large deviation principle on € with rate function I if the following two
conditions hold.

(a) Large deviation upper bound. For each closed subset F of £,

limsupelogP(X® € F) < —I(F).

e—0

(b) Large deviation lower bound. For each open subset G of £,

limsupelogP(X® € G) = —1(G).

e—0

2.2. Controlled Poisson random measure

The following notations will be used. Let X be a locally compact Polish space. Denote by
Mpc(X) the space of all measures ¢ on (X, B(X)) such that ¢ (K) < oo for every com-
pact K in X, and set C.(X) be the space of continuous functions with compact supports.
Endow Mpc(X) with the weakest topology such that for every f € C.(X), the function
Y — (f,9) = fX f)dv(u), 9 € Mpc(X) is continuous. This topology can be metrized such
that M ¢ (X) is a Polish space (see, e.g., Budhiraja, Dupuis and Maroulas [9]). Fix T € (0, c0)
and let X7 = [0, T] x X. Fix a measure % € Mpc(X), and let 97 = A7 ® ¢, where Ap is
Lebesgue measure on [0, T].

We recall that a Poisson random measure n on X7 with intensity measure 97 is a M pc(Xr)
valued random variable such that for each B € B(X7) with 97 (B) < oo, n(B) is Poisson dis-
tributed with mean ¥ (B) and for disjoint By, ..., By € B(Xr), n(By), ..., n(By) are mutually
independent random variables (cf. Ikeda and Watanabe [20]). Denote by P the measure induced
by non (M pc(X7), BIMpc(X7))). Then letting M = M e (X7), P is the unique probability
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measure on (M, B(M)) under which the canonical map, N :M — M, N (m) = m, is a Poisson
random measure with intensity measure ¥7. With applications to large deviations in mind, we
also consider, for 6 > 0, probability measures Py on (M, B(M)) under which N is a Poissson
random measure with intensity 897. The corresponding expectation operators will be denoted
by E and Ey, respectively.

Set Y = X x [0,00) and Y7 = [0, 7] x Y. Similarly, let M = MFC(YT) and let P be the
unique probability measure on (M, B(M)) under which the canonical map, N N:M — M, N(m) =
m, is a Poisson random measure with intensity measure Yr=rar @9 Q® Aoos With Ao, being
Lebesgue measure on [0, 00). The corresponding expectation operator will be denoted by E. Let
Fi=0{N{0,s]x 0):0<s<t,0c¢€ B(Y)}, and denote by .7:} the completion under P. Set P
be the predictable o -field on [0, 7] x M with the filtration {F; : 0 <7 < T} on (M, B(M)). Let
A be the class of all (P ® B(X))/B[0, co)-measurable maps ¢ : X7 x M — [0, 00). For ¢ € A,
define a counting process N¥ on X7 by

N?((0, 1] x U):/ / 10,p)(IN(dsdxdr),  1€[0,T],U eBX). (2.1)
(0,¢]xU J(0,00)

N¥? is the controlled random measure, with ¢ selecting the intensity for the points at location x
and time s, in a possibly random but nonanticipating way. When ¢ (s, x,m) = 6 € (0, 00), we
write N = N?. Note that N? has the same distribution with respect to P as N has with respect
to Pg.

2.3. PRM and BM

Set W= C([0, T],R®), V=W x M and V=W x M. Then let the mapping NV V> M
be defined by NV(w,m) =m for (w,m) € V, and let BV = (B)°, by B (w,m) = w; for

(w, m) € V. The maps NV:¥ — M and ,BV (,BV)?O1 are defined analogously Define the o -
filtration gt = {NV((0, s] x 0),,3>/(s) :0<s<t,0 € BX),i > 1}. For every 6 > 0, IP
denotes the unique probability measure on (V, B(V)) such that:

1. (,Bl.V )72, is ani.i.d. family of standard Brownian motions,
2. NV is a PRM with intensity measure 697.

Analogously, we define (IF’V Q_y ) and denote ]I_" | by PV, We denote by {F, V} the PV- -completion
of {QZV} and PV the predictable o-field on [0, T] x V with the filtration {F, V} on (V, B(V)). Let

A be the class of all (73V ® B(X))/B[0, co)-measurable maps ¢ : X7 X V — [0, 00). Define
[:10, 00) — [0, c0) by

I(ry=rlogr —r+1, r €0, 00).
For any ¢ € A the quantity

L7(9) :/X I{o(1, x, ®))d7 (dr dx) (2.2)
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is well defined as a [0, oo]-valued random variable.
Denote by Z, the Hilbert space of real sequences x = (x;) satisfying Ix)1? = Zf’il xiz < 00,
with the usual inner product. Define

, T ,
Ly := {1// 2 s PV \ B(ROO) measurable and / Htﬂ(s) ||2ds < 00, a.s.-[@’V}. 2.3)
0

Set U = L5 x A. Define Ly (y) := 1 [T 1y (s)2ds for ¥ € Lo, and Ly () := Ly (y) +
Lr(p) foru=(y,¢) €U.

2.4. A general criteria

In this subsection, we recall a general criteria for a large deviation principle established in Budhi-
raja, Dupuis and Maroulas [9]. Let {G®}.~ ¢ be a family of measurable maps from V to U, where V
is introduced in Section 2.3 and U is some Polish space. We present below a sufficient condition

for large deviation principle (LDP in abbreviation) to hold for the family Z° = G¢(/¢B, s N® B ),
ase — 0.
Define

ST ={g:Xr —[0,00): L7(g) < T}
and
ST={f:L*(10,T1,T): Lr(f) < T}.

A function g € S T can be identified with a measure 19%1 € M, defined by
95.(0) =/ g(s, x)07 (ds dx), 0 € BX7).
10)

This identification induces a topology on ST under which ST is a compact space, see the
Appendix of Budhiraja, Chen and Dupuis [6]. Throughout we use this topology on ST. Set
§T=8Y x ST. Define S=Jy.; 5", and let

U’ = lu=W.p) el u()e ST PV ae. w},

where U is introduced in Section 2.3.
The following condition will be sufficient for establishing a LDP for a family {Z¢}.- ¢ defined

by Z¢ = G*(\/eB.eN° ).

Condition 2.1. There exists a measurable map G°:V — U such that the following hold.
(a) ForVY €N, let (fo, gn), (f,8) € ST be such that (f,, g,) — (f, g) as n — 0o. Then

9"([' fa(s)ds, ﬂi") - QO(/' f(s)ds, 19;) inU.
0 0
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(b) ForVY €N, let uy = (Y, 9s), u = (Y, ) € U be such that us converges in distribution
tou as e — 0. Then

G° (ﬁﬁ + / Ve(s)ds, sN““"E) =g’ (f ¥ (s)ds, l‘/‘?)-
0 0

For ¢ € U, define Sy ={(f,g) €S:¢ = go(fo' f(s)ds, 197‘5:)}. Let 1:U — [0, oco] be defined
by

I@¢)= inf |L , U. 24
@)= _inf {Lr@}  g< 2.4)

By convention, /(¢) =0 if Sy = @.

The following criteria was established in Budhiraja, Dupuis and Maroulas [9].

Theorem 2.1. For ¢ > 0, let Z° be defined by Z° = G® (. /¢B, stfl), and suppose that Condi-
tion 2.1 holds. Then I defined as in (2.4) is a rate function on U and the family {Z*}.~ satisfies
a large deviation principle with rate function I .

For applications, the following strengthened form of Theorem 2.1 is useful. Let {K, C X,n =
1,2,...} be an increasing sequence of compact sets such that | ;2 K, = X. For each n let

Ab,n = {(p e A: forall (t,w)e[0,T] x M,

n>e(t,x,w)>1/nif x € K, and ¢(t,x,w) =1if x € K,‘;},
and let A, = ™, Ay . Define U =UT N{(, ¢) : ¢ € Ap}).

Theorem 2.2. Suppose Condition 2.1 holds with U replaced by UY . Then the conclusions of
Theorem 2.1 continue to hold.

3. Hypotheses

In this section, we will state the precise assumptions on the coefficients and collect some prelim-
inary results from Budhiraja, Chen and Dupuis [6] and Yang, Zhai and Zhang [38], which will
be used in the following sections.

Denote by Lo (H) the space of all Hilbert—Schmidt operators from H to H. Let o : [0, T] x
H — Ly(H), G:[0,T] x H x X — H be given measurable maps. Introduce the following
conditions:

Condition 3.1. There exists K (-) € L'([0, T1, RY) such that
(1) (Growth) Forallt €[0,T],andu € H,

Ha(t,u)uiz(,,)+/X||G(t,u,u)|\i,z9(dv)5K(z)(1+||u||%,);
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(2) (Lipschitz) Forallt €0, T], and uy,u> € H,
2 2
Let
I1G@, u,v)lH
lGa, U)”O,H = sup

weg  1+1lully

G(t,ui,v) — G(t,uz,v)||g
Gawl, = sp 100Gl
’ uy,upeH, uy#uy ||M1 _MZHH

) (t,v) €[0,T] x X.

, (t,v) e[0,T] x X.

Condition 3.2 (Exponential integrability). For i = 0, 1, there exists 8’1' > 0 such that for all
E € B([0, T] x X) satisfying 97 (E) < 00, the following holds

/ NGOy (dv) ds < oo,
E
Remark 3.1. Condition 3.2 implies that, for every 6£ > 0 and for all E € B([0, T'] x X) satisfying
7 (E) < o0,
/ e‘%”G(s'”)”"vHﬁ(dv) ds < oo.
E
The first part of the following lemma was proved in Budhiraja, Chen and Dupuis [6]. For the

second part of this lemma, the case i = 0 can be found in Remark 2 of Yang, Zhai and Zhang
[38], and the case i = 1 can be proved similarly. We omit its proof.

Lemma 3.1. Under Conditions 3.1 and 3.2,
(i) Fori=0,1andevery YT € N,

Cl = sup/ |GG, |7 (s, v) +1)9(dv) ds < oo, (.1
geST JXr ’

Cgl = sup / HG(s, v)||l.‘H|g(s, v) — 1}19(dv)ds < 00. 3.2)
gesSY J/Xr

(ii) For ever n > 0, there exists § > 0 such that for any A C [0, T] satisfying Ar(A) <8

sup/;/%HG(S,U)”LH@(S,I})—l‘ﬂ(dv)dsfn. 3.3)

gesY

The proof of the following lemma is almost identical to the proof of Lemma 3.3 in Yang, Zhai
and Zhang [38], and so is omitted.



2360 J. Zhai and T. Zhang
Lemma 3.2. (a) If sup,c(o. 7 |Y ()llm < 00, for any g = (f, g) €S, then
a(-Y(M) e el (0,11, H),/XG(-, Y(),v)(gC,v) — 1)9(dv) e L'([0, T1, H);

(b) If the family of mappings {Y,, : [0, T] — H,n > 1} satisfies C = sup, supscio. 71 1 Yn ()15 <
00, then

ds
H

/ G(s, Y, (s), v)(g(s, v) — l)ﬁ(dv)
X

T
a—r = sup Sup[/
g=(f.9es* " LJo
T
+ /0 o (s, Y,,(s))f<s)||HdS}
< Q.

We also need the following lemma, the proof of which can be found in Budhiraja, Chen and
Dupuis [6].

Lemma 3.3. Let h:[0, T] x X — R be a measurable function such that
/ (s, v)| 9 (dv) ds < oo,
Xr
and for all § € (0,00) and E € B([0, T] x X) satisfying O7(E) < 00,

/ exp(8|h(s, v)|)15‘(dv) ds < oo.
E

(@) Fix Y eN, and let g,, g € S be such that g, — g as n — oc. Then

lim h(s,v)(gn(s,v)—1)ﬁ(dv)ds=/ h(s,v)(g(s,v) — 1)¥(dv) ds.
T

n—o00 Jx Xr

(b) Fix Y € N. Given ¢ > 0, there exists a compact set K. C X, such that

S”pf f|h(svv)||g(5,v)—1|19(dv)ds§g,
[0,71JK¢

gesY

(c) Forevery compact K C X,

lim sup/ /|h(s,v)|1{th}g(s,v)z?(dv)ds:O.
[0,7]1JK

M_)OOgGSY
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Let H be a separable Hilbert space. Given p > 1, « € (0, 1), let W*?([0, T]; H) be the
Sobolev space of all u € L ([0, T']; H) such that

T N —
/ / [lue () u(S)IIH dr ds < oo
[t — s|1+ap
endowed with the norm

T |t
ot [ [ [ 252

The following result represents a variant of the criteria for compactness proved in Lions [22],
Section 5, Chapter I, and Temam [34], Section 13.3.

Lemma3.4. Let Hy C H C Hy be Banach spaces, Hy and H reflexive, with compact embedding
of Hp in H. Let p € (1, 00) and a € (0, 1) be given. Let A be the space

A= LP([0,T1; Ho) N WP ([0, T]; H)

endowed with the natural norm. Then the embedding of A in L? ([0, T]; H) is compact.

4. Large deviation principle

First, we introduce the following definition.

Definition 4.1. Let (V, B(V), IP’V {]-', 1) be the filtered probability space described in Sec-
tion 2.2. Suppose that X is a Fo-measurable H-valued random variable such that ]E||Xo||2

00. A stochastic process {X®(t)}:c[0,1] defined on V is said to be a H-valued solution to (1.10)
with initial value Xy, if

(a) Xé() is a H-valued fY—measurable random variable, for all t € [0, T];
(b) X? e D([0,T], H)NL*([0,T], V) a.s.;
(c) Forallt €[0,T],

t t
Xg(t)zXo—v/ AXs(s)ds—/ B(X®(s))ds
0 0
t
+VE [ os.x00) g0 A1)
0

t
+ S/ / G(s, X°(s—), v)]?fg_1 (ds, dv) in L2([O, T1; V') a.s.
0 JX

Definition 4.2 (Pathwise uniqueness). We say that the stochastic evolution equation (1.10) ad-
mits the pathwise uniqueness if any two H -valued solutions X and X' defined on the same filtered
probability space with respect to the same Poisson random measure and Brownian motion start-
ing from the same initial condition X coincide almost surely.
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Assume X is deterministic. Let X¢ be the H-valued solution to (1.10) with initial value Xj.
In this section, we will establish an LDP for {X*} as ¢ — 0.

4.1. Skeleton equations

We begin by introducing the map G° that will be used to define the rate function and also used for
verification of Condition 2.1. Recall that S = UT>1 ST, where ST is defined in last section. As
a first step we show that under the conditions below, for every g = (f, g) € S, the deterministic
integral equation

t t
3(’@(;):)(0—‘1/ A)N(q(s)ds—/ B(X(s))ds
0 0
t
+/ o (s, X9(s)) f () ds (4.2)
0

t
+/ / G(s, X9(s),v)(g(s,v) — 1)9(dv)ds
0 JX
has a unique continuous solution.

Theorem 4.1. Fix Xo=x € H and q = (f, g) € S. Suppose Conditions 3.1 and 3.2 hold. Then
there exists a unique X7 € C([0,T], H) N L%([0,T1, V) such that,

t t
iq(r)zx—/ uAiq(s)ds—/ B(X(s))ds
0 0
t
+/ o (s, X9(s)) f(s)ds (4.3)
0

t
+f /G(s,)?q(s),v)(g(s,v)—1)19(dv)ds in L*([0, T1; V).
0 /X

Moreover, for fixed X € N, there exists Cy > 0 such that

T
sup( sup R4} + [ qu<s>y|2vds> <Cr. (4.4)
qeST \s€[0,T] 0

Proof. Existence. First, let ®, :R — [0, 1] be a smooth function such that ®,,(r) =1 if |¢t| <~n,
D, (t)=0if |t] >n+ 1. Set X, (u) = @, (|ullg), u € H. Let P, be the projection operator from
H to H defined as

n

PnMZZ(u,ei)Hei, ueH,

i=1
and

B,(u,u) = X,(u)B(u,u), ueP,H.
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Consider the following Faedo—Galerkin approximations: X, (¢t) € P, H denotes the solution of

dX, (1) = —vAX,(t)dt — Py By (X (1), Xn (1)) di + Pyo (2, X, (1)) f (1) dr
4.5)

+P,1/ G(1, X (1), v)(g(t, v) — 1)9(dv) dr,
X

with initial condition X, (0) = P,x.

Since B, is a Lipschitz operator from P, H into P, H, the solution of equation (4.5) can be
obtained through an iteration argument as follows.

Let Yo(¢) = Pyx,t € [0, T]. Suppose that Y;,—1 has been defined. Define Y, € C([0, T];
P,H)N L2([0, T1; P,V) as the unique solution of the equation

dYy (1) = —vAY,y (1) dt — Py By (Y (), Yo (1)) dt + Pyo (2, Yu—1 (1)) f (1) dt
(4.6)

- P,,f G(t, Ym—1(1),v)(g(t, v) — 1)0 (dv) dr
X

and Y,,(0) = P,x. Using similar arguments as in the proof of Theorem 3.1 of Yang, Zhai and
Zhang [38], we can show that the limit X,, of Y;,, as m — oo, is the unique strong solution
X, € C([0,T1; P,H)N L0, T1; P,V) of (4.5).

The next thing is to show that

T
sup( sup]HX,,(t)H?{ —l—/o ||Xn(s)}|%,ds> <C, 4.7
T

n>1 \t€[0,

and for @ € (0, 1/2), there exists Cy > 0 such that

SUp [| X 132 0,71,y < Cer- (4.8)

n>1

Notice that
(PyBy(u,u), u)V,’V = (X, (u)B(u, u), u)V,’V =0, Yue P,H.
We have

t
||X,,(z)||i1+2vfO | X ()] 7 ds
t
— %, +2 /O (Pacr (5. X(5)) £(5). Xn(s)) s
t
+2/ <Pnf G(s,X,,(s),v)(g(s,v) - 1)19(dv),X,,(S)> ds (4.9)
0 X H

t
< sty 2 [ o030 L X9

t
+2/O /F;HG(S’X"(S)’U)”H}(g(s*”)_1)|||Xn(S)||Hz?(dv)ds,
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According to Condition 3.1, it follows that
t
2 [l o Xa ) |z |76 | X
t
<2 [ VRO 1+ X0 176 |y X005 0
0
) (4.10)
<2 [ VEG(+20x,0 1)1 70,0
t t t
< [ koa+ [rols2 [ nolhEo+ o)

and

t
2/0 A|‘G(S,Xn(s),v)“H’(g(s,v)—I)IHX,,(S)HHz?(dv)ds

<2/’ 1G(s, Xy (s), V)| n
o Jo Jx 1+ IIXu) e

(141X | )] (862 v) = 1) Xa ()] ;9 (dv) ds

52/OI/XHG(&v)||0,1L,|(g(s,v) —1)|(1+ 2] Xa(9)]%,)? (dv) ds @.11)

SZ/OZfXHG(&v)HO,H\(g(s,v)— 1)[9dv) ds
+4/0t||Xn(S)IIi,/XIIG(s,v)IIO,H|(g(s,v)— 1)[# (dv) ds.

Hence by (4.9), (4.10) and (4.11), we have

%ol + 20 [ 1[0
< ||x||%,+f0l1<<s>ds+fot||f<s>||2ds
+2/Ot/X||G(s,v)HO’HI(g(s,v)— 1)[9 (dv) ds (4.12)
+ [l K0 w2150

+4/X||G(sav>||0,H|(g(s,v) - 1)|1‘/‘(dv)} ds.
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By Gronwall’ inequality,

sup | X, (03
tel0,T]
T T 2
s[||x||%,+/0 K(s)ds+/0 | £ )] ds
T
+2/0 /X||G(s,v)||0yH|(g(s,v)—1)|19(dv)dsi| (4.13)
r 2
xexp[/o 2K (s) + 2| f(9)]

+4/XHG(S,U)HO,HI(g(s,v) - 1)|z9(dv)ds:|.

Combining (4.12) and (4.13), we have (4.7).
Now we prove (4.8). Write X, as

t t
Xu(t) = Pyx — v/ AX,(s)ds —/ P, B, (Xn(s), Xn(s)) ds
0 0

t
+/ Pncr(s, Xn(s))f(s)ds
0 (4.14)

+ /t Pn/ G(s, Xn(s), v)(g(s, V) — 1)19(dv) ds
0 X

=T+ 2O+ 0+ ) + I3 @).

Using the same arguments as in the proof of Theorem 3.1 in Flandoli and Gatarek [18], we
have

[l < Lo,

| I ||€VLZ([0,T];V’) = Lo, (4.15)

|7; < Ls.

2
” WL2([0,TT; V")
Since for t > s,

t 2
FAGEFAG] = Hf Pao (1, X, (D)) f () dl

H

t 2
< ( / || Pno(z,x,xz))f(z)ll,,dz)

t 2
< ([ 1Pt X,0) |z 1010
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; 2
5(/ VKO 1+||Xn(l)||§1”f(l)”Hdl)

t t
=(1+ s x0l) [ Koa [ ol
1€[0,T] s S

we have
/T||J4( )7, d T(1+ |x (l)||2)/TK(l)dl/T||f(l)||2 d - (4.16)
! r < N )
o T T Ies[g,pT] "7 Jo 0 "

and

N PR OEAICT Y
/ f t_S|l+2a Hdd
LFDOIE
<1+lesng||x (1)|| fOK(Z)cu/ / / |t_s|l+2ad1dd

Note the fact that by elementary application of Fubini theorem, there exists Li > 0 such that

! l T
///|,”f(s|)1”f§ad’d’d55Li/0 | r 7 dl. (4.18)

Combining (4.16), (4.17) and (4.18), we have

2
172 Vo7

4.17)

< Ly4. (4.19)

Now for J,f , we have

2
305l = |

| G X, v) (g 0) = Do o)l
H

IA

2
( /||G (L. Xu (D). ) | |8 v)—l|l9(dv)dl)

IA

( /||G(l 0ol v) =11+ | Xa | )ﬁ(dv)dl)
2
(1+ sup ||X 0|, (/ /||G(l,v)||0’H’g(l,v)—1|z9(dv)dl)

+ sup HXn(l)H f /HG(Z u)||0Hyg(z v) — 1|9 (dv) dI

X/ /XHG(LU)||0,H|g(l,v)—1|ﬁ(dv)dl.
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Using similar arguments as J,‘l1 and by Lemma 3.1, we have

H Jr? ||%V’1=2([(),T];H) =Ls. (4.20)

By (4.79), (4.77) and (4.82), we obtain (4.8).
The estimates (4.7) and (4.8) enable us to assert the existence of an element X € L2([0, T1;

V)N L*®([0, T]; H) and a sub-sequence X, such that, as m" — oo

1. X, — X weakly in L>([0, T]; V),
2. X, — X in the weak-star topology of L*°([0, T1; H),
3. X, — X strongly in L2([0, T]; H).

Finally, we show that X is the unique solution of (4.3).
We will use the similar arguments as in the proof of Theorem 3.1 in Temam [33], Section 3,

Chapter I11.
Let ¢ be a continuously differentiable function on [0, 7] with ¥ (T) = 0. We multiply (4.5)

by ¥ (t)e;, and then integrate by parts. This leads to the equation

T

T
_/0 (Xn(), ¥'(Dej)y 5 di + ”/0 (Xn (). ¥ (e )}y, di
=(Xn(0)s 1p(o)ej)H,H

T

_A (Pan(Xn(t)vXn(t))sw(t)ej%//’vdt
T

+/O (Pao (1, X (D) f (1), ¥ (Dej) y py dr

T
+/ <Pn f G(I,Xnm,v)(g(r,v)—1>ﬁ‘<dv>”“”ef'> &
0 X

H,H

Recall the definition of B, and (4.7), for every n > sup,, o sup;cfo.77 I Xm (t)||%, V j, we have
T T
_/0 (Xn(;), 1//(1)61‘)}1,11 dr + v/o (Xn(t), W(t)€j>v’v dr
T
:<Xn(0)a1/f(0)ej>HyH —/0 (B(Xn(t),Xn(t)),w(t)ej)v/,vdt
. 4.21)
+/0 (o(t, Xa ) f(0), ¥ (D)ej)y 4 de

T
+/ </ G(t,X,,(t),v)(g(t,v)—l)ﬁ(dv),l//(t)ej> dr.
0 X

H,H
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Next, let n — oo to show that
T T
_/(; <X(t),1ﬁ/(f)€j>H,Hdt+V'/(; <X(t),1/f(t)ej>v’vdt

T
=(x,w(0)ej)H,H—/ (B(X(®), X)), ¥ D)ej),, , dt
0 4.22)

T
+ /O (ot X)) £, ¥ (D)e )y py

T
+/ </ G(r,X(t),v)(g(t,v)—1)ﬁ(dv),¢(t)e,-> dr.
0 X

H,H

First, using the similar argument as in the proof of Theorem 3.1 in Temam [33], Chapter III,
and passing to the limit with the sequence m’, we see that

T T
m;iinoo[—/o <Xm/(t),1///(t)ej>H)Hdl‘+vv/(; (Xm/(z),w(t)ej)v’vdz
T
—(Xm/(O),W(O)ej>H,H+/O <B(Xm/(t)vxm’(t))’W(t)ej>v/’vdti|
T
=—/O (X0, v (0)ej)y i (4.23)
T
+v/0 (X0, v ®ej),  dt —(x, ¥ (O)e;)y 4
T
+/O (B(X(t),X(t)),w(t)ej>v,’vdt.

Next, we prove that

m’'— 00

T
lim /0 lo (2. X @) f(1) = o (8. X @) (1), dr =0 (4.24)

and

T
lim / / HG(t, X, (1), v)(g(t, v) — 1)
0 X

m'— o0
4.25)
—G(t. X(0),v)(gt,v) = 1)| ;¥ (dv) dr =0.
Forevery e > 0,let A,y . ={t €0, T]: | X, (1) — X (H)|lg > €}, then we have
T 2
X () —X(t dr
lim Azr(Aue) < lim Jo 1 Xm ® - Ol =0. (4.26)
m’'— o0 m’'— o0 &€
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Set M = sup; ey Sup;epo, 71 |1 Xi (D 1a Vv sup,epo, 77 1 X (D |5 < 00. We have
T
/0 lo (2. X ) f (1) =0 (£, X @) f (@) ||, dt
T
< [ o0 X @) = 0 0 XO) 2y | 7O

T
< /0 VEO| X ) = X0 [ F O]

4.27)

52M/A \/K(t)”f(t)HHdt—i-s/AC VEK®O| f®], dt

gzM/A \/K(t)”f(t)”Hdt—f-s[AC VEK®O| f®], dt

T 2 T T 2
<2M // K (t)dt / ||f(t)||Hdt+s[/ K(t)dt+/ ||f(z)||Hdt].
Am’.e 0 0 0
By (4.26) and K () € L'([0, T]; RT), we have
lim K(t)dr =0. (4.28)

’
m —0o0
Am/,g

Combining (4.27) and (4.28), we arrive at (4.24).
Since

T
/0 fXHG(r, X (1), )(g(t,v) = 1) = G (¢, X (1), v)(g(r, v) — 1)|| ;P (dv) dr

T J—
:/(; /;g”G(t,Xm/(Z‘L v) —G(t, X(¢), U)”Hme/(t)_x(t)HH|g(tvU)_1’19(dv)dt

[ X (1) = X ()|

T
5/0 /XHG(I,U)HLHHXW(I)—X(t)||H|g(t, v) — 1|9 (dv)ds (4.29)

§2MfA /X||G(t,v)||l’H|g(t,v)—1|19(dv)dt

+8/ /HG(W)HI g v) = 1|2 @v)dr,
ac, Jx ’

m' e

together with Lemma 3.1, we obtain (4.25).
From here, using similar arguments as in the proof of Theorem 3.1 in Temam [33], Section 3,
Chpter III, we can conclude that X is the solution desired.
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Equation (4.4) can be proved similarly as (4.7). By Lemma 3.2 and using the same arguments
as in the proof of Theorem 3.2 in Temam [33], Section 3, Chapter III, we also have

dXx
= € L*([0, T1, V') + L' ([0, T1; H).
This implies X € C([0, T]; H) by Lemma 1.2, (1.84) and (1.85) in Temam [33], Chapter III.

Uniqueness: Let us assume that X and Y are two solutions of (4.3), and let Z=X — Y. We
have

Mu [zl
|4

=—2(B(X(s)) — (Y(s)),X(s)—Y(s))V,,V
+2(0 (5, X(9) £(5) = 0 (5, Y () £(5), X(8) = Y (9)) y g (4.30)
+ 2/X(G(s, X(5),v) = G(s,Y(5),v), X(5) = Y(5)) y y(8(s,v) — 1)0(dv)
=11(s) + L(s) + I3(s).
By (1.6), we have
16 <[ ZO [ + SO iz 1261 @30
For I, we have
1) 220 (5, X)) =0 (5. Y©) | 2 | F O | 4 [ X ) = ¥ 0
<2VK@ @], z6]} (4.32)
= (K@ +[ @)1z

I3 is bounded by

I(s) < 2/ |G (s, X(5).v) = G(s. Y (), v) | ;[ X (s) = Y () ;; |8 (s, v) — 1|9 (dv)
% (4.33)

<20zl [ 1660l ket = 1] o).
Setting

64 4 2
W®)=;§W“®Mﬂawy+K®)+HfGWH4:éHGGWNMHB@J0—Uﬁ@w,

we have
dlZ) 13

= zely Fvelzol;,.
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which yields

t
exp<— /O I/I(S)ds> Iz,
¢ K
:_/0 exp<—/0 w<l>d1)w(s>||2<s>|lids

t N
+f0 exp(—/o v(l) d1>d||Z(s)||§] (4.34)
t s
5/0 exp(—/o 0) dl) (—v |z —v|Z® [} + v 6] z6)|5) ds
<0.
Hence, X =Y.
The proof is complete. g

4.2. Large deviations

We are now ready to state the main result. Recall that for ¢ = (f, g) € S, 0§(ds dv) =
g(s,v)¥(dv)ds. Define

g0 (/0 f(s)ds, 0§> =X for g = (f, g) €S as given in Theorem 4.1. (4.35)
Let 7:D([0,T], H) — [0, oo] be defined as in (2.4).
Theorem 4.2. Suppose that Conditions 3.1 and 3.2 hold. And assume
K()=C and fXHG(s,x, |57 dv) < C(1+ Ixlh)-

Then the family { X}, satisfies a large deviation principle on D([0, T], H) with the good rate
function I with respect to the topology of uniform convergence.

Proof. According to Theorem 2.2, we need to prove that Condition 2.1 is fulfilled. The verifica-
tion of Condition 2.1(a) will be given by Proposition 4.1. Condition 2.1(b) will be established in
Theorem 4.4. ([l

We now proceed to verify the first part of Condition 2.1. Recall the map G is defined by
(4.35).
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Proposition 4.1. Fix Y € N, and let g, = (fn, 1), q = (f, g) € ST be such that g, — q as
n — o0. Then

G° 'fn(s)ds,z?g" Ny 'f(s)ds,ﬂg in C([0,T], H).
0 T 0 r

Proof. Recall G°( fo fn(s)ds, z?i") = X4 For simplicity we denote X, = Xan,
Using similar arguments as for (4.7) and (4.8) and by Lemma 3.1, we can prove that there exist
Cy and Cy v such that

T
1. sup,epo. 7y 1 Xa O3 +v [y 1Xn(9)II3 ds < Cr,
2' ||Xn ”%V“vz([O,T],V’) S CO(,Tv o€ (Oa 1/2)

Hence, By Lemma 3.4, we can assert the existence of an element X € L%([0,T]; V) N
L°([0, T]; H) and a sub-sequence X, such that, as m" — oo

(@) X, — X in L%([0, T]; V) weakly,
(b) X,y — X in L*°([0, T]; H) weak-star,
(¢) X, — X in L%([0, T; H) strongly.

We will prove that X = X4.
Let v/ be a continuously differentiable function on [0, T'] with ¥ (T) = 0. We multiply X,,(¢)
by ¥ (t)e;, and then integrate by parts to obtain

T T
_/0 (Xn(t),w/(t)ej)H’Hdl‘—i-U‘/o (Xn(t),W(t)eJ-)V,th
T
= {x, ¥ (0e;), 4 —/ (B(Xn (1), Xu(0), ¥r(D)ej),, , dt
’ O ’

. (4.36)
+ /0 (0 Xa (D) Fu (0, ¥ (D )y

T
+[ </ G(t,X,,(t),v)(gn(f,U)_1)19(dv)a¢(t)e,/'> dr.

0 X H,H

Set
T
I,L,(T)zfo /;g(G(t,Xm/(t),v)(gm/(t,v)—1),1ﬁ(t)ej>H’Hl9(dv)dt,
T
I,ﬁ,(T):/O /X(G(I,Xm/(t),v)(g(t,v)—1),w(t)ej)H)Hl9(dv)dt,

T
1(T)=/0 /X(G(I,X(t),v)(g(t,v)—1),1p(t)ej>H’Hl9(dv)dt.
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We have
IN(T) = I(T)=1},(T) — I2,(T) + I2.(T) — I(T). (4.37)
By (4.25), it is easy to see that
lim (I2/(T) — I(T)) =0. (4.38)
m'—00
Next, we claim that there exists subsequence {I'} of {m’} such that

l/lim (I}(T) — I}(T)) = 0. (4.39)

By Lemmas 3.1 and 3.3, for any ¢ > 0, there exists a compact subset K, C X such that

T
/O K(,HG(LXm’(f),v)(gm/(t,v)—1),¢(t)e,-)H’H|ﬂ(dv)d;

T
5/0 /KC”G(I,Xm’(I),U)HH’gm/(t,v)—1”1//(1)|19(dv)dt

< sup |1/f(t)|(1+ sup [ X ()| H) (4.40)
€[0,T] t€[0,T]

t

T
X/O /KC||G(t,v)||0,H|gm/(t,v)—1|z9(dv)dt

< sup |[Y(®)|d+ Cr)e
tel0,7T]

and

T
/0 KC|(G(t, X (1), 0)(g(t, v) — 1), w(z)ej)H’Hw(dv) dr

4.41)

< sup |[¥(H)|(1+ Cy)e.
t€l0,T]

To prove the claim (4.39), applying the diagonal principle it suffices to show that, for every
compact K € X, and n = 2sup, o 71 [¥ (1) |(1 + Cy)e > 0 there exists a subsequence {m'¢} of
{m’} such that

lim
’
my

T
fo /K<G(I,Xm/K(t),v)(gm/K(t,v)— 1), ¥ (D) 50 (@v)dr

T
—fo /;{(G(r,Xm/K(t),v)(g(t,v)—l),g/f(t)ej)H’Hz?(dv)dt

=lim
!
mg

T
fo /K<G(I,Xm/[((t),v)gmrl((t, v),w(t)ej)H’Hﬁ(dv) dr (4.42)
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T
—/O /K(G(thm’K(f)yU)g(l,v),W(l)€j>H’H19(dv)dt
<.

Denote Ay = {(t,v) €[0,T] x K : |G(¢,v)|lo,g = M}. By Lemma 3.3, for any ¢ > 0, there
exists M > 0, such that

T
/0 /I;KG(I’Xm’(t)vv)gm/(f,U),¢(f)€j>H’H|1AMl9(dv)dt
T
5/0 /K|G(t’Xm’(t)fU)|H8m’(l,U)|W(l‘)|1AM29(dv)dt
< sup ‘Ilf(r)!(1+ sup me/(z)HH) (4.43)
1€[0,T] t€[0,T]

T
xf /|G(t,v)|OHgm/(t,v)lAMz?(dv)dt
0 K ’

< sup [y (0|14 Cy)e

te[0,T]
and
T
/ /|(G(I,er(t),v)g(t,v),lp(t)ej>H’H|1AMﬂ(dv)dt
0K (4.44)
< sup |[y(0)|(14Cr)e.
tel0,T]
Denote
fl’t(tav):<G(t7Xn(t)av)5w(t)ej>H’Ha
@, 0)=(G(t, X1),v), ¥ (1)ej)y y-
We have
| fo (1, 0) 1 ac,
S G t,Xm’(t), (t) 1 e
G0 X 0.0) [y O], s

1 X, )G , 1 4c
stes[gg]!ww!( + s X @]) 60 L
< sup |[y(®)|1+Cr)M,

tel0,T]

and similarly

|f@, 04| < sup [y +Cr)M. (4.46)
t€[0,T]
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LetO0(-) = %, then 6 is a probability measure on [0, 7] x K, and we have

T
/ /|fm/(t,v)—f(t,v)|0(dv,dt)
0 K

1 T
gm/o /K|G(I,Xm/(t),v)—G(t,X(t),v)}H|1p(t)|l9(dv)dt

t
- SUP;ef0,7] [y (1)

T
— o7 ([0, T]XK)/ /iG(r’v)_G(”v)|1,H“Xm’(t)—X(l)HHﬁ(dv)dt

4.47)
sup;cpo,71 1V (0| / /
<— t U (dv)dt
= 5:(0. T1x K) G, v)|1H (dv)
T 2
X /0 | X (1) = X ()|, 9 (K)
— 0, as m’ — oo.
Hence, there exists a subsequence {m/K} of {m’} such that
hm fmr = f, 0-a.s. (4.48)

mK — 00
By Lemma 2.8 of Boué and Dupuis [4] and noticing the proof of (3.25) in Budhiraja, Chen and

Dupuis [6], we have

hm / f fm (t, v)lAc &', (t,v)9(dv) dr
(4.49)
=/ /f(t,v)lAfug(t,v)ﬂ(dv)dt
0 K

and

T T
lim / /fm/K(t,v)lAfwg(t,v)z?(dv)dt:/ ff(t,v)lAﬁdg(t,v)ﬂ(dv)dt. (4.50)
K 0 K

’
my—00J0

Hence combining (4.43), (4.44), (4.49) and (4.50), we get (4.42).
So by (4.40), (4.41) and (4.42), we have

limsup |1, (T) =1y, (T)|<4 sup lv )|+ Cr)e. (4.51)
€ € t€[0,T]

m’KE —00
Hence (4.39) follows. And then there exists {I'} of {m’} such that

l/lim I)(T) = I(T). (4.52)
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By (4.36) and (4.52), using similar arguments as (4.22), we can prove that X satisfies

T T
—/0 (X(t),w’(t)ej)H’Hdt—i-v/O <X(t),¢(t)ej)v’vdt

T
:(x,W(O)q)H,H—/ (B(X(t),X(t)),w(t)ej)H!Hdt
0 (4.53)

T
n /0 (0(6. X)) £ (1) ¥ (D)ej)y, e

T
+/ </ G(t,X(t)7v)(g(t,v)—l)ﬂ(dv),t/f(t)ej> dr,
0 X

H,H

and then using the same argument as in the proof of Theorem 3.1 of Temam [33], Section 3,
Chapter III, we can conclude X = X4,

Next, we prove X,y — X in C([0, T], H).

Let Z,y = X,y — X. Then

Al Zw ()%
ds

=—2(B(Xuw(s)) — B(X(5)), Xp(s) — X(s))v,!v

+2(0 (5, X (8)) fonr (8) — 0 (5, X(9)) £(5), Xpr (5) — X(S))H,H

+ 20| Zw )|}

+2fX(G(s, X (5),v) (gm (s, v) — 1)
— G(5, X (), v) (g5, v) = 1), Xpur () = X (5))y_py P ()
= —2(B(Xw () = B(X()), Xp () = X())y
+2{0 (5, X (9)) £ () = 0 (5, X (9)) £ (5), X (5) = X (5)) y (4.54)
+2{0 (5, X (9)) fowr () = 0 (5, Xow () £ (), X () = X (9)) g py
+2/X(G(S,Xm/(s),v)(g(s,v) —1)
— G (5, X(5),0) (85, v) = 1), Xpw(5) = X (5)) y ;9 (dv)
+2fX(G(s, X (5),0) (g (s, ) — 1)

— G(s, X (), 0) (g(s,v) = 1), Xp (5) = X () ;0 (dv)

=11 () 4+ 1" () + 1 () + 117 () + 12" (s).
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By (1.6), we have
’ 64
1) <] Zuw@ [y + FIXO 20 120 O]
For Iﬁ"/, we have
12"1/(5) <2[o (s, X () = (s, X () ||L2(H) £ & g 1 X () = X

<2VEKO|F O |yl Zw )5,

= (K& + [ £@ )| Zw )
For I}, we have
I (s) <2 /X |G (s, X (), v)
G, X6, )| [ X 5) = X )] 65,00~ 1] vy
<20zwol}y [ 1660l yle6.0) - 1],

Setting

23717

(4.55)

(4.56)

(4.57)

64 4 2
V6 = SIXO) ey + KO+ 170+ [ 66,0,y lets.0) = 1] ),

we have

dl| Zw ()11

L < Zw @) |5 + V|| Zu )| + 1 (5) + 127 ().

Hence, we have

t
exp(— /0 w(s)ds) | Zw )],

t Ky t s
=_/0 exp(—/o 1//(1)dl)1ﬁ(S)||Zm/(s)||§{ds+/O exp(—/o w(Z)dz>d||zm/(s)||2

t s
< [Cew(= [ vara) (v olzo)l}, - vIzol; + volzo)}) @

t s
+ / exp(— / w(Z)dl>(1§"’(s)+1g"’(s))ds
0 0
T
0

5/ (157 ()| + | 12" (5)]) ds.

(4.58)
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Since

T
f Y(s)ds < oo,
0

we have

sup ||zm/(;)|y§,5exp(f I/I(S)ds>/ |13 (s)|+|15 (s)])ds (4.59)
t€[0,T]

Since K (-) = C, sup,, SUP;e[0.7] ||Xn(t)||%l <Cy,and X,y —> X in L%([0,T1, H), we have

T ’
/ |15 (s)] ds
0
T
52/ o (s, Xo)|

L2(H) ||fm/(S) - f(S)”H”Xm/(S) - X(S)”HdS

(4.60)
<z/ VEOV U4 | X [ fur) = £ | X ) — X (5], ds
— 0, as m’ — oo.
Splitting the interval [0, 7] into two parts as in (4.29), we have
T ’
/ |15 (s)| ds
0
T
= 2/0 /XKG(S, X (), v) (gmr (5, v) — 1), Xpr (5) — X(S)>H,H|ﬁ(dv) ds
T
+2‘/(; /};KG(S, X (), U)(g(s, v) — 1), X (s) — X(s)>H)H|19(dU)dS
T
52/0 /X|G(S,er(s),v)|H|gm/(s,v)— 1| X, (s) — X ()] ,, 9 (dv) ds
T
+2f /|G(S,me(s), V)| 4 |8(s,v) — 1| X (s) — X ()| ;0 (dv) ds
(4.61)

<2/ /'G(S D)o (1 [ X )] ) g 5. 0) = 1] Xow () = X ()] 9 (dv) ds
+2/0 /X|G(s,v)|o,H(1—l—HXm/(s)HH)|g(s,v)—1||Xm/(s)_x(s)’H19(dv)ds

T
<2(1+ CT)/O /X|G(S’ Do, |&m (5. 0) = 1| X () = X (9)| ;¥ (dv) ds
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T
+2(1+CY)/0 /X}G(s,v)}o’H|g(s,v)—1||er(s)—X(s)|Hz?(dv)ds
-0 as m’ — oo.

Therefore, by (4.59),

lim  sup | Zw @3 =0. (4.62)
0.7]

m’%oote[ T 0

The next theorem is contained in Theorem 1.2 and Example 4.7 in BrzeZniak, Liu and Zhu

[5].
Theorem 4.3. Assume Condition 3.1 with K () = C and that
4
/XHG(”’ 0|9 < (1 + lxly).

If Xo € H, there exists a unique H-valued progressively measurable process (X°(t)) such that,
X¢ e LZ(O, T;V)YND(O,T]; H) forany T > 0 and

t t
XE(1) =X0—v/ AXE(s)ds —/ B(X®(s), X°(s))ds
0 0
t
+¢E/ o (s, X°(s))dB(s) (4.63)
0
t
+8/ /G(s,Xs(s—),v)]stl(dsdv), a.s.
0 JX

This theorem shows that the above equation admits a strong solution (in the probabilistic
sense). In particular, for every ¢ > 0, there exists a measurable map G°: V— D([0,T]; H) such
that, for any Poisson random measure 71871 on [0, T] x X with intensity measure ear @
given on some probability space, G° (/8. ene_l) is the unique solution of (4.63) with Ne™
replaced by /i° .

Let ¢ = (Ye, @) € UY and U = é. The following lemma was proved in Budhiraja, Dupuis
and Maroulas [9] (see Lemma 2.3 there).

Lemma 4.1.
EE(De) i= exp{/ log (¥ (s, x)) N (ds dx dr)
[0,£1xXx[0,e1]

+/ (=96 (s,x) 4+ 1)D7(ds dx dr)}
[0,¢]1xXx[0,e~1]
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and
e 1 1! 2
5,(ws>:=exp{$/o ws)dﬁ(s)—gfo e )| ds}

are {ﬁv}-martingales. Set
E e, ) 1= & (Ye) ] (D).

Then

Q/(G) = / & We, 0 dPY  for G e BV)
G
defines a probability measure on V.

Since (\/¢B +f6 Ye(s)ds, SNS_I‘/’S) under Q% has the same law as that of ({/¢8, eNe ) under

PV, it follows that there exists a unique solution to the following controlled stochastic evolution
equation, denoted by X°:

Xe(t) = X — v[OtAf(g(s)ds - /OtB(f(e(s),f(S(s))ds
+/0to(s,)28<s>)wg<s)ds +ﬁ/0ta(s, X5(5)) dB(s)
+/01/XG(S,)?E(s—),v)(sN8l%(dsdv)—ﬁ(dv)ds)
=Xy — v[OtAf(g(s)ds - /Ot B(X®(s), X*(s))ds (4.64)
+/0ta(s,)28<s>)wg<s)ds +¢E/0ta(s, X (5)) dB(s)
—i—/ot/XG(s,f(";(s),v)(ws(s,v)—l)ﬂ(dv)ds
+/0t/XgG(s,)28(s—),u)(Ne‘l%(dsdv)—g—l%(s,v)ﬁ(dv)ds),
and, we have
gg(ﬁﬂ +/0‘ ws(s)ds,eNS]%) — X¢. (4.65)

The following estimates will be used later.
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Lemma 4.2. There exists &y > 0 such that

T
sup |:IE sup [X°)|3, +E / ||f(€(r)|\2vdr] <00, (4.66)
T 0

O<e<eg 0<t<

and, for o € (0, 1/2), there exits constant Cy, such that

sup IE[”)?S I Wal([o,T],V/)] < C, < 00. (4.67)

O<e<egg
Thus the family {)2'8, 0<e<eg}istightin LZ([O, T1, H), by Lemma 3.4.
Proof. Equation (4.66) was proved in BrzeZniak, Liu and Zhu [5] (see Theorem 1.2 there). Now

we prove (4.67). _
Keep ¢ = (Y, @) € U™ in mind. Note (4.64),

XE(t) = Xo — v/t AXE(s)ds — /t B(X®(s), X*(s)) ds
0 0

t t

+/ o(s,i(E(s))wg(s)dHﬁ/ o (s, X°(s)) dB(s)
0 0
t

+/ / G(s, }?s(s), v)((pg(s, v) — 1)19(dv) ds (4.68)
0 JX

t
+ f / SG(s, Xe(s—), v)(NS_]% (ds dv) — e L@, (s, v)¥ (dv) ds)
0 JX
= I 2O+ 2O+ IO+ 0+ I8+ I @),
By the same arguments as in the proof of Theorem 3.1 in Flandoli and Gatarek [18], we have

sup E|l7} [}, < L1,

O<e<ep

2
sup B[/ ||W1~2([0,T];V’) = Ly,
O<e<eg

sup
O<e<e

E” 133 ||W1~2([0,T];V’) = Ls.
0

Since for t > s,

2

t
I PAGEVAG] =E”/ o (1, XED) e (D) d

H

t 5 2
< E(/ o, X2)e 1) ||Hdl>
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t 2
<B( [ ot X 0) |y 0]y 1)

E(/ ‘/rmﬂdfe(l)ﬂh,dl)

IE[(1+ wp [0, )/y K(l)dl/Y ||we<l>||2dl}

t
_TIE(1+ sup ||5(8(1)||§{)/ K@) dl,
1€[0,T] s
we have
E/T||J4(t)||2 dt<TTE(1+ s ||5(8(1)||2)/T K@) dl
o B = le[g,pT] "7 Jo

and

E r T||J4<r) J4<s>||Hdd
|t—s|1+2"‘

¢ KO
<TE<1+ sup ||x 0l) / / / oy A dids.

By an elementary application of Fubini theorem, there exists Ll > ( such that

K() T
f//u_ |1+zadldfds5Li/0 K(ydl.

Combining (4.69), (4.70), (4.71), we obtain

2
sup ]E” J;”WQ»Z([O,T];H)
O<e<eg

< Ly4.
Now for JSS, since for t > s,

t
E|J30) - I3 )5 =E / Vo (I, X6 1))

H
? ~
< s]E( / |o (1, X2 ) ||iz(H) dl)
t ~
_£]E</ K(l)(1+||X€(l)||§1)dl>

t
g]E<1+ sup ||5(€(1)||§1)f K{)dl,

1€[0,T]

A

IA

(4.69)

(4.70)

4.71)

4.72)
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similar to (4.72), we have

sup E[J3 Hﬁvm_z(wﬂ;m <Ls. (4.73)

O<e<egg

For J86, we have

E[JS1) - J06)|3,
2
—E

t
/ fG(l,)?f(l),u)(%(z,v)—1)ﬁ(dv)dz
s JX

H

IA

! - 2
E(f /X”G(l’Xa(l)’v)”H|<Ps(l,v)—1|19(dv)dl)

t - 2
E(/ /X||G(l,v)”O’H|gog(l,v)—1|(1+HX’9(1)||H)19(dv)dl)

. 2/ (1 2
EI:(]-l—IGS[l&pT]”Xg(I)”H) ([ /X||G(l,v)||0’H|<p5(l,v)—1|z9(dv)dl> ]

~ 2 [t
=B (14 swp |X0],) / /”G(l,v)HO,H|<pg(l,v)—llﬂ(dv)dl :
1€[0,T] s JX

IA

IA

where C, OT | appeared in (3.2), using the similar arguments as to bound .184 and by Lemma 3.1, we
have

Lg. (4.74)

sup EH Jsé Hivﬂ([o,r];ﬂ) =
0

O<e<e

For .157 , we have

L FAORFAO]
2
=E

t
/ f G (1, X*(1-), v)(N* "% (dldv) — &' p. (1, v)0 (dv) i)
s JX

H

t
58151/ /||G(z,)?6(l),v)||§{<pg(z,v)z9(dv)dl
s JX
t
§8E/ /X||G(l,u)”§ﬂ<pg(1,v)(1+||X8(1)]|H)219(dv)d1

- t
fsEl: sup (1+||X8(1)||H)2/ /X”G(l,v)||(2)’H<p€(l,v)z9(dv)dl]

1€[0,T]
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using the similar arguments as to bound Jg4 and by Lemma 3.1, we obtain

2
sup E|J] [y go.7y:m) = L7- (4.75)

O<e<ep
Combining (4.69), (4.73), (4.74), and (4.75), we get (4.67). The proof is complete. O

To get our main results, we need to prove that {X¢,0 < & < go} is tight in vector valued
Skorokhod space D([0, T], D(A™9)), here g is the positive number in (1.4). First, we recall the
following two lemmas (see Jakubowski [21] and Aldous [1]).

Lemma 4.3. Let E be a separable Hilbert space with the inner product (-, -). For an orthonormal
basis { xr}ken in E, define the function r]% :E— RT by

ri= Y (x?  LeN
k>L+1

Let D be a total and closed under addition subset of E. Then a sequence {X¢}¢¢(0,1) of stochastic
processes with trajectories in D ([0, T, E) is tight iff the following two conditions hold:

1. {X¢)eeo,1) is D-weakly tight, that is, for every h € D, {(X¢, h)}eco,1) Is tight in
D([0, T], R);
2. Foreveryn >0

lim limO sup P(r% (Xg (s)) > 1 for some s € [0, T]) =0. 4.76)

L—ocoe—

Let {Y:}c€(0,1) be a sequence of random elements of D ([0, T'], R), and {7, 6.} be such that:

(a) Foreach ¢, 7, is a stopping time with respect to the natural o -fields, and takes only finitely
many values.
(b) The constant 5, € [0, T'] satisfies §; — 0 as ¢ — 0.

We introduce the following condition on {Y,}:

(A) For each sequence {t;, .} satisfying (a) and (b), Y, (t: + ) — Y:(zs) — O, in probability,
as e — 0.

For f € D([0, T], R), let J(f) denote the maximum of the jump | f(¢) — f(t—)|.

Lemma 4.4. Suppose that {Y¢}cc(0,1) satisfies (A), and either {Y¢(0)} and {J (Y)} are tight on
the line; or {Y(t)} is tight on the line for each t € [0, T], then {Y.} is tight in D([0, T'], R).

Let X¢ be defined as in (4.67). We have the following lemma.

Lemma 4.5. {X?,0 < ¢ < &g} is tight in D([0, T], D(A™9)).
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Proof. Note that {Afe,' }ieN is a complete orthonormal system of D(A™¢). Since

lim limsupE sup rL(Xs(s))— hm hm supE sup Z (X4(s), kgel)

L—o00e—0 5€[0,7] -0 s€l0,71, 57714 P
o0
= hm lim supE sup Z A 2 XE(s), el>
—ooe=0 sel0.T];—p 1y
> X (s), ez)

= lim limsupE sup Z

L—o00e—0 sel0, T]l T )VQ

i X 2
< i [ime0SUPESUDscio 7 1 X° ()1

2
L—o0 )‘L%rl

=0,
(4.76) holds with E = D(A™9). y

Choose D = D(A®). We now prove {X*,0 <& < o} is D-weakly tight. Let & € D(A®), and
{ze, 8¢} satisfies (a) and (b). It is easy to see {(X®(t), h)g,0 < & < go} is tight on the real line for
eachr [0, T]. _

We now prove that {(X?, h)g, 0 < & < g} satisfies (A). By (4.64), we have

X®(te +8¢) — X° (1)
Tet+de Te+0e 5 B
:—v/ AXs(s)ds—/ B(Xs(s),Xs(s))ds
Te Te

Te +Se

Te+3e

+ / o (s, X°(5))¥e(s) ds + Ve f (s, X°()) dB(s)
Te+0e -

+/ /G(S,Xg(s),v)((pg(s,v)—1)19(dv)ds
Te X

Te+6 " _
+/ / sG(s, X8 (s—), v)(Ns g (ds dv) — &g, (s, v)¥ (dv) ds)
T X
=J{+ 0+ I+ T IS+ U
It is easy to show
lim E|(J£, h),.[* =0 477
tim B (/7. ]| @)
and

. e 2 _
SIER)E|(J6,h)E| =0. (4.78)
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For J{, we have
: & : vE _
tim (/. h),.| < 3Lnlov||h||D(A)agE[S:£PT]|| X5(9)] H] —0. (4.79)

For J3,

Te+0e -
lim (5. h), | < gg%uhnvﬂau [B(X )|y, ds}

Te+0e - ~
sznhnvglgnoE[f ||X8<s>||HHXS(s>||VdS}
e (4.80)

T
- o1)2 7|2 7e (o)l
< iy a2 [E s X0 +E [ R a]
=0.
For J5, we have

lim E|(J%. h)

e—0

M [Te+0e -
< i ] [ o6 X | 9 0]
— L/,

|

[ [Tet0e -
< i ] [ o6 K | |9 0]

r Te+0e =
sslg%nhuHE/ VK () 1+||X8(s)||i,||ws<s)ans]

= Te+8e 1/2 Te+8e 12
< Jim IAllak| sup v1+||X8<s>||2</ K<s>ds) (/ II%(s)HidS) ]

Ls€[0,T]
B 5 7l/2 Te+6e 1/2
< lim ||h||HT1/2[E sup (1+||X€(s)||H)] [IE/ K(s)ds:| .
e=0 5€[0,T] T
By dominated convergence theorem, it follows that
lim E{(J5, h) .| =0. 4.81
Jm (5 1) | (4.81)

For J¢, we have

: I3
tim E|(75. )|

Te+0e -
<t fimB [ [ 605,000, 0)] o5, 0) = 1] @0y as
Te
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- Te+0e
< |lhll g lim E[ sup (1+ X% ) / / 1G(s.v)| ] @es.v) — l‘ﬁ(dv)ds:|
e=0 | se[0,7] T, X ’

- Te+3e
< ||h||HlimIE[ sup (1+|X°®)] ) sup/ /||G(s,v)||OH|g(s,U)—1|z9(dv)ds:|.
e=>0 [sef0.1 geST /T X ’
By Lemma 3.1, we obtain

lim E|{J£, ) .| =0. (4.82)

e—0

Combining (4.77)—(4.82), we conclude that {(5(5, h)g, 0 < e < g} satisfies (A) of Lemma 4.4.
The proof is complete. U

By Proposition 3.1 of Réckner and Zhang [28], there exists a unique solution Yé(t),1>0to
the following equation:

dYE(t) = —vAYE (1) dt + e (¢, X° (1)) dB(1)
(4.83)
+ / eG(t, X5 (1-), v)(NS"'% (dt dv) — e g, (1, v) ¥ (dv) dr),
X
and Y€ € D0, T]; H)N Lz([O, T1, V), P-a.s. We have the following estimate.
Lemma 4.6. There exists constant C and € such that for any 0 < & <2y,
T
E[ sup [7°0)]] +E/ |75 )% dr < V€.
1€[0,T] 0
Proof. By Ito’s formula,
=g 2 P ae 2
Pl +2 [ 170l o
t
=2/ (Yo(s), Vea (s, X°(5)) dB(s))
0

t
+2/ /(Yg(s—),eG(s,Xg(s—),u)(Nf"'%(dsdv)—e—lgog(s,v)ﬂ(dv)ds)) (4.84)
0 JX

t t
2 [ 166,260 0[N v s o e [ o K@) 0
=11(t) + L)+ 13(t) + 14(2).

By Condition 3.1, we have

T
IE[ sup 13(:)] 58/ (1+K(s))dsIE[ sup ||X‘9(t)||2] (4.85)
te[0,T] 0 te[0,T]
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and

E[tes[gpﬂ I4(t)] <2£C02(1+E[ sup ||X8(t)||H]> (4.86)

Similar to the proof of (3.45) and (3.50) in Yang, Zhai and Zhang [38], we have
E[ sup \Il(t)|] < 4\/—E[ sup “YE(I)HH]
1€[0,T]
(4.87)

+4¢5(/ K(s)ds +TE| sup IIXE(I>||Z]>
0 te[0,T]

and

E| sup [10)] <4f1E[ sup. ||Y€(t)||H]+8fcoz(1+1E[ sup. ||X8(z)||H]). (4.88)

t€[0,T]

By Lemma 4.2 and (4.84)—(4.88), there exist constants C and g such that for any 0 < & <%,

T
E[ sup Hyf(t)||i,]+2u1@f |72(s)3 ds < veC.
0

1€[0,T] O

The following theorem verifies the second part of Condition 2.1. Recall that G° is defined by
(4.65).

Theorem 4.4. Fix Y € N, and let ¢, = (Ye, ), ¢ = (¥, @) € UY be such that ¢ converges in
distribution to ¢ as € — 0. Then

Gg° (ﬁﬂ + / Ilfe(s)ds,stl%> = QO(/‘. ¥(s)ds, 19‘”).
0 0

Proof. Note that X¢ = G°(\/z8 + Jo We(s)ds, eNE ') g € (0, &). By Lemmas 4.2, 4.5 and
4.6, we know that

1. {X%, &€ (0,¢e0)} is tight in L2([0, T, H) N D([0, T], D(A™9)),
2. limg o Elsup,epo 7y 175 (O I3,1+E f 17511} dt =0,

where Y¢ is defined as in Lemma 4.6. Set

= (L*([0,T1, H) N D([0, T1, D(A~2));U"; L*([0, T1, V) N D([0, T1, H)).

Let (X, (¢, ®), 0) be any limit point of the tight family (X2, (Y, Pe)s Y¥), e €(0,80)}. We
must show that X has the same law as G°( fo ¥ (s)ds, 9%), and actually X¢ = X in the smaller
space D([0, T]; H).

By the Skorokhod representation theorem, there exit a stochastic basis (Ql, F1L {]ftl}te[oj],
P! and, on this basis, [T-valued random variables (X1, W', eh,0), (Xe, (wgl,%l), 1718),8 €
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(0, &), such that (X, (%1, §081), Yf) (respectively (X1, (¥!, 9"),0)) has the same law as

(X®, (Ye, @e), Y®) (respectively, (X, (¥, ¢),0)), and (X5, (¥}, 01), ¥E) — (X1, (¢!, 9"),0) in
I, Plas.

From the equation satisfied by (X, (We, 0s), Y?), we see that (Xs (1/’5 , (pg) Yg) satisfies the
following integral equation

~ ~ t ~ ~ t ~
Xf(z)—Yf(t):Xo—v/O A(Xf(s)—Yf(s))ds—/O B(X{(s))ds
t
+/ o(s,f(f(s))g[fgl(s)ds
0

t
+/ /G(s,f(f(s),v)((pg(s,v)—l)ﬁ(dv)ds
0 JX
and
P! (X{ - ¥{ e C([0. T1, H) N L*([0, T, V))

=B7(X — ¥ e C(10, 71, H) N L2(10,T1, V)
=1.

Let Q) be the subset of Q' such that (X§, (¥}, o), ¥5) — (X1, (¥' ¢"),0) in I, then
IP’I(SZ(I)) = 1. Now we must prove that, for any fixed o' € Q,

sup [ X5 (') - X1 (o', )], — 0. (4.89)
tel0,T]

Set Z¢ = X¢ — Y¢, then Z%(w') € C([0, T1, H) N L*([0, T1, V), and Z¢ (") satisfies

t

t t
ZE(t) = Xo — u/ AZE(s)ds —/ B(Z%(s) + Yi () ds—i—/ o (s, Z5(s) + YE )yl (s) ds
0 0 0

t
+/ /G(s,ZS(s)+f/’f(s),v)(wg(s,v)—1)19(dv)ds.
0 JX

Since

1 Y Y =0,
[ sup 170l + [ 170 o]

by similar arguments as in the proof of Proposition 4.1, we can show that

ggrg)[t:[gPT [%5 (") = X" )5 ] =0, (4.90)
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where
t t t
)?(t)zxo—v/ A)?(s)ds—/ B()?(s))ds+/ o (s, X(5)) ¥l (s)ds
0 0 0
t
+/ /G(s,)?(s),v)(<p1(s,u)—1)ﬂ(dv)ds.
0 JX

Hence X1 = X = GO(fo v (s)ds, 9¢"), and X has the same law as GO(fy ¥ (s)ds, 9¥). Because
X¢ = X¢ in law, (4.90) further implies that

X¢ =>g°</'w(s)ds,w>
0

completing the proof of the theorem. (|
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