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We introduce the exchangeable rewiring process for modeling time-varying networks. The process fulfills
fundamental mathematical and statistical properties and can be easily constructed from the novel operation
of random rewiring. We derive basic properties of the model, including consistency under subsampling,
exchangeability, and the Feller property. A reversible sub-family related to the Erdős–Rényi model arises
as a special case.
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1. Introduction

A recent influx of academic monographs [9,11,12,19,21,28] and popular books [6,10,30] man-
ifests a keen cultural and scientific interest in complex networks, which appeal to both applied
and theoretical problems in national defense, sociology, epidemiology, computer science, statis-
tics, and mathematics. The Erdős–Rényi random graph [13,14] remains the most widely studied
network model. Its simple dynamics endow it with remarkable mathematical properties, but this
simplicity overpowers any ability to replicate realistic structure. Many other network models have
been inspired by empirical observations. Chief among these is the scale-free phenomenon, which
has garnered attention since the initial observation of power law behavior for Internet statistics
[16]. Celebrated is Barabási and Albert’s preferential attachment model [7], whose dynamics are
tied to the rich get richer or Matthew effect.1 Citing overlooked attributes of network sampling
schemes, other authors [20,31] have questioned the power law’s apparent ubiquity. Otherwise,
Watts and Strogatz [29] proposed a model that replicates Milgram’s small-world phenomenon
[25], the vernacular notion of six degrees of separation in social networks.

Networks arising in many practical settings are dynamic, they change with time. Consider a
population {u1, u2, . . .} of individuals. For each t ≥ 0, let Gij (t) indicate a social relationship
between ui and uj and let Gt := (Gij (t))i,j≥1 comprise the indicators for the whole population
at time t . For example, Gij (t) can indicate whether ui and uj are co-workers, friends, or fam-
ily, have communicated by phone, email, or telegraph within the last week, month, or year, or
subscribe to the same religious, political, or philosophical ideology. Within the narrow scope of
social networks, the potential meanings of Gij (t) seem endless; expanding to other disciplines,
the possible interpretations grow. In sociology, {Gt }t≥0 records changes of social relationships

1“For to everyone who has will more be given, and he will have an abundance. But from the one who has not, even what
he has will be taken away.” (Matthew 25:29, The Bible, English Standard Version, 2001.)
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in a population; in other fields, the network dynamics reflect different phenomena and, therefore,
can exhibit vastly different behaviors. In each case, {Gt }t≥0 is a time-varying network.

Time-varying network models have been proposed previously in the applied statistics litera-
ture. The Temporal Exponential Random Graph Model (TERGM) in [17] incorporates temporal
dependence into the Exponential Random Graph Model (ERGM). The authors highlight select
properties of the TERGM, but consistency under subsampling is not among them. From the
connection between sampling consistency and lack of interference, it is no surprise that the Ex-
ponential Random Graph Model is sampling consistent only under a choking restriction on its
sufficient statistics [27]. McCullagh [23] argues unequivocally the importance of consistency for
statistical models.

Presently, no network model both meets these logical requirements and reflects empirical ob-
servations. In this paper, rather than focus on a particular application, we discuss network mod-
eling from first principles. We model time-varying networks by stochastic processes with a few
natural invariance properties, specifically, exchangeable, consistent Markov processes.

The paper is organized as follows. In Section 2, we discuss first principles for modeling time-
varying networks; in Section 3, we describe the rewiring process informally; in Section 4, we
introduce the workhorse of the paper, the rewiring maps; in Sections 5 and 6, we discuss a family
of time-varying network models in discrete-time; in Section 7, we extend to continuous-time; in
Section 8, we show a Poisson point process construction for the rewiring process, and we use this
technique to establish the Feller property; and in Section 9, we make some concluding remarks.
We prove some technical lemmas and theorems in Section 10.

2. Modeling preliminaries

For now, we operate with the usual definition of a graph/network as a pair G := (V ,E) of vertices
and edges. We delay formalities until they are needed.

Let � := {�t }t∈T be a random collection of graphs indexed by T , denoting time. We may think
of � as a collection of social networks (for the same population) that changes as a result of social
forces, for example, geographical relocation, broken relationships, new relationships, etc., but
our discussion generalizes to other applications.

In practice, we can observe only a finite sample of individuals. Since the population size is
often unknown, we assume an infinite population so that our model only depends on known
quantities. Thus, each �t is a graph with infinitely many vertices, of which we observe a finite
sub-network �

[n]
t with n = 1,2, . . . vertices. Since the vertex labels play no role, we always

assume sampled graphs have vertex set [n] := {1, . . . , n}, where n is the sample size, and the
population graph is infinite with vertex set N := {1,2, . . .}, the natural numbers.

The models we consider are Markovian, exchangeable, and consistent.

2.1. The Markov property

The process � has the Markov property if, for every t > 0, its pre-t and post-t σ -fields are
conditionally independent given the present state �t . Put another way, the current state �t incor-
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porates all past and present information about the process, and so the future evolution depends
on σ 〈�s〉s≤t only through �t .

It is easy to conceive of counterarguments to this assumption: in a social network, suppose
there is no edge between individuals i and i′ or between j and j ′ at time t > 0. Then, informally,2

we expect the future (marginal) evolution of edges ii′ and jj ′ to be identically distributed. But
if, in the past, i and i′ have been frequently connected and j and j ′ have not, we might infer
that the latent relationships among these individuals are different and, thus, their corresponding
edges should evolve differently. For instance, given their past behavior, we might expect that i

and i′ are more likely than j and j ′ to reconnect in the future.
Despite such counterarguments, the Markov property is widely used and works well in prac-

tice. Generalizations to the Markov property may be appropriate for specific applications, but
they run the risk of overfitting.

2.2. Exchangeability

Structure and changes to structure drive our study of networks. Vertex labels carry no substantive
meaning other than to keep track of this structure over time; thus, a suitable model is exchange-
able, that is, its distributions are invariant under relabeling of the vertices.

For a model on finite networks (i.e., finitely many vertices), exchangeability can be induced
trivially by averaging uniformly over all permutations of the vertices. But we assume an infinite
population, for which the appropriate invariance is infinite exchangeability, the combination of
exchangeability and consistency under subsampling (Section 2.3). Unlike the finite setting, infi-
nite exchangeability cannot be imposed arbitrarily by averaging; it must be an inherent feature
of the model.

2.3. Markovian consistency under subsampling

For any graph with vertex set V , there is a natural and obvious restriction to an induced subgraph
with vertex set V ′ ⊂ V by removing all vertices and edges that are not fully contained in V ′. The
assumption of Markovian consistency, or simply consistency, for a graph-valued Markov process
implies that, for every n ∈N, the restriction �[n] of � to the space of graphs with vertex set [n] is,
itself, a Markov process. Note that this property does not follow immediately from the Markov
assumption for � because the restriction operation is a many-to-one function and, in general, a
function of a Markov process need not be Markov. Also note that the behavior of the restriction
�[n] can depend on � through as much as its exchangeable σ -field, which depends only on the
“tail” of the process.

Markovian consistency may be unjustified in some network modeling applications. This con-
trasts with other combinatorial stochastic process models, for example, coalescent processes [18],
for which consistency is induced by an inherent lack of interference in the underlying scientific
phenomena. Nevertheless, if we assume the network is a sample from a larger network, then

2We are implicitly ignoring the dependence between ii′ and jj ′ for the sake of illustration.
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consistency permits out-of-sample statistical inference [23]. Without Markovian consistency in a
time-varying Markov model, the sampled process can depend on the whole (unobserved) process,
leaving little hope for meaningful inference.

3. Rewiring processes: Informal description

We can envision at least two kinds of network dynamics that correspond, intuitively, to local
and global structural changes. Local changes involve only one edge, global changes involve a
positive fraction of edges. We say the status of edge ij is on if there is an edge between i and j ;
otherwise, we say the status is off.

A local change occurs whenever the status of exactly one edge changes, called a single-edge
update. An easy way to generate single-edge updates is by superposition of independent rate-1
Poisson processes. For each pair i < j , we let {T ij

k }k≥1 be the arrival times of a rate-1 Poisson
point process. At each arrival time, the status of the edge between i and j changes (either from
‘off’ to ‘on’ or the reverse). Doing this independently for each pair results in an infinite number of
changes to the network in any arbitrary time interval, but only finitely many changes within each
finite subnetwork. We call a process with this description a local-edge process; see Section 7.3.

A global change occurs whenever the status of a positive proportion of edges changes simul-
taneously. In practice, such an event might indicate a major external disturbance within the pop-
ulation, for example, spread or fear of a pandemic. Modeling such processes in continuous-time
requires more preparation than the local-edge process.

For an example, consider generating a discrete-time Markov chain � := {�m}m=0,1,2,... on the
finite space of graphs with vertex set [n]. At any time m, given �m = G, we can generate a tran-
sition to a new state G′ as follows. Independently for each pair i < j , we flip a coin to determine
whether to put an edge between i and j in G′: if ij is on in G, we flip a p1-coin; otherwise, we
flip a p0-coin. This description results in a simple, exchangeable Markov chain on finite graphs,
which we call the Erdős–Rényi rewiring chain (Section 5.1). More general transitions are pos-
sible, for example, edges need not evolve independently. We use the next Markov chain as a
running example of a discrete-time rewiring chain.

3.1. A reversible Markov chain on graphs

We fix n ∈ N and regard an undirected graph G with vertex set [n] as a {0,1}-valued symmetric
matrix (Gij )1≤i,j≤n such that Gii = 0 for all i = 1, . . . , n; that is, we represent a graph by its
adjacency matrix with Gij := 1{ij is on}. For any pair of graphs (G,G′), we can compute the
statistic n := n(G,G′) := (n00, n01, n10, n11), where for r, s = 0,1,

nrs :=
∑

1≤i<j≤n

1
{
Gij = r and G′

ij = s
}
.
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For example, n01 is the number of pairs i, j for which the status of ij changes from 0 to 1 from
G to G′. We use n as a sufficient statistic to define the transition probability

P
(n)
α,β

(
G,G′) := α↑n00β↑n01α↑n11β↑n10

(α + β)↑(n01+n00)(α + β)↑(n10+n11)
,

where α↑j := α(α + 1) · · · (α + j − 1) and α,β > 0.
The sufficient statistic n is invariant under joint relabeling of the vertices of (G,G′) and so the

transition law is exchangeable. Furthermore, P
(n)
α,β is reversible with respect to

ε
(n)
α+β,α+β(G) := (α + β)↑n0(α + β)↑n1

(2α + 2β)↑n
,

where nr := ∑
1≤i<j≤n 1{Gij = r}, r = 0,1. The distribution ε

(n)
α,β arises as a mixture of Erdős–

Rényi random graphs with respect to the Beta(α,β) distribution. Furthermore, {P (n)
α,β}n∈N is a

consistent collection of transition probabilities and, therefore, determines a unique transition
probability (and hence Markov chain) on the space of infinite graphs with vertex set N.

Though consistency is not immediately obvious for the above family, the savvy reader might
anticipate it: the formula for P

(n)
α,β involves rising factorials (i.e., Gamma functions), which also

appear in other consistent combinatorial stochastic processes, for example, the Chinese restaurant
process [26] and the Beta-splitting model for fragmentation trees [3,24]. We need not prove
consistency explicitly for this model; it follows from our more general construction of rewiring
processes, all of which are consistent (Theorem 5.1). We discuss the above family further in
Section 5.1.

3.2. A more general construction

Throughout the paper, we construct exchangeable and consistent Markov processes using a spe-
cial rewiring measure (Section 6). In continuous-time, Markov processes can admit infinitely
many jumps in arbitrarily small time intervals; however, by the consistency assumption, any
edge can change only finitely often in bounded intervals. In this case, we can choose a σ -finite
rewiring measure to direct the process.

4. Preliminaries and the rewiring maps

For n = 1,2, . . . , an (undirected) graph G with vertex set [n] can be represented by its symmetric
adjacency matrix (Gij )1≤i,j≤n for which Gij = 1 if G has an edge between i and j , and Gij = 0
otherwise. By convention, we always assume Gii = 0 for all i = 1, . . . , n. We write Gn to denote
the finite collection of all graphs with vertex set [n].

On Gn, we define the following operation of rewiring. Let w := (wij )1≤i,j≤n be an n × n

symmetric matrix with entries in {0,1} × {0,1} and all diagonal entries (0,0). For convenience,
we write each entry of w as a pair wij := (w0

ij ,w
1
ij ), 1 ≤ i, j ≤ n. We define a map w :Gn → Gn
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by G �→ G′ := w(G), where

G′
ij :=

{
w0

ij , Gij = 0,

w1
ij , Gij = 1,

1 ≤ i, j ≤ n. (4.1)

More compactly, we may write w(G) := (w
Gij

ij )1≤i,j≤n. We call w a rewiring map and w(G) the
rewiring of G by w. We write Wn to denote the collection of all rewiring maps Gn → Gn, which
are in one-to-one correspondence with n × n symmetric matrices with entries in {0,1} × {0,1}
and all diagonal entries (0,0).

The following display illustrates the rewiring operation in (4.1). Given G ∈ Gn and w ∈ Wn,
we obtain w(G) by choosing the appropriate element of each entry of w: if Gij = 0, we choose
the left coordinate of wij ; if Gij = 1, we choose the right coordinate of wij . For example,

G w w(G)⎛
⎜⎜⎜⎝

0 1 1 0 1
1 0 0 0 1
1 0 0 1 0
0 0 1 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(0,0) (1,0) (0,1) (0,0) (0,1)

(1,0) (0,0) (1,0) (1,1) (1,0)

(0,1) (1,0) (0,0) (0,1) (0,0)

(0,0) (1,1) (0,1) (0,0) (1,0)

(0,1) (1,0) (0,0) (1,0) (0,0)

⎞
⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎝

0 0 1 0 1
0 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎠ .

A unique symmetric n × n matrix determines each element in Gn and Wn, and so there is
a natural restriction operation on both spaces by taking the leading m × m submatrix, for any
m ≤ n. In particular, we write

Rm,nG := G|[m] := (Gij )1≤i,j≤m, G ∈ Gn, and
(4.2)

w|[m] := (wij )1≤i,j≤m, w ∈Wn,

to denote the restrictions of G ∈ Gn and w ∈ Wn to Gm and Wm, respectively. These restriction
operations lead to the notions of infinite graphs and infinite rewiring maps as infinite symmetric
arrays with entries in the appropriate space, either {0,1} or {0,1}×{0,1}. We write G∞ to denote
the space of infinite graphs, identified by a {0,1}-valued adjacency array, and W∞ to denote the
space of infinite rewiring maps, identified by a symmetric {0,1}× {0,1}-valued array with (0,0)

on the diagonal.
Any w ∈W∞ acts on G∞ just as in (4.1) and, for any G ∈ G∞, the rewiring operation satisfies

w(G)|[n] = w|[n](G|[n]) for all n ∈ N.

The spaces G∞ and W∞ are uncountable but can be equipped with the discrete σ -algebras
σ 〈⋃n∈N Gn〉 and σ 〈⋃n∈NWn〉, respectively, so that the restriction maps ·|[n] are measurable
for every n ∈ N. Moreover, both G∞ and W∞ come equipped with a product-discrete topology
induced, for example, by the ultrametric

d
(
w,w′) := 1/max

{
n ∈ N: w|[n] = w′|[n]

}
, w,w′ ∈ W∞. (4.3)
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The metric on G∞ is analogous. Both G∞ and W∞ are compact, complete, and separable metric
spaces. Much of our development hinges on the following proposition, whose proof is straight-
forward.

Proposition 4.1. Rewiring maps are associative under composition and Lipschitz continuous in
the metric (4.3), with Lipschitz constant 1.

4.1. Weakly exchangeable arrays

Let SN denote the collection of finite permutations of N, that is, permutations σ :N → N for
which #{i ∈ N: σ(i) = i} < ∞. We call any random array X := (Xij )i,j≥1 weakly exchangeable
if

X is almost surely symmetric, that is, Xij = Xji for all i, j with probability one,

and

X =L Xσ := (Xσ(i)σ (j))i,j≥1 for all finite permutations σ :N →N,

where =L denotes equality in law. Aldous defines weak exchangeability using only the latter
condition; see [2], Chapter 14, page 132. We impose symmetry for convenience – in this paper,
all graphs and rewiring maps are symmetric arrays.

From the discussion in Section 2.2, we are interested in models for random graphs � that are
exchangeable, meaning the adjacency matrix (�ij )i,j≥1 is a weakly exchangeable {0,1}-valued
array. Likewise, we call a random rewiring map W exchangeable if its associated {0,1} × {0,1}-
valued array (Wij )i,j≥1 is weakly exchangeable.

de Finetti’s theorem represents any infinitely exchangeable sequence Z := (Zi)i≥1 in a Polish
space S with a (non-unique) measurable function g : [0,1]2 → S such that Z =L Z∗, where

Z∗
i := g(α,ηi), i ≥ 1, (4.4)

for {α; (ηi)i≥1} independent, identically distributed (i.i.d.) Uniform random variables on [0,1].
The Aldous–Hoover theorem [1,2] extends de Finetti’s representation (4.4) to weakly exchange-
able S-valued arrays: to any such array X, there exists a (non-unique) measurable function
f : [0,1]4 → S satisfying f (•, b, c,•) = f (•, c, b,•) such that X =L X∗, where

X∗
ij := f (α,ηi, ηj , λ{i,j}), i, j ≥ 1, (4.5)

for {α; (ηi)i≥1; (λ{i,j})i>j≥1} i.i.d. Uniform random variables on [0,1].
The function f has a statistical interpretation that reflects the structure of the random array. In

particular, f decomposes the law of X∗
ij into individual λ{i,j}, row ηi , column ηj , and overall α

effects. The overall effect plays the role of the mixing measure in the de Finetti interpretation. If g

in (4.4) is constant with respect to its first argument, that is, g(a, ·) = g(a′, ·) for all a, a′ ∈ [0,1],
then Z∗ constructed in (4.4) is an i.i.d. sequence. Letting g vary with its first argument produces
a mixture of i.i.d. sequences. A fundamental interpretation of de Finetti’s theorem is:

every infinitely exchangeable sequence is a mixture of i.i.d. sequences.
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Similarly, if f in (4.5) satisfies f (a, ·, ·, ·) = f (a′, ·, ·, ·) for all a, a′ ∈ [0,1], then X∗ is dissoci-
ated, that is

X∗|[n] is independent of X∗|{n+1,n+2,...} for all n ∈N. (4.6)

The Aldous–Hoover representation (4.5) spurs the sequel to de Finetti’s interpretation:

every weakly exchangeable array is a mixture of dissociated arrays.

See Aldous [2], Chapter 14, for more details. We revisit the theory of weakly exchangeable arrays
in Section 6.

5. Discrete-time rewiring Markov chains

Throughout the paper, we use the rewiring maps to construct Markov chains on G∞. From any
probability distribution ωn on Wn, we generate W1,W2, . . . i.i.d. from ωn and a random graph
�0 ∈ Gn (independently of W1,W2, . . .). We then define a Markov chain {�m}m=0,1,2,... on Gn by

�m := Wm(�m−1) = (Wm ◦ · · · ◦ W1)(�0), m ≥ 1. (5.1)

We call ωn exchangeable if W ∼ ωn is an exchangeable rewiring map, that is, W =L Wσ for all
permutations σ : [n] → [n].

Proposition 5.1. Let ωn be an exchangeable probability measure on Wn and let � :=
{�m}m=0,1,2,... be as constructed in (5.1) from an exchangeable initial state �0 and W1,W2, . . .

i.i.d. from ωn. Then � is an exchangeable Markov chain on Gn with transition probability

Pωn

(
G,G′) := ωn

({
W ∈ Wn: W(G) = G′}), G,G′ ∈ Gn. (5.2)

Proof. The Markov property is immediate by mutual independence of �0,W1,W2, . . . . The for-
mula for the transition probabilities (5.2) follows by description (5.1) of �.

We need only show that � is exchangeable. By assumption, �0 is an exchangeable random
graph on n vertices, and so its distribution is invariant under arbitrary permutation of [n]. More-
over, the law of W ∼ ωn satisfies W =L Wσ and, for any fixed w ∈ Wn and σ ∈ Sn, G′ := w(G)

satisfies

G′σ
ij := G′

σ(i)σ (j) = w
Gσ(i)σ (j)

σ (i)σ (j) ,

the ij -entry of wσ (Gσ ). Therefore, Wσ (Gσ ) = W(G)σ and, for any exchangeable graph � and
exchangeable rewiring map W , we have

W(�)σ = Wσ
(
�σ

) =L W(�) for all σ ∈ Sn.

Hence, the transition law of � is equivariant with respect to relabeling. Since the initial state �0
is exchangeable, so is the Markov chain. �

Definition 5.1. We call {�m}m=0,1,2,... an ωn-rewiring Markov chain.
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From the discussion in Section 4, we can define an exchangeable measure ω(n) on Wn as the
restriction to Wn of an exchangeable probability measure ω on W∞, where

ω(n)(W) := ω
({

W ∗ ∈W∞: W ∗|[n] = W
})

, W ∈Wn. (5.3)

Denote by P
(n)
ω the transition probability measure of an ω(n)-rewiring Markov chain on Gn, as

defined in (5.2).

Theorem 5.1. For any exchangeable probability measure ω on W∞, {P (n)
ω }n∈N is a consistent

family of exchangeable transition probabilities in the sense that

P (m)
ω

(
G,G′) = P (n)

ω

(
G∗,R−1

m,n

(
G′)), G,G′ ∈ Gm, for all m ≤ n, (5.4)

for every G∗ ∈ R−1
m,n(G) := {G′′ ∈ Gn: G′′|[m] = G}, where Rm,n is defined in (4.2).

Proof. Proposition 5.1 implies exchangeability of {P (n)
ω }n∈N. It remains to show that {P (n)

ω }n∈N
satisfies (5.4). By (5.2),

P (n)
ω

(
G,G′) := ω(n)

({
W ∈ Wn: W(G) = G′}), G,G′ ∈ Gn.

Now, for any m ≤ n, fix G,G′ ∈ Gm and G∗ ∈ R−1
m,n(G). Then (5.4) requires

ω(n)
({

W ∈Wn: W
(
G∗) ∈ R−1

m,n

(
G′)}) = ω(m)

({
W ∈Wm: W(G) = G′}),

which follows by definition (5.3) of ω(n). To see this, note that

ω(n)
({

W ∈Wn: W |[m](G) = G′}) = ω
({

W ∈W∞: (W |[n])|[m](G) = G′})
= ω

({
W ∈W∞: W |[m](G) = G′})

= ω(m)
({

W ∈Wm: W(G) = G′}).
This completes the proof. �

Remark 5.1. The consistency condition (5.4) for Markov chains is exactly the necessary and
sufficient condition for a function of a Markov chain to be a Markov chain, as proven in [8].
Before describing the measure ω from Theorem 5.1 in further detail, we first show some concrete
examples of rewiring chains.

5.1. The Erdős–Rényi rewiring chain

For any 0 ≤ p ≤ 1, let εp denote the Erdős–Rényi measure on G∞, which we define by its finite-

dimensional restrictions ε
(n)
p to Gn for each n ∈N,

ε(n)
p (G) :=

∏
1≤i<j≤n

pGij (1 − p)1−Gij , G ∈ Gn. (5.5)
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Given any pair (p0,p1) ∈ [0,1] × [0,1], the (p0,p1)-Erdős–Rényi chain has finite-dimensional
transition probabilities

P (n)
p0,p1

(
G,G′) :=

∏
1≤i<j≤n

p
G′

ij

Gij
(1 − pGij

)
1−G′

ij , G,G′ ∈ Gn. (5.6)

Proposition 5.2. For 0 < p0,p1 < 1, the (p0,p1)-Erdős–Rényi rewiring chain has unique sta-
tionary distribution εq , with q := p0/(1 − p1 + p0).

Proof. By assumption, both p0 and p1 are strictly between 0 and 1 and, thus, (5.5) assigns pos-
itive probability to every transition in Gn, for every n ∈ N. Therefore, each finite-dimensional
chain is aperiodic and irreducible, and each possesses a unique stationary distribution θ(n). By
consistency of the transition probabilities {P (n)

p0,p1}n∈N (Theorem 5.1), the finite-dimensional sta-
tionary measures {θ(n)}n∈N must be exchangeable and consistent and, therefore, they determine
a unique measure θ on G∞, which is stationary for Pp0,p1 . Furthermore, by conditional indepen-
dence of the edges of G′, given G, the stationary law must be Erdős–Rényi with some parameter
q ∈ (0,1).

In an ε
(n)
q -random graph, all edges are present or not independently with probability q . There-

fore, it suffices to look at the probability of the edge between vertices labeled 1 and 2. In this
case, we need to choose q so that

qp1 + (1 − q)p0 = q,

which implies q = p0/(1 − p1 + p0). �

Remark 5.2. Some elementary special cases of the (p0,p1)-Erdős–Rényi rewiring chain are
worth noting. First, for (p0,p1) either (0,0) or (1,1), this chain is degenerate at either the
empty graph 0 or the complete graph 1 and has unique stationary measure ε0 or ε1, respec-
tively. On the other hand, when (p0,p1) = (0,1), the chain is degenerate at its initial state and
so its initial distribution is stationary. However, if (p0,p1) = (1,0), then the chain alternates
between its initial state G and its complement Ḡ := (Ḡij )i,j≥1, where Ḡij := 1 − Gij for all
i, j ≥ 1; in this case, the chain is periodic and does not have a unique stationary distribution.
We also note that when (p0,p1) = (p,p) for some p ∈ (0,1), the chain is simply an i.i.d. se-
quence of εp-random graphs with stationary distribution εq , where q = p/(1 − p + p) = p, as
it must.

For α,β > 0, we define the mixed Erdős–Rényi rewiring chain through ε
(n)
α,β , the mixture of

ε
(n)
p -laws with respect to the Beta law with parameter (α,β). Writing

Bα,β(dp) = �(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp,
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we derive

ε
(n)
α,β(G) :=

∫
[0,1]

ε(n)
p (G)

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp

= �(α + β)

�(α)�(β)

�(α + n1)�(β + n0)

�(α + β + n)

∫
[0,1]

Bα+n1,β+n0(dp)

= α↑n1β↑n0

(α + β)↑n
,

where nr := ∑
1≤i<j≤n{Gij = r}, r = 0,1, and α↑n = α(α + 1) · · · (α + n − 1). For α0, β0, α1,

β1 > 0, we define mixed Erdős–Rényi transition probabilities by

P
(n)
(α0,β0),(α1,β1)

(
G,G′) := α

↑n01
0 β

↑n00
0 α

↑n11
1 β

↑n10
1

(α0 + β0)↑(n00+n01)(α1 + β1)↑(n10+n11)
, G,G′ ∈ Gn. (5.7)

An interesting special case takes (α0, β0) = (β,α) and (α1, β1) = (α′, β) for α,α′, β > 0. In
this case, (5.7) becomes

P
(n)

(β,α),(α′,β)

(
G,G′) = α↑n00β↑n01α′↑n11β↑n10

(α + β)↑n0(α′ + β)↑n1
, G,G′ ∈ Gn.

Proposition 5.3. P
(n)

(β,α),(α′,β)
is reversible with respect to ε

(n)

α+β,α′+β
.

Proof. For fixed G,G′ ∈ Gn, we write nrs := ∑
i<j 1{Gij = r and G′

ij = s} and n′
rs :=∑

i<j 1{G′
ij = r and Gij = s}. Note that n′

rs = nsr . Therefore, we have

ε
(n)

α+β,α′+β
(G)P

(n)

(β,α),(α′,β)

(
G,G′) = α↑n00β↑n01α′↑n11β↑n10

(α + 2β + α′)↑n

= α↑n′
00β↑n′

10α′↑n′
11β↑n′

01

(α + 2β + α′)↑n

= ε
(n)

α+β,α′+β

(
G′)P (n)

(β,α),(α′,β)

(
G′,G

)
,

establishing detailed balance and, thus, reversibility. �

A mixed Erdős–Rényi Markov chain is directed by

ω(dW) :=
∫

[0,1]×[0,1]
ωp0,p1(dW)(Bα0,β0 ⊗ Bα1,β1)(dp0,dp1), W ∈W∞,

where ωp0,p1 is determined by its finite-dimensional distributions

ω(n)
p0,p1

(W) :=
∏

1≤i<j≤n

p
W 0

ij

0 (1 − p0)
1−W 0

ij p
W 1

ij

1 (1 − p1)
1−W 1

ij , W ∈Wn,

for 0 < p0,p1 < 1, for every n ∈N.
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In the next section, we see that a representation of the directing measure ω as a mixture
of simpler measures holds more generally. Notice that W ∼ ωp0,p1 is dissociated for all fixed
(p0,p1) ∈ (0,1) × (0,1). By the Aldous–Hoover theorem, we can express any exchangeable
measure on W∞ as a mixture of dissociated measures.

6. Exchangeable rewiring maps and their rewiring limits

To more precisely describe the mixing measure ω, we extend the theory of graph limits to its
natural analog for rewiring maps. We first review the related theory of graph limits, as surveyed
by Lovász [21].

6.1. Graph limits

A graph limit is a statistic that encodes a lot of structural information about an infinite graph.
In essence, the graph limit of an exchangeable random graph contains all relevant information
about its distribution.

For any injection ψ : [m] → [n], m ≤ n, and G ∈ Gn, we define Gψ := (Gψ(i)ψ(j))1≤i,j≤m. In
words, Gψ is the subgraph G induces on [m] by the vertices in the range of ψ . Given G ∈ Gn and
F ∈ Gm, we define ind(F,G) to equal the number of injections ψ : [m] → [n] such that Gψ = F .
Intuitively, ind(F,G) is the number of “copies” of F in G, which we normalize to obtain the
density of F in G,

t (F,G) := ind(F,G)

n↓m
, F ∈ Gm,G ∈ Gn, (6.1)

where n↓m := n(n − 1) · · · (n − m + 1) is the number of unique injections ψ : [m] → [n]. The
limiting density of F in any infinite graph G ∈ G∞ is

t (F,G) := lim
n→∞ t (F,G|[n]), F ∈ Gm, if it exists. (6.2)

The collection G∗ := ⋃
m∈N Gm is countable and so we can define the graph limit of G ∈ G∞

by

|G| := (
t (F,G)

)
F∈G∗, (6.3)

provided t (F,G) exists for all F ∈ G∗. Any graph limit is an element in [0,1]G∗
, which is com-

pact under the metric

ρ
(
x, x′) :=

∑
n∈N

2−n
∑

F∈Gn

∣∣xF − x′
F

∣∣, x, x′ ∈ [0,1]G∗
. (6.4)

The space of graph limits is a compact subset of [0,1]G∗
, which we denote by D∗. We implicitly

equip [0,1]G∗
with its Borel σ -field and D∗ with its trace σ -field.
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Any D ∈ D∗ is a sequence (DF )F∈G∗ , where D(F) := DF denotes the coordinate of D cor-
responding to F ∈ G∗. In this way, any D ∈ D∗ determines a probability measure γ

(n)
D on Gn, for

every n ∈ N, by

γ
(n)
D (G) := D(G), G ∈ Gn. (6.5)

Furthermore, the collection (γ
(n)
D )n∈N is consistent and exchangeable on {Gn}n∈N and, by Kol-

mogorov’s extension theorem, determines a unique exchangeable measure γD on G∞, for which
γD-almost every G ∈ G∞ has |G| = D.

Conversely, combining the Aldous–Hoover theorem for weakly exchangeable arrays ([2], The-
orem 14.21) and Lovász–Szegedy theorem of graph limits ([22], Theorem 2.7), any exchange-
able random graph � is governed by a mixture of γD measures. In particular, to any exchangeable
random graph �, there exists a unique probability measure � on D∗ such that � ∼ γ�, where

γ�(·) :=
∫
D∗

γD(·)�(dD). (6.6)

6.2. Rewiring limits

Since {0,1} × {0,1} is a finite space, the Aldous–Hoover theorem applies to exchangeable
rewiring maps. Following Section 6.1, we define the density of V ∈ Wm in W ∈ Wn by

t (V ,W) := ind(V ,W)

n↓m
, (6.7)

where ind(V ,W) equals the number of injections ψ : [m] → [n] for which Wψ = V . For an
infinite rewiring map W ∈W∞, we define

t (V ,W) := lim
n→∞ t (V ,W |[n]), W ∈Wm, if it exists.

As for graphs, the collection W∗ := ⋃
m∈NWm is countable and so we can define the rewiring

limit of W ∈W∞ by

|W | := (
t (V ,W)

)
V ∈W∗, (6.8)

provided t (V ,W) exists for all V ∈W∗.
We write V∗ ⊂ [0,1]W∗

to denote the compact space of rewiring limits and υV = υ(V ) to
denote the coordinate of υ ∈ V∗ corresponding to V ∈ W∗. We equip V∗ with the metric

ρ
(
υ,υ ′) :=

∑
n∈N

2−n
∑

V ∈Wn

∣∣υV − υ ′
V

∣∣, υ,υ ′ ∈ V∗. (6.9)

Lemma 6.1. Every υ ∈ V∗ satisfies

• υ(V ) = ∑
{V ∗∈Wn+1:V ∗|[n]=V } υ(V ∗) for every V ∈Wn, for all n ∈N, and

• ∑
V ∈Wn

υ(V ) = 1 for every n ∈ N.
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Proof. By definition of V∗, we may assume that υ is the rewiring limit |W ∗| of some W ∗ ∈W∞
so that υ(V ) = t (V ,W ∗), for every V ∈W∗. From the definition of the rewiring limit (6.8),

∑
W∈Wm

υ(W) =
∑

W∈Wm

lim
n→∞

ind(W,W ∗|[n])
n↓m

= lim
n→∞

∑
W∈Wm

ind(W,W ∗|[n])
n↓m

= 1,

where the interchange of sum and limit is justified by the Bounded Convergence theorem because
0 ≤ ind(W,W ∗|[n])/n↓m ≤ 1 for all W ∈ Wm. Also, for every m ≤ n and W ∈Wm, we have

∑
{W ′∈Wn:W ′|[m]=W }

υ
(
W ′) =

∑
{W ′∈Wn:W ′|[m]=W }

lim
k→∞

ind(W ′,W ∗|[k])
k↓n

= lim
k→∞

∑
{W ′∈Wn:W ′|[m]=W }

ind(W ′,W ∗|[k])
k↓n

= lim
k→∞

ind(W,W ∗|[k])
k↓m

= v(W).

This follows by the definition of ind(·, ·) and also because, for any ψ : [m] → [k] there are
k↓n/k↓m injections ψ ′ : [n] → [k] such that ψ ′ coincides with ψ on [m]. �

Lemma 6.2. (V∗, ρ) is a compact metric space.

Theorem 6.1. Let W be a dissociated exchangeable rewiring map. Then, with probability one,
|W | exists and is nonrandom.

We delay the proofs of Lemma 6.2 and Theorem 6.1 until Section 10.

Corollary 6.1. Let W ∈W∞ be an exchangeable random rewiring map. Then |W | exists almost
surely.

Proof. By Theorem 6.1, every dissociated rewiring map possesses a nonrandom rewiring limit
almost surely. By the Aldous–Hoover theorem, W is a mixture of dissociated rewiring maps and
the conclusion follows. �

By Lemma 6.1, any υ ∈ V∗ determines a probability measure �υ on W∞ in a straightforward
way: for each n ∈ N, we define �

(n)
υ as the probability distribution on Wn with

�(n)
υ (w) := υ(w), w ∈ Wn. (6.10)

Proposition 6.1. For any υ ∈ V∗, {�(n)
υ }n∈N is a collection of exchangeable and consistent prob-

ability distributions on {Wn}n∈N. In particular, {�(n)
υ }n∈N determines a unique exchangeable

probability measure �υ on W∞ for which �υ -almost every w ∈W∞ has |w| = υ .
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Proof. By Lemma 6.1, the collection {�(n)
υ }n∈N in (6.10) is a consistent family of probability

distributions on {Wn}n∈N. Exchangeability follows because ind(w,W ∗|[n]) is invariant under
relabeling of w, that is, ind(w,W ∗) = ind(wσ ,W ∗|σ ′

[n]) for all permutations σ ∈ Sm and σ ′ ∈ Sn.

By Kolmogorov’s extension theorem, {�(n)
υ }n∈N determines a unique measure �υ on the limit

space W∞. Finally, W ∼ �υ is dissociated and so, by Theorem 6.1, |W | = υ almost surely. �

We call �υ in Proposition 6.1 a rewiring measure directed by υ . For any measure ϒ on V∗,
we define the ϒ -mixture of rewiring measures by

�ϒ(·) :=
∫
V∗

�υ(·)ϒ(dυ). (6.11)

Corollary 6.2. To any exchangeable rewiring map W , there exists a unique probability measure
ϒ on V∗ such that W ∼ �ϒ .

Proof. This follows by the Aldous–Hoover theorem and Proposition 6.1. �

From Theorem 6.1 and Proposition 6.1, any probability measure ϒ on V∗ corresponds to an
�ϒ -rewiring chain as in Theorem 5.1.

7. Continuous-time rewiring processes

We now refine our discussion to rewiring chains in continuous-time, for which infinitely many
transitions can “bunch up” in arbitrarily small intervals, but individual edges jump only finitely
often in bounded intervals.

7.1. Exchangeable rewiring process

Henceforth, we write id to denote the identity G∞ → G∞ and, for n ∈ N, we write idn to denote
the identity Gn → Gn. Let ω be an exchangeable measure on W∞ such that

ω
({id}) = 0 and ω

({W ∈ W∞: W |[n] = idn}
)
< ∞ for every n ≥ 2. (7.1)

Similar to our definition of Pω in Section 5, we use ω to define the transition rates of continuous-
time ω-rewiring chain. Briefly, we assume ω({id}) = 0 because the identity map G∞ → G∞ is
immaterial for continuous-time processes. The finiteness assumption on the right of (7.1) ensures
that the paths of the finite restrictions are càdlàg.

For each n ∈ N, we write ω(n) to denote the restriction of ω to Wn and define

q(n)
ω

(
G,G′) :=

{
ω(n)

({
W ∈Wn: W(G) = G′}), G = G′ ∈ Gn,

0, G = G′ ∈ Gn.
(7.2)
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Proposition 7.1. For each n ∈ N, q
(n)
ω is a finite, exchangeable conditional measure on Gn.

Moreover, the collection {q(n)
ω }n≥2 satisfies

q(m)
ω

(
G,G′) = q(n)

ω

(
G∗,R−1

m,n

(
G′)), G = G′ ∈ Gm, (7.3)

for all G∗ ∈ R−1
m,n(G), for all m ≤ n, for every n ∈N, where Rm,n is the restriction map Gn → Gm

defined in (4.2).

Proof. Finiteness of q
(n)
ω follows from (7.1) since, for every G ∈ Gn,

q(n)
ω (G,Gn) = q(n)

ω

(
G,Gn \ {G}) = ω(n)

({
W ∈Wn: W(G) = G

}) ≤ ω(n)
({W = idn}

)
< ∞.

Exchangeability of q
(n)
ω follows by Proposition 5.1 and exchangeability of ω. Consistency of

{q(n)
ω }n≥2 results from Lipschitz continuity of rewiring maps (Proposition 4.1) and consistency

of the finite-dimensional marginals {ω(n)}n∈N associated to ω: for fixed G = G′ ∈ Gm and G∗ ∈
R−1

m,n(G),

q(n)
ω

(
G∗,R−1

m,n

(
G′)) =

∑
G′′:G′′|[m]=G′

q(n)
ω

(
G∗,G′′)

=
∑

G′′:G′′|[m]=G′
ω(n)

({
W ∈ Wn: W

(
G∗) = G′′})

= ω(n)
({

W ∈Wn: W |[m](G) = G′})
= ω(m)

({
W ∈Wm: W(G) = G′})

= q(m)
ω

(
G,G′). �

From {q(n)
ω }n∈N, we define a collection of infinitesimal jump rates {Q(n)

ω }n∈N by

Q(n)
ω

(
G,G′) :=

{
q

(n)
ω

(
G,G′), G′ = G,

−q
(n)
ω

(
G,Gn \ {G}), G′ = G.

(7.4)

Corollary 7.1. The infinitesimal generators {Q(n)
ω }n∈N are exchangeable and consistent and,

therefore, define the infinitesimal jump rates Qω of an exchangeable Markov process on G∞.

Proof. Consistency when G′ = G was already shown in Proposition 7.1. We must only show
that Q

(n)
ω is consistent for G′ = G. Fix n ∈ N and G ∈ Gn. Then, for any G∗ ∈ R−1

n,n+1(G), we
have

Q(n+1)
ω

(
G∗,R−1

n,n+1(G)
) = −q(n+1)

ω

(
G∗,Gn+1 \ {

G∗}) +
∑

G′′∈R−1
n,n+1(G):G′′ =G∗

q(n+1)
ω

(
G∗,G′′)

= −q(n+1)
ω

(
G∗,Gn+1 \ R−1

n,n+1(G)
)
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= −q(n)
ω

(
G,Gn \ {G})

= Q(n)
ω (G,G). �

In Section 3, we mentioned local and global discontinuities for graph-valued processes. In the
next two sections, we formally incorporate these discontinuities into a continuous-time rewiring
process: in Section 7.2, we extend the notion of random rewiring from discrete-time; in Sec-
tion 7.3, we introduce transitions for which, at the time of a jump, only a single edge in the
network changes. Over time, the local changes can accumulate to cause a non-trivial change to
network structure.

7.2. Global jumps: Rewiring

In this section, we specialize to the case where ω = �ϒ for some measure ϒ on V∗ satisfying

ϒ
({I}) = 0 and

∫
V∗

(
1 − υ(2)∗

)
ϒ(dυ) < ∞, (7.5)

where I is the rewiring limit of id ∈ W∞ and υ
(n)∗ := υ(idn) is the entry of υ corresponding to

idn, for each n ∈ N. For each n ∈ N, we write q
(n)
ϒ to denote q

(n)
ω for ω = �ϒ , and likewise for

the infinitesimal generator Q
(n)
ϒ .

Lemma 7.1. For ϒ satisfying (7.5), the rewiring measure �ϒ satisfies (7.1).

Proof. By Theorem 6.1, ϒ({I}) = 0 implies �ϒ({id}) = 0. We need only show that
∫
V∗(1 −

υ
(2)∗ )ϒ(dυ) < ∞ implies �

(n)
ϒ ({W ∈Wn: W = idn}) < ∞ for every n ≥ 2. For any υ ∈ V∗,

�υ

({W ∈W∞: W |[n] = idn}
) = �υ

( ⋃
1≤i<j≤n

{W ∈W∞: W |{i,j} = id{i,j}}
)

≤
∑

1≤i<j≤n

�υ

({W ∈W∞: W |{i,j} = id{i,j}}
)

=
∑

1≤i<j≤n

�(2)
υ

(
W2 \ {id2}

)

= n(n − 1)

2

(
1 − υ(2)∗

)
.

Hence, by (7.5),

�ϒ

({W ∈W∞: W |[n] = idn}
) ≤

∫
V∗

n(n − 1)

2

(
1 − υ(2)∗

)
ϒ(dυ) < ∞,

for every n ≥ 2. �
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Proposition 7.2. For each n ∈ N, q
(n)
ϒ is a finite, exchangeable conditional measure on Gn.

Moreover, {q(n)
ϒ }n∈N satisfies

q
(m)
ϒ

(
G,G′) = q

(n)
ϒ

(
G∗,R−1

m,n

(
G′)), G = G′ ∈ Gm, for all G∗ ∈ R−1

m,n(G).

Proof. This follows directly from Propositions 6.1, 7.1, and Lemma 7.1. �

We may, therefore, define an infinitesimal generator for a Markov chain on Gn by

Q
(n)
ϒ

(
G,G′) :=

{
q

(n)
ϒ

(
G,G′), G′ = G,

−q
(n)
ϒ

(
G,Gn \ {G}), G′ = G.

(7.6)

Theorem 7.1. For each ϒ satisfying (7.5), there exists an exchangeable Markov process � on
G∞ with finite-dimensional transition rates as in (7.6).

We call � in Theorem 7.1 a rewiring process directed by ϒ , or with rewiring measure �ϒ .

7.3. Local jumps: Isolated updating

For i′ > j ′ ≥ 1 and k = 0,1, let Rk
i′j ′ denote the rewiring map W∞ → W∞ that acts by mapping

G �→ G′ := Rk
i′j ′(G),

G′
ij :=

{
Gij , ij = i′j ′,
k, ij = i′j ′. (7.7)

In words, Rk
ij puts an edge between i and j (if k = 1) or no edge between i and j (if k = 0) and

keeps every other edge fixed.
For fixed n ∈ N, let 0n ∈ Gn denote the empty graph, that is, the graph with no edges. We

generate a continuous-time process �0 := {�0(t)}t≥0 on Gn as follows. First, we specify a con-
stant c0 > 0 and, independently for each pair {i, j} ∈ [n] × [n], i < j , we generate i.i.d. random
variables Tij from the Exponential distribution with rate parameter c0. Given {Tij }i<j , we define
�0 by

i ∼�0(t) j ⇐⇒ Tij < t,

where i ∼G j denotes an edge between i and j in G. Clearly, �0 is exchangeable and converges
to a unique stationary distribution δ1n

, the point mass at the complete graph 1n. Moreover, the
distribution of T∗, the time until absorption in 1n, is simply the law of the maximum of n(n−1)/2
i.i.d. Exponential random variables with rate parameter c0.

Conversely, we could consider starting in 1n, the complete graph, and generating the above
process in reverse. In this case, we specify c1 > 0 and let {Tij }i<j be an i.i.d. collection of Expo-
nential random variables with rate parameter c1. We construct �1 := {�1(t)}t≥0, given {Tij }i<j ,
by

i ∼�1(t) j ⇐⇒ Tij > t.



1688 H. Crane

For c1 = c0, this process evolves exactly as the complement of �0, that is,

�1 =L �̄0,

where �̄0 := {�̄0(t)}t≥0 is defined by

i ∼�̄0(t)
j ⇐⇒ i ��0(t) j,

for all i = j and all t ≥ 0.
It is natural to consider the superposition of �0 and �1, which we call a (c0, c1)-local-edge

process. Let c0, c1 ≥ 0 and let δk
ij denote the point mass at the single-edge update map Rk

ij .
Following Section 7.1, we define

�c0,c1 := c0

∑
i<j

δ0
ij + c1

∑
i<j

δ1
ij . (7.8)

Lemma 7.2. For c0, c1 ≥ 0, �c0,c1 defined in (7.8) satisfies (7.1).

Proof. Since �c0,c1 only charges the single-edge update maps, it is clear that it assigns zero mass
to the identity map. Also, for any n ∈ N, the restriction of Rk

ij to Wn coincides with the identity
Gn → Gn except when 1 ≤ i < j ≤ n. Hence,

�(n)
c0,c1

({W ∈Wn: W = idn}
) = n(n − 1)

2
(c0 + c1) < ∞,

for every n ≥ 2. �

Corollary 7.2. For any c0, c1 ≥ 0, there exists an exchangeable Markov process on G∞ with
jump rates given by �c0,c1 .

Proof. For every n ∈N, the total jump rate out of any G ∈ Gn can be no larger than

n(n − 1)

2
(c0 ∨ c1) < ∞,

and so the finite-dimensional hold times are almost surely positive and the process on Gn has
càdlàg sample paths. The Markov property and exchangeability follow by independence of the
Exponential hold times {Tij }1≤i<j≤n and Corollary 7.1. Consistency is apparent by the construc-
tion from independent Poisson point processes. This completes the proof. �

Definition 7.1. For any measure ϒ satisfying (7.5), c0, c1 ≥ 0, we call a rewiring process with
jump measure ω = �ϒ + �c0,c1 an (ϒ, c0, c1)-rewiring process.

From our discussion in this section, the (ϒ, c0, c1)-rewiring process exists for any choice of
ϒ satisfying (7.5) and c0, c1 ≥ 0. Individually, �ϒ and �c0,c1 satisfy (7.1) and, thus, so does
ω := �ϒ + �c0,c1 . Furthermore, the family of (ϒ, c0, c1)-rewiring processes is Markovian, ex-
changeable, and consistent.
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8. Simulating rewiring processes

We can construct an (ϒ, c0, c1)-rewiring process from a Poisson point process. For ω := �ϒ +
�c0,c1 , where ϒ satisfies (7.5) and c0, c1 ≥ 0, let W := {(t,Wt )} ⊂R

+ ×W∞ be a Poisson point
process with intensity dt ⊗ ω. To begin, we take �0 to be an exchangeable random graph and,
for each n ∈ N, we define �[n] := (�

[n]
t )t≥0 on Gn by �

[n]
0 := �0|[n] and

• if t > 0 is an atom time of W such that W
[n]
t := Wt |[n] = idn, then we put �

[n]
t :=

W
[n]
t (�

[n]
t− );

• otherwise, we put �
[n]
t = �

[n]
t− .

Proposition 8.1. For each n ∈ N, �[n] is a Markov chain on Gn with infinitesimal jump rates
Q

(n)
ω in (7.4).

Proof. We can define W[n] := {(t,W [n]
t )} ⊂R

+ ×Wn from W by removing any atom times for
which W

[n]
t := Wt |[n] = idn, and otherwise putting W

[n]
t := Wt |[n]. By the thinning property of

Poisson point processes, W[n] is a Poisson point process with intensity dt ⊗ ωn, where

ωn(·) := ω(n)
(· \ {idn}

)
.

Given �
[n]
t = G, the jump rate to state G′ = G is

ωn

({
W ∈ Wn: W(G) = G′}) = Q(n)

ω

(
G,G′),

and the conclusion follows. �

Theorem 8.1. For any ω satisfying (7.1), the ω-rewiring process on G∞ exists and can be con-
structed from a Poisson point process with intensity dt ⊗ ω as above.

Proof. Let W be a Poisson point process with intensity dt ⊗ ω and construct {�[n]}n∈N from the
thinned processes {W[n]}n∈N determined by W. By Proposition 8.1, each �[n] is an exchange-
able Markov chain governed by Q

(n)
ω . Moreover, {�[n]}n∈N is compatible by construction, that is,

�
[m]
t = Rm,n�

[n]
t for all t ≥ 0, for all m ≤ n; hence, {�[n]}n∈N defines a process � on G∞. As we

have shown previously, the infinitesimal rates given by {Q(n)
ω }n∈N are consistent and exchange-

able; hence, � has infinitestimal generator Qω and is an ω-rewiring process. �

8.1. The Feller property

Any Markov process � on G∞ is characterized by its semigroup (Pt )t≥0, defined as an operator
on the space of continuous, bounded functions h :G∞ → R by

Pt h(G) := EGh(�t ), G ∈ G∞, (8.1)
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where EG denotes the expectation operator with respect to the initial distribution δG(·), the point
mass at G. We say � has the Feller property if, for all bounded, continuous functions h :G∞ →R,
its semigroup satisfies

• Pt h(G) → h(G) as t ↓ 0 for all G ∈ G∞, and
• G �→ Pt h(G) is continuous for all t ≥ 0.

Theorem 8.2. The semigroup (Pω
t )t≥0 of any ω-rewiring process enjoys the Feller property.

Proof. To show the first point in the Feller property, we let G ∈ G∞ and � := (�t )t≥0 be an
ω-rewiring process with initial state �0 = G and directing measure ω satisfying (7.1). We define

F := {
h :G∞ →R | there exists n ∈ N such that G|[n] = G′|[n] ⇒ h(G) = h

(
G′)}.

By (7.1) and finiteness of Gn, �
[n]
t → G|[n] in probability as t ↓ 0, for every n ∈ N. Thus, for any

h ∈F , let N ∈N be such that

d
(
G,G′) ≤ 1/N �⇒ h(G) = h

(
G′).

Then �
[N ]
t → G|[N ] in probability as t ↓ 0 and, therefore, Pt h(G) → h(G) by the Bounded

Convergence theorem. Right-continuity at zero for all bounded, continuous h :G∞ → R follows
by the Stone–Weierstrass theorem.

For the second point, let G,G′ ∈ G∞ have d(G,G′) ≤ 1/n for some n ∈ N and construct �

and �′ from the same Poisson point process W but with initial states �0 = G and �′
0 = G′. By

Lipschitz continuity of the rewiring maps (Proposition 4.1), � and �′ can never be more than
distance 1/n apart, for all t ≥ 0. Continuity of Pω

t , for each t ≥ 0, follows. �

By the Feller property, any ω-rewiring process has a càdlàg version and its jumps are char-
acterized by an infinitesimal generator. In Section 7, we described the infinitesimal generator
through its finite restrictions. Ethier and Kurtz [15] give an extensive treatment of the general
theory of Feller processes.

9. Concluding remarks

We have presented a family of time-varying network models that is Markovian, exchangeable,
and consistent, natural statistical properties that impose structure without introducing logical pit-
falls. External to statistics, exchangeable models are flawed: they produce dense graphs when
conventional wisdom suggests real-world networks are sparse. The Erdős–Rényi model’s sto-
ried history cautions against dismay. Though it replicates little real-world network structure,
the Erdős–Rényi model has produced a deluge of insight for graph-theoretic structures and is
a paragon of the utility of the probabilistic method [5]. While our discussion is specific to ex-
changeable processes, the general descriptions in Sections 5 and 7 can be used to construct pro-
cesses that are not exchangeable, and possibly even sparse.
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The most immediate impact of the rewiring process may be for analyzing information spread
on dynamic networks. Under the heading of Finite Markov Information Exchange (FMIE) pro-
cesses, Aldous [4] recently surveyed interacting particle systems models for social network dy-
namics. Informally, FMIE processes model a random spread of information on a network. Some
of the easiest to describe FMIE processes coincide with well-known interacting particle systems,
such as the Voter and Contact processes; others mimic certain social behaviors, for example,
Fashionista and Compulsive Gambler.

Simulation is a valuable practical tool for developing intuition about intractable problems.
Aldous’s expository account contains some hard open problems for time-invariant networks.
Considering these same questions on dynamic networks seems an even greater challenge. Despite
these barriers, policymakers and scientists alike desire to understand how trends, epidemics, and
other information spread on networks. The Poisson point process construction in Section 8 could
be fruitful for deriving practical answers to these problems.

10. Technical proofs

In this section, we prove some technical results from our previous discussion.

10.1. Proof of Lemma 6.2

We now show that (V∗, ρ) is a compact metric space. Recall that V∗ is equipped with the metric

ρ
(
υ,υ ′) =

∑
n∈N

2−n
∑

V ∈Wn

∣∣υV − υ ′
V

∣∣, υ,υ ′ ∈ V∗.

Since [0,1]W∗
is compact in this metric, it suffices to show that V∗ is a closed subset of [0,1]W∗

.
By Lemma 6.1, every υ ∈ V∗ satisfies

υ(W) =
∑

W ∗∈Wn+1:W ∗|[n]=W

υ
(
W ∗) for every W ∈Wn

and ∑
W∈Wn

υ(W) = 1,

for all n ∈N. Then, for any x ∈ [0,1]W∗ \ V∗, there must be some N ∈ N for which

εx :=
∑

W∈WN

∣∣∣∣x(N)(W) −
∑

W ∗|[N]=W

x(N+1)
(
W ∗)∣∣∣∣ > 0.
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For any δ > 0, let B(x, δ) := {x′ ∈ [0,1]W∗
: ρ(x, x′) < δ} denote the δ-ball around x. Now, take

any x′ ∈ B(x,2−N−2εx). By this assumption, ρ(x, x′) ≤ 2−N−2εx and so

2−N
∑

W∈WN

∣∣x(N)(W)−x′(N)(W)
∣∣+2−N−1

∑
W ∗∈WN+1

∣∣x(N+1)
(
W ∗)−x′(N+1)

(
W ∗)∣∣ ≤ 2−N−2εx;

whence,

∑
W∈WN

∣∣x(N)(W) − x′(N)(W)
∣∣ ≤ 1

4
εx and

∑
W ∗∈WN+1

∣∣x(N+1)
(
W ∗) − x′(N+1)

(
W ∗)∣∣ ≤ 1

2
εx.

By the triangle inequality, we have

εx =
∑

W∈WN

∣∣∣∣x(N)(W) −
∑

W ∗:W ∗|[N]
x(N+1)

(
W ∗)∣∣∣∣

≤
∑

W∈WN

∣∣x(N)(W) − x′(N)(W)
∣∣ +

∑
W∈WN

∣∣∣∣ ∑
W ∗:W ∗|[N]=W

(
x(N+1)

(
W ∗) − x′(N+1)

(
W ∗))∣∣∣∣

+
∑

W∈WN

∣∣∣∣x′(N)(W) −
∑

W ∗:W ∗|[N]=W

x′(N+1)
(
W ∗)∣∣∣∣

≤ εx/4 +
∑

W∈WN

∑
W ∗:W ∗|[N]=W

∣∣x(N+1)
(
W ∗) − x′(N+1)

(
W ∗)∣∣

+
∑

W∈WN

∣∣∣∣x′(N)(W) −
∑

W ∗:W ∗|[N]=W

x′(N+1)
(
W ∗)∣∣∣∣

≤ εx/4 + εx/2 +
∑

W∈WN

∣∣∣∣x′(N)(W) −
∑

W ∗:W ∗|[N]=W

x′(N+1)
(
W ∗)∣∣∣∣.

Therefore,

∑
W∈WN

∣∣∣∣x′(N)(W) −
∑

W ∗:W ∗|[N]=W

x′(N+1)
(
W ∗)∣∣∣∣ ≥ εx/4 > 0,

which implies x′ ∈ [0,1]W∗ \V∗, meaning [0,1]W∗ \V∗ is open and V∗ is closed. Since [0,1]W∗

is compact, so is V∗. This completes the proof.
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10.2. Proof of Theorem 6.1

Assume that W is an exchangeable and dissociated rewiring map. By the Aldous–Hoover theo-
rem, we can assume W is constructed from a measurable function f : [0,1]4 → {0,1}×{0,1} for
which (i) f (a, ·, ·, ·) = f (a′, ·, ·, ·) and (ii) f (·, b, c, ·) = f (·, c, b, ·). More precisely, we assume
Wij = f (α,ηi, ηj , λ{i,j}), for each i, j ≥ 1, where {α; (ηi)i≥1; (λ{i,j})i<j } are i.i.d. Uniform ran-
dom variables on [0,1]. Conditional on α = a, we define the quantity

ta(V ,W) := P {W |[m] = V | α = a}, V ∈Wm,m ∈N,

which, by the fact that W is dissociated, is independent of a; hence, we define the non-random
quantity

t (V ,W) := E
(
1{W |[m] = V } | α) = P {W |[m] = V }.

Recall, from Section 6.2, the definition

t (V ,W |[n]) := ind(V ,W |[n])
n↓m

:= 1

n↓m

∑
injectionsψ :[m]→[n]

1
{
W |ψ[n] = V

}
, n ∈N.

For every n ≥ 1, we also define

Mk,n := 1

n↓m

∑
injectionsψ :[m]→[n]

E
(
1
{
W |ψ[n] = V

} | W |[k]
)
, k = 0,1, . . . , n.

In particular, for every n ∈ N, we have

M0,n = 1

n↓m

∑
injectionsψ :[m]→[n]

E
(
1
{
W |ψ[n] = V

} | W |[0]
) = t (V ,W)

and

Mn,n = 1

n↓m

∑
injectionsψ :[m]→[n]

E
(
1
{
W |ψ[n] = V

} | W |[n]
) = t (V ,W |[n]).

We wish to show that t (V ,W |[n]) → t (V ,W) almost surely, for every V ∈ Wm, m ∈ N. To do
this, we first show that (M0,n,M1,n, . . . ,Mn,n) is a martingale with respect to its natural filtration,
for every n ∈N. We can then appeal to Azuma’s inequality and the Borel–Cantelli lemma to show
that Mn,n → t (V ,W) as n → ∞.

Note that

Mk,n = 1

n↓m

∑
injectionsψ :[m]→[n]

∑
w∈Wn

E
(
1{W |[n] = w} | W |[k]

)
1
{
wψ = V

}

and

E(Mk+1,n | Mk,n) = E
(
E(Mk+1,n | Mk,n,W |[k]) | Mk,n

)
.
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On the inside, we have

E(Mk+1,n | Mk,n,W |[k])

= E

(
1

n↓m

∑
injections ψ :[m]→[n]

∑
w∈Wn

1
{
wψ = V

}
E

(
1
{
W |ψ[n] = w

} | W |[k]
) ∣∣∣ Mk,n,W |[k]

)

= 1

n↓m

∑
injections ψ :[m]→[n]

∑
w∈Wn

1
{
wψ = V

}
E

(
1
{
W |ψ[n] = w

} | W |[k]
);

whence,

E
(
E(Mk+1,n | Mk,n,W |[k]) | Mk,n

)
= E

(
1

n↓m

∑
injections ψ :[m]→[n]

∑
w∈Wn

1
{
wψ = V

}
E

(
1
{
W |ψ[n] = w

} | W |[k]
) ∣∣∣ Mk,n

)

= 1

n↓m

∑
injections ψ :[m]→[n]

∑
w∈Wn

1
{
wψ = V

}
E

(
E

(
1{W |[n] = w} | W |[k]

) | Mk,n

)

= 1

n↓m

∑
injections ψ :[m]→[n]

∑
w∈Wn

1
{
wψ = V

}
E

(
1{W |[n] = w} | Mk,n

)
= Mk,n.

Therefore, (Mk,n)k=0,1,...,n is a martingale for every n ∈ N. Furthermore, for every k =
0,1, . . . , n − 1,

|Mk+1,n − Mk,n|

= 1

n↓m

∣∣∣∣ ∑
injections ψ :[m]→[n]

E
(
1
{
W |ψ[n] = V

} | W |[k+1]
) − E

(
1
{
W |ψ[n] = V

} | W |[k]
)∣∣∣∣

≤ 1

n↓m

∑
injections ψ :[m]→[n]

∣∣E(
1
{
W |ψ[n] = V

} | W |[k+1]
) − E

(
1
{
W |ψ[n] = V

} | W |[k]
)∣∣

≤ m(n − 1)↓(m−1)/n↓m

≤ m/n,

since E(1{W |ψ[n] = V } | W |[k+1]) − E(1{W |ψ[n] = V } | W |[k]) = 0 whenever ψ does not map an
element to k + 1. The conditions for Azuma’s martingale inequality are thus satisfied and we
have, for every ε > 0,

P
{|Mn,n − M0,n| > ε

} ≤ 2 exp

{
− ε2n

2m2

}
for every n ∈N.
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Thus,
∞∑

n=1

P
{∣∣Mn,n − t (V ,W)

∣∣ > ε
} ≤ 2

∞∑
n=1

exp

{
− ε2n

2m2

}
< ∞,

and we conclude, by the Borel–Cantelli lemma, that

lim sup
n→∞

{∣∣t (V ,W |[n]) − t (V ,W)
∣∣ > ε

}
= {∣∣t (V ,W |[n]) − t (V ,W)

∣∣ > ε for infinitely many n ∈ N
}

has probability zero. It follows that limn→∞ t (V ,W |[n]) = t (V ,W) exists with probability one
for every V ∈ ⋃

m∈NWm. Therefore, with probability one, the rewiring limit (t (V ,W))V ∈W∗
exists. We have already shown, by the assumption that W is dissociated, that t (V ,W) is non-
random for every V ∈ ⋃

m∈NWm; hence, the limit (t (V ,W))V ∈W∗ is non-random. This com-
pletes the proof.
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[6] Barabási, A.-L. (2003). Linked: How Everything Is Connected to Everything Else and What It Means
for Business, Science, and Everyday Life. New York: Plume.

[7] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–
512. MR2091634

[8] Burke, C.J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Statist.
29 1112–1122. MR0101557

[9] Chung, F. and Lu, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in
Mathematics 107. Providence, RI: Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the Amer. Math. Soc. MR2248695

[10] Clarke, R. (2010). Cyber War: The Next Threat to National Security and What to Do About It. New
York: HarperCollins.

http://www.ams.org/mathscinet-getitem?mr=0637937
http://www.ams.org/mathscinet-getitem?mr=0883646
http://www.ams.org/mathscinet-getitem?mr=1395604
http://www.ams.org/mathscinet-getitem?mr=1885388
http://www.ams.org/mathscinet-getitem?mr=2091634
http://www.ams.org/mathscinet-getitem?mr=0101557
http://www.ams.org/mathscinet-getitem?mr=2248695


1696 H. Crane

[11] Dorogovtsev, S.N. and Mendes, J.F.F. (2003). Evolution of Networks: From Biological Nets to the
Internet and WWW. Oxford: Oxford Univ. Press. MR1993912

[12] Durrett, R. (2007). Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge: Cambridge Univ. Press. MR2271734
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