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Preprocessing forms an oft-neglected foundation for a wide range of statistical and scientific analyses. How-
ever, it is rife with subtleties and pitfalls. Decisions made in preprocessing constrain all later analyses and
are typically irreversible. Hence, data analysis becomes a collaborative endeavor by all parties involved in
data collection, preprocessing and curation, and downstream inference. Even if each party has done its best
given the information and resources available to them, the final result may still fall short of the best possible
in the traditional single-phase inference framework. This is particularly relevant as we enter the era of “big
data”. The technologies driving this data explosion are subject to complex new forms of measurement er-
ror. Simultaneously, we are accumulating increasingly massive databases of scientific analyses. As a result,
preprocessing has become more vital (and potentially more dangerous) than ever before.

We propose a theoretical framework for the analysis of preprocessing under the banner of multiphase in-
ference. We provide some initial theoretical foundations for this area, including distributed preprocessing,
building upon previous work in multiple imputation. We motivate this foundation with two problems from
biology and astrophysics, illustrating multiphase pitfalls and potential solutions. These examples also em-
phasize the motivations behind multiphase analyses—both practical and theoretical. We demonstrate that
multiphase inferences can, in some cases, even surpass standard single-phase estimators in efficiency and
robustness. Our work suggests several rich paths for further research into the statistical principles underly-
ing preprocessing. To tackle our increasingly complex and massive data, we must ensure that our inferences
are built upon solid inputs and sound principles. Principled investigation of preprocessing is thus a vital
direction for statistical research.

Keywords: data compression; data repositories; measurement error; multiphase inference; multiple
imputation; statistical principles

1. What is multiphase inference?

1.1. Defining multiphase problems

Preprocessing and the analysis of preprocessed data are ubiquitous components of statistical in-
ference, but their treatment has often been informal. We aim to develop a theory that provides a
set of formal statistical principles for such problems under the banner of multiphase inference.
The term “multiphase” refers to settings in which inferences are obtained through the application
of multiple procedures in sequence, with each procedure taking the output of the previous phase
as its input. This encompasses settings such as multiple imputation (MI, Rubin (1987)) and ex-
tends to other situations. In a multiphase setting, information can be passed between phases in an
arbitrary form; it need not consist of (independent) draws from a posterior predictive distribution,
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as is typical with multiple imputation. Moreover, the analysis procedure for subsequent phases is
not constrained to a particular recipe, such as Rubin’s MI combining rules (1987).

The practice of multiphase inference is currently widespread in applied statistics. It is widely
used as an analysis technique within many publications—any paper that uses a “pipeline” to
obtain its final inputs or clusters estimates from a previous analysis provides an example. Fur-
thermore, projects in astronomy, biology, ecology, and social sciences (to name a small sam-
pling) increasingly focus on building databases for future analyses as a primary objective. These
projects must decide what levels of preprocessing to apply to their data and what additional in-
formation to provide to their users. Providing all of the original data clearly allows the most
flexibility in subsequent analyses. In practice, the journey from raw data to a complete model
is typically too intricate and problematic for the majority of users, who instead choose to use
preprocessed output.

Unfortunately, decisions made at this stage can be quite treacherous. Preprocessing is typically
irreversible, necessitating assumptions about both the observation mechanisms and future anal-
yses. These assumptions constrain all subsequent analyses. Consequently, improper processing
can cause a disproportionate amount of damage to a whole body of statistical results. However,
preprocessing can be a powerful tool. It alleviates complexity for downstream researchers, al-
lowing them to deal with smaller inputs and (hopefully) less intricate models. This can provide
large mental and computational savings.

Two examples of such trade-offs come from NASA and high-throughput biology. When NASA
satellites collect readings, the raw data are usually massive. These raw data are referred to as the
“Level 0” data (Evans et al. (2006)). The Level 0 data are rarely used directly for scientific anal-
yses. Instead, they are processed to Levels 1, 2, and 3, each of which involves a greater degree
of reduction and adjustment. Level 2 is typically the point at which the processing becomes irre-
versible. Braverman et al. (2012) provide an excellent illustration of this process for the Atmo-
spheric Infrared Sounder (AIRS) experiment. This processing can be quite controversial within
the astronomical community. Several upcoming projects, such as the Advanced Technology Solar
Telescope (ATST) will not be able to retain the Level 0 or Level 1 data (Davey (2012)). This in-
ability to obtain raw data and increased dependence on preprocessing has transformed low-level
technical issues of calibration and reduction into a pressing concern.

High-throughput biology faces similar challenges. Whereas reproducibility is much needed
(e.g., Ioannidis and Khoury (2011)), sharing raw datasets is difficult because of their sizes. The
situation within each analysis is similar. Confronted with an overwhelming onslaught of raw
data, extensive preprocessing has become crucial and ubiquitous. Complex models for genomic,
proteomic, and transcriptomic data are usually built upon these heavily-processed inputs. This
has made the intricate details of observation models and the corresponding preprocessing steps
the groundwork for entire fields.

To many statisticians, this setting presents something of a conundrum. After all, the ideal in-
ference and prediction will generally use a complete correctly-specified model encompassing
the underlying process of interest and all observation processes. Then, why are we interested in
multiphase? We focus on settings where there is a natural separation of knowledge between an-
alysts, which translates into a separation of effort. The first analyst(s) involved in preprocessing
often have better knowledge of the observation model than those performing subsequent analy-
ses. For example, the first analyst may have detailed knowledge of the structure of experimental
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errors, the equipment used, or the particulars of various protocols. This knowledge may not be
easy to encapsulate for later analysts—the relevant information may be too large or complex,
or the methods required to exploit this information in subsequent analyses may be prohibitively
intricate. Hence, the practical objective in such settings is to enable the best possible inference
given the constraints imposed and provide an account of the trade-offs and dangers involved.
To borrow the phrasing of Meng and Romero (2003) and Rubin (1996), we aim for achievable
practical efficiency rather than theoretical efficiency that is practically unattainable.

Multiphase inference currently represents a serious gap between statistical theory and practice.
We typically delineate between the informal work of preprocessing and feature engineering and
formal, theoretically-motivated work of estimation, testing, and so forth. However, the former
fundamentally constrains what the latter can accomplish. As a result, we believe that it repre-
sents a great challenge and opportunity to build new statistical foundations to inform statistical
practice.

1.2. Practical motivations

We present two examples that show both the impetus for and perils of undertaking multiphase
analyses in place of inference with a complete, joint model. The first concerns microarrays, which
allow the analysis of thousands of genes in parallel. We focus on expression microarrays, which
measure the level of gene expression in populations of cells based upon the concentration of
RNA from different genes. These are typically used to study changes in gene expression between
different experimental conditions.

In such studies, the estimand of interest is typically the log-fold change in gene expression be-
tween conditions. However, the raw data consist only of intensity measurements for each probe
on the array, which are grouped by gene along with some form of controls. These intensities are
subject to several forms of observation noise, including additive background variation and addi-
tional forms of interprobe and interchip variation (typically modeled as multiplicative noise). To
deal with these forms of observation noise, a wide range of background correction and normal-
ization strategies have been developed (for a sampling, see Tusher, Tibshirani and Chu (2001),
Quackenbush (2002), Affymetrix (2002), Irizarry et al. (2003), McGee and Chen (2006), Ritchie
et al. (2007), Xie, Wang and Story (2009)). Later analyses then focus on the scientific ques-
tion of interest without, for the most part, addressing the underlying details of the observation
mechanisms.

Background correction is a particularly crucial step in this process, as it is typically the point
at which the analysis moves from the original intensity scale to the log-transformed scale. As a
result, it can have a large effect on subsequent inferences about log-fold changes, especially
for genes with low expression levels in one condition (Smyth (2005), Irizarry, Wu and Jaf-
fee (2006)). One common method (MAS5), provided by one microarray manufacturer, uses a
combination of background subtraction and truncation at a fixed lower threshold for this task
(Affymetrix (2002)). Other more sophisticated techniques use explicit probability models for
this de-convolution. A model with normally-distributed background variation and exponentially
distributed expression levels has proven to be the most popular in this field (McGee and Chen
(2006), Xie, Wang and Story (2009)).
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Unfortunately, even the most sophisticated available techniques pass only point estimates onto
downstream analyses. This necessitates ad-hoc screening and corrections in subsequent analy-
ses, especially when searching for significant changes in expression (e.g., Tusher, Tibshirani and
Chu (2001)). Retaining more information from the preprocessing phases of these analyses would
allow for better, simpler inference techniques with greater power and fewer hacks. The motiva-
tion behind the current approach is quite understandable: scientific investigators want to focus
on their processes of interest without becoming entangled in the low-level details of observation
mechanisms. Nevertheless, this separation can clearly compromise the validity of their results.

The role of preprocessing in microarray studies extends well beyond background correction.
Normalization of expression levels across arrays, screening for data corruption, and other trans-
formations preceding formal analysis are standard. Each technique can dramatically affect down-
stream analyses. For instance, quantile normalization equates quantiles of expression distribu-
tions between arrays, removing a considerable amount of information. This mutes systematic
errors (Bolstad et al. (2003)), but it can seriously compromise analyses in certain contexts (e.g.,
miRNA studies).

Another example of multiphase inference can be found in the estimation of correlations based
upon indirect measurements. This appears in many fields, but astrophysics provides one recent
and striking case. The relationships between the dust’s density, spectral properties, and tempera-
ture are of interest in studies of star-forming dust clouds. These characteristics shed light on the
mechanisms underlying star formation and other astronomical processes. Several studies (e.g.,
Dupac et al. (2003), Désert et al. (2008), Anderson et al. (2010), Paradis et al. (2010)) have in-
vestigated these relationships, finding negative correlations between the dust’s temperature and
spectral index. This finding is counter to previous astrophysical theory, but it has generated many
alternative explanations.

Such investigations may, however, be chasing a phantasm. These correlations have been esti-
mated by simply correlating point estimates of the relevant quantities (temperature T and spectral
index β) based on a single set of underlying observations. As a result, they may conflate prop-
erties of this estimation procedure with the underlying physical mechanisms of interest. This
has been noted in the field by Shetty et al. (2009), but the scientific debate on this topic con-
tinues. Kelly et al. (2012) provide a particularly strong argument, using a cohesive hierarchical
Bayesian approach, that improper multiphase analyses have been a pervasive issue in this setting.
Improper preprocessing led to incorrect, negative estimates of the correlation between tempera-
ture and spectral index, according to Kelly et al. (2012). These incorrect estimates even appeared
statistically significant with narrow confidence intervals based on standard methods. On a broader
level, this case again demonstrates some of the dangers of multiphase analyses when they are not
carried out properly. Those analyzing this data followed an intuitive strategy: estimate what we
want to work with (T and β), then use it to estimate the relationship of interest. Unfortunately,
such intuition is not a recipe for valid statistical inference.

1.3. Related work

Multiphase inference has wide-ranging connections to both the theoretical and applied litera-
tures. It is intimately related to previous work on multiple imputation and missing data (Rubin
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(1976, 1987, 1996), Meng (1994), Meng and Romero (2003), Xie and Meng (2012)). In general,
the problem of multiphase inference can be formulated as one of missing data. However, in the
multiphase setting, missingness arises from the preprocessing choices made, not a probabilis-
tic response mechanism. Thus, we can leverage the mathematical and computational methods
of this literature, but many of its conceptual tools need to be modified. Multiple imputation ad-
dresses many of the same issues as multiphase inference and is indeed a special case of the
latter. Concepts such as congeniality between imputation and analysis models and self-efficiency
(Meng (1994)) have natural analogues and roles to play in the analysis of multiphase inference
problems.

Multiphase inference is also tightly connected to work on the comparison of experiments and
approximate sufficiency, going back to Blackwell (1951, 1953) and continuing through Le Cam
(1964) and Goel and DeGroot (1979), among others. This literature has addressed the relation-
ship between decision properties and the probabilistic structure of experiments, the relationship
between different notions of statistical information, and notions of approximate sufficiency—all
of these are quite relevant for the study of multiphase inference. We view the multiphase setting
as an extension of this work to address a broader range of real-world problems, as we will discuss
in Section 2.3.

The literature on Bayesian combinations of experts also informs our thinking on multiphase
procedures. Kadane (1993) provides an excellent review of the field, while Lindley, Tversky and
Brown (1979) provides the core formalisms of interest for the multiphase setting. Overall, this
literature has focused on obtaining coherent (or otherwise favorable) decision rules when com-
bining information from multiple Bayesian agents, in the form of multiple posterior distributions.
We view this as a best-case scenario, focusing our theoretical development towards the mechan-
ics of passing information between phases. We also focus on the sequential nature of multiphase
settings and the challenges this brings for both preprocessors and downstream analysts, in con-
trast to the more “parallel” or simultaneous focus of the literature mentioned above.

There are also fascinating links between multiphase inference and the signal processing lit-
erature. There has been extensive research on the design of quantizers and other compression
systems; see for example Gray and Neuhoff (1998). Such work is often focused on practical
questions, but it has also yielded some remarkable theory. In particular, the work of Nguyen,
Wainwright and Jordan (2009) on the relationship between surrogate loss functions in quantizer
design and f -divergences suggests possible ways to develop and analyze a wide class of multi-
phase procedures, as we shall discuss in Section 4.2.

2. Multiphase logic and concepts for preprocessing

2.1. A model for two phases

To formalize the notion of multiphase inference, we begin with a formal model for two-phase
settings. The first phase consists of the data generation, collection, and preprocessing, while
the second phase consists of inference using the output from the first phase. We will call the
first-phase agent the “preprocessor” and the second-phase agent the “downstream analyst”. The
preprocessor observes the raw data Y . This is a noisy realization of X, variables of interest that
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Figure 1. Graphical diagram of our generic two-phase setting. The preprocessor observes Y from the orig-
inal data generating process and outputs T , with X as missing data. The downstream analyst observes the
preprocessor’s output T and has both X and Y missing.

are not directly obtainable from a given experiment, e.g., gene expression from sequencing data,
or stellar intensity from telescopic observations.

We assume that the joint density of X and Y with respect to product measure μX × μY can be
factored as

pY,X(Y,X|θ, ξ) = pY (Y |X,θ, ξ) · pX(X|θ, ξ) = pY (Y |X,ξ) · pX(X|θ). (2.1)

Here, pX encapsulates the underlying process of interest and pY encapsulates the observation
process. We assume that θ is of fixed dimension in all asymptotic settings. In practice, the pre-
processor should be able to postulate a reasonable “observation model” pY (Y |X,ξ), but will not
always know the true “scientific model” pX(X|θ). This is analogous to the MI setting, where the
imputer does not know the form of the final analysis.

Using this model, the preprocessor provides the downstream analyst with some output T =
T (Y,U), where U is a (possibly stochastic) additional input. When T (Y,U) is stochastic (e.g.,
an MCMC output), the conditional distribution pT (T |Y) is its theoretical description instead of
its functional form. However, for simplicity, we will present our results when T is a deterministic
function of Y only, but many results generalize easily. Given such T , downstream analysts can
carry out their inference procedures. Figure 1 depicts our general model setup.

This model incorporates several restrictions. First, it is Markovian with respect to Y , X,
and θ ; Y is conditionally independent of θ given X (and ξ ). Second, the parameters gov-
erning the observation process (ξ ) and those governing the scientific process (θ ) are distinct.
In Bayesian settings, we further assume that ξ and θ are independent a priori. The param-
eters ξ are nuisance from the perspective of all involved; the downstream analyst wants to
draw inferences about X and θ , and the preprocessor wants to pass forward information that
will be useful for said inferences. If downstream inferences are Bayesian with respect to ξ ,
then pY (Y |X) = ∫

pY (Y |X,ξ)πξ (ξ)dμξ (ξ) (which holds under (2.1)) is sufficient for all in-
ference under the given model and prior. Hence, this conditional density is frequently of inter-
est in our theoretical development, as is the corresponding marginalized model pX,Y (Y,X|θ) =
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∫
pY (Y |X,ξ)pX(X|θ)πξ (ξ)dμξ (ξ). We will compare results obtained with a fixed prior to those

obtained in a more general setting to better understand the effects of nuisance parameters in mul-
tiphase inference.

These restrictions are somewhat similar to those underlying Rubin’s (1976) definition of
“missing at random”; however, we do not have missing data mechanism (MDM) in this set-
ting per se. The distinction between missing and observed data (X and Y ) is fixed by the
structure of our model. In place of MDM, we have two imposed patterns of missingness: one
for the data-generating process, and one for the inference process. The first is pY (Y |X,ξ),
which creates a noisy version of the desired scientific variables. Here, X can be considered
the missing data and Y the observed. For the inference process, the downstream analyst ob-
serves T in place of Y but desires inference for θ based upon pX(X|θ). Hence, Y and X are
both missing for the downstream analyst. Neither pattern is entirely intrinsic to the problem—
both are fixed by choice. The selection of scientific variables X for a given marginal likelihood
pY (Y |θ, ξ) = ∫

pY (Y |X,ξ)pX(X|θ)dμX(X) is a modeling decision. The selection of prepro-
cessing T (Y ) is a design decision. This contrasts with the typical missing data setting, where
MDM is forced upon the analyst by nature. With multiphase problems, we seek to design and
evaluate engineered missingness. Thus the investigation of multiphase inference requires tools
and ideas from design, inference, and computation in addition to the established theory of miss-
ing data.

2.2. Defining multiphase procedures

With this model in place, we turn to formally defining multiphase procedures. This is more
subtle than it initially appears. In the MI setting, we focus on complete-data procedures for the
downstream analyst’s estimation and do not restrict the dependence structure between missing
data and observations. In contrast, we restrict the dependence structure as in (2.1), but place far
fewer constraints on the analysts’ procedures. Here, we focus our definitions and discussion on
the two-phase case of a single preprocessor and downstream analyst. This provides the formal
structure to describe the interface between any two phases in a chain of multiphase analyses.

In our multiphase setting, downstream analysts need not have any complete-data procedure in
the sense of one for inferring θ from X and Y ; indeed, they need not formally have one based
only upon X for inferring θ . We require only that they have a set of procedures for their desired
inference using the quantities provided from earlier phases as inputs (T ), not necessarily using
direct observations of X or Y . Such situations are common in practice, as methods are often built
around properties of preprocessed data such as smoothness or sparsity that need not hold for the
actual values of X.

For the preprocessor, the input is Y and the output is T . Here T could consist of a vector
of means with corresponding standard errors, or, for discrete Y , T could consist of carefully
selected cross-tabulations. In general, T clearly needs to be related to X to capture inferential
information, but its actual form is influenced by practical constraints (e.g., aggregation to lower
than desired resolutions due to data storage capacity).

For the downstream analyst, the input is T and the output is an inference for θ . This analyst
can obviously adapt. For example, suppose θ = E(Xi) for each entry i of X. If the preprocessor
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provides T0 = X̂, the analyst may simply use an unweighted mean to estimate θ . If the prepro-
cessor instead gives the analyst T1 = (X̂, S), where S contains standard errors, the latter could
instead use a weighted mean to estimate θ . This adaptation extends to an arbitrary number of
possible inputs Tk , each of which corresponds to a set of constraints facing the preprocessor.

To formalize this notion of adaptation, we first define an index set C with one entry for each
such set of constraints. This maps between forms of input provided by the preprocessor and
estimators selected by the downstream analyst. In this way, C captures the downstream analyst’s
knowledge of previous processing and the underlying probability model. Thus, this index set
plays an central role in the definition of multiphase inference problems, far beyond that of a
mere mathematical formality; it regulates the amount of mutual knowledge shared between the
preprocessor and the downstream analyst.

Now, we turn to the estimators themselves. We start with point estimation as a foundation for
a broader class of problems. Testing begins with estimating rejection regions, interval estima-
tion with estimating coverage, classification with estimating class membership, and prediction
with estimating future observations and, frequently, intermediate parameters. The framework we
present therefore provides tools that can be adapted for more than estimation theory. We define
multiphase estimation procedures as follows:

Definition 1. A multiphase estimation procedure P is a set of estimators {θ̂k(Tk): k ∈ C} indexed
by the set C, where Tk corresponds to the output of the kth first-phase method; that is, P is a
family of estimators with different inputs.

When clear, we will drop the subscripts k and index the estimators in P by their inputs. This
definition provides enough flexibility to capture many practical issues with multiphase inference,
and it can be iterated to define procedures for analyses involving a longer sequence of preproces-
sors and analysts. It also encompasses the definition of a missing data procedure used by Meng
(1994). Such procedures cannot, of course, be arbitrarily constructed if they are to deliver results
with general validity. Hence, having defined these procedures, we will cull many of them from
consideration in Section 2.3.

The obvious choice of our estimand, suggested by our notation thus far, is the parameter for
the scientific model, θ . This is very amenable to mathematical analysis and relevant to many
investigations. Hence, it forms the basis for our results in Section 3. However, for multiphase
analyses, other classes of estimands may prove more useful in practice. In particular, functions
of X, future scientific variables Xrep , or future observations Yrep may be of interest. Prediction
of such quantities is a natural focus in the multiphase setting because such statements are mean-
ingful to both the preprocessor and downstream analyst. Such estimands naturally encompass a
broad range of statistical problems including prediction, classification, and clustering. However,
there is often a lack of mutual knowledge about pX(X|θ), so the preprocessor cannot expect to
“target” estimation of θ in general, as we shall discuss in Section 4.

2.3. When is more better?

It is not automatic for multiphase estimation procedures to produce better results as the first
phase provides more information. To obtain a sensible context for theoretical development, we
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must regulate the way that the downstream analyst adapts to different inputs. For instance, they
should obtain better results (in some sense) when provided with higher-resolution information.
This carries over from the MI setting (Meng (1994), Meng and Romero (2003), Meng and Xie
(2013), Xie and Meng (2012)), where notions such as self-efficiency are useful for regulating
the downstream analyst’s procedures. We define a similar property for multiphase estimation
procedures, but without restricting ourselves to the missing data setting. Specifically, let T1 � T2
indicate T1 is a deterministic function of T2. In practice, T1 could be a subvector, aggregation, or
other summary of T2.

Definition 2 (Risk monotonicity). A multiphase estimation procedure P is risk monotone with
respect to a loss function L if, for all pairs of outputs T1, T2, T1 � T2 implies R(θ̂2(T2),L) ≤
R(θ̂1(T1),L).

An asymptotic analogue of risk monotonicity is defined as would be expected, scaling the rel-
evant risks at an appropriate rate to obtain nontrivial limits. This is a natural starting point for
regulating multiphase estimation procedures; stronger notions may be required for certain theo-
retical results. Note that this definition does not require that “higher-quality” inputs necessarily
lead to lower risk estimators. Risk monotonicity requires only that estimators based upon a larger
set of inputs perform no worse than those with strictly less information (in a deterministic sense).
However, risk monotonicity is actually quite tight in another sense. It requires that additional in-
formation cannot be misused by the downstream analyst, imposing a strong constraint on mutual
knowledge. For an example, consider the case of unweighted and weighted means. To obtain
better results when presented with standard errors, the downstream analyst must know that they
are being given (the correct) standard errors and to weight by inverse variances.

This definition is related to the comparison of experiments, as explored by Blackwell (1951,
1953), but diverges on a fundamental level. Our ordering of experiments, based on deterministic
functions, is more stringent than that of Blackwell (1953), but they are related. Indeed, our �
relation implies that of Blackwell (1953). In the latter work, an experiment α is defined as more
informative than experiment β , denoted α ⊃ β , if all losses attainable from β are also attainable
from α. This relation is also implied when α is sufficient for β . Our stringency stems from our
broader objectives in the multiphase setting. From a decision-theoretic perspective, the partial
ordering of experiments investigated by Blackwell and others deal with which risks are attainable
given pairs of experiments, allowing for arbitrary decision procedures. In contrast, our criterion
restricts procedures based on whether such risks are actually attained, with respect to a particular
loss function. This is because, in the multiphase setting, it is not generally realistic to expect
downstream analysts to be capable of obtaining optimal estimators for all forms of preprocessing.

The conceptually-simplest way to generate such a procedure is to begin with a complete prob-
ability model for pY (Y |θ). Under traditional asymptotic regimes, all procedures consisting of
Bayes estimators based upon such a model will (with full knowledge of the transformations in-
volved in each Tk and a fixed prior) be risk monotone. The same is true asymptotically under the
same regimes (for squared-error loss) for procedures consisting of MLEs under a fixed model.
Under some other asymptotic regimes, however, these principles of estimation do not guaran-
tee risk-monotonicity; we explore this further in Section 3.2. But such techniques are not the
only way to generate risk monotone procedures from probability models. This is analogous to
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Figure 2. Illustration of risk-monotone “basis” construction. In this case, T1 and T2 form the basis set of
statistics. Each of these has three descendants (T3, T5, T7 from T1 and T4, T6, T8 from T2). These descen-
dants are deterministic functions of their parent, but they are not deterministic functions of any other basis
statistics. Given correctly-specified models for T1 and T2, a risk monotone procedure can be constructed
for all statistics (T1, . . . , T8) shown here as described in the text.

self-efficiency, which can be achieved by procedures that are neither Bayesian nor MLE (Meng
(1994), Xie and Meng (2012)).

A risk monotone procedure can be generated from any set of probability models for distinct
inputs that “span” the space of possible inputs. Suppose that an analyst has a set of probability
models, all correctly specified, for pTb

(Tb|θ), where b ranges over a subset B of the relevant
index set C. We also assume that this analyst has a prior distribution πb(θ) for each such basis
models. These priors need not agree between models; the analyst can build a risk-monotone
procedure from an inconsistent set of prior beliefs. Suppose that the inputs {Tb : b ∈ B} are
not deterministic functions of each other and all other inputs can be generated as nontrivial
deterministic transformations of one of these inputs. Formally, we require Tb � Tc for all distinct
b, c ∈ B and, for each k ∈ C there exists a unique b ∈ B such that Tk � Tb (each output is
uniquely descended from a single Tb), as illustrated in Figure 2. This set can form a basis, in a
sense, for the given procedure.

Using the given probability models with a single loss function and set of priors (potentially
different for each model), the analyst can derive a Bayes rule under each model. For each b ∈
B , we require θ̂ (Tb) to be an appropriate Bayes rule on said model. As Tk = gk(Tb) for some
function gk , we then have the implied pTk

(Tk|θ) = ∫
t :gk(t)=Tk

pTb
(t |θ)dt , yielding the Bayes

rule for estimating θ based on Tk , which is no less risky than θ̂ (Tb). The requirement that each
output Tk derives from a unique Tb means that each basis component Tb has a unique line of
descendants. Within each line, each descendant is comparable to only a single Tb in the sense of
deterministic dependence. Between these lines, such comparisons are not possible. This ensures
the overall risk-monotonicity.

Biology provides an illustration of such bases. A wide array of methodological approaches
have been used to analyze high-throughput gene expression data. One approach, builds upon or-
der and rank statistics (Geman et al. (2004), Geman (2012), Tan et al. (2005)). Another common
approach uses differences in gene expression between conditions or experiments, often aggre-
gating over pathways, replicates, and so forth. Each class of methods is based upon a different
form of preprocessing: ranks transformations for the former, normalization and aggregation for
the latter. Taking procedures based on rank statistics and aggregate differences in expression as a
basis, we can consider constructing a risk-monotone procedure as above. Thus, the given formu-
lation can bring together apparently disparate methods as a first step in analyzing their multiphase
properties.
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Such constructions are, unfortunately, not sufficient to generate all possible risk monotone
procedures. Obtaining more general conditions and constructions for risk monotone procedures
is a topic for further work.

2.4. Revisiting our examples and probing our boundaries

By casting the examples in Section 1.2 into the formal structure just established, we can clarify
the practical role of each mathematical component and see how to map theoretical results into
applied guidance. We also provide an example that illustrates the boundaries of the framework’s
utility, and another that demonstrates its formal limits. These provide perspective on the trade-
offs made in formalizing the multiphase inference problem.

The case of microarray preprocessing presented previously fits quite nicely into the model
of Section 2.1. There, Y corresponds to the observed probe-level intensities, X corresponds
to the true expression level for each gene under each condition, and θ corresponds to the pa-
rameters governing the organism’s patterns of gene expression. In the microarray setting, pY

would characterize the relationship between expression levels and observed intensities, governed
by ξ . These nuisance parameters could include chip-level offsets, properties of any additive back-
ground, and the magnitudes of other sources of variation. The assumptions of a Markovian de-
pendence structure and distinct parameters for each part of the model appear quite reasonable in
this case, as (1) the observation Y can only (physically) depend upon the sample preparation, ex-
perimental protocol, and RNA concentrations in the sample and (2) the distributions pX and pY

capture physically distinct portions of the experiment. Background correction, normalization,
and the reduction of observations to log-fold changes are common examples of preprocessing
T (Y ). As discussed previously, estimands based upon X may be of greater scientific interest
than those based upon θ . For instance, we may want to know whether gene expression changed
between two treatments in a particular experiment (a statement about X) than whether a param-
eter regulating the overall patterns of gene expression takes on a particular value.

For the astrophysical example, the fit is similarly tidy. The raw astronomical observations cor-
respond to Y , the true temperature, density, and spectral properties of each part of the dust cloud
become X, and the parameters governing the relationship between these quantities (e.g., their cor-
relation) form θ . The pY distribution governs the physical observation process, controlled by ξ .
This process typically includes the instruments’ response to astronomical signals, atmospheric
distortions, and other earthbound phenomena. As before, the conditional independence of θ and
Y given X and ξ is sensible based upon the problem structure, as is the separation of θ and ξ .
Here X corresponds to signals emitted billions or trillions of miles from Earth, whereas the ob-
servation process occurs within ground- or space-based telescopes. Hence, any non-Markovian
effects are quite implausible. Preprocessing T (Y ) corresponds to the (point) estimates of tem-
perature, density, and spectral properties from simple models of Y given X and ξ .

The multiphase framework encompasses a broad range of settings, but it does not shed ad-
ditional light on all of them. If T is a many-to-one transformation of Y , then our framework
implies that the preprocessor and downstream analyst face structurally different inference (and
missing data) problems. This is the essence of multiphase inference, in our view. Settings where
pY (Y |X,ξ) is degenerate or T is a one-to-one function of Y are boundary cases where our mul-
tiphase interpretation and framework add little.
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For a concrete example of these cases, consider a time-to-failure experiment, with the times
of failure Wi ∼ i.i.d Expo(θ), i = 1, . . . , n. Now, suppose that the experimenters actually ran the
experiment in m equally-sized batches. They observe each batch only until its first failure; that is,
they observe and report Yb = min{Wi : i in batch b} for each batch b. Subsequent analysts have
access only to T = (Y1, . . . , Yb). This seems to be a case of preprocessing, but it actually resides
at the very edge of our framework.

We could take the complete observations to be X and the batch minima to be Y . This would
satisfy our Markov constraint, with a singular, and hence deterministic, observation process
pY (Y |X) simply selecting a particular order statistic within each batch. However, T (Y ) is one-to-
one; the preprocessor observes only the order statistics, as does the downstream analyst. There is
no separation of inference between phases; the same quantities are observed and missing to both
the preprocessor and the downstream analyst. Squeezing this case into the multiphase framework
is technically valid but unproductive.

The framework we present is not, however, completely generic. Consider a chemical experi-
ment involving a set of reactions. The underlying parameters θ describe the chemical properties
driving the reactions, X are the actual states of the reaction, and Y are the (indirectly) mea-
sured outputs of the reactions. The measurement process for these experiments, as described by
pY (Y |X,ξ), could easily violate the structure of our model in this case. For instance, the same
chemical parameters could affect both the measurement and reaction processes, violating the
assumed separation of θ and ξ .

Even careful preprocessing in such a setting can create a fundamental incoherence. Suppose
the downstream analysis will be Bayesian, so the preprocessor provides the conditional density
of Y as a function of X, pY (Y |X), for the observed Y . If θ and ξ share components, and the
preprocessor uses their prior on ξ to create pY (Y |X), the conditional density need not be suffi-
cient for θ under the downstream analyst’s model. Because the downstream analyst’s prior on θ

need not be compatible with the preprocessor’s prior on ξ , inferences based on the preproces-
sor’s pY (Y |X) can be seriously flawed in this setting. Hence, we exclude such cases from our
investigation for the time being.

Thinking Bayesianly, our model (2.1) obviously does not exclude the possibility that the down-
stream analyst has more knowledge about θ than the preprocessor in the form of a prior on θ .
However, prior information means that it is based on studies that do not overlap with the current
one. Probabilistically speaking, this means that our model permits the downstream analyst to for-
mally incorporate another data set Z, as long as Z is conditionally independent of the scientific
variables X and observations Y given (θ, ξ) or θ . For example, the downstream analyst could ob-
serve completely separate experiments pertaining to the same underlying process governed by θ

or the outcomes of separate calibration pertaining to ξ , but not additional replicates governed by
the same realization of X. In a biological setting, this means that the downstream analyst could
have access to results from samples not available to the preprocessor (e.g., biological replicates),
possibly using the same equipment; however, they could not have access to additional analyses
of the same biological sample (e.g., technical replicates), as a single biological sample would
typically correspond to a single realization of X.

These examples remind us that our multiphase setting does not encompass all of statistical in-
ference. This is quite a relief to us. Our work aims to open new directions for statistical research,
but it cannot possibly address every problem under the sun!
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2.5. Constraints will set your theory free

Multiphase theory hinges on procedural constraints. Consider, for example, finding the optimal
multiphase estimation procedure in terms of the final estimator’s Bayes risk. Without stringent
procedural constraints, the result is trivial: compute the appropriate Bayes estimator using the
distribution of T given θ . Similarly, the optimal preprocessing T will, without tight constraints,
simply compute an optimal estimator using Y and pass it forward. Note that both of these cases
respect risk-monotonicity to the letter; it is not sufficiently tight to enable interesting, relevant
theory. More constraints, based upon careful consideration of applied problems, are clearly re-
quired.

This is not altogether bad news. We need only look to the history of multiple imputation to see
how rich theory can arise from stringent, pragmatic constraints. Multiple imputation forms a nar-
row subset of multiphase procedures: X corresponds to the complete data (Ycom, in MI notation),
Y corresponds to the observed data Yobs and missing data indicator R, and T usually consists
of posterior predictive draws of the missing data together with the observed data. The Marko-
vian property depicted in Figure 1 holds when the parameter (ξ ) for the missing data mechanism
p(R|Ycom, ξ ) is distinct from the parameter of interest (θ ) in p(Ycom|θ), which is a common
assumption in practice. The second-phase procedure is then restricted to repeatedly applying a
complete-data procedure and combining the results. These constraints were originally imposed
for practical reasons—in particular, to make the resulting procedure feasible with existing soft-
ware. However, they have opened the door to deep theoretical investigations.

In that spirit, we consider two types of practically-motivated constraints for multiphase infer-
ence: restrictions on the downstream analyst’s procedure and restrictions on the preprocessor’s
methods. These constraints are intended to work in concert with coherence conditions (e.g., risk
monotonicity), not in isolation, to enable meaningful theory.

Constraints on the downstream analyst are intended to reflect practical limitations of their
analytic capacity. Examples include restricting the downstream analyst to narrow classes of es-
timators (e.g., linear functions of preprocessed inputs), to specific principles of estimation (e.g.,
MLEs), or to special cases of a method we can reasonably assume the downstream analyst could
handle, such as a complete-data estimator θ̂ (X), available from software with appropriate inputs.
Estimators derived from nested families of models are often suitable for this purpose. For ex-
ample, whereas θ̂ (X) may involve only an ordinary regression, the computation of θ̂ (T ) may
require a weighted least-squares regression.

Another constraint on the downstream analyst pertains to nuisance parameters. Such con-
straints are of great practical and theoretical interest, as we believe that the preprocessor will
typically have better knowledge and statistical resources available to address nuisance param-
eters than the downstream analyst. An extreme but realistic case of this is to assume that the
downstream analyst cannot address nuisance parameters at all. As we shall discuss in Section 3,
this would force the preprocessor to either marginalize over the nuisance parameters, find a pivot
with respect to them, or trust the downstream analyst to use a method robust to the problematic
parameters.

Turning to the preprocessor, we consider restricting either the form of the preprocessor’s out-
put or the mechanics of their methods. In the simplest case of the former, we could require that
T consist of the posterior mean (X̂) and posterior covariance (V ) of the unknown X under the
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preprocessor’s model. A richer, but still realistic, class of output would be finite-dimensional real
or integer vectors. Restricting output to such a class would prevent the preprocessor from pass-
ing arbitrary functions onto the downstream analyst. This leads naturally to the investigation of
(finite-dimensional) approximations to the preprocessor’s conditional density, aggregation, and
other such techniques.

On the mechanical side, we can restrict either the particulars of the preprocessor’s methods
or their broader properties. Examples of the former include particular computational approxi-
mations to the likelihood function or restrictions to particular principles of inference (e.g., sum-
maries of the likelihood or posterior distribution of X given (Y, ξ)). Such can focus our inquiries
to specific, feasible methods of interest or reflect the core statistical principles we believe the
preprocessor should take into account. In a different vein, we can require that preprocessor’s
procedures be distributable across multiple researchers, each with their own experiments and
scientific variables of interest. Such settings are of interest for both the accumulation of scientific
results for later use and for the development of distributed statistical computation. This leads to
preprocessing based upon factored “working” models for X, as we explore further in Section 3.1.
Nuisance parameters play an important role in these constraints, narrowing the class of feasible
methods (e.g., marginalization over such parameters may be exceedingly difficult) and largely
determining the extent to which preprocessing can be distributed. We explore these issues in
more detail throughout Section 3.

3. A few theoretical cornerstones

We now present a few steps towards a theory of multiphase inference. In this, we endeavor to
address three basic questions: (1) how can we determine what to retain, (2) what limits the per-
formance of multiphase procedures, and (3) what are some minimal requirements for being an
ideal preprocessor? We find insight into the first question from the language of classical suffi-
ciency. We leverage and specialize results from the missing-data literature to address the second.
For the third question, we turn to the tools of decision theory.

3.1. Determining what to retain

Suppose we have a group of researchers, each with their own experiments. They want to prepro-
cess their data to reduce storage requirements, ease subsequent analyses, and (potentially) pro-
vide robustness to measurement errors. This group is keenly aware of the perils of preprocessing
and want to ensure that the output they provide will be maximally useful for later analyses. Their
question is, “Which statistics should we retain?”

If each of these researchers was conducting the final analysis themselves, using only their own
data, they would be in a single-phase setting. The optimal strategy then is to keep a minimal
sufficient statistic for each researcher’s model. Similarly, if the final analysis were planned and
agreed upon among all researchers, we would again have a single-phase setting, and it is opti-
mal to retain the sufficient statistics for the agreed-upon model. We use the term optimal here
because it achieves maximal data reduction without losing information about the parameters of
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interest. Such lossless compression–in the general sense of avoiding statistical redundancy–is
often impractical, but it provides a useful theoretical gold standard.

In the multiphase setting, especially with multiple researchers in the first phase, achieving
optimal preprocessing is far more complicated even in theory. If T (Y ) is the output of the en-
tire preprocessing phase, then in order to retain all information we must require T (Y ) to be a
sufficient statistics for {θ, ξ} under model (2.1); that is,

L
(
θ, ξ |T (Y )

) = L(θ, ξ |Y), (3.1)

where L denotes a likelihood function; or at least in the (marginal) Bayesian sense,

P
(
θ |T (Y )

) = P(θ |Y), (3.2)

where P(θ |D) is the posterior of θ given data D with the likelihood given by (2.1). Note that (3.1)
implies (3.2), and (3.2) is useful when the downstream analyst wants only a Bayesian inference
of θ . In either case the construction of the sufficient statistic generally depends on the joint
model for Y as implied by (2.1), requiring more knowledge than individual researchers typically
possess.

Often, however, it is reasonable to assume the following conditional independence. Let
{Yi,Xi, ξi} be the specification of {Y,X, ξ} for researcher i(= 1, . . . , r), where {Y1, . . . , Yr}
forms a partition of Y . We then assume that

pY (Y |X,ξ) =
r∏

i=1

pYi
(Yi |Xi, ξi). (3.3)

Note in the above definition implicitly we also assume the baseline measure μY is a product
measure

∏r
i=1 μYi

, such as Lebesgue measure. The assumption (3.3) holds, for example, in
microarray applications, when different labs provide conditionally-independent observations of
probe-level intensities. The preceding discussion suggests that this assumption is necessary for
ensuring (3.1) or even (3.2), but obviously it is far from sufficient because it says nothing about
the model on X.

It is reasonable—or at least more logical than not—to assume each researcher has the best
knowledge to specify his/her own observation model pYi

(Yi |Xi, ξi) (i = 1, . . . , r). But, for the
scientific model pX(X|θ) used by the downstream analyst, the best we can hope is that each
researcher has a working model p̃X(Xi |gi(η)) that is in some way related to pX(X|θ). The
notation gi(η) reflects our hope to construct a common working parameter η that can ultimately
be linked to the scientific parameter θ .

Given this working model, the ith researcher can obtain the corresponding (minimal) sufficient
statistic Ti(Y ) for {gi(η), ξi} with respect to

p̃X

(
Yi |gi(η), ξi

) =
∫

pY (Yi |Xi, ξi)p̃X

(
Xi |gi(η)

)
dμXi

(Xi), i = 1, . . . , r. (3.4)
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When one has a prior πξi
(ξi) for ξi , one could alternately decide to retain the (Bayesian) sufficient

statistic T B
i (Yi) with respect to the model

p̃Y

(
Yi |gi(η)

) =
∫ ∫

pY (Yi |Xi, ξi)p̃X

(
Xi |gi(η)

)
πξi

(ξi)dμXi
(Xi)dμξ(ξi). (3.5)

Our central interest here is to determine when the collection T (Y ) = {Ti(Yi): i = 1, . . . , r}
will satisfy (3.1) and when T B(Y ) = {T B

i (Yi): i = 1, . . . , r} will satisfy (3.2). This turns out
to be an exceedingly difficult problem if we seek a necessary and sufficient condition for when
this occurs. However, it is not difficult to identify sufficient conditions that can provide useful
practical guidelines. We proceed by first considering cases where {X1, . . . ,Xr} forms a partition
of X. Compared to the assumption on partitioning Y , this assumption is less likely to hold in
practice because different researchers can share common parts of X’s or even the entire scientific
variable X. However, as we shall demonstrate shortly, we can extend our results formally to
all models for X, as long as we are willing to put tight restrictions on the allowed class of
working models. Specifically, the following condition describes a class of working models that
are ideal because they permit separate preprocessing yet retain joint information. Note again that
an implicit assumption here is that the baseline measure μX is a product measure

∏r
i=1 μXi

.

Definition 3 (Distributed separability condition (DSC)). A set of working models {p̃X(Xi |
gi(η)): i = 1, . . . , r} is said to satisfy the distributed separability condition with respect to
pX(X|θ) if there exists a probability measure pη(η|θ) such that

pX(X|θ) =
∫

η

[
r∏

i=1

p̃X

(
Xi |gi(η)

)]
dpη(η|θ). (3.6)

Theorem 1. Under the assumptions (3.3) and (3.6), we have

(1) The collection of individual sufficient statistics from (3.4), that is, T (Y ) = {Ti(Yi), i =
1, . . . , r}, is jointly sufficient for {θ, ξ} in the sense that (3.1) holds.

(2) Under the additional assumption that {ξ1, . . . , ξr} forms a partition of ξ and π(ξ)dμξ =∏r
i=1 πξi

(ξi)dμξi
, both T (Y ) corresponding to (3.4) and T B(Y ) corresponding to (3.5) are

Bayesianly sufficient for θ in the sense that (3.2) holds.

Proof. By the sufficiency of Ti for (gi(η), ξi), we can write∫
Xi

pY (Yi |Xi, ξi)p̃X

(
Xi |gi(η)

)
dμXi

(Xi) = p̃Y

(
Yi |gi(η), ξi

) = hi(Yi)fi

(
Ti;gi(η), ξi

)
. (3.7)

This implies that,

pY (Y |θ, ξ) =
∫

X

pY (Y |X,ξ)pX(X|θ)dμX(X),

[
by (3.3) and (3.6)

] =
∫

X

[
r∏

i=1

pY (Yi |Xi, ξi)

]
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×
[∫

η

[
r∏

i=1

p̃X

(
Xi |gi(η)

)]
dpη(η|θ)

]
dμX(X),

[by factorization of μX] =
∫

η

r∏
i=1

[∫
Xi

pY (Yi |Xi, ξi)p̃X

(
Xi |gi(η)

)
dμXi

(Xi)

]
dpη(η|θ),

[
by (3.7)

] =
[

r∏
i=1

hi(Yi)

][∫
η

r∏
i=1

fi

(
Ti;gi(η), ξi

)
dpη(η|θ)

]
.

This establishes (1) by the factorization theorem. Assertion (2) is easily established via an
analogous argument, by integrating all the expressions above with respect to π(ξ)dμ(ξ) =∏r

i=1 πξi
(ξi)dμξi

(ξi). �

We emphasize that DSC does not require individual researchers to model their parts of X in
the same way as the downstream analyst would, which would make it an essentially tautological
condition. Rather, it requires that individual researchers understand their own problems and how
they can fit into the broader analysis hierarchically. This means that the working model for each
Xi (i = 1, . . . , r) can be more saturated than the downstream analyst’s model for the same part
of X.

Consider a simple case with r = 1, where the preprocessor correctly assumes the multivariate
normality for X but is unaware that its covariance actually has a block structure or is unwilling to
impose such a restriction to allow for more flexible downstream analyses. Clearly any sufficient
statistic under the unstructured multivariate model is also sufficient for any (nested) structured
ones. The price paid here is failing to achieve the greatest possible sufficient reduction of the
data, but this sacrifice may be necessary to ensure the broader validity of downstream analyses.
For example, even if downstream analysts adopt a block-structured covariance, they may still
want to perform a model checking, which would not be possible if all they are given is a minimal
sufficient statistic for the model to be checked.

Knowledge suitable for specifying a saturated model is more attainable than complete knowl-
edge of pX(X|θ), although ensuring common knowledge of its (potential) hierarchical structure
still requires some coordination among the researchers. Each of them could independently de-
termine for which classes of scientific models their working model satisfies the DSC. However,
without knowledge of the partition of X across researchers and the overarching model(s) of in-
terest, their evaluations need not provide any useful consensus. This suggests the necessity of
some general communications and a practical guideline for distributed preprocessing, even when
we have chosen a wise division of labors that permits DSC to hold.

Formally, DSC is similar in flavor to de Finetti’s theorem, but it does not require the com-
ponents of the factorized working model to be exchangeable. DSC, however, is by no means
necessary (even under (3.1)), as an example in Section 3.4 will demonstrate. Its limits stem from
“unparameterized” dependence—dependence between Xi ’s that is not controlled by θ . When
such dependence is present, statistics can exist that are sufficient for both η and θ without the
working model satisfying DSC.

However, a simple necessary condition for distributed sufficiency is available. Unsurprisingly,
it links the joint sufficiency of T (Y ) = {Ti(Yi) : i = 1, . . . , r} under pY (Y |θ) to the joint suf-
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ficiency of S(X) = {Si(Xi), i = 1, . . . , r} under the scientific model pX(X|θ), where Si(Xi) is
any sufficient statistic for the working model p̃X(Xi |gi(η)), i = 1, . . . , r .

Theorem 2. If, for all observation models satisfying (3.3), the collections of individual sufficient
statistics from (3.4) T (Y ) = {Ti(Yi), i = 1, . . . , r} are jointly sufficient for {θ, ξ} in the sense
that (3.1) holds, then any collection of individual sufficient statistics under {p̃X(Xi |gi(η)), i =
1, . . . , r}, that is, S(X), must be sufficient for θ under pX(X|θ).

The proof of this condition emerges easily by considering the trivial observation model
pY (Yi |Xi, ξ) = δ{Yi=Xi }, where δA is the indicator function of set A. Theorem 2 holds even
if we require the observation model to be nontrivial, as the case of pY (Yi |Xi, ξ) ∝ δ{Yi∈Bε[Xi ]}
for arbitrary ε-neighborhoods of Xi demonstrates. The result says that if we want distributed
preprocessing to provide a lossless compression regardless of the actual form of the observa-
tion model, then even under the conditional independence assumption (3.3), we must require the
individual working models to collectively preserve sufficiency under the scientific model. Note
that preserving sufficiency for a model is a much weaker requirement than preserving the model
itself. Indeed, two models can have very different model spaces yet share the same form of suf-
ficient statistics, as seen with i.i.d. Poisson(μ) and N(μ,1) models, both yielding the sample
average as a complete sufficient statistic.

Although we find this sufficiency-preserving condition quite informative about the limits of
lossless distributed preprocessing, it is not a sufficient condition. As a counterexample, consider
Yij |Xi ∼ N(μi, σ

2
ij ) independent for i = 1, . . . , n, j = 1, . . . ,m, where Xi ≡ (μi, σ

2
i1, . . . , σ

2
im).

For the true model, we assume pX(X|θ) as follows: μi |θ ∼ N(θ,1), σ 2
ij ∼ 1/χ1

2, and all vari-
ables are mutually independent. For the working model, we take p̃X(X|η) as follows: μi |ηi ∼
N(ηi,1) independently, and σ 2

ij = 1 with probability 1 for all i, j . Obviously S = (μ1, . . . ,μn)

is a sufficient statistic for both p̃X(X|η) and pX(X|θ) because of their normality. Because S is
minimally sufficient for η, this implies that any sufficient statistic for p̃X(X|η) must be sufficient
for pX(X|θ), therefore the sufficiency preserving condition holds.

However, the collection of the complete sufficient statistics Ti = ∑
j yij /m, i = 1, . . . , r for η

under pY (Y |η) is not sufficient for θ under pY (Y |θ) because the latter is no longer an exponential
family. The trouble is caused by the failure of the working models to capture additional flexibility
in the scientific model that is not controlled by its parameter θ . Therefore, obtaining a condition
that is both necessary and sufficient for lossless compression via distributed preprocessing is a
challenging task. Such a condition appears substantially more intricate than those presented in
Theorems 1 and 2 and may therefore be less useful as an applied guideline. Below we discuss a
few further subtleties.

Likelihood sufficiency verses Bayesian efficiency

Although Theorem 1 covers both likelihood and Bayesian cases, it is important to note a subtle
distinction between their general implications. In the likelihood setting (3.1), we achieve lossless
compression for all downstream analyses targeting (θ, ξ). This allows the downstream analyst to
obtain inferences that are robust to the preprocessor’s beliefs about ξ , and they are free to revise
their inferences if new information about ξ becomes available. But, the downstream analyst must
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address the nuisance parameter ξ from the preprocessing step, a task a downstream analyst may
not be able or willing to handle.

In contrast, the downstream analyst need not worry about ξ in the Bayesian setting (3.2).
However, this is achieved at the cost of robustness. All downstream analyses are potentially af-
fected by the preprocessors’ beliefs about ξ . Furthermore, because T B(Y ) is required only to be
sufficient for θ , it may not carry any information for a downstream analyst to check the prepro-
cessor’s assumptions about ξ . Fortunately, as it is generally logical to expect the preprocessor to
have better knowledge addressing ξ than the downstream analyst, such robustness may not be
a serious concern from a practical perspective. Theoretically, the trade-off between robustness
and convenience is not clear-cut; they can coincide for other types of preprocessing, as seen in
Section 3.2 below.

Deterministic dependencies among Xi ’s

As discussed earlier, (conditional) dependencies among the observation variables Yi across dif-
ferent i’s will generally rule out the possibility of achieving lossless compression by collect-
ing individual sufficient statistics. This points to the importance of appropriate separation of
labors when designing distributed preprocessing. In contrast, dependencies among Xi ’s are
permitted, at the expense of redundancy in sufficient statistics. We first consider determinis-
tic dependencies, and for simplicity, take r = 2 and constrain attention to the case of suffi-
ciency for θ . Suppose we have X1 and X2 forming a partition of X, with a working model
p̃X(X|η) = p̃X1(X1|η1)p̃X2(X2|η2) that satisfied the DSC for some pη(η|θ). Imagine we need
to add a common variable Z to both X1 and X2 that is conditionally independent of {X1,X2}
given θ and has density pZ(Z|θ), with the remaining model unchanged. However, the two re-
searchers are unaware of the sharing of Z, so they set up X′

1 = {X1,Z1} and X′
2 = {X2,Z2}, with

pX′
1
(X′

1|η′
1) and p̃X′

2
(X′

2|η′
2) as their respective working models.

At the first sight this seems to be a hopeless situation for applying the DSC condition, be-
cause X′ = {X′

1,X
′
2} = {X1,Z1,X2,Z2} does not correspond to the scientific variable X =

{X1,X2,Z} of interest. However, we notice that if we can force Z1 = Z2 = Z in X′, then we
can recover X. This forcing is not a mere mathematical trick. Rather, it reflects an extreme yet
practical strategy when researchers are unsure whether they share some components of their
X′

i s with others. The strategy is simply to retain statistics sufficient for the entire part that they
may suspect to be common, which in this case means that both researchers will retain statis-
tics sufficient for the Z′

is (i = 1,2) in their entirety. Mathematically, this corresponds to letting
p̃X′

i
(X′

i |η′
i ) = p̃Xi

(Xi |ηi)δ{Zi=ζi }, where η′
i = {ηi, ζi}. It is then easy to verify that DSC holds,

if we take p′
η(η

′|θ) = pη(η|θ)pZ(ζ1|θ)δ{ζ1=ζ2}, where η′ = {η, ζ1, ζ2}. This is because when
Z1 
= Z2, both sides of (3.6) are zero. When Z1 = Z2 = Z, we have (adopting integration over δ

functions)

∫
η′

[
2∏

i=1

p̃X′
i

(
X′

i |η′
i

)]
dp′

η

(
η′|θ)

=
∫

η

∫
ζ1

[
2∏

i=1

p̃Xi
(Xi |ηi)δ{Z=ζi }

]
dpη(η|θ)δ{ζ1=ζ2} dpZ(ζ1|θ)
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=
[∫

η

2∏
i=1

p̃Xi
(Xi |ηi)dpη(η|θ)

]∫
ζ1

δ{ζ1=Z} dpZ(ζ1|θ)

= pX(X1,X2|θ)pZ(Z|θ) = pX(X|θ).

This technique of expanding η to include shared parts of the X allows the DSC and Theorem 1
to be applied to all models pX(X|θ), not only those with with distinct Xi ’s. However, this con-
struction also restricts working models to those with deterministic relationships between parts of
η and each Xi .

The derivation above demonstrates both the broader applications of DSC as a theoretical con-
dition and its restrictive nature as a practical guideline. Retaining sufficient statistics for both
Z1 and Z2 can create redundancy. If each preprocessor observes Z without noise, then only one
of them actually needs to retain and report their observation of Z. However, if each observes Z

with independent noise, then both of their observations are required to obtain a sufficient statis-
tic for θ . The noise-free case also provides a straightforward counterexample to the necessity
of DSC. Assuming both preprocessors observe Z directly, as long as one of the copies of Z is
retained via the use of the saturated δ density, the other copy can be modeled in any way—and
hence can be made to violate DSC—without affecting their joint sufficiency for θ .

Regardless of the dependencies among the Xi ’s, there is always a safe option open to the
preprocessors for data reduction: retain Ti sufficient for (Xi, ξi) under pY (Yi |Xi, ξi). This will
preserve sufficiency for θ under any scientific model pX(X|θ):

Theorem 3. If pY (Y |X,ξ) is correctly specified and satisfies (3.3), then any collection of indi-
vidual sufficient statistics {Ti : i = 1, . . . , r} with each Ti sufficient for (Xi, ξi) is jointly sufficient
for (θ, ξ) in the sense of (3.1) for all pX(X|θ).

Proof. By the factorization theorem, we have pY (Yi |Xi, ξi) = hi(Yi)fi(Ti;Xi, ξi) for any i.
Hence, by (3.3), pY (Y |θ) = [∏r

i=1 hi(Yi)]
∫
X
[∏r

i=1 pT (Ti |Xi, ξi)]pX(X|θ)dμX(X). Therefore
{Ti : i = 1, . . . , r} is sufficient for θ , by the factorization theorem for sufficiency. �

Theorem 3 provides a universal, safe strategy for sufficient preprocessing and a lower bound
on the compression attainable from distributed sufficient preprocessing. As all minimal sufficient
statistics for θ are functions of any sufficient statistic for (X, ξ), retaining minimal sufficient
statistics for each (Xi, ξi) results in less compression than any approach properly using knowl-
edge of pX(X|θ). However, the compression achieved relative to retaining Y itself may still be
significant. Minimal sufficient statistics for θ provide an upper bound on the attainable degree
of compression by the same argument. Achieving this compression generally requires that each
preprocessor knows the true scientific model pX(X|θ). Between these bounds, the DSC (3.6)
shows a trade-off between the generality of preprocessing (with respect to different scientific
models) and the compression achieved: the smaller the set of scientific models for which a given
working model satisfies (3.6), the greater the potential compression from its sufficient statistics.

Stochastic dependencies among Xi ’s

More generally, stochastic dependence among Xi ’s reduces compression and increases redun-
dancy in distributed preprocessing. These costs are particularly acute when elements of θ control
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dependence among Xi ’s, as seen in the following example where

X = (X1,X2)
� ∼ N4D

⎛
⎜⎜⎝θ114D,

⎛
⎜⎜⎝

1 0 0 θ2

0 1 0 0

0 0 1 0

θ2 0 0 1

⎞
⎟⎟⎠ ⊗ ID

⎞
⎟⎟⎠ for D > 1,

Yi = (Yi1, Yi2)
�|Xi ∼ N2D(Xi, I2D) independently for i = 1,2.

Here 14D is a column vector with 4D 1’s as its components, and ⊗ is the usual Kronecker
product. If θ2 is known, then each researcher can reduce their observations Yi to a scalar statistic
Y�

i 12D and preserve sufficiency for θ1. If θ2 is unknown, then each researcher must retain all of
Yii (but not Yij for i 
= j ) in addition to these sums to ensure sufficiency for θ = (θ1, θ2), because
the minimal sufficient statistic for (θ1, θ2) requires the computation of Y�

11Y22. Thus, the cost of
dependence here is D additional pieces of information per preprocessor. Dependence among the
Xi ’s forces the preprocessors to retain enough information to properly combine their individual
contributions in the final analysis, downweighting redundant information. This is true even if
they are interested only in efficient estimation of θ1, leading to less reduction of their raw data
and less compression from preprocessing than the independent case.

Practical perspective

From this investigation, we see that it is generally not enough for each researcher involved in
preprocessing to reduce data based on even a correctly-specified model for their problem at hand.
We instead need to look to other models that include each experimenter’s data hierarchically,
explicitly considering higher-level structure and relationships. However, significant reductions of
the data are still possible despite these limitations. Each Ti need not be sufficient for each Xi , nor
must T be sufficient for X overall. This often implies that much less data need to be retained and
shared than retaining sufficient statistics for each Xi would demand. For instance, if a working
model with Xi |ηi ∼ N(μi,
i) satisfies the DSC for a given model pX(X|θ) and Yij |Xi, ξi ∼
N(Xi, ξi), then only means and covariance matrices of Yij within each experiment i need to be
retained.

The discussions above demonstrate the importance of involving downstream analysts in the
design of preprocessing techniques. Their knowledge of pX(X|θ) is extremely useful in deter-
mining what compression is appropriate, even if said knowledge is imperfect. Constraining the
scientific model to a broad class may be enough to guarantee effective preprocessing. For ex-
ample, suppose we fix a working model and consider all scientific models that can be expressed
as (3.6) by varying the choices of pη(η|θ). This yields a very broad class of hierarchical scientific
models for downstream analysts to evaluate, while permitting effective distributed preprocessing
based on the given working model.

Practically, we see two paths to distributed preprocessing: coordination and caution. Coordi-
nation refers to the downstream analyst evaluating and guiding the design of preprocessing as
needed. Such guidance can guarantee that preprocessed outputs will be as compact and useful as
possible. However, it is not always feasible. It may be possible to specify preprocessing in de-
tail in some industrial and purely computational settings. Accomplishing the same in academic
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research or for any research conducted over time is an impractical goal. Without such overall
coordination, caution is needed. It is not generally possible to maintain sufficiency for θ without
knowledge of the possible models pX(X|θ) unless the retained summaries are sufficient for X

itself. Preprocessors should therefore proceed cautiously, carefully considering which scientific
models they effectively exclude through their preprocessing choices. This is analogous to the
oft-repeated guidance to include as many covariates and interactions as possible in imputation
models (Meng (1994), Meng and Romero (2003)).

3.2. Doing the best with what you get

Having considered the lossless preprocessing, we now turn to more realistic but less clear-cut
situations. We consider a less careful preprocessor and a sophisticated downstream analyst. The
preprocessor selects an output T , which may discard much information in Y but nevertheless
preserves the identifiability of θ , and the downstream analyst knows enough to make the best of
whatever output they are given. That is, the index set C completely and accurately captures all
relevant preprocessing methods T = {Ti : i = 1, . . . , r}. This does not completely capture all the
practical constraints discussed in Section 2. However, it is important to establish an upper bound
on the performance of multiphase procedures before incorporating such issues. This upper bound
is on the Fisher information, and hence a lower bound on the asymptotic variances of estimators
θ̂ of θ . As we will see, nuisance parameters (ξ ) play a crucial role in these investigations.

When using a lossy compression, an obvious question is how much information is lost com-
pared to a lossless compression. This question has a standard asymptotic answer when the down-
stream analyst adopts an MLE or Bayes estimator, so long as nuisance parameters behave appro-
priately (as will be discussed shortly). If the downstream analyst adopts some other procedures,
such as an estimating equation, then there is no guarantee that the procedure based on Y is more
efficient than the one based on T . That is, one can actually obtain a more efficient estimator with
less data when one is not using probabilistically principled methods, as discussed in detail in
Meng and Xie (2013).

Therefore, as a first step in our theoretical investigations, we will focus on MLEs; the re-
sults also apply to Bayesian estimators under the usual regularity conditions to guarantee the
asymptotic equivalence between MLEs and Bayesian estimators. Specifically, let (θ̂(Y ), ξ̂ (Y ))

and (θ̂(T ), ξ̂ (T )) be the MLEs of (θ, ξ) based respectively on Y and T under model (2.1). We
place standard regularity conditions for the joint likelihood of (θ, ξ), assuming bounded third
derivatives of the log-likelihood, common supports of the observation distributions with respect
to (θ, ξ), full rank for all information matrices at the true parameter value (θ0, ξ0), and the exis-
tence of an open subset of the parameter space that contains (θ0, ξ0). These conditions imply the
first and second Bartlett identities.

However, the most crucial assumption here is a sufficient accumulation of information, in-
dexed by an information size NY , to constrain the behavior of remainder terms in quadratic
approximations of the relevant score functions. Independent identically distributed observations
and fixed-dimensional parameters would satisfy this requirement, in which case NY is simply
the data size of Y , but weaker conditions can suffice (for an overview, see Lehmann and Casella
(1998)). In general, this assumption requires that the dimension of both θ and ξ are bounded
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as we accumulate more data, preventing the type of phenomenon revealed in Neyman and Scott
(1948). For multiphase inferences, cases where these dimensions are unbounded are common
(at least in theory) and represent interesting settings where preprocessing can actually improve
asymptotic efficiency, as we discuss shortly.

To eliminate the nuisance parameter ξ , we work with the observed Fisher information matrices
based on the profile likelihoods for θ , denoted by IY and IT respectively. Let F be the limit
of I−1

Y (IY − IT ), the so-called fraction of missing information (see Meng and Rubin (1991)),
as NY → ∞. The proof of the following result follows the standard asymptotic arguments for
MLEs, with the small twist of applying them to profile likelihoods instead of full likelihoods.
(We can also invoke the more general arguments based on decomposing estimating equations, as
given in Xie and Meng (2012).)

Theorem 4. Under the conditions given above, we have asymptotically as NY → ∞,

Var
(
θ̂ (T ) − θ̂ (Y )

)[
Var

(
θ̂ (T )

)]−1 → F (3.8)

and

Var
(
θ̂ (Y )

)[
Var

(
θ̂ (T )

)]−1 → I − F. (3.9)

This establishes the central role of the fraction of missing information F in determining the
asymptotic efficiency of multiphase procedures under the usual asymptotic regime. As mentioned
above, this is an ideal-case bound on the performance of multiphase procedures, and it is based
on the usual squared-error loss; both the asymptotic regime and amount of knowledge held by the
downstream analyst are optimistic. We explore these issues below, focusing on (1) mutual knowl-
edge and alternative definitions of efficiency, (2) the role of reparameterization, (3) asymptotic
regimes and multiphase efficiency, and (4) the issue of robustness in multiphase inference.

Mutual knowledge and efficiency

In practice, downstream analysts are unlikely to have complete knowledge of pY . Therefore,
even if they were given the entire Y , they would not be able to produce the optimal estimator
θ̂ (Y ), making the F value given by Theorem 4 an unrealistic yardstick. Nevertheless, Theorem 4
suggests a direction for a more realistic standard.

The classical theory of estimation focuses on losses of the form L(θ̂, θ0), where θ0 denotes
the truth. Risk based on this type of loss, given by R(θ̂, θ0) = E[L(θ̂, θ0)], is a raw measure of
performance, using the truth as a baseline. An alternative is regret, the difference between the risk
of a given estimator and an ideal estimator θ̂∗; that is, R(θ̂, θ0) − R(θ̂∗, θ0). Regret is popular
in the learning theory community and forms the basis for oracle inequalities. It provides a more
adaptive baseline for comparison than raw risk, but we can push further. Consider evaluating loss
with respect to an estimator rather than the truth. For mean-squared error, this yields

R
(
θ̂ (T ), θ̂ (Y )

) = E
[(

θ̂ (T ) − θ̂ (Y )
)�(

θ̂ (T ) − θ̂ (Y )
)]

. (3.10)

Can this provide a better baseline, and what are its properties?
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For MLEs, R(θ̂(T ), θ̂(Y )) behaves the same (asymptotically) as additive regret because The-
orem 4 implies that, as NY → ∞ under the classical asymptotic regime,

R
(
θ̂ (T ), θ̂ (Y )

) = Var
(
θ̂ (T ) − θ̂ (Y )

) = Var
(
θ̂ (T )

) − Var
(
θ̂ (Y )

)
(3.11)

= R
(
θ̂ (T ), θ0

) − R
(
θ̂ (Y ), θ0

)
.

For inefficient estimators, (3.11) does not hold in general because θ̂ (T ) − θ̂ (Y ) is no longer
guaranteed to be asymptotically uncorrelated with θ̂ (Y ). In such cases, this is precisely the reason
θ̂ (T ) can be more efficient than θ̂ (Y ) or, more generally, there exists a constant λ 
= 0 such that
λθ̂(T ) + (1 − λ)θ̂(Y ) is (asymptotically) more efficient than θ̂ (Y ). In the terminology of Meng
(1994), the estimation procedure θ̂ (·) is not self-efficient if (3.11) does not hold, viewing Y as
the complete data Ycom and T as the observed data Yobs. Indeed, if R(θ̂(T ), θ0) < R(θ̂(Y ), θ0),
R(θ̂(T ), θ̂(Y )) may actually be larger for a better θ̂ (T ) because of the inappropriate baseline
θ̂ (Y ); it is a measure of difference, not dominance, in such cases. Hence, some care is needed in
interpreting this measure.

Therefore, we can view (3.10) as a generalization of the usual notion of regret, or the relative
regret if we divide it by R(θ̂(Y ), θ0). This generalization is appealing for the study of preprocess-
ing: we are evaluating the estimator based on preprocessed data directly against what could be
done with the complete raw data, sample by sample, and we no longer need to impose the restric-
tion that the downstream analysts must carry out the most efficient estimation under a model that
captures the actual preprocessing. This direction is closely related to the idea of strong efficiency
from Xie and Meng (2012) and Meng and Xie (2013), which generalizes the idea of asymp-
totic decorrelation beyond the simple (but instructive) setting covered here. Such ideas from the
theory of missing data provide a strong underpinning for the study of multiphase inference and
preprocessing.

Reparameterization

Theorem 4 also emphasizes the range of effects that preprocessing can have, even in ideal cases.
Consider the role that F plays under different transformations of θ . Although the eigenvalues of
F are invariant under one-to-one transformations of the parameters, submatrices of F can change
substantially. Formally, if θ = (θ1, θ2) is transformed to ω = (ω1,ω2) = (g1(θ1, θ2), g2(θ1, θ2)),
then the fraction of missing information for ω1 can be very different from that for θ1. These
changes mean that changes in parameterization can reallocate the fractions of missing infor-
mation among resulting subparameters in unexpected—and sometimes very unpleasant—ways.
This is true even for linear transformations; a given preprocessing technique can preserve effi-
ciency for θ1 and θ2 individually while performing poorly for θ1 − θ2. Such issues have arisen
in, for instance, the work of Xie and Meng (2012) when attempting to characterize the behavior
of multiple imputation estimators under uncongeniality.

Asymptotic regimes and multiphase efficiency

On a fundamental level, Theorem 4 is a negative result for preprocessing, at least for MLEs.
Reducing the data from Y to T can only hinder the downstream analyst. Formally, this means
that IT ≤ IY (asymptotically) in the sense that IY − IT is positive semi-definite. As a result, θ̂ (Y )
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will dominate θ̂ (T ) in asymptotic variance for any preprocessing T . Thus, the only justification
for preprocessing appears to be pragmatic; if the downstream analyst could not make use of
pY for efficient inference or such knowledge could not be effectively transmitted, preprocessing
provides a feasible way to obtain the inferences of interest. However, this conclusion depends
crucially on the assumed behavior of the nuisance parameter ξ .

The usual asymptotic regime is not realistic for many multiphase settings, particularly with
regards to ξ . In many problems of interest, dim(ξ)/NY does not tend to zero as NY increases,
preventing sufficient accumulation of information on the nuisance parameter ξ . A typical regime
of this type would accumulate observations Yi from individual experiments i, each of which
brings its own nuisance parameter ξi . Such a process could describe the accumulation of data
from microarrays, for instance, with each experiment corresponding to a chip with its own obser-
vation parameters, or the growth of astronomical datasets with time-varying calibration. In such
a regime, preprocessing can have much more dramatic effects on asymptotic efficiency.

In the presence of nuisance parameters, inference based on T can be more robust and even
more efficient than inference based on Y . It is well-known that the MLE can be inefficient and
even inconsistent in regimes where dim(ξ) → ∞ (going back to at least Neyman and Scott
(1948)). Bayesian methods provide no panacea either. Marginalization over the nuisance pa-
rameter ξ is appealing, but resulting inferences are typically sensitive to the prior on ξ , even
asymptotically. In many cases (such as the canonical Neyman–Scott problem), only a minimal
set of priors provide even consistent Bayes estimators. Careful preprocessing can, however, en-
able principled inference in such regimes.

Such phenomena stand in stark contrast to the theory of multiple imputation. In that theory,
complete data inferences are typically assumed to be valid. Thus, under traditional missing data
mechanisms, the observed data (corresponding to T ) cannot provide better inferences than Y .
This is not necessarily true in multiphase settings. If the downstream analyst is constrained to
particular principles of inference (e.g., MLE or Bayes), then estimators based on T can provide
lower asymptotic variance than those based on Y . This occurs, in part, because the mechanisms
generating Y and T from X are less restricted in the multiphase setting compared to the tra-
ditional missing-data framework. Principled inferences based on X would, in the multiphase
setting, generally dominate those based on either Y or T . However, such a relationship need not
hold between Y and T without restrictions on the behavior of ξ . We emphasize that this does
not contradict the general call in Meng and Xie (2013) to follow the probabilistically-principled
methods (such as MLE and Bayes recipes) to prevent violations of self-efficiency, precisely be-
cause the well-established principles of single-phase inference may need to be “re-principled”
before they can be equally effective in the far more complicated multiphase setting.

Robustness and nuisance parameters

In the simplest case, if a T can be found such that it is a pivot with respect to ξ and remains
dependent upon θ , then sensitivity to the behavior of ξ can be eliminated by preprocessing. In
such cases, an MLE or Bayes rule based on T can dominate that based on Y even asymptot-
ically. One such example would be providing z-statistics from each of a set of experiments to
the downstream analyst. This clearly limits the range of feasible downstream inferences. With
these z-statistics, detection of signals via multiple testing (e.g., Benjamini and Hochberg (1995))
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would be straightforward, but efficient combination of information across experiments could be
difficult. This is a ubiquitous trade-off of preprocessing: reductions that remove nuisance param-
eters and improve robustness necessarily reduce the amount of information available from the
data. These trade-offs must be considered carefully when designing preprocessing techniques—
universal utility is unattainable without the original data.

A more subtle case involves the selection of T as a “partial pivot”. In some settings, there
exists a decomposition of ξ as (ξ1, ξ2) such that dim(ξ1) < D for some fixed D and all NY , and
the distribution of T is free of ξ2 for all values of ξ1. Many normalization techniques used in the
microarray application of Section 1.2 can be interpreted in this light. These methods attempt to
reduce the unbounded set of experiment-specific nuisance parameters affecting T to a bounded,
manageable size.

For example, suppose each processor i observes yij ∼ N(β0 + β1ixj , σ
2), j = 1, . . . ,m. The

downstream analyst wants to estimate β0, considering {β1i : i = 1, . . . , n} and σ 2 as nuisance
parameters. In our previous notation, we have θ = β0 and ξ = (σ 2, β11, . . . , β1n). Suppose each
preprocessor reduces her data to Ti = 1

m

∑m
j=1(yij − β̂1ixj ), where β̂1i is the OLS estimator of

β1i based on {yij : j = 1, . . . ,m}. The distribution of each Ti depends on σ 2 but is free of β1i .
Hence, T = {Ti : i = 1, . . . , n} is a partial pivot as defined above, with ξ1 = σ 2 and ξ2 = {β1i :
i = 1, . . . , n}.

Such pivoting techniques can allow θ̂ (T ) to possess favorable properties even when θ̂ (Y ) is
inconsistent or grossly inefficient. As mentioned before, this kind of careful preprocessing can
dominate Bayesian procedures in the presence of nuisance parameters when dim(ξ) can grow
with Ny . In these regimes, informative priors on ξ can affect inferences even asymptotically.
However, reducing Y to T so only the ξ1-part of ξ is relevant for T ’s distribution allows in-
formation to accumulate on ξ1, making inferences far more robust to the preprocessor’s beliefs
about ξ .

These techniques share a common conceptual framework: invariance. Invariance has a rich
history in the Bayesian literature, primarily as a motivation for the construction of noninforma-
tive or reference priors (e.g., Jeffreys (1946), Hartigan (1964), Geisser and Eddy (1979), Berger
and Bernardo (1992), Kass and Wasserman (1996)). It is fundamental to the pivotal methods
discussed above and arises in the theory of partial likelihood (Cox (1975)). We see invariance
as a core principle of preprocessing, although its application is somewhat different from most
Bayesian settings. We are interested in finding functions of the data whose distributions are in-
variant to subsets of the parameter, not priors invariant to reparameterization. For instance, the
rank statistics that form the basis for Cox’s proportional hazards regression in the absence of cen-
soring (1972) can be obtained by requiring a statistic invariant to monotone transformations of
time. Indeed, Cox’s regression based on rank statistics can be viewed as an excellent example of
eliminating an infinite dimensional nuisance parameter, i.e., the baseline hazard, via preprocess-
ing, which retains only the rank statistics. The relationship between invariance in preprocessing,
modeling, and prior formulation is a rich direction for further investigation.

An interesting practical question arises from this discussion of robustness: how realistic is it to
assume efficient inference with preprocessed data? This may seem unrealistic as preprocessing is
frequently used to simplify problems so common methods can be applied. However, preprocess-
ing can make many assumptions more appropriate. For example, aggregation can make normality
assumptions more realistic, normalization can eliminate nuisance parameters, and discretization



1202 A.W. Blocker and X.-L. Meng

greatly reduces reliance on parametric distributional assumptions altogether. It may therefore be
more appropriate to assume that efficient estimators are generally used with preprocessed data
than with raw data.

The results and examples explored here show that preprocessing is a complex topic in even
large-sample settings. It appears formally futile (but practically useful) in standard asymptotic
regimes. Under other realistic asymptotic regimes, preprocessing emerges as a powerful tool for
addressing nuisance parameters and improving the robustness of inferences. Having established
some of the formal motivation and trade-offs for preprocessing, we discuss further extensions of
these ideas into more difficult settings in Section 4.2.

3.3. Giving all that you can

In some cases, effective preprocessing techniques are quite apparent. If pY (Y |X,ξ) forms an
exponential family with parameter X or (X, ξ), then we have a straightforward procedure: retain
a minimal sufficient statistic. To be precise, we mean that one of the following factorizations
holds for a sufficient statistic T (Y ) of bounded dimension:

pY (Y |X,ξ) = g(Y ) exp
(
T (Y )�f (X, ξ) + h(X, ξ)

);
pY (Y |X,ξ) = g(Y ; ξ) exp

(
T (Y )�f (X) + h(X)

)
.

Retaining this sufficient statistic will lead to a lossless compression, assuming that the first-
phase model is correct. Unfortunately, such nice cases are rare. Even the Bayesian approach
offers little reprieve. Integrating pY (Y |X,ξ) with respect to a prior πξ (ξ) typically removes the
observation model from the exponential family—consider, for instance, a normal model with
unknown variance becoming a t distribution.

If logpY (Y |X) is approximately quadratic as a function of X, then retaining its mode and
curvature would seem to provide much of the information available from the data to downstream
analysts. However, such intuition can be treacherous. If a downstream analyst is combining in-
ferences from a set of experiments, each of which yielded an approximately quadratic likelihood,
the individual approximations may not be enough to provide efficient inferences. Approximations
that hold near the mode of each experiment’s likelihood need not hold away from these modes—
including at the mode of the joint likelihood from all experiments. Thus, remainder terms can
accumulate in the combination of such approximations, degrading the final inference on θ . Fur-
thermore, the requirement that logpY (Y |X) be approximately quadratic in X is quite stringent.
To justify such approximations, we must either appeal to asymptotic results from likelihood the-
ory or confine our attention to a narrow class of observation models pY (Y |X). Unfortunately,
asymptotic theory is often an inappropriate justification in multiphase settings, because X grows
in dimension with Y in many asymptotic regimes of interest, so there is no general reason to
expect information to accumulate on X. These issues are of particular concern as such quadratic
approximations are a standard implicit justification for passing point estimates with standard
errors onto downstream analysts.

Moving away from these cases, solutions become less apparent. No processing (short of pass-
ing the entire likelihood function) will preserve all information from the sample when sufficient
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statistics of bounded dimension do not exist. However, multiphase approaches can still possess
favorable properties in such settings.

We begin by considering a stubborn downstream analyst—she has her method and will not
consider anything else. For example, this analyst could be dead set on using linear discriminant
analysis or ANOVA. The preprocessor has only one way to affect her results: carefully designing
a particular T given to the downstream analyst. Such a setting is extreme. We are saying that the
downstream analyst will charge ahead with a given estimator regardless of her input with nei-
ther reflection nor judgment. We investigate this setting because it maximizes the preprocessor’s
burden in terms of her contribution to the final estimate’s quality. Formally, we consider a fixed
second-stage estimator θ̂ (T ); that is, the form of its input T and the function producing θ̂ are
fixed, but the mechanism actually used to generate T is not. T could be, for example, a vector of
fixed dimension.

As we discuss below, admissible designs for the first-phase with a fixed second-phase method
are given by a (generalized) Bayes rule. This uses the known portion of the model pY (Y |X,ξ)

to construct inputs for the second stage and assumes that any prior the preprocessor has on
ξ is equivalent to what a downstream analyst would have used in the preprocessor’s position.
Formally, this describes all rules that are admissible among the class of procedures using a given
second-stage method, following from previous complete class results in statistical decision theory
(e.g., Berger (1985), Farrell (1968)).

Admissibility

Assume that the second-stage procedure θ̂ (T ) is fixed as discussed above and we are operat-
ing under the model (2.1). Further assume that the preprocessor’s prior on ξ is the only such
prior used in all Bayes rule constructions. For T ∈ Rd , consider a smooth, strictly convex loss
function L. Then, under appropriate regularity conditions (e.g., Berger (1985), Farrell (1968)),
if θ̂ (T ) is a smooth function of T , then all admissible procedures for generating T are Bayes or
generalized Bayes rules with respect to the risk R(θ̂(T ), θ0). The same holds when T is restricted
to a finite set.

This guideline follows directly from conventional complete class results in decision theory. We
omit technical details here, focusing instead on the guideline’s implications. However, a sketch
of its proof proceeds along the following lines.

There are two ways to approach this argument: intermediate loss and geometry. The interme-
diate loss approach uses an intermediate loss function L̃(T , θ0) = L(θ̂(T ), θ0). This L̃ is the loss
facing the preprocessor given a fixed downstream procedure θ̂ (T ). If L̃ is well-behaved, in the
sense of satisfying standard conditions (strict convexity, or a finite parameter space, and so on),
then the proof is complete from previous results for real T . Similarly, if T is restricted to a finite
discrete set, then we face a classical multiple decision problem and can apply previous results
to L̃(T , θ0). These straightforward arguments cover a wide range of realistic cases, as Berger
(1985) has shown. Otherwise, we must turn to a more intricate geometric argument. Broadly,
this construction uses a convex hull of risks generated by attainable rules.

This guideline has direct bearing upon the development of inputs for machine learning algo-
rithms, typically known as feature engineering. Given an algorithm that uses a fixed set of inputs,
it implies that using a correctly-specified observation model to design these inputs is necessary
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to obtain admissible inferences. Thus, it is conceptually similar to “Rao-Blackwellization” over
part of a probability model.

However, several major caveats apply to this result. First, on a practical level, deriving such
Bayes rules is quite difficult for most settings of interest. Second, and more worryingly, this re-
sult’s scope is actually quite limited. As we discussed in Section 3.2, even Bayesian estimators
can be inconsistent in realistic multiphase regimes. However, these estimators are still admissible,
as they cannot be dominated in risk for particular values of the nuisance parameters ξ . Admissi-
bility therefore is a minimal requirement; without it, the procedure can be improved uniformly,
but with it, it can still behave badly in many ways. Finally, there is the problem of robustness.
An optimal input for one downstream estimator θ̂1(T ) may be a terrible input for another esti-
mator θ̂2(T ), even if θ̂1 and θ̂2 take the same form of inputs. Such considerations are central to
many real-world applications of preprocessing, as researchers aim to construct databases for a
broad array of later analyses. However, this result does show that engineering inputs for down-
stream analyses using Bayesian observation models can improve overall inferences. How to best
go about this in practice is a rich area for further work.

3.4. Counterexamples and conundrums

As befits first steps, we are left with a few loose ends and puzzles. Starting with the DSC condi-
tion (3.6) of Section 3.1, we provide a simple counterexample to its necessity.

Suppose we have Y1, Y2,X1,X2 ∈ Rn. Let Yi |Xi ∼ N(Xi, I ) independent of each other.
Now, let X1 = θZ1, Z1 ∼ N(0, I ), X2 = θabs(Z2) ◦ sign(X1), where Z2 ∼ N(0, I ), Z2 ⊥⊥ Z1,
sign(X1) is a vector of signs (−1,0, or 1) for X1, abs() denotes the element-wise absolute value,
and ◦ denotes the Hadamard product. We fix θ > 0.

As our working model, we posit that Xi |η ∼ N(0, ηiI ) independently. Then, we clearly have
(Y�

1 Y1, Y
�
2 Y2) = (T1, T2) as a sufficient statistic for both η and θ . However, the DSC does not

hold for this working model. We cannot write the actual joint distribution of X as a marginaliza-
tion of p̃X(X|η) with respect to some distribution over η in such a way that (T1, T2) is sufficient
for η. To enforce sign(X1) = sign(X2) under the working model, any such model must use η to
share this information.

For this example, we can obtain a stronger result: no factored working model p̃X(X|η) exists
such that (1) Y�

i Yi is sufficient for gi(η) under p̃Y (Yi |gi(η)) and (2) the DSC holds. For con-
tradiction, assume such a working model exists. Under this working model, Yi is conditionally
independent of gi(η) given Y�

i Yi , so we can write p̃Y (Yi |gi(η)) = p̃Y (Yi |Y�
i Yi)hi(Y

�
i Yi;gi(η)).

As the DSC holds for this working model, we have

pY (Y |θ) =
[

2∏
i=1

p̃Y

(
Yi |Y�

i Yi

)]∫
η

[
2∏

i=1

hi

(
Y�

i Yi;gi(η)
)]

pη(dη|θ).

Hence, we must have Y1 conditionally independent of Y2 given (Y�
1 Y1, Y

�
2 Y2). However, this

conditional independence does not hold under the true model. Hence, the given working model
cannot both satisfy the DSC and have Y�

i Yi sufficient for each gi(η).
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The issue here is unparameterized dependence, as mentioned in Section 3.1. The X’s have a
dependence structure that is not captured by θ . Thus, requiring that a working model preserves
sufficiency for θ does not ensure that it has enough flexibility to capture the true distribution
of Y . A weaker condition than the DSC (3.6) that is necessary and sufficient to ensure that all
sufficient statistics for η are sufficient for θ may be possible.

From Sections 3.2 and 3.3, we are left with puzzles rather than counterexamples. As men-
tioned previously, many optimality results are trivial without sufficient constraints. For instance,
minimizing risk or maximizing Fisher information naively yield uninteresting (and impractical)
multiphase strategies: have the preprocessor compute optimal estimators, then pass them down-
stream. Overly tight constraints bring their own issues. Restricting downstream procedures to
excessively narrow classes (e.g., point estimates with standard errors) limits the applied utility of
resulting theory and yields little insight on the overall landscape of multiphase inference. Strik-
ing the correct balance with these constraints is a core challenge for the theory of multiphase
inference and will require a combination of computational, engineering, and statistical insights.

4. From the past to the future

As we discussed in Sections 2 and 3, we have a deep well of questions that motivate further
research on multiphase inference. These range from the extremely applied (e.g., enhancing pre-
processing in astrophysical systems) to the deeply theoretical (e.g., bounding the performance
of multiphase procedures in the presence of nuisance parameters and computational constraints).
We outline a few directions for this research below.

But, before we look forward, we take a moment to look back and place multiphase inference
within the context of broader historical debates. Such “navel gazing” helps us to understand the
connections and implications of the theory of multiphase inference.

4.1. Historical context

On a historical note, the study of multiphase inference touches the long-running debate over the
role of decision theory in statistics. One side of this debate, championed by Wald and Lehmann
(among others), has argued that decision theory lies at the core of statistical inference. Risk-
minimizing estimators and, more generally, optimal decision rules play a central role in their
narrative. Even subjectivists such as Savage and de Finetti have embraced the decision theoretic
formulation to a large extent. Other eminent statisticians have objected to such a focus on deci-
sions. As noted by Savage (1976), Fisher in particular vehemently rejected the decision theoretic
formulation of statistical inference. One interpretation of Fisher’s objections is that he consid-
ered decision theory useful for eventual economic decision-making, but not for the growth of
scientific knowledge.

We believe that the study of multiphase inference brings a unifying perspective to this debate.
Fisher’s distinction between intermediate processing and final decisions is fundamental to the
problem of multiphase inference. However, we also view decision theory as a vital theoretical
tool for the study of multiphase inference. Passing only risk-minimizing point estimators to later
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analysts is clearly not a recipe for valid inference. The key is to consider the use of previously
generated results explicitly in the final decision problem. In the study of multiphase inference, we
do so by focusing on the separation of knowledge and objectives between agents. Such separation
between preprocessing and downstream inference maps nicely to Fisher’s distinction between
building scientific knowledge and reaching actionable decisions.

Thus, we interpret Fisher’s line of objections to decision-theoretic statistics as, in part, a rejec-
tion of adopting a myopic single-phase perspective in multiphase settings. We certainly do not
believe that our work will bring closure to such an intense historical debate. However, we do see
multiphase inference as an important bridge between these competing schools of thought.

4.2. Where can multiphase inference go from here?

We see a wide range of open questions in multiphase inference. Can more systematic ways to
leverage the potential of preprocessing be developed? Is it possible to create a mathematical
“warning system,” alerting practitioners when their inferences from preprocessed data are sub-
ject to severe degradation and showing where additional forms of preprocessing are required?
And, can multiphase inference inform developments in distributed statistical computation and
massive-data inference (as outlined below in Section 4.3)? All of these problems call for a shared
collection of statistical principles, theory, and methods. Below, we outline a few directions for
the development of these tools for multiphase inference.

Passing information

The mechanics of passing information between phases constitute a major direction for further
research. One approach leverages the fact that the likelihood function itself is always a minimal
sufficient statistic. Thus, a set of (computationally) efficient approximations to the likelihood
function L(X, ξ ;Y) for (X, ξ) could provide the foundation for a wide range of multiphase
methods. Many probabilistic inference techniques for the downstream model (e.g., MCMC sam-
plers) would be quite straightforward to use given such an approximation. The study of such
multiphase approximations also offers great dividends for distributed statistical computation, as
discussed below. We believe these approximations are promising direction for general-purpose
preprocessing. However, there are stumbling blocks.

First, nuisance parameters remain an issue. We want to harness and understand the robustness
benefits offered by preprocessing, but likelihood techniques themselves offer little guidance in
this direction. Even the work of Cox (1975) on partial likelihood focuses on the details of esti-
mation once the likelihood has been partitioned. We would like to identify the set of formal prin-
ciples underlying techniques such as partial pivoting (to mute the effect of infinite-dimensional
nuisance parameters), building a more rigorous understanding of the role of preprocessing in pro-
viding robust inferences. As discussed in Section 3.2, invariance relationships may be a useful
focus for such investigations, guiding both Bayesian and algorithmic developments.

Second, we must consider the burden placed on downstream analysts by our choice of ap-
proximation. Probabilistic, model-based techniques can integrate such information with little
additional development. However, it would be difficult for a downstream analyst accustomed to,
say, standard regression methods to make use of a complex emulator for the likelihood function.
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The burden may be substantial for even sophisticated analysts. For instance, it could require a
significant amount of effort and computational sophistication to obtain estimates of X from such
an approximation, and estimates of X are often of interest to downstream analysts in addition to
estimates of θ .

Bounding errors and trade-offs

With these trade-offs in mind and through the formal analysis of widely-applicable multiphase
techniques, we can begin to establish bounds on the error properties of such techniques in a
broad range of problems under realistic constraints (in both technical and human terms). More
general constraints, for instance, can take the form of upper bounds on the regret attainable with
a fixed amount of information passed from preprocessor to downstream analyst for fixed classes
of scientific models. Extensions to nonparametric downstream methods would have both prac-
tical and theoretical implications. In cases where the observation model is well-specified but
the scientific model is less clearly defined, multiphase techniques can provide a useful alterna-
tive to computationally-expensive semi-parametric techniques. Fusing principled preprocessing
with flexible downstream inference may provide an interesting way to incorporate model-based
subject-matter knowledge while effectively managing the bias-variance trade-off.

Links to multiple imputation

The directions discussed above share a conceptual, if not technical, history with the development
of congeniality (Meng (1994)). Both the study of congeniality in MI and our study of multiphase
inference seek to bound and measure the amount of degradation in inferences that can occur when
agents attempt (imperfectly) to combine information. Despite these similarities, the treatment of
nuisance parameters are rather different. Nuisance parameters lie at the very heart of multiphase
inference, defining many of its core issues and techniques. For MI, the typical approaches have
been to integrate them out in a Bayesian analysis (e.g., Rubin (1996)) or assume that the final an-
alyst will handle them (e.g., Nielsen (2003)). Recent work by Xie and Meng (2012) has shed new
light on the role of nuisance parameters in MI, but the results are largely negative, demonstrating
that nuisance parameters are often a stumbling block for practical MI inference. Understanding
the role of preprocessing in addressing nuisance parameters, providing robust analyses, and ef-
fectively distributing statistical inference represent further challenges beyond those pursued with
MI. Therefore, much remains to be done in the study of multiphase inference, both theoretical
and methodological.

4.3. How does multiphase inference inform computation?

We also see multiphase inference as a source for computational techniques, drawing inspiration
from the history of MI. MI was initially developed as a strategy for handling missing data in pub-
lic data releases. However, because MI separates the task of dealing with incomplete data from
the task of making inferences, its use spread. It has frequently been used as a practical tool for
dealing with missing-data problems where the joint inference of missing data and model param-
eters would impose excessive modeling or computational burdens. That is, increasingly the MI
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inference is carried out from imputation through analysis by a single analyst or research group.
This is feasible as a computational strategy only because the error properties and conditions nec-
essary for the validity of MI are relatively well-understood (e.g., Meng (1994), Xie and Meng
(2012)).

Multiphase methods can similarly guide the development of efficient, statistically-valid com-
putational strategies. Once we have a theory showing the trade-offs and pitfalls of multiphase
methods, we will be equipped to develop them into general computational techniques. In partic-
ular, our experience suggests that models with a high degree of conditional independence (e.g.,
exchangeable distributions for X) can often provide useful inputs for multiphase inferences, even
when the true overall model has a greater degree of stochastic structure. The conditional inde-
pendence structure of such models allows for highly parallel computation with first-phase proce-
dures, providing huge computational gains on modern distributed systems compared to methods
based on the joint model.

For example, in Blocker and Protopapas (2012), a factored model was used to preprocess a
massive collection of irregularly-sampled astronomical time series. The model was sophisticated
enough to account for complex observation noise, yet its independence structure allowed for ef-
ficient parallelization of the necessary computation. Its output was then combined and used for
population-level analyses. Just as Markov chain Monte-Carlo (MCMC) has produced a wind-
fall of tools for approximate high-dimensional integration (see Brooks et al. (2010) for many
examples), we believe that this type of principled preprocessing, with further theoretical under-
pinnings, has the potential to become a core tool for the statistical analysis of massive datasets.
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