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A new quantile regression concept, based on a directional version of Koenker and Bassett’s traditional
single-output one, has been introduced in [Ann. Statist. (2010) 38 635–669] for multiple-output loca-
tion/linear regression problems. The polyhedral contours provided by the empirical counterpart of that
concept, however, cannot adapt to unknown nonlinear and/or heteroskedastic dependencies. This paper
therefore introduces local constant and local linear (actually, bilinear) versions of those contours, which
both allow to asymptotically recover the conditional halfspace depth contours that completely character-
ize the response’s conditional distributions. Bahadur representation and asymptotic normality results are
established. Illustrations are provided both on simulated and real data.
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1. Introduction

1.1. Quantile/depth contours: From multivariate location to
multiple-output regression

A multiple-output extension of Koenker and Bassett’s celebrated concept of regression quantiles
was recently proposed in Hallin, Paindaveine, and Šiman [18] (hereafter HPŠ). That extension
provides regions that are enjoying, at population level, a double interpretation in terms of quan-
tile and halfspace depth regions. In the empirical case, those regions are limited by polyhedral
contours which can be computed via parametric linear programming techniques.

Those results establish a strong and quite fruitful link between two seemingly unrelated statis-
tical worlds – on one hand the typically one-dimensional concept of quantiles, deeply rooted into
the strong ordering features of the real line and L1 optimality, with linear programming algo-
rithms, and traditional central-limit asymptotics; the intrinsically multivariate concept of depth
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on the other hand, with geometric characterizations, computationally intensive combinatorial al-
gorithms, and nonstandard asymptotics. From their relation to depth, quantile hyperplanes and
regions inherit a variety of geometric properties – connectedness, nestedness, convexity, affine-
equivariance . . . while, via its relation to quantiles, depth accedes to L1 optimality, feasible linear
programming algorithms, and tractable asymptotics.

The HPŠ approach, however, is focused on the case of i.i.d. m-variate observations Y1, . . . ,Yn,
and the quantile/depth contours they propose provide a consistent reconstruction of the corre-
sponding population contours in R

m – call them unconditional or location contours. In the pres-
ence of covariates X1, . . . ,Xn, with Xi = (1,W′

i )
′, the objective of the statistical analysis is a

study of the influence of the covariate(s) W on the response Y, that is, a study of the distribu-
tion of Y conditional on W. The contours of interest, thus, are the collection of the population
conditional quantile/depth contours of Y, indexed by the values w ∈R

p−1 of W – that is, the col-
lection of location (p = 1) quantile/depth contours associated with the conditional (on W = w)
distributions of Y.

An apparently simple solution would consist in introducing the covariate values w into the lin-
ear equations that characterize (via the minimization of an L1 criterion) the HPŠ contours. The
resulting regions and contours, unfortunately, in general carry little information about conditional
distributions, and rather produce some averaged (over the covariate space) quantile/depth con-
tours – the only exception being the overly restrictive case of a linear regression relation between
the response and the covariates, under which, for some b ∈ R

p , the distribution of Y − (1,w′)b
conditional on W = w does not depend on w ∈R

p−1.
This problem is not specific to the multiple-output context and, in the traditional single-output

setting, it has motivated weighted, local polynomial and nearest-neighbor versions of quantile
regression, among others. We refer to [43–45] for conceptual insight and practical information,
to [4,9,17,19,28,47] for some recent asymptotic results, and to [2,6,14,16,22–24,38] for some
less recent ones.

Our objective in this paper is to extend those local estimation ideas to the HPŠ concept of
multiple-output regression quantiles. Since local constant and local linear methods have been
shown to perform extremely well in the single-output single-regressor case (Yu and Jones [44]),
we will concentrate on local constant and local bilinear approaches – in the multiple-output
context, indeed, it turns out that the adequate extensions of locally linear procedures are of a
bilinear nature. Just as in the single-output case, the local methods we propose in this paper
do not require any a priori knowledge of any trend and – see [30] for details – asymptotically
characterize the conditional distributions of Y given W = w for any w ∈ R

p−1. The final result
is thus much more informative on the dependence of Y on the covariates than any standard linear
or local polynomial mean regression.

It should be clear, however, that our methods, as well as other local nonparametric methods,
do not escape the curse of dimensionality, and will run into problems in the presence of high-
dimensional regressors. It follows indeed from the asymptotic results of Section 5 and, more
particularly, from the rates in Theorem 5.2, that consistency rates are affected by p but not by m.

Growth chart applications (with (p − 1) = 1) do not suffer this drawback, as only univariate
kernels are involved. Growth charts (reference curves, percentile curves) have been used for a
long time by practitioners in order to assess the impact of regressors on the quantiles of some
given univariate variable of interest, and several methods have been developed (see, e.g., [3,8,
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40,42], and the references therein), including single-response quantile regression (see [15,41]).
Much less results are available in the multiple-output case, with a recent proposal by Wei [39],
who defines a new concept of dynamic multiple-output regression contours generalizing single-
output proposals by [4], [25] and [40]. These contours, however, do not have the nature and
interpretation of (conditional) depth contours. They enjoy interesting conditional coverage prob-
ability properties (without any “minimal volume” or “maximal accuracy” features, though) but
rely on a sequential conditioning of response components, and crucially depend on the order
adopted for that conditioning. Their empirical versions are equivariant under marginal location-
scale transformations of the response, but they are neither affine- nor rotation-equivariant. Our
methodology, which is based on entirely different principles, appears as a natural alternative (see
[32] for a real-data example of bivariate growth charts based on the methods we are describ-
ing here), yielding affine-equivariant regression contours with well-accepted conditional depth
interpretation; moreover, we provide consistency and asymptotic distributional results.

1.2. Motivating examples

As a motivating example, we generated n = 999 points from the model

(Y1, Y2) = (
W,W 2) +

(
1 + 3

2

(
sin

(
π

2
W

))2)
ε,

with W ∼ U([−2,2]) independent of the bivariate standard normal vector ε. In Figure 1, we
are plotting the τ = 0.2 and τ = 0.4 HPŠ regression quantile/depth contours obtained by using
the covariate vector X = (1,W)′ (Figure 1(a)) and the covariate vector X = (1,W,W 2)′ (Fig-
ure 1(b)) in the equations of the quantile/depth hyperplanes of the (global) HPŠ mehod. More
precisely, these figures provide the intersections of the HPŠ contours with hyperplanes orthogo-
nal to the w-axis at fixed w-values −1.89,−1.83,−1.77, . . . ,1.89.

Clearly, the results are very poor: Figure 1(a) neither reveals the parabolic trend, nor the peri-
odic heteroskedasticity pattern in the data. Although it is obtained by fitting the “true” regression
function, Figure 1(b), while doing much better with the trend, still fails to catch heteroskedastic-
ity correctly. Instead of providing genuine conditional quantile/depth contours, the “global” HPŠ
methodology produces some averaged (over the w values) contours.

In contrast, the contours obtained from the local constant and local bilinear methods proposed
in this paper – without exploiting any a priori knowledge of the actual regression function – ex-
hibit a very good agreement with the population contours (see Figure 1(c)–(e) to which we refer
for details); both the parabolic trend and the periodic heteroskedascticity features now are picked
up quite satisfactorily. Note that, compared to the local constant approach, the local bilinear one
does better, as expected, close to the boundary of the regressor space (in particular, the local
constant approach is missing the decay of the conditional scale when w converges to −2).

Similar comments remain valid for smaller sample sizes; see Figure 3, based on a sample of
n = 499 data points.

A second example is contrasting a homoskedastic setup and a heteroskedastic one. More
specifically, we generated n = 999 points from the homoskedastic model (Y1, Y2) = (W,W 2)+ε
and from the heteroskedastic one (Y1, Y2) = (W,W 2) + (1 + W 2)ε, where W ∼ U([−2,2])
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Figure 1. For n = 999 points following the model (Y1, Y2) = (W,W2) + (1 + 3
2 (sin(π

2 W))2)ε, where

W ∼ U([−2,2]) and ε ∼ N (0,1)2 are independent, the plots above show the intersections, with hyper-
planes orthogonal to the w-axis at fixed w-values −1.89,−1.83,−1.77, . . . ,1.89, of (a) the HPŠ regres-
sion quantile regions with the single random regressor W , (b) the HPŠ regression quantile regions with
random regressors W and W2, and (c)–(d) the proposed local constant and local bilinear regression quan-
tile regions (in each case, τ = 0.2 and τ = 0.4 are considered). For the sake of comparison, the corre-
sponding population (conditional) halfspace depth regions are provided in (e). The conditional scale func-
tion w �→ 1 + 3

2 (sin(π
2 w))2 is plotted in (f). Local methods use a Gaussian kernel and bandwidth value

H = 0.37, and 360 equispaced directions u ∈ S1 were used to obtain results in (d).
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Figure 2. For n = 499 points following the model (Y1, Y2) = (W,W2) + (1 + 3
2 (sin(π

2 W))2)ε, where

W ∼ U([−2,2]) and ε ∼ N (0,1)2 are independent, the plots above show the intersections, with hyper-
planes orthogonal to the w-axis at fixed w-values −1.89,−1.83,−1.77, . . . ,1.89, of (a) the HPŠ regres-
sion quantile regions with the single random regressor W , (b) the HPŠ regression quantile regions with
random regressors W and W2, and (c)–(d) the proposed local constant and local bilinear regression quan-
tile regions (in each case, τ = 0.2 and τ = 0.4 are considered). For the sake of comparison, the corre-
sponding population (conditional) halfspace depth regions are provided in (e). The conditional scale func-
tion w �→ 1 + 3

2 (sin(π
2 w))2 is plotted in (f). Local methods use a Gaussian kernel and bandwidth value

H = 0.37, and 360 equispaced directions u ∈ S1 were used to obtain results in (d).
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and ε ∼ N (0,1/4)2 are mutually independent. As above, the intersections of the resulting con-
tours with hyperplanes orthogonal to the w-axis at fixed w-values are provided. Figure 3 shows
those intersections for the local constant and local bilinear quantile contours associated with
w ∈ {−1.89,−1.83,−1.77, . . . ,1.89}, for τ = 0.2 and τ = 0.4. As in the previous example,
those sample contours approximate their population counterparts (shown in Figure 3(e) and (f))
remarkably well. In particular, the inner regions mimic the trend faithfully even for quite extreme
regressor values. Again, the local bilinear method seems to provide a much better boundary be-
havior than its local constant counterpart; in the heteroskedastic case, the latter indeed severely
underestimates the conditional scale for extreme values of W .

1.3. Relation to the depth and multivariate quantile literature

As already explained, this work is lying at the intersection of two distinct, if not unrelated, strands
of the statistical literature – namely (i) statistical depth and (ii) multivariate quantiles. Under
both strands, definitions have been proposed for unconditional concepts, that is, for statistical
models that do not involve covariates. When covariates are present, the focus is shifted from
unconditional features to conditional ones. The main objective, indeed, now is the analysis of
the dependence of a response Y on a set of covariates X, that is, a study of the distributions of
Y conditional on the values x of X – in its broadest sense, the regression problem – and various
attempts have been made to propose regression versions of (unconditional) depth or quantile
concepts, respectively.

Now, if a study of the dependence on x of the distributions of Y conditional on X = x is
the main objective, conditional depth and conditional (multivariate) quantiles, associated with
the distributions of Y conditional on X = x, are or should be the concepts of interest. Not all
definitions of regression depth or (multiple-output) regression quantiles are meeting that require-
ment, though. Nor do they all preserve, conditionally on X = x, the distinctive properties of a
depth/quantile concept. In contrast with this, the concept we are proposing in this paper, be-
ing the conditional version of the unconditional HPŠ concept, enjoys all the properties that are
expected from a conditional depth/quantile concept, while fully characterizing the conditional
distributions of Y.

1.3.1. Regression depth

An excellent summary of depth-related problems is provided in Serfling [37], which further
clarifies the nature of depth by placing it in the broader perspective of the so-called DOQR
paradigm, relating Depth to the companion concepts of Outlyingness, Quantiles, and Ranks. To
the best of our knowledge, this paradigm never has been considered in a conditional (regression)
context, but it seems quite desirable that any regression depth concept should similarly be placed,
conditionally, in the same DOQR perspective.

The celebrated regression depth concept by Rousseeuw and Hubert [35], for instance, does not
bear any direct relation to conditional depth and the DOQR paradigm. Rather than the depth of a
point in the observation space, that concept aims at defining, via non-fits and breakdown values,
the depth of a (single-output) regression hyperplane. A multiple-output version is considered in
Bern and Eppstein [1]. Similarly, an elegant general theory has been developed by Mizera [33]
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Figure 3. Local multiple-output quantile regression with Gaussian kernel and ad-hoc bandwidth H = 0.37:
cuts through w ∈ {−1.89,−1.83,−1.77, . . . ,1.89} for τ = 0.2 and τ = 0.4 corresponding to n = 999 ran-
dom points drawn from a homoskedastic model (Y1, Y2) = (W,W2)+ε ((a), (c)) or a heteroskedastic model
(Y1, Y2) = (W,W2) + (1 + W2)ε ((b), (d)), where W ∼ U([−2,2]) and ε ∼ N (0,1/4)2 are independent.
The plots are showing the intersections, with hyperplanes orthogonal to the w-axis at fixed w-values, of the
contours obtained either from the local constant method ((a), (b)) or the local bilinear one ((c), (d)). Color
scaling of the points (resp., the intersections) mimics their regressor values, whose higher values are indi-
cated by lighter red (resp., lighter green). For the sake of comparison, the population (conditional) halfspace
depth regions are provided in (e) and (f). A color version of this figure is more readable, and can be found
in the on-line edition of the paper.
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who, in the context of a general parametric model, defines the depth of a parameter value. Again,
the approach and, despite the terminology, the concept, is of a different nature, unrelated to any
conditional depth. Extensions to a nonparametric regression setting, moreover, seem problematic.

Kong and Mizera [29] propose an approach to unconditional depth, based on projection quan-
tiles, which provides an approximation to the unconditional halfspace depth contours – see [18]
and [29]. Although an application to bivariate growth charts is briefly described, in which a local
smoothing, based on regression spline techniques, of their unconditional concept is performed
(little details are provided), the regression setting is only briefly touched there. In particular, no
asymptotic analysis of the type we are providing in Section 5 is made available.

1.3.2. Multivariate regression quantiles

Turning to conditional multivariate or multiple-output regression quantile issues, much work has
been devoted to the notion of spatial regression quantiles; see, essentially, Chakraborty [5] for
linear and Cheng and De Gooijer [7] for nonparametric regression. Despite a strong depth flavor,
those spatial quantiles and spatial regression quantiles, however, intrinsically fail to be affine-
equivariant; Chakraborty [5] defines affine-equivariant spatial quantiles for linear regression via a
transformation–retransformation device, but, to the best of our knowledge, there exists no affine-
equivariant version of spatial quantiles for general nonparametric regression.

For the sake of completeness, one also should mention here the closely related literature on
growth charts described at the end of Section 1.1, which, besides a lack of affine-invariance,
essentially fails, in the multiple-output case, to address the conditional nature of the regression
quantile concept it is dealing with.

1.4. Outline of the paper

The rest of this paper is organized as follows. Section 2 defines the (population) conditional
regression quantile/depth regions and contours we would like to estimate in the sequel. This es-
timation will make use of (empirical) weighted multiple-output regression quantiles, which we
introduce in Section 3. Section 4 explains how these weighted quantiles lead to local constant
(Section 4.2) and local bilinear (Section 4.3) depth contours. Section 5 provides asymptotic re-
sults (Bahadur representation and asymptotic normality) both for the local constant and local
bilinear cases. Section 6 deals with the practical problem of bandwidth selection. In Section 7,
the usefulness and applicability of the proposed methods are illustrated on real data. Finally, the
Appendix collects proofs of asymptotic results.

2. Conditional multiple-output quantile/depth contours

Denote by (X′
i ,Y′

i )
′ = (Xi1, . . . ,Xip , Yi1, . . . , Yim)′, i = 1, . . . , n, an observed n-tuple of in-

dependent copies of (X′,Y′)′, where Y := (Y1, . . . , Ym)′ is an m-dimensional response and
X := (1,W′)′ a p-dimensional random vector of covariates. For any τ ∈ (0,1) and any direc-
tion u in the unit sphere Sm−1 of the m-dimensional space of the response Y, the HPŠ concept
produces a hyperplane πτu (π(n)

τu in the empirical case) which is defined as the classical Koenker
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and Bassett regression quantile hyperplane of order τ once (0′
p−1,u′)′ has been chosen as the

“vertical direction” in the computation of the relevant L1 deviations.
More specifically, decompose y ∈ R

m into (u′y)u + �u(�′
uy), where �u is such that (u,�u)

is an m × m orthogonal matrix; then the directional quantile hyperplanes πτu and π
(n)
τu are the

hyperplanes with equations

u′y − c′
τ�′

uy − a′
τ

(
1,w′)′ = 0 and u′y − c(n)′

τ �′
uy − a(n)′

τ

(
1,w′)′ = 0 (2.1)

(w ∈ R
p−1) minimizing, with respect to c ∈R

m−1 and a ∈R
p ,

E
[
ρτ

(
u′Y − c′�′

uY − a′X
)]

and
n∑

i=1

ρτ

(
u′Yi − c′�′

uYi − a′Xi

)
, (2.2)

respectively, where ζ �→ ρτ (ζ ), with

ρτ (ζ ) := ζ
(
τ − I [ζ < 0]) = max

{
(τ − 1)ζ, τζ

} = (|ζ | + (2τ − 1)ζ
)
/2, ζ ∈ R (2.3)

as usual denotes the well-known τ -quantile check function. HPŠ moreover show that πτu and
π

(n)
τu can equivalently be defined, in a more symmetric way, as the hyperplanes with equations

b′
τ y − a′

τ

(
1,w′)′ = 0 and b(n)′

τ y − a(n)′
τ

(
1,w′)′ = 0, (2.4)

minimizing, with respect to b ∈R
m satisfying b′u = 1 and a ∈ R

p , the L1 criteria

E
[
ρτ

(
b′Y − a′X

)]
and

n∑
i=1

ρτ

(
b′Yi − a′Xi

)
, (2.5)

respectively.
For p = 1, the multiple-output regression model reduces to a multivariate location one: aτ and

a(n)
τ reduce to scalars, aτ and a

(n)
τ , while the equations describing πτu and π

(n)
τu take the simpler

forms

u′y − c′
τ�′

uy − aτ = 0 and u′y − c(n)′
τ �′

uy − a(n)
τ = 0, (2.6)

respectively. Those location quantile hyperplanes πτu and π
(n)
τu are studied in detail in HPŠ,

where it is shown that their fixed-τ collections characterize regions and contours that actually co-
incide with the Tukey halfspace depth ones. Consistency, asymptotic normality and Bahadur-type
representation results for the π

(n)
τu ’s are also provided there, together with a linear programming

method for their computation.
The objective here is an analysis of the distribution of Y conditional on W, that is, of the

dependence of Y on W – in strong contrast with traditional regression, where investigation is
limited to the mean of Y conditional on W. The relevant quantile hyperplanes, depth regions and
contours of interest are the location quantile/depth hyperplanes/regions/contours associated (in
the sense of HPŠ) with the m-dimensional distributions of Y conditional on W – more precisely,
with the distributions PY|W=w0 of Y conditional on W = w0 (w0 ∈ R

p−1). We now carefully
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define these objects – call them w0-conditional τ -quantile or depth hyperplanes, regions and
contours.

Let τ ∈ (0,1) and u ∈ Sm−1 := {u ∈ R
m :‖u‖ = 1} (the unit sphere in R

m), and write τ :=
τu. Denoting by w0 some fixed point of Rp−1 at which the marginal density f W of W does
not vanish (in order for the distribution of Y conditional on W = w0 to make sense), define
the extended and restricted w0-conditional τ -quantile hyperplanes of Y as the (m + p − 2)-
dimensional and (m − 1)-dimensional hyperplanes

πτ ;w0 := {(
w′,y′)′ ∈R

p−1 ×R
m | b′

τ ;w0
y − aτ ;w0 = 0

}
(2.7)

and

πτ ;w0 := {(
w′

0,y′)′ ∈R
p−1 ×R

m | b′
τ ;w0

y − aτ ;w0 = 0
}
, (2.8)

respectively, where aτ ;w0 and bτ ;w0 minimize

�τ ;w0(a,b) := E
[
ρτ

(
b′Y − a

) | W = w0
]

subject to b′u = 1, (2.9)

with the check function ρτ defined in (2.3). Comparing (2.9) with (2.5) immediately shows that
πτ ;w0 is the (m − 1)-dimensional (location) τ -quantile hyperplane of Y associated with the dis-
tribution of Y conditional on W = w0. Of course, πτ ;w0 is also the intersection of πτ ;w0 with
the m-dimensional hyperplane Cw0 := {(w′

0,y′)′ | y ∈ R
m}. This, and the fact that πτ ;w0 is “par-

allel to the space of covariates” (in the sense that if (w′
0,y′

0)
′ ∈ πτ ;w0 , then (w′,y′

0)
′ ∈ πτ ;w0 for

all w), fully characterizes πτ ;w0 .
Associated with πτ ;w0 are the extended upper and lower w0-conditional τ -quantile halfspaces

H+
τ ;w0

:= {(
w′,y′)′ ∈R

p−1 ×R
m | b′

τ ;w0
y − aτ ;w0 ≥ 0

}
and

H−
τ ;w0

:= {(
w′,y′)′ ∈R

p−1 ×R
m | b′

τ ;w0
y − aτ ;w0 < 0

}
,

with the extended (cylindrical) w0-conditional quantile/depth regions

Rw0(τ ) :=
⋂

u∈Sm−1

{
H+

τu;w0

}
(2.10)

and their boundaries ∂Rw0(τ ), the extended w0-conditional quantile/depth contours. The inter-
sections of those extended regions Rw0(τ ) (resp., contours ∂Rw0(τ )) with Cw0 are the restricted
w0-conditional quantile/depth regions Rw0(τ ) (resp., contours ∂Rw0(τ )), that is, the location
HPŠ regions (resp., contours) for Y, conditional on W = w0. It follows from HPŠ that those
regions are compact, convex, and nested. As a consequence, the regions Rw0(τ ) also are closed,
convex, and nested.

Finally, define the nonparametric τ -quantile/depth regions as

R(τ ) :=
⋃

w0∈Rp−1

Rw0(τ ) =
⋃

w0∈Rp−1

(
Rw0(τ ) ∩ Cw0

)



Local multiple-output quantile regression 1445

and write ∂R(τ ) for their boundaries. The regions R(τ ) are still closed and nested but they
adapt to the general dependence of Y on W: in particular, ∂R(τ ), for any τ , goes through all
corresponding ∂Rw0(τ )’s, w0 ∈ R

p−1. Consequently, the regions R(τ ) in general are no longer
convex.

The fixed-w0 collection (over τ ∈ (0,1/2)) of all w0-conditional location quantile/depth con-
tours ∂Rw0(τ ) (which, by construction, are the intersections of ∂R(τ ) with the “vertical hyper-
planes” Cw0 ) will be called a w0-quantile/depth cut or w0-cut. Such cuts are of crucial interest,
since they characterize the distribution of Y conditional on W = w0, hence provide a full de-
scription of the dependence of the response Y on the regressors W. Note that the nonparametric
contours ∂R(τ ), via the location depth interpretation, for fixed w0, of the ∂Rw0(τ )’s, inherit a
most interesting interpretation as “regression depth contours”. Clearly, this concept of regression
depth, that defines regression depth of any point (w′,y′)′ ∈ R

m+p−1, is not of the same nature as
the regression depth concept proposed in [35], that defines the depth of any regression “fit” (i.e.,
of any regression hyperplane).

3. Weighted multiple-output empirical quantile regression

Under the assumption of absolute continuity, the number of observations, in a sample of size n,
belonging to Cw0 clearly is (a.s.) zero, which implies that no empirical version of the conditional
regression hyperplanes (2.7) or (2.8) can be constructed. If nonparametric τ -quantile/depth re-
gions or contours, or simply some selected cuts, are to be estimated, local smoothing techniques
have to be considered. Those techniques typically involve weighted versions, with sequences
ω

(n)
w0 = (ω

(n)
w0,i

, i = 1, . . . , n) of weights, of the empirical quantile regression hyperplanes devel-

oped in HPŠ. In this section, we provide general definitions and basic results for such weighted
concepts, under fixed sample size n and weights ωi ; see [21] for another approach combining
weights with halfspace depth. In Section 4, we will consider the data-driven weights to be used
in the local approach.

Consider a sample of size n, with observations (X′
i ,Y′

i )
′ = ((1,W′

i ),Y′
i )

′, i = 1, . . . , n, along
with n nonnegative weights ωi satisfying (without any loss of generality)

∑n
i=1 ωi = n (ωi ≡ 1

then yields the unweighted case). The definitions of HPŠ extend, mutatis mutandis, quite straight-
forwardly, into the following weighted versions. The coefficients a(n)

τ ;ω ∈ R
p and b(n)

τ ;ω ∈ R
m of

the weighted empirical τ -quantile hyperplane

π
(n)
τ ;ω := {(

w′,y′)′ ∈ R
p−1 ×R

m | b(n)′
τ ;ωy − a(n)′

τ ;ω
(
1,w′)′ = 0

}
(3.1)

(an (m + p − 2)-dimensional hyperplane) are defined as the minimizers of

�
(n)
τ ;ω(a,b) := 1

n

n∑
i=1

ωiρτ

(
b′Yi − a′Xi

)
subject to b′u = 1. (3.2)

As usual in the empirical case, the solution may not be unique, but the minimizers always form
a convex set. When substituted for the πτ ;w0 ’s in the definitions of upper and lower conditional
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τ -quantile halfspaces, those π
(n)
τ ;ω’s also characterize upper and lower weighted τ -quantile half-

spaces H(n)+
τ ;ω and H(n)−

τ ;ω , with weighted τ -quantile/depth regions and contours

R(n)
ω (τ ) :=

⋂
u∈Sm−1

{
H(n)+

τu;ω
}

and ∂R(n)
ω (τ ),

respectively. Note that the objective function in (3.2) rewrites as

�
(n)
τ ;ω(a,b) = 1

n

n∑
i=1

ρτ

(
b′Yi;ω − a′Xi;ω

)
,

with Xi;ω := ωiXi and Yi;ω := ωiYi . As an important consequence, the weighted quantile/depth
hyperplanes, contours and regions can be computed in the same way as their non-weighted coun-
terparts because the corresponding algorithm in [34] allows to have (Xi )1 �= 1. Due to quantile
crossing, however, and contrary to the population regions and contours defined in the previous
section, the R(n)

ω (τ )’s need not be nested for p ≥ 2; if nestedness is required, one may rather
consider the regions R(n)

ω∩(τ ) := ⋂
0<t≤τ {R(n)

ω (t)}.
The necessary sample subgradient conditions for (a(n)′

τ ;ω,b(n)′
τ ;ω)′ can be derived as in the un-

weighted case. They state in particular that

1

n

n∑
i=1

ωiI
[
b(n)′

τ ;ωY
i
− a(n)′

τ ;ωXi < 0
] ≤ τ ≤ 1

n

n∑
i=1

ωiI
[
b(n)′

τ ;ωY
i
− a(n)′

τ ;ωXi ≤ 0
]
,

which controls the probability contents of H(n)−
τ ;ω with respect to the distribution putting probabil-

ity mass ωi/n on (W′
i ,Y′

i )
′, i = 1, . . . , n. The width of this interval depends only on the weights

ωi associated with those data points (W′
i ,Y′

i )
′ that belong to π

(n)
τ ;ω . Another consequence worth

mentioning is that there always exists a π
(n)
τu;ω hyperplane containing at least (m + p − 1) data

points of the form (Wi ,Yi ). With probability one, thus, the intersection defining the regions
R(n)

ω (τ ) is finite.
Note that, unlike the extended conditional quantile hyperplanes (2.7), the weighted empirical

quantile hyperplanes (3.1) involve an unrestricted coefficient a ∈ R
p . As a consequence, π

(n)
τ ;ω

is not necessarily parallel to the space of covariates (as defined in page 1444). That degree of
freedom will be exploited in the local linear approach described in Section 4.3 (in an augmented
regressor space, though, which makes it bilinear rather than linear). If we impose the additional
constraint a = (a1,0, . . . ,0)′ in (3.1) and (3.2), we obtain hyperplanes of the form

π
(n)
τ ;ω := {(

w′,y′)′ ∈ R
p−1 ×R

m | b(n)′
τ ;ωy − a

(n)
1;τ ;ω = 0

}
. (3.3)

The corresponding minimization problem yields hyperplanes that are parallel to the space of
covariates, hence “horizontal” cylindrical regions and contours, to be considered in the local
constant approach of Section 4.2.
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Finally, it should be pointed out that (y and/or w)-affine-invariant weights ωi := ω(wi ,yi )

yield weighted quantile/depth hyperplanes, regions, and contours with good (y and/or w)-affine-
equivariance properties.

4. Local quantile/depth regression

4.1. From weighted to local quantile/depth regression

The weighted quantiles of Section 3 have an interest on their own. They can be used for handling
multiple identical observations (allowing, for instance, for bootstrap procedures), or for down-
weighting observations that are suspected to be outliers or leverage points. Above all, weighted
regression quantiles allow for a nonparametric approach to regression quantiles that will take care
of the drawbacks of the unweighted approach of HPŠ (see the example considered in Section 1.2).
In particular, adequate sequences of weights will allow to estimate the conditional contours de-
scribed in Section 2, thus extending to the multiple-output case the local constant and local linear
approaches to quantile regression proposed, for example, by [43,44] in the single-output context.

The basic idea is very standard: in order to estimate w0-conditional quantile/depth hyper-
planes, regions or contours, we will consider weighted quantile/depth hyperplanes, regions or
contours, with sequences of weights ω

(n)
i := ω

(n)
w0 (Wi ) based on weight functions of the form

w �→ ω(n)
w0

(w) := h
−p+1
n K

(
h−1

n (w − w0)
)
, (4.1)

where hn is a sequence of positive bandwidths and K a nonnegative kernel function over Rp−1.
The literature proposes a variety of possible kernels, and there is no compelling reason for not
considering the most usual, such as the rectangular (uniform), Epanechnikov or (spherical) Gaus-
sian ones.

Since we typically intend, for any fixed τ ∈ (0,1), to compute by means of parametric pro-
gramming the directional quantile hyperplanes for all u ∈ Sm−1, we should use the same weights
for all of them. This is why we only consider u-independent bandwidths. However, exact compu-
tation of all quantiles (for each fixed τ ) is possible in the local constant case, but not in the local
bilinear one. In the latter case, depth contours will be approximated by sampling the unit sphere
(in Figures 1 and 2, for instance, 360 directions were sampled uniformly over the unit circle),
which of course would allow u-dependent bandwidths if desired.

4.2. Local constant quantile/depth contours

The above weighting scheme can be applied in the computation of the weighted cylindrical re-
gions generated by the hyperplanes in (3.3); more precisely, these cylindrical regions, with edges
parallel to the space of covariates, are obtained by computing the intersection (over all u’s, for
fixed τ ) of the upper quantile halfspaces associated with the quantile hyperplanes in (3.3); see
Figure 4(a).

The intersection with the w = w0 hyperplane of these cylindrical regions yields a local con-
stant estimate, ∂R̂

(n)const
w0 (τ ) say, of the corresponding population w0-cut ∂Rw0(τ ); see Section 5
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Figure 4. Construction of (a) the local constant and (b) the local bilinear τ -quantile regions as described
in Sections 4.2 and 4.3.

for asymptotic results. Of course, the resulting local constant τ -quantile/depth contours, namely

∂R̂(n)const(τ ) :=
⋃

w0∈Rp−1

∂R̂(n)const
w0

(τ ),

are not (globally) cylindrical, but rather adapt to the underlying possibly nonlinear and/or het-
eroskedastic dependence structures.

This approach, which constitutes a generalization of the local constant approach adopted else-
where for single-output regression, has many advantages. The main one is parsimony: each quan-
tile hyperplane involved in the construction only entails m parameters, which is strictly less than
in the local bilinear approach of the next section. On the other hand, the local constant approach
does not provide any information on, nor does take any advantage of, the behavior of w-cuts for w
values in the neighborhood of w0, and its boundary performances are likely to be poor. These
two reasons, in traditional contexts, have motivated the development of local linear and local
polynomial methods; see [10] for a classical reference. Local linear methods were successfully
used in single-output quantile regression ([43–45,47]). Considering them in the present context,
thus, is a quite natural idea.

4.3. Local bilinear quantile/depth contours

Assume that the distribution of (W′,Y′)′ is smooth enough that the coefficients of w-conditional
quantile hyperplanes are differentiable with respect to w. Getting back to the first characterization
(2.1) and (2.2) of quantile hyperplanes, the (restricted) w0-conditional τ -quantile hyperplane of
Y defined in (2.8) and (2.9) has equation (in y – of course, in w, we just have w = w0)

u′y − (
aτ ;w0, c′

τ ;w0

)(
1

�′
uy

)
= 0. (4.2)
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The same hyperplane equation, relative to a point w in the neighborhood of w0, takes the form

u′y − (
aτ ;w0, c′

τ ;w0

)(
1

�′
uy

)
(4.3)

− (w − w0)
′(ȧτ ;w0, ċ′

τ ;w0

)(
1

�′
uy

)
+ o

(‖w − w0‖
) = 0,

where ȧτ ;w0 stands for the gradient of w �→ aτ ;w and ċτ ;w for the Jacobian matrix of w �→
cτ ;w, respectively, both taken at w = w0. In order to express this equation into the equivalent
quantile formulation in (2.4) and (2.5), note that we have bτ ;w0 = u − �ucτ ;w0 , which entails
ḃτ ;w0 = −�uċτ ;w0 , where ḃτ ;w0 is the Jacobian matrix of w �→ bτ ;w at w = w0. Neglecting the
o(‖w − w0‖) term, (4.3) then rewrites, after some algebra, as(

b′
τ ;w0

− w′
0ḃ′

τ ;w0

)
y

(4.4)

− (
aτ ;w0 − w′

0ȧτ ;w0, ȧ′
τ ;w0

,−(vec ċτ ;w0)
′)⎛⎝ 1

w
w ⊗ (

�′
uy

)
⎞⎠ = 0.

Letting x̄ := (1, w̄′)′ := (1,w′, (w⊗�′
uy)′)′, the latter equation is of the form β ′

τ y−α′
τ (1, w̄′)′ =

0, with β ′
τ u = (b′

τ ;w0
− w′

0ḃ′
τ ;w0

)u = b′
τ ;w0

u = 1 since ḃ′
τ ;w0

u = −ċ′
τ ;w0

�′
uu = 0. Comparing

with (2.4), this suggests a local linear approach based on weighted quantile hyperplanes (in the
mp-dimensional regressor-response space associated with the augmented regressor x̄, that is, the
(w̄′,y′)′-space), yielding weighted empirical quantile hyperplanes with equations

β
(n)′
τ ;ωy − α

(n)′
τ ;ω

(
1, w̄′)′ = 0, (4.5)

based on the same sequences of weights ω
(n)
i := ω

(n)
w0 (Wi ), i = 1, . . . , n, as in Section 4.1. Inter-

pretation of the results, however, is easier from (4.3) than from (4.4). The left-hand side of (4.3)
indeed splits naturally into two parts of independent interest: (i) the first one, made of the first
two terms, yields the equation of the w0-conditional τ -quantile hyperplane of Y, hence provides
the required information for constructing the empirical w0-cuts, whereas (ii) the second part (the
third term) provides the linear (linear with respect to (w − w0); actually, bilinear in (w − w0)

and �′
uy) correction required for a small perturbation (w − w0) of the value of the conditioning

variable. Therefore, the important quantities to be recovered from α
(n)
τ ;ω and β

(n)
τ ;ω are estimations

of these two parts, which are easily obtained by

(i) letting w = w0 in (4.5), which yields the equation

β
(n)′
τ ;ωy − α

(n)′
τ ;ω

(
1,w′

0,
(
w0 ⊗ �′

uy
)′)′ = 0

of an empirical hyperplane providing an estimate of the two first terms in (4.3), namely,
the w0-conditional τ -quantile hyperplane;

(ii) subtracting the latter equation from (4.5), which provides the bilinear correction term.
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The bilinear nature of the local approximation in (ii) is easily explained by the fact that, in
general, unless the w0-conditional and w-conditional τ -quantile hyperplanes are parallel to each
other, no higher-dimensional hyperplane can run through both (for instance, two mutually skew
non-intersecting straight lines in R

3 do not span a plane). Omitting the additional W ⊗ (�′
uY)

regressors (in (i) above) may result in inconsistent estimators of the w0-conditional τ -quantile
hyperplanes. The resulting regions in R

m+p−1, are not polyhedral anymore, but delimited by
ruled quadrics (hyperbolic paraboloids for m = 2 and p − 1 = 1), the intersections of which with
the w = w0 hyperplane yield polyhedral estimated w0-cuts; see Figure 4(b).

The local bilinear approach is more informative than the local constant one, and should be
more reliable at boundary points; the price to be paid is an increase of the covariate space di-
mension (due to the presence of the regressors W and W ⊗ (�′

uY) in (4.5)), hence of the num-
ber of free parameters (mp instead of m for the local constant method). Note however that the
smoothing features of the problem, namely the dimension of kernels, remains unaffected (p − 1,
irrespective of m).

5. Asymptotics

Throughout this section, we fix w0 and τ = τu, hence also aτ ;w0 and cτ ;w0 , and write, for sim-
plicity, Yu := u′Y and Y⊥

u := �′
uY. Asymptotic results require some regularity assumptions on

the density f , the kernel K , and the bandwidth hn.

Assumption (A1).

(i) The n-tuple (W′
i ,Y′

i )
′, i = 1, . . . , n is an i.i.d. sample from (W′,Y′)′.

(ii) The density w �→ f W(w) of W is continuous and strictly positive at w0.
(iii) For any t ∈ R

m−1, there exist a neighborhood Bt of aτ ;w0 + c′
τ ;w0

t and a neighborhood

Bt(w0) of w0 such that s �→ f Yu|Y⊥
u =t,W=w(s) is continuous over s ∈ Bt, uniformly in

w ∈ Bt(w0), and w �→ f Yu|Y⊥
u =t,W=w(s) is continuous over w ∈ Bt(w0) for all s ∈ Bt.

(iv) The density f Y⊥
u |W=w(t) of Y⊥

u conditional on W = w is continuous with respect to w
over a neighborhood of w0, except perhaps for a set of t values of f Y⊥

u -measure zero.
(v) The m × m matrix

Gτ ;w0 :=
∫
Rm−1

(
1 t′
t tt′

)
f Yu|Y⊥

u =t,W=w0
(
aτ ;w0 + c′

τ ;w0
t
)
f Y⊥

u |W=w0(t)dt

is finite and positive definite.

Assumption (A2). The kernel function K

(i) is a compactly supported bounded probability density over Rp−1 such that
(ii)

∫
Rp−1 wK(w)dw = 0 and μK

2 := ∫
Rp−1 ww′K(w)dw is positive definite.

Assumption (A3). The bandwidth hn is such that limn→∞ hn = 0 and limn→∞ nh
p−1
n = ∞.
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The conditions we are imposing in Assumption (A1) are quite mild. For example, Assump-
tion (A1)(ii) is the same as Condition (A)(iii) in [11] and Assumption (A1)(i) in [17]; Assump-
tion (A1)(iii)–(v) are similar to Condition (A)(i, iv) in [11] and Condition (A1)(ii) in [17], where
the existence and positive-definiteness ensure the invertibility of Gτ ;w0 in Theorem 5.1.

Assumptions (A2) and (A3) on the kernel function and the bandwidth also are quite stan-
dard in the nonparametric literature. For example, any compactly supported symmetric density
function satisfies Assumption (A2). The compact support of K in Assumption (A2) is only a
technical assumption to simplify the proof of theorems. In practice, Gaussian kernels can be
considered; indeed, at the cost of more involved proof, the compact support assumption in The-
orems 5.1 and 5.2 can be replaced with the assumption that both CK

0 := ∫
Rp−1 K2(w)dw and

CK
2 := ∫

Rp−1 ww′K2(w)dw are finite. As for Assumption (A3), it is the usual one in the i.i.d.
setting; see Section 6 for a discussion.

Let X c
u := (1,Y⊥′

u )′ and X 	
u := (1,Y⊥′

u )′ ⊗ (1, (W − w0)
′)′, where the superscript c and 	

stand for the local constant and local bilinear cases, respectively. For (W,Y) = (Wi ,Yi ), we use
the notation Yiu, Y⊥

iu, X c
iu, X 	

iu, etc. in an obvious way.
Referring to (4.2) for the notation, the parameter of interest for the local constant case is

θc = θc
τ ;w0

:= (aτ ;w0, c′
τ ;w0

)′, whereas, in the local bilinear case (see (4.3)), we rather have to
estimate

θ	 = θ	
τ ;w0

:= vec

(
aτ ;w0 c′

τ ;w0

ȧτ ;w0 ċ′
τ ;w0

)
. (5.1)

The local constant and local bilinear methods described in the previous sections provide estima-

tors of the form θ̂
c(n) := (â, ĉ′)′ and

θ̂
	(n) := vec

(
â ĉ′
ˆ̇a ˆ̇c′

)
(5.2)

(we should actually discriminate between (â, ĉ′) = (âc, ĉc′) and (â, ĉ′) = (â	, ĉ	′), but will not
do so in order to avoid making the notation too heavy); those estimators are defined as the corre-
sponding minimizer θ r of

n∑
i=1

Kh(Wi − w0)ρτ

(
Yiu − θ r ′X r

iu
)
, r = c, 	. (5.3)

The following result provides Bahadur representations for θ̂
c(n)

and θ̂
	(n)

.

Theorem 5.1 (Bahadur representations). Let Assumptions (A1), (A2)(i) and (A3) hold, as-
sume that w �→ (aτ ;w, c′

τ ;w)′ is continuously differentiable at w0, and write ψτ (y) := τ − I [y <

0]. Then, as n → ∞,√
nh

p−1
n Mr

h

(
θ̂

r(n) − θ r
)

(5.4)

= ηr
τ ;w0√
nh

p−1
n

n∑
i=1

K

(
Wi − w0

hn

)
ψτ

(
Zr

iu(θ)
)(

Mr
h

)−1X r
iu + oP(1),
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where Zr
iu(ϑ) := Yiu − ϑ ′X r

iu (r = c, 	), Mc
h := Im, M	

h := Im ⊗ diag(1, hnIp−1),

ηc
τ ;w0

:= (
f W(w0)

)−1G−1
τ ;w0

and η	
τ ;w0

:= (
f W(w0)

)−1G−1
τ ;w0

⊗ diag
(
1,

(
μK

2

)−1)
,

with Gτ ;w0 defined in Assumption (A1)(v) (the result for the local constant case does not require
(A2)(ii)).

This result, along with Assumption (A4) below, entails the asymptotic normality of θ̂
r(n)

,
r = c, 	. That assumption deals with the existence, at w = w0, of the second derivatives of w �→
(aτ ;w, c′

τ ;w)′. With cτ ;w =: (cτ ;w,1, . . . , cτ ;w,m−1)
′, denote by ȧτ ;w and ċτ ;w,j the (p − 1) × 1

vectors of first derivatives and by äτ ;w and c̈τ ;w,j the (p − 1) × (p − 1) matrices of second
derivatives (when they exist) of w �→ aτ ;w and w �→ cτ ;w,j , respectively (recall that ȧτ ;w and
ċτ ;w = (ċτ ;w,1, . . . , ċτ ;w,m−1)

′ were already defined in page 1449). Finally, write c̈′
τ ;w for the

(p − 1) × (m − 1)(p − 1) matrix (c̈τ ;w,1, . . . , c̈τ ;w,m−1).

Assumption (A4).

(i) The function w �→ (aτ ;w, c′
τ ;w)′ is twice continuously differentiable at w = w0, that is,

äτ ;w and c̈τ ;w exist in a neighborhood of w0 and are continuous with respect to w at w0.
(ii) The function w �→ f W(w) is continuously differentiable at w = w0, that is, the (p−1)×1

vector of first derivatives of f W, ḟ W(w), exists in a neighborhood of w0 and is continuous
with respect to w at w0.

The following matrices are involved in the asymptotic bias and variance expressions of the
asymptotic normality result in Theorem 5.2 below. Define

�c
w := τ(1 − τ)f W(w)CK

0 ηc
τ ;w

[∫
Rm−1

f Y⊥
u |W=w(t)

(
1 t′
t tt′

)
dt

]
ηc

τ ;w, (5.5)

�	
w := τ(1 − τ)f W(w)η	

τ ;w
(5.6)

×
[∫

Rm−1
f Y⊥

u |W=w(t)
(

1 t′
t tt′

)
dt ⊗ diag

(
CK

0 ,CK
2

)]
η	

τ ;w,

and, for r = c, 	,

Br
w := f W(w)ηr

τ ;w
(5.7)

×
∫
Rm−1

f Yu|Y⊥
u =t,W=w(

aτ ;w + c′
τ ;wt

)
f Y⊥

u |W=w(t)
(

1
t

)
⊗

[
Br

w;0
(

1
t

)]
dt,

where (putting c̈τ ;w,0 := äτ ;w) Bc
w;0 is the 1 × m matrix with j th entry

Bc
w;0,j := tr

[(
c̈τ ;w,j−1 + 2

ċτ ;w,j−1(ḟ
W(w))′

f W(w)

)
μK

2

]
, j = 1, . . . ,m,
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and B	
w;0 denotes the p × m matrix with (i, j)th entry

B	
w;0,ij := tr

[
c̈τ ;w,j−1

∫
Rp−1

wi−1ww′K(w)dw
]
, i = 1, . . . , p, j = 1, . . . ,m;

here, we wrote w = (w1,w2, . . . ,wp−1)
′, w0 = 1. We then have:

Theorem 5.2 (Asymptotic normality). Let Assumptions (A1)–(A4) hold. Then, for r = c, 	,√
nh

p−1
n Mr

h

(
θ̂

r(n) − θ r − h2

2
Br

w0

)
L→ N

(
0,�r

w0

)
, (5.8)

as n → ∞, where
L→ denotes convergence in distribution (the result for the local bilinear case

does not require Assumption (A4)(ii)).

Remark 5.1. The local bilinear fitting has an expression of bias that is independent of ḟ W. In
contrast, the local constant fitting has a large bias at the regions where the derivative of f W is
large, that is, it does not adapt to highly-skewed designs (see [10,12]). Another important advan-
tage of local bilinear fitting over the local constant approach is its much better boundary behavior.
This advantage often has been emphasized in the usual regression settings when the regressors
take values on a compact subset of Rp−1. For example, considering a univariate random regres-
sor W (p = 2) with bounded support ([0,1], say), it can be proved, using an argument similar to
the one developed in the corresponding proof in [10], that asymptotic normality (with the same
rate) still holds at boundary points of the form chn, where c ∈ R

+
0 , with asymptotic bias and

variances of the same form as in the local bilinear (r = 	) versions of (5.7) and (5.6), with p = 2,
w0 replaced by w0 = 0+, and

∫
Rp−1 by

∫ ∞
−c

; see, for example, page 666 of [17].

Remark 5.2. In practice, we may be concerned with the estimation of the quantile regression
functions at different τ ’s simultaneously. Restricting to the estimation of (θ ′

τ 1;w0
, θ ′

τ 2;w0
)′, it

can be shown by proceeding as in the proof of Theorem 5.2 that (θ̂
′
τ1;w0

, θ̂
′
τ 2;w0

)′ is asymptoti-

cally normal with a block-diagonal asymptotic covariance matrix, that is, θ̂ τ 1;w0 and θ̂ τ2;w0 are
asymptotically independent for τ 1 �= τ 2.

6. Bandwidth selection

While the choice of a kernel, as usual, has little impact on the final result, selecting the bandwidth
h is more delicate. A full plug-in estimator in principle could be derived from the asymptotic
normality result of Theorem 5.2, along the same lines as, for instance, in Zhang and Lee [46],
who do it for mean regression. Such an approach, however, requires the estimation of several
conditional densities, hence raises further problems, besides being computationally quite heavy,
certainly when several values of τ are to be considered. A simpler heuristic rule is thus preferable;
the one we are describing here is adapted from [45], where it is proposed in the context of single-
output quantile regression.
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Without loss of generality, we restrict to p − 1 = 1 for notational simplicity, writing W and w

for W and w, h for hn and θ̂h = (âh
τ ;w0

, ĉh′
τ ;w0

)′ for the estimator of θ = (aτ ;w0 , c′
τ ;w0

)′ associated
with bandwidth h, respectively. Throughout, the kernel K is some symmetric density function,
such as the standard normal one. The objective is to minimize, with respect to h, the asymptotic
mean square error which, in view of Theorem 5.2 with p − 1 = 1, after some straightforward
algebra takes the form

MSE(h) = E(θ̂h − θ)′(θ̂h − θ) ≈ 1

4
h4B2

τ + 1

nh
Vτ , (6.1)

with

B2
τ := (

μK
2

)2

(
ä2
τ ;w0

+
m−1∑
j=1

c̈2
τ ;w0,j

)
and Vτ := τ(1 − τ)CK

0

f W (w0)
tr
(
G−1

τ ;w0
Gw0G−1

τ ;w0

)
,

where c̈τ ;w0,j is the second-order derivative with respect to w0 of the j th component of cτ ;w0 ,
Gτ ;w0 is defined in Assumption (A1)(v), and

Gw0 :=
∫
Rm−1

f Y⊥
u |W=w0(t)

(
1 t′
t tt′

)
dt.

The minimizer hτ of (6.1) satisfies

h5
τ = Vτ

nB2
τ

= τ(1 − τ)CK
0 tr[G−1

τ ;w0
Gw0 G−1

τ ;w0
]

n(μK
2 )2f W(w0)(ä

2
τ ;w0

+ ∑m−1
j=1 c̈2

τ ,w0,j
)
, (6.2)

so that for any τ 1,τ 2,

(
hτ 1

hτ 2

)5

= τ1(1 − τ1)

τ2(1 − τ2)

(ä2
τ 2,w0

+ ∑m−1
j=1 c̈2

τ 2,w0,j
) tr(G−1

τ 1,w0
Gw0G−1

τ 1,w0
)

(ä2
τ 1,w0

+ ∑m−1
j=1 c̈2

τ 1,w0,j
) tr(G−1

τ 2,w0 Gw0G−1
τ 2,w0)

. (6.3)

As in [45], we assume that äτu,w0 and c̈τu,w0 do not depend on τ (an assumption we do

not make on aτu,w0 and cτu,w0 ). If f Yu|Y⊥
u =t,W=w0 were a normal density with mean μt,w0 and

variance σ 2
t,w0

, denoting by φ and  the standard normal density and distribution functions,

respectively, we would have f Yu|Y⊥
u =t,W=w0(aτ ;w0 + c′

τ ;w0
t) = σ−1

t,w0
φ(−1(τ )), hence

Gτ ;w0 = φ
(
−1(1/2)

)∫
Rm−1

σ−1
t,w0

f Y⊥
u |W=w0(t)

(
1 t′
t tt′

)
dt

and

tr(G−1
τ 1,w0

Gw0G−1
τ 1,w0

)

tr(G−1
τ 2,w0 Gw0G−1

τ 2,w0)
=

[
φ(−1(τ2))

φ(−1(τ1))

]2

.



Local multiple-output quantile regression 1455

If we further assume that σ 2
t,w0

= σ 2
w0

, (6.2) for τ = 1/2 takes the form

h5
u/2 = π

2

(
CK

0

n(μK
2 )2

tr(G−1
w0

)σ 2
w0

f W(w0)(ä
2
u/2;w0

+ ∑m−1
j=1 c̈2

u/2;w0,j
)

)
, (6.4)

while (6.3) yields (
hτ 1

hτ 2

)5

= τ1(1 − τ1)

τ2(1 − τ2)

(φ(−1(τ2)))
2

(φ(−1(τ1)))2
(6.5)

hence, for τ 2 = u/2, h5
τ = (2/π)τ (1 − τ)(φ(−1(τ )))−2h5

u/2.
This latter expression still is not readily implementable. However, (6.4) bears a strong re-

lation to the optimal bandwidth value hFZ obtained by Fan and Zhang in Theorem 1 of [13]
for the estimation of the conditional mean in the varying-coefficient linear regression model
Yu = a(W) + c(W)′Y⊥

u + εu with Var(εu | W = w0) = σ 2
w0

, namely

h5
FZ = CK

0

n(μK
2 )2

tr(G−1
w0

)σ 2
w0

f W (w0)(ä2
w0

+ ∑m−1
j=1 c̈2

w0,j
)

= (2/π)h5
u/2.

We therefore propose, for τ = τu, the bandwidth hτ provided by

h5
τ = τ(1 − τ)

(
φ
(
−1(τ )

))−2
h5

FZ, (6.6)

where, for the selection of hFZ, we may rely, for instance, on the plug-in rule developed by [46].
This rule (6.6) can be regarded as the combination of a plug-in strategy and a rule-of-thumb:

plug-in strategy in the selection of hFZ but rule-of-thumb for the dependence on τ . It furthermore
implies that the selected hτ has the same n−1/7 rate of convergence as hFZ (see [46]).

7. A real data example

In order to illustrate the data-analytic power of the proposed method, we consider the “body girth
measurement” dataset from [20], that was already investigated in HPŠ. The dataset consists of
joint measurements of nine skeletal and twelve body girth dimensions, along with weight, height,
and age, in a group of 247 young men and 260 young women. As in HPŠ, we discard the male
observations, we restrict to the calf maximum girth (Y1) and the thigh maximum girth (Y2) for
the response, and use a single random regressor W (weight, height, age, or BMI). Figures 5 and
6 provide cuts – for the same w- and τ -values as in HPŠ – obtained from the proposed local
constant and local bilinear approaches, respectively.

These cuts confirm most of the global analysis conducted in HPŠ and moreover reveal some
interesting new features. For instance,

(a) for the dependence on weight, the local bilinear approach confirms the positive trend in
location, the increase in dispersion, and the evolution of “principal directions” (as weight
increases, the first “principal direction” rotates from horizontal to vertical), and it further
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Figure 5. Four empirical (local constant) regression quantile plots from the body girth measurements
dataset (women subsample; see [20]). Throughout, the bivariate response (Y1, Y2)′ involves calf maxi-
mum girth (Y1) and thigh maximum girth (Y2), while a single random regressor is used: weight, age, BMI,
or height. The plots are providing, for τ = 0.01, 0.03, 0.10, 0.25, and 0.40, the cuts of the local constant
regression τ -quantile contours, at the empirical p-quantiles of the regressors, for p = 0.10 (black), 0.30
(blue), 0.50 (green), 0.70 (cyan) and 0.90 (yellow). The n = 260 data points are shown in red (the lighter
the red color, the higher the regressor value). The results are based on a Gaussian kernel and the bandwidth
H = 3σwn−1/5, where σw stands for the empirical standard deviation of the regressor (the corresponding
cuts obtained from linear regression are provided in Figure 7 of HPŠ). A color version of this figure is more
readable, and can be found in the on-line edition of the paper.

indicates that high weights give rise to simultaneously large extreme values in Y1 and Y2.
The differences, for low and high values of the covariate (weight), between the contours
resulting from the local bilinear and local constant approaches illustrate the sensitivity of
the latter to boundary effect;

(b) for the dependence on age, the local regression quantile regions, parallel to their global
HPŠ counterparts, do indicate that the location and the first principal direction (along the
main bisector) are constant over age. Still as in HPŠ, the local approaches confirm that
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Figure 6. Same quantities as in Figure 5, here obtained from the local bilinear approach, with the same
kernel and bandwidth as in Figure 5 (the computation was based on 360 equispaced directions u ∈ S1).
A color version of this figure is more readable, and can be found in the on-line edition of the paper.

the shapes of outer contours vary quite significantly with age, indicating an increasing
(with age) simultaneous variability of both calf and thigh girth largest values. Now, com-
pared to HPŠ, the local bilinear approach further shows that young women present a large
simultaneous variability of both calf and thigh girth smallest values;

(c) for the dependence on height, the local methods confirm the regression effect specific to
inner contours. The local bilinear approach further shows that there is also a regression
effect for outer contours that, as height increases, get more widespread in the direction u
(corresponding to simultaneously large values of both responses).

Limited as it is, this short application demonstrates how the local quantile regression analysis
proposed here complements and refines the findings obtained from the global approach intro-
duced in HPŠ by revealing the possible non-linear, heteroskedastic, skewness . . . features of the
distributions of Y conditional on W = w. We refer to [32] for a further application, in the context
of bivariate growth charts.
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We conclude this section with a brief discussion of the computational aspects of the proposed
methods. In principle, any quantile regression/linear programming/convex optimization solver
can be used for that purpose. The exact local constant quantile/depth contours can be computed
for any w0 via a weighted version of the HPŠ algorithm – see Paindaveine and Šiman [34] for
a detailed description of its Matlab implementation and its computation cost. The local bilinear
contours, for given w0, are determined by considering a fixed number M of directions; their
computation then is as demanding as M times the standard simple-output quantile regression
with the same number of regressors; see Koenker [26] for computational and algorithmic details.

8. Conclusion

In this paper, we propose a definition of regression depth as the conditional depth of an m-
dimensional response conditional on a p-dimensional covariate. We also propose local constant
and local bilinear methods for the estimation of conditional depth contours, and establish the
consistency and asymptotic normality of the estimators. As a descriptive tool, the resulting con-
tours provide a powerful data-analytic tool, while our asymptotic results guarantee that, for n

large enough, those contours are able to detect any covariate-dependent feature of the condi-
tional distributions of the response. An important domain of application for such methods is in
the analysis of multiple output growth charts, where current practice is essentially restricted to a
marginal approach that neglects all information related to joint conditional features.

Appendix: Proofs of asymptotic results

We actually restrict to the local bilinear case (proofs for the local constant case are entirely
similar). The proofs rely on several lemmas, and require some further notation.

Referring to (5.1) and (5.2), define

θ	 = vec

(
aτ ;w0 c′

τ ;w0

ȧτ ;w0 ċ′
τ ;w0

)
=: vec

(
 ′

w0

̇ ′
w0

)
and θ̂

	(n) = vec

(
â ĉ′
ˆ̇a ˆ̇c′

)
=: vec

(
̂ ′

w0̂̇ ′
w0

)
.

Denote by  1 = (a1, c′
1)

′ and ̃ 1 = (ã1, c̃′
1)

′ two arbitrary vectors of Rm, by  2 = (a2, c′
2)

′ and

̃ 2 = (ã2, c̃′
2)

′ two arbitrary m × (p − 1) matrices. Let Hn :=
√

nh
p−1
n and put

ϕ(n) := HnM	
h vec

(
(̂ w0 − w0)

′
(̂̇ w0 − ̇w0)

′
)

,

ϕ := HnM	
h vec

(
( 1 − w0)

′
( 2 − ̇w0)

′
)

, (A.1)

ϕ̃ := HnM	
h vec

(
(̃ 1 − w0)

′
(̃ 2 − ̇w0)

′
)

,
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and note that ϕ(n) =
√

nh
p−1
n M	

h(θ̂
	(n) − θ	). Define Whi := (Wi − w0)/hn, Khi := K(Whi)

and X 	
hiu := (M	

h)
−1X 	

iu = (1,Y⊥′
iu )′ ⊗ (1,W′

hi)
′.

Let Z	
iu = Z	

iu(θ	) := Yiu − θ	′X 	
iu as in Theorem 5.1, and define

Tni := hnȧ′
τ ;w0

Whi + hn(vec ċτ ;w0)
′(Y⊥

iu ⊗ Whi

)
,

Z∗
ni(ϕ) := Z	

iu − H−1
n ϕ′X 	

hiu and Uni = Uni(ϕ) := Tni + H−1
n ϕ′X 	

hiu

(note that the latter two quantities depend on the choice of  1 and  2). The following identities
will be useful in the sequel:

Z	
iu = Yiu − (

aτ ;w0 + c′
τ ;w0

Y⊥
iu

) − Tni, (A.2)

Z∗
ni(ϕ) = Yiu − (

aτ ;w0 + c′
τ ;w0

Y⊥
iu

) − Uni(ϕ)
(A.3)

= Yiu − (
vec( 1, 2)

′)′X 	
iu.

Let C be a generic constant whose value may vary from line to line. Since K is a bounded density
with a bounded support, we have, whenever Khi > 0,

‖Whi‖ ≤ C and
∥∥X 	

hiu

∥∥ ≤ C
(
1 + ∥∥Y⊥

iu

∥∥)
, (A.4)

and, when moreover ‖ϕ‖ ≤ M ,

|Tni | ≤ Chn

(
1 + ∥∥Y⊥

iu

∥∥)
and |Uni | ≤ C

(
hn + H−1

n

)(
1 + ∥∥Y⊥

iu

∥∥)
. (A.5)

It follows from the definition of θ̂
	(n)

as the argmin of (5.3) that

ϕ(n) = arg min
ϕ∈Rmp

n∑
i=1

Khiρτ

(
Z∗

ni(ϕ)
)
. (A.6)

Recalling that ψτ (y) := τ − I [y < 0], define

Vn(ϕ) := H−1
n

n∑
i=1

Khiψτ

(
Z∗

ni(ϕ)
)
X 	

hiu. (A.7)

In order to prove Theorem 5.1, we need the following lemma.

Lemma A.1. Let Vn(·) :Rmp → R
mp be a sequence of functions that satisfies the following two

properties:

(i) for all λ ≥ 1 and all ψ ∈R
mp , −ψ ′Vn(λψ) ≥ −ψ ′Vn(ψ) a.s.;

(ii) there exist a p × p positive definite matrix D and a sequence of mp-dimensional ran-
dom vectors An satisfying ‖An‖ = OP(1) such that, for all M > 0, sup‖ψ‖≤M ‖Vn(ψ) +
(Gτ ;w0 ⊗ D)ψ − An‖ = oP(1), where Gτ ;w0 is given in Assumption (A1)(v).
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Then, if ψn is such that ‖Vn(ψn)‖ = oP(1), it holds that ‖ψn‖ = OP(1) and

ψn = (Gτ ;w0 ⊗ D)−1An + oP(1). (A.8)

Proof. The proof follows along the same lines as in page 809 of [27]; details are left to the
reader. �

The proof of Theorem 5.1 consists in checking that the assumptions of Lemma A.1 hold for
Vn defined in (A.7); we use the following lemma.

Lemma A.2. Under Assumptions (A1)–(A3), for any (ϕ, ϕ̃) such that max(‖ϕ‖,‖ϕ̃‖) ≤ M , and
n large enough,

E
[
Khi

∣∣ψτ

(
Z∗

ni(ϕ)
) − ψτ

(
Z∗

ni(ϕ̃)
)∣∣] ≤ CE

[
KhiI

[∣∣Z∗
ni(ϕ̃)

∣∣ < CH−1
n ‖ϕ − ϕ̃‖]]

(A.9)
≤ Ch

p−1
n H−1

n ‖ϕ − ϕ̃‖
and

E
[
K2

hi

∣∣ψτ

(
Z∗

ni(ϕ)
) − ψτ

(
Z∗

ni(ϕ̃)
)∣∣2] ≤ CE

[
K2

hiI
[∣∣Z∗

ni(ϕ̃)
∣∣ < CH−1

n ‖ϕ − ϕ̃‖]]
(A.10)

≤ Ch
p−1
n H−1

n ‖ϕ − ϕ̃‖.
Proof. The claim, in this lemma, is similar to that of Lemma A.3 in [17], which essentially
follows from the same argument as in the time series case (cf. [31]). Details, however, are quite
different. It follows from (A.4) that

Khi

∣∣ψτ

(
Z∗

ni(ϕ)
) − ψτ

(
Z∗

ni(ϕ̃)
)∣∣ = Khi

∣∣I [
Z∗

ni(ϕ) < 0
] − I

[
Z∗

ni(ϕ̃) < 0
]∣∣

= Khi

∣∣I [
Z∗

ni(ϕ̃) < H−1
n (ϕ − ϕ̃)′X 	

hiu
] − I

[
Z∗

ni(ϕ̃) < 0
]∣∣

≤ KhiI
[∣∣Z∗

ni(ϕ̃)
∣∣ < CH−1

n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥
iu

∥∥)]
.

Hence, from (A.3) and the mean value theorem, we obtain

E
[
Khi

∣∣ψτ

(
Z∗

ni(ϕ)
) − ψτ

(
Z∗

ni(ϕ̃)
)∣∣]

≤ E
[
KhiI

[∣∣Z∗
ni(ϕ̃)

∣∣ < CH−1
n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥

iu

∥∥)]]
= E

[
KhiP

[∣∣Z∗
ni(ϕ̃)

∣∣ < CH−1
n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥

iu

∥∥)|Y⊥
iu,Wi

]]
= E

[
KhiF

Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Uni(ϕ̃) + CH−1
n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥

iu

∥∥))]
− E

[
KhiF

Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Uni(ϕ̃) − CH−1
n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥

iu

∥∥))]
≤ E

[
Khi

(
1 + ∥∥Y⊥

iu

∥∥)
f Yu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Uni(ϕ̃)

+ λCH−1
n ‖ϕ − ϕ̃‖(1 + ∥∥Y⊥

iu

∥∥))]
× 2CH−1

n ‖ϕ − ϕ̃‖
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for some λ ∈ (−1,1). Assumptions (A1)–(A3), together with (A.5), therefore yield that, for
ϕ, ϕ̃ ∈ {ϕ :‖ϕ‖ ≤ M} and n large enough,

E
[
Khi

∣∣ψτ

(
Z∗

ni(ϕ)
) − ψτ

(
Z∗

ni(ϕ̃)
)∣∣]

≤ CH−1
n ‖ϕ − ϕ̃‖E

[
Khi

∫
Rm−1

(
1 + ‖t‖)f Yu|(Y⊥

u =t,W)
(
aτ ;w0 + c′

τ ;w0
t
)
f Y⊥

u |W(t)dt
]

= Ch
p−1
n H−1

n ‖ϕ − ϕ̃‖f W(w0)

×
∫
Rm−1

(
1 + ‖t‖)f Yu|(Y⊥

u =t,W=w0)
(
aτ ;w0 + c′

τ ;w0
t
)
f Y⊥

u |W=w0(t)dt,

which establishes (A.9); (A.10) follows along similar lines. �

Lemma A.3. Under Assumptions (A1)–(A3), we have that, as n → ∞,

sup
‖ϕ‖≤M

∥∥Vn(ϕ) − Vn(0) − E
[
Vn(ϕ) − Vn(0)

]∥∥ = oP(1). (A.11)

Proof. The proof of this lemma is quite similar, in view of Lemma A.2, to that of Lemma A.4 in
[17]. Details are therefore omitted. �

Lemma A.4. Under Assumptions (A1)–(A3), we have that, as n → ∞,

sup
‖ϕ‖≤M

∥∥E
[
Vn(ϕ) − Vn(0)

] + (Gτ ;w0 ⊗ D)ϕ
∥∥ = o(1), (A.12)

where D = f W(w0)diag(1,μK
2 ).

Proof. Note that Vn(ϕ) − Vn(0) = H−1
n

∑n
i=1 Khi[ψτ (Z

∗
ni(ϕ)) − ψτ (Z

	
iu)]X 	

hiu. It follows
from (A.2) and (A.3) that

E
[
Vn(ϕ) − Vn(0)

] = nH−1
n E

[
Khi

(
I
[
Z	

iu < 0
] − I

[
Z∗

ni(ϕ) < 0
])
X 	

hiu
]

= Hnh
−(p−1)
n E

[
Khi

(
FYu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Tni

)
− FYu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Uni

))
X 	

hiu
]
.

Then, similar to the proof of Lemma A.2, by the mean value theorem, since Uni − Tni =
H−1

n X 	′
hiuϕ, there exists ξ ∈ (0,1) such that

sup
‖ϕ‖≤M

∥∥E
[
Vn(ϕ) − Vn(0)

] + (Gτ ;w0 ⊗ D)ϕ
∥∥

= sup
‖ϕ‖≤M

∥∥(Gτ ;w0 ⊗ D)ϕ
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− h
−(p−1)
n E

[
Khif

Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Tni + ξH−1
n X 	′

hiuϕ
)
X 	

hiuX 	′
hiuϕ

]∥∥
= sup

‖ϕ‖≤M

∥∥{
(Gτ ;w0 ⊗ D) − h

−(p−1)
n E

[
Khif

Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu
)
X 	

hiuX 	′
hiu

]}
ϕ

− h
−(p−1)
n E

[
Khi

(
f Yu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Tni + ξH−1
n X 	′

hiuϕ
)

− f Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu
))
X 	

hiuX 	′
hiuϕ

]∥∥
≤ C

∥∥(Gτ ;w0 ⊗ D) − h
−(p−1)
n E

[
Khif

Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu
)
X 	

hiuX 	′
hiu

]∥∥
+ C sup

‖ϕ‖≤M

h
−(p−1)
n E

[
Khi

∣∣f Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu + Tni + ξH−1
n X 	′

hiuϕ
)

− f Yu|(Y⊥
u ,W)

(
aτ ;w0 + c′

τ ;w0
Y⊥

iu
)∣∣∥∥X 	

hiuX 	′
hiu

∥∥] = o(1),

where we used Assumptions (A1) and (A2), together with (A.5). �

Lemma A.5. Let Assumptions (A2) and (A3) hold. Then the random vector ϕ(n) defined in (A.1)
satisfies ‖Vn(ϕ

(n))‖ = oP(1).

Proof. The proof follows from a argument similar to that of Lemma A.2 on page 836 of [36]. �

Lemma A.6. Under Assumptions (A1)–(A3), for any d ∈R
mp ,

lim
n→∞ E

[{
d′(Vn(0) − E

[
Vn(0)

])}2]
= τ(1 − τ)f W(w0)

∫
Rp−1

∫
Rm−1

([(
1, t′

) ⊗ (
1,w′)]d)2

f Y⊥
u |W=w0(t)K2(w)dt dw.

Proof. Set ṽi = Khiψτ (Z
	
iu)d′X 	

hiu = Khiψτ (Z
	
iu)[(1,Y⊥′

iu )⊗ (1,W′
hi)]d. A simple calculation

yields

E
[{

d′(Vn(0) − E
[
Vn(0)

])}2] = H−2
n nVar[ṽ1] = h

−(p−1)
n Var[ṽ1]. (A.13)

Note that, for k = 1,2,

lim
n→∞h

−(p−1)
n E

[
Kk

h1I
[
Z	

1u < 0
](

d′X 	
h1u

)k]
= lim

n→∞h
−(p−1)
n E

[
Kk

h1F
Yu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

1u + Tn1
)(

d′X 	
h1u

)k]
= τf W(w0)

∫
Rp−1

∫
Rm−1

Kk(w)
([(

1, t′
) ⊗ (

1,w′)]d)k
f Y⊥

u |W=w0(t)dt dw,
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which leads to

lim
n→∞h

−(p−1)
n E[ṽ1]

= lim
n→∞h

−(p−1)
n E

[
Kh1

(
τ − I

[
Z	

1u < 0
])(

d′X 	
h1u

)]
= (τ − τ)f W(w0)

∫
Rp−1

∫
Rm−1

K(w)
([(

1, t′
) ⊗ (

1,w′)]d)
f Y⊥

u |W=w0(t)dt dw = 0

and

lim
n→∞h

−(p−1)
n E

[
ṽ2

1

]
= lim

n→∞h
−(p−1)
n E

[
K2

h1

(
τ 2 − 2τI

[
Z	

1u < 0
] + I

[
Z	

1u < 0
])(

d′X 	
h1u

)2]
= τ(1 − τ)f W(w0)

∫
Rp−1

∫
Rm−1

K2(w)
([(

1, t′
) ⊗ (

1,w′)]d
)2

f Y⊥
u |W=w0(t)dt dw.

Therefore,

lim
n→∞h

−(p−1)
n Var[ṽ1]

= lim
n→∞

(
h

−(p−1)
n E

[
ṽ2

1

] − h
−(p−1)
n

(
E[ṽ1]

)2)
= τ(1 − τ)f W(w0)

∫
Rp−1

∫
Rm−1

K2(w)
([(

1, t′
) ⊗ (

1,w′)]d)2
f Y⊥

u |W=w0(t)dt dw,

which, together with (A.13), establishes the result. �

Proof of Theorem 5.1. The proof consists in checking that the conditions of Lemma A.1 are
satisfied. Lemmas A.3 and A.4 entail that Lemma A.1(ii) holds, with D = f W(w0)diag(1,μK

2 )

(yielding (Gτ ;w0 ⊗ D)−1 = η	
τ ;w0

) and An = Vn(0) = H−1
n

∑n
i=1 Khiψτ (Z

	
iu)X 	

hiu, which, by
Lemma A.6, is OP(1). As for Lemma A.1(ii), the fact that

λ �→ −ϕ′Vn(λϕ) = H−1
n

n∑
i=1

Khiψτ

(
Z	

iu − λH−1
n ϕ′X 	

hiu
)(−ϕ′X 	

hiu
)

is non-decreasing directly follows from the fact y �→ ψτ (y) is non-decreasing. Since (Lemma A.5
and Assumptions (A2) and (A3)) ‖Vn(ϕ

(n))‖ is oP(1), Lemma A.1 applies, which concludes the
proof. �

Proof of Theorem 5.2. On the basis of the Bahadur representation of Theorem 5.1, the asymp-

totic normality of θ̂
	(n)

follows exactly as in the corresponding proofs for usual nonparametric
regression in the i.i.d. case (see, e.g., [10]), yielding the asymptotic normality with the bias (i.e.,
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the expectation) of the first term on the right-hand side of (5.4) as

E

[
η	

τ ;w0√
nh

p−1
n

n∑
i=1

Kh1ψτ

(
Z	

iu
)
X 	

hiu

]

= η	
τ ;w0√
nh

p−1
n

nE
[
Kh1ψτ

(
Z	

1u

)
X 	

h1u

]

= η	
τ ;w0

√
nh

p−1
n h

−(p−1)
n E

[
Kh1

(
FYu|(Y⊥

u ,W)
(
aτ ;W + c′

τ ;WY⊥
1u

)
− FYu|(Y⊥

u ,W)
(
aτ ;w0 + c′

τ ;w0
Y⊥

1u + Tn1
))
X 	

h1u

]
=

√
nh

p−1
n

(
h2

n

2
B	

w0
+ o

(
h2

n

))
,

where the last equality is derived from a first-order Taylor expansion of y �→ FYu|(Y⊥
u ,X)(y) and

a second-order Taylor expansion of w �→ (aτ ;w, c′
τ ;w)′ at w = w0 (these expansions exist in

view of Assumptions (A1) and (A4)). The o(h2
n) term is taken care of by Assumption (A3). The

asymptotic variance of the theorem readily follows from Lemma A.6. Details are omitted. �
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