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For a real càdlàg function f defined on a compact interval, its truncated variation at the level c > 0 is the
infimum of total variations of functions uniformly approximating f with accuracy c/2 and (in opposite to
the total variation) is always finite. In this paper, we discuss exponential integrability and concentration
properties of the truncated variation of fractional Brownian motions, diffusions and Lévy processes. We
develop a special technique based on chaining approach and using it we prove Gaussian concentration of
the truncated variation for certain class of diffusions. Further, we give sufficient and necessary condition for
the existence of exponential moment of order α > 0 of truncated variation of Lévy process in terms of its
Lévy triplet.
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1. Introduction

Let X = (X(t))t≥0 be a real valued stochastic process with càdlàg trajectories. In general, the
total path variation of X on the compact interval [a, b] ⊂ [0,+∞), defined as

TV
(
X, [a, b]) = sup

n
sup

a≤t0<t1<···<tn≤b

n∑
i=1

∣∣X(ti) − X(ti−1)
∣∣,

may be (and in many most important cases is) almost surely infinite. However, in the neighbor-
hood of every càdlàg path we may easily find a function with finite total variation.

Let f be a càdlàg function f : [a, b] →R and let c > 0. The natural question arises, what is the
smallest possible (or the greatest lower bound for the) total variation of functions from the ball
B(f, c/2) = {g :‖f − g‖∞ ≤ c/2}, where ‖f − g‖∞ := sups∈[a,b] |f (s) − g(s)|. Some bound
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from below reads as

TV
(
g, [a, b]) ≥ TVc

(
f, [a, b]),

where

TVc
(
f, [a, b]) := sup

n
sup

a≤t0<t1<···<tn≤b

n∑
i=1

max
{∣∣f (ti) − f (ti−1)

∣∣ − c,0
}

(1.1)

and follows immediately from the inequality∣∣g(ti) − g(ti−1)
∣∣ ≥ max

{∣∣f (ti) − f (ti−1)
∣∣ − c,0

}
.

It is possible to show (cf. Łochowski [11]) that in fact we have equality

inf
{
TV

(
g, [a, b]) :‖f − g‖∞ ≤ c/2

} = TVc
(
f, [a, b]) (1.2)

attained for some function f c from the ball B(f, c/2).

Remark 1. Since we deal with càdlàg functions, a more natural setting of our problem would be
the investigation of

inf
{
TV

(
g, [a, b]) :g − càdlàg, dD(f,g) ≤ c/2

}
,

where dD denotes the Skorohod metric. Since the total variation does not depend on the (contin-
uous and strictly increasing) change of argument and the function f c minimizing TV(g, [a, b])
appears to be a càdlàg one, solutions of both problems coincide.

The quantity (1.1) is called truncated variation and it is finite for any càdlàg function, since
every such a function may be uniformly approximated by step functions. Moreover, the truncated
variation is a continuous and convex function of the parameter c > 0 (cf. Łochowski [11]) and it
obviously tends to the total variation as c ↓ 0. For a process with paths with almost surely infinite
total variation may be of interest to assess the rate at which TVc diverges to infinity.

This was done so far for continuous semimartingales and it appears (cf. Łochowski and Miłoś
[12]) that for any continuous semimartingale X we have that

c · TVc
(
X, [a, b]) →c↓0 〈X〉b − 〈X〉a almost surely, (1.3)

where 〈·〉 denotes the quadratic variation of X. The truncated variation appears also implicitly
in the paper Picard [14] where it corresponds to the double Lebesgue measure Lc of a trimmed
tree at the level c, associated with a càdlàg path. In Picard [14] there were established deep
connections of this measure, the variation index and the upper box (or Minkowski) dimension, as
well as the counterparts of (1.3) in terms of Lc for fractional Brownian motions and stable Lévy
processes.

For t ≥ 0 denote TVc(X, t) = TVc(X, [0, t]). For X being the unique strong solution of the
equation X0 = 0,dXt = μ(Xt)dt +σ(Xt)dWt, t ∈ [0, S], driven by a standard Brownian motion
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W , with μ and σ satisfying some linear growth conditions, we have second order convergence
result (cf. Łochowski and Miłoś [12], Theorem 10)

TVc(X, t) − 〈X〉t
c

⇒c↓0 W̃〈X〉t /3, (1.4)

where W̃ is a standard Brownian motion independent from W and the convergence “⇒” is
understood as the weak functional convergence in C([0, S],R) topology.

The truncated variation is more informative than p-variation, since the latter may be described
in terms of the asymptotic properties of TVc as c ↓ 0 but for any fixed c > 0, TVc(X,S) is
a proper random variable and it is possible to consider its distribution. For X = W and fixed
S, c > 0 convergence result (1.4) seems to indicate very strong concentration of TVc(W,S)

around S/c, but it still does not tell anything about the tail probabilities of the functional consid-
ered.

These observations motivated us to study the integrability and concentration properties of the
truncated variation in greater detail. Some investigation into this direction was already under-
taken in Łochowski [10], where the existence of the moment generating function of the truncated
variation of Brownian motion with drift on the whole real line was proven. In this paper, we
obtain much stronger – Gaussian concentration result, by which we mean the integrability of
exp(α TVc(X,S)2) for some positive α.

Another incentive for the study of the magnitude of truncated variation for possibly broad
class of processes is the pathwise approach to stochastic integration. In Łochowski [13], it was
shown that when both – integrand and integrator are semimartingales then it is possible to define
the stochastic integral, with some correction term, as an almost sure limit of pathwise Lebesgue–
Stieltjes integrals. The construction utilizes uniform approximation of the integrator with finite
variation processes. The truncated variation gives the magnitude of such integrals, more precisely

inf‖X−Xc‖∞≤c/2
sup

‖Y‖∞≤1

∫ S

0
Y− dXc = inf‖X−Xc‖∞≤c/2

TV
(
Xc,S

) = TVc(X,S),

where the supremum is over all càdlàg processes Y with absolute value uniformly bounded by 1
and the infimums are over all pathwise càdlàg approximations Xc of X such that ‖X −Xc‖∞ :=
supt≥0 |X(t) − Xc(t)| ≤ c/2.

In this paper, we study the magnitude of the truncated variation for a broad class of stochastic
processes, including Gaussian processes, among them fractional Brownian motions, and diffu-
sions. Further we also consider Lévy processes. Our main goal is to describe the tail behavior
of TVc(X,S) assuming that X satisfies some increment condition. We use various techniques
depending on the assumption we make.

At the beginning, we use the chaining concept, we assume that X satisfies some exponen-
tial integrability condition on increments and deduce the exponential integrability of the trun-
cated variation (e.g., diffiusions with bounded covariance and drift coefficients). The chaining
approach was first used to study problems of sample boundedness of processes on the general
index space Fernique [4,5]. The method was developed to give the full description of classes of
processes that are sample bounded, under certain integrability condition Bednorz [1,2], Bednorz
[3], Ledoux and Talagrand [8], Talagrand [17], and the small ball probability Li and Shao [9].
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For a comprehensive study where many analytical examples are given, see Talagrand [18]. In our
study, we need some modification of this idea, since we are interested in bounding the supremum
of special sums of increments, not the supremum over increments itself. Therefore, we have to
invent a special random variable of exponential integrability that bounds the truncated variation.

Our main guiding example is the class of fractional Brownian motions, that is, centered Gaus-
sian processes WH , H ∈ (0,1), starting from 0 and such that E|WH (t) − WH (s)|2 = |t − s|2H .
One of the corollaries we get is the following concentration inequality

P
(
TVc(WH ,S) ≥ c(H−1)/H S(AH + BH u)

) ≤ CH exp
(−u2H

)
, for u ≥ 0,

where AH ,BH ,CH are constants; moreover, for H ≥ 1
2 one can set CH = 1. By the homogeneity

of increments, we deduce that for Sc−1/H ≥ 2, E TVc(WH ,S) is comparable with c(H−1)/H S

and in this way we prove that for u ≥ 0,

P
(
TVc(WH ,S) ≥ E TVc(WH ,S)(ĀH + B̄H u)

) ≤ C̄H exp
(−u2H

)
, (1.5)

for some constants ĀH , B̄H , C̄H (again C̄H = 1 for H ≥ 1
2 ). In fact, any process with similar

properties as the fractional Brownian motion, that is, satisfying some boundedness condition of
the increments (inequality (2.2)) may be treated by our method.

Next, we turn to investigate the standard Brownian motion, that is, W = W1/2, and diffu-
sions driven by it. Here we can improve our result using the Markov property. It turns out
that for Markov processes with moderate growth some local exponential integrability can be
extended to the global one. Note that (1.5) implies the existence of the Laplace transform
E exp(α TVc(W,S)) for sufficiently small α > 0; assuming the Markov property for diffusions
with moderate growth we get the estimate for the Laplace transform of their truncated variations
on the whole real line. The main result we get this way is Theorem 2, which for a standard
Brownian motion and Sc−2 ≥ 2 implies the following concentration inequality

P
(
TVc(W,S) ≥ ĀE TVc(W,S) + B̄

√
Su

) ≤ exp
(−u2), for u ≥ 0,

here Ā, B̄ are universal constants. Therefore, the Gaussian concentration holds for the truncated
variation of the standard Brownian motion. Our result gives better understanding of the already
mentioned result (1.4) from which follows that S−1/2(TVc(W,S) − S/c) converges in distribu-
tion to N (0,1/3) as c ↓ 0.

We conclude the paper by proving sufficient and necessary condition for the finiteness of
E exp(α TVc(X,S)) for a Lévy process X, in terms of its generating triplet. Here we apply the
method of level crossing stopping times.

The structure of the paper is as follows. In Section 2, we introduce the chaining approach
which will lead us to the main result on the concentration for processes with increments of
exponential decay. Then in Section 2.3, we discuss the application of the developed methodology
to the fractional Brownian motions and then, in Section 3 its improvement for a standard Wiener
process and diffusions with moderate growth. In Section 4 we deal with truncated variation of
Lévy processes.

Remark 2. In the whole paper, any dependence of a nonnegative constant on some parameters
is always indicated by listing them in brackets or in subscripts, for example, C(n, ε) or Cn,ε .
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2. The chaining approach

In this section, we prove the fundamental Theorem 1, which will allow us to establish integrabil-
ity and concentration properties of the truncated variation for a broad class of processes satisfying
some increment condition.

For simplicity, we consider processes indexed by a parameter from the metric space (T , d),
where T is the compact interval [0, S], S > 0, equipped with the distance d(s, t) = |s − t |q ,
s, t ∈ T , where 0 < q < 1. Further, we introduce an Orlicz function ϕ : [0,+∞) → R – convex,
even, satisfying ϕ(0) = 0, ϕ(1) = 1, strictly increasing and such that there exists L < +∞ such
that for any x, y ≥ 0,

ϕ−1(xy) ≤ L
(
ϕ−1(x) + ϕ−1(y)

)
. (2.1)

Moreover, we will require that x �→ ϕ(xq), x ≥ 0, is also convex.

Remark 3. The convexity assumptions of ϕ may be weakened in such a way that ϕ is convex on
some interval [Cϕ,∞), where Cϕ ≥ 0, and ϕ(xq) is convex on some interval [Cϕ,q,∞), where
Cϕ,q ≥ 0.

The standard example of functions with properties mentioned are ϕp(x) = 2xp − 1, p > 0, for
which condition (2.1) holds with Lp = max{1,2(1−p)/p}. Note that when p ≥ 1, ϕp is convex
on whole interval [0,+∞) but when 0 < p < 1, ϕp is convex only on the interval [Cp;+∞)

where Cp = (
1−p
p ln 2 )1/p . Clearly ϕp(xq) = ϕpq(x) and therefore this function is convex on the

whole interval [0;+∞) if pq ≥ 1 and convex on the interval [Cp,q;+∞), where Cp,q = Cpq ,
if pq < 1. We use the notation Cp,Cp,q for all p > 0, 0 < q < 1, setting Cp = 0 for p ≥ 1

(thus Cp,q = 0 for pq ≥ 1). Further, we denote Dp = ϕp(Cp), Dp,q = ϕp(C
q
p,q) = ϕpq(Cpq).

Note that Dp,q = 0 for pq ≥ 1. In more general case, we will denote Dϕ = ϕ(Cϕ) and Dϕ,q =
ϕ(C

q
ϕ,q).

Let now X(t), t ∈ T , be a stochastic process with increments controlled by ϕ. Namely

Eϕ

( |X(s) − X(t)|
Cd(s, t)

)
≤ 1 (2.2)

for s, t ∈ T , s �= t , where 0 < C < ∞ is a universal constant.

Remark 4. In fact, in (2.2) one may consider any distance d of the form d(s, t) = η(|s − t |),
where η is positive, concave, increasing to ∞ and such that η(0) = 0. We choose η(x) = xq ,
0 < q < 1, for the sake of simplicity, however we stress that our results can be easily extended to
a more general η.

Condition (2.2) enables us to control the magnitude of the increments of the process X, while
the truncated variation takes into account only increments greater than c (cf. formula (1.1)). Note
that as the consequence of (2.2) and the compactness of T we obtain the existence of a separable
modification of X(t), t ∈ T . Then by the linear order of T we can define the càdlàg modification
of X which we refer to from now on.
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The fundamental result of this paper, from which exponential integrability and concentration
properties will follow, is the following theorem.

Theorem 1. Let X(t), t ∈ T , satisfies (2.2). Then there exist random variables Z1,Z2 ≥ 0 such
that EZ1,EZ2 ≤ 1 and for some universal constants K1(q),K2(ϕ, q) < ∞ the following esti-
mate holds

TVc(X,S) ≤ c(q−1)/qS
[
K1(ϕ, q)ϕ−1(Z1 + Dϕ) + K2(ϕ, q)

[
ϕ−1(Z2 + Dϕ,q)

]1/q]
.

Remark 5. The main reason why the result holds is that (2.2) gives an exponential decay of
increments with large jumps. Therefore, we can show a global upper bound on increments in the
defined set approximation of the truncated variation. Such an idea is used to bound suprema of
processes, for example, Bednorz [1], Fernique [4], Kwapień and Rosiński [6] and Talagrand [17].
In this paper, the main technical contribution is to invent a common upper bound for an arbitrary
sum of truncated increments.

The meaning of the result the that for suitable ϕ and 0 < q < 1 there holds some concentration
inequality. To formulate results in an elegant way, observe that there exists Eq ∈ [0;1] such that
Eq + x1/q ≥ x for x ≥ 0 and hence we get

Eq + [
ϕ−1(x + max{Dϕ,Dϕ,q})]1/q ≥ ϕ−1(x + Dϕ) for x ≥ 0. (2.3)

As a consequence of Theorem 1, (2.3) and Jensen’s inequality we get the following corollary.

Corollary 1. Under the assumptions of Theorem 1 there exist r.v. Z such that Z ≥ 0, EZ ≤ 1
and for some constants Aϕ,q , Bϕ,q the following estimate holds

TVc(X,S) ≤ c(q−1)/qS
[
Aϕ,q + Bϕ,q

[
ϕ−1(Z + max{Dϕ,Dϕ,q})]1/q]

.

For ϕ = ϕp let us denote Ap,q = Aϕ,q and Bp,q = Bϕ,q . Applying Corollary 1, the Markov
inequality and the fact that Dp,q ≥ Dp we obtain:

Corollary 2. Let X(t), t ∈ T , satisfies (2.2) with ϕ = ϕp . The following inequality holds

P
(
TVc(X,S) ≥ c(q−1)/qS[Āp,q + B̄p,qu]) ≤ D̄p,q exp

(−upq
)
, for u > 0,

where Āp,q, B̄p,q are universal constants, Āp,q = Ap,q + (2/ ln 2)1/(pq)Bp,q , B̄p,q =
(2/ ln 2)1/(pq)Bp,q and D̄p,q = Dp,q + 1. In particular, D̄p,q = 1 for pq ≥ 1.

To prove Theorem 1, we start with the construction of finite sets approximating T .

2.1. Approximating sequence

The first tool we need is a proper geometric approximation of the set T . The approximation
consists of a sequence of finite sets (Tn)

∞
n=0, Tn ⊂ T constructed in such a way that for each
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point t ∈ T and n = 0,1,2, . . . , there exists a point s ∈ Tn, such that s ≤ t and d(s, t) ≤ r−nSq .
Here, we fix r ≥ 4. One of possible constructions is the following

Tn = {
kr−n/qS :k = 0,1,2, . . .

} ∩ T . (2.4)

For Tn defined by (2.4) and t ∈ T , by πn(t) we denote the unique point s ∈ Tn such that s ≤ t and
d(s, t) < r−nSq . This way we define the function πn :T → Tn. We have d(t,πn(t)) < r−nSq for
all t ∈ T and πn(s) ≤ πn(t) if s ≤ t . Note also that for s, t ∈ Tn, s �= t , d(s, t) ≥ r−nSq . Clearly

rn/q < |Tn| =
⌊
rn/q

⌋ + 1 ≤ rn/q + 1. (2.5)

Moreover for any m = 1,2, . . .

m∑
n=0

r−n|Tn+1| ≤
m∑

n=0

r−n
(
r(n+1)/q + 1

) ≤ A(r, q)rm(1−q)/q , (2.6)

where A(r, q) := r(2−q)/q(r(1−q)/q −1)−1 (note that r ≥ 2). For each t ∈ Tn+1 let In+1(t) denote
the set of the nearest neighbors of t in Tn+1, namely

In+1(t) = {
s ∈ Tn+1 :d(s, t) ≤ 2r−nSq

}
. (2.7)

Observe that since |s − t | ≥ r−(n+1)/qS for s, t ∈ Tn+1, s �= t ,

∣∣In+1(t)
∣∣ ≤ 21/qr−n/qS

r−(n+1)/qS
+ 1 = 21/qr1/q + 1 =: B(r, q). (2.8)

2.2. Proof of the main theorem

The plan of the proof is the following. After having constructed the set approximation of T , we
use this approximation to build a type of discretization of any given partition and derive a chain-
ing bound on the truncated variation (Lemma 1). Then we turn to estimate each increment in the
partition bound (Lemma 5) and finally apply the bounds as well as some technical observations
(Lemmas 3, 4 and 2) to derive the required bounds (Lemmas 6, 7).

Our first step is to analyze a given partition �n = {t0, t1, . . . , tn}, where 0 ≤ t0 < t1 < · · · <

tn ≤ S. We decompose the set {1, . . . , n} into subsets Jm, m = 0,1,2, . . . , defined in the follow-
ing way

Jm = {
i ∈ {1, . . . , n} : r−m−1Sq < d(ti−1, ti ) ≤ r−mSq

}
.

Let M0 := 12CL, where L and C are constants appearing in (2.1) and (2.2). The level m0 ∈
{0,1,2, . . .} such that

r−m0−1Sq < c/M0 ≤ r−m0Sq

will be of particular meaning in the proof. Since �n is finite, Jm = ∅ for m large enough, say
m ≥ N0 ≥ m0. We will use different bounds for i ∈ Jm with m > m0 and for i ∈ Jm with m ≤ m0.
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Therefore, let us make the trivial separation

n∑
i=1

(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+ ≤

m0∑
m=0

∑
i∈Jm

(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+

(2.9)

+
∞∑

m=m0+1

∑
i∈Jm

(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+.

Now we turn to describe the chaining method which is the main tool in the proof. First, we fix
N ≥ N0 and define tN+1

i = πN+1(ti), then for l ∈ {0,1, . . . ,N} we put by the reverse induction
t li = πl(t

l+1
i ). Note that by the construction of πl we preserve the order of the projections, namely

t l0 ≤ t l1 ≤ · · · ≤ t ln for any 0 ≤ l ≤ N + 1. Moreover since N ≥ N0 points {tN+1
0 , tN+1

1 , . . . , tN+1
n }

are separated, that is, tN+1
i �= tN+1

i−1 , i ∈ {1, . . . , n}. Let us denote m̄ = max{m,m0}. For i ∈ Jm

with m > m0, we estimate(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+

≤
(∣∣X(

tm+1
i

) − X
(
tm+1
i−1

)∣∣ − c

3

)
+

+
∑

s∈{i−1,i}

∣∣X(
tN+1
s

) − X(ts)
∣∣ (2.10)

+
N∑

l=m+1

∑
s∈{i−1,i}

(∣∣X(
t ls

) − X
(
t l+1
s

)∣∣ − 2−l+m̄ c

3

)
+

and for i ∈ Jm with m ≤ m0 we have(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+

≤ ∣∣X(
tm+1
i

) − X
(
tm+1
i−1

)∣∣
(2.11)

+
∑

s∈{i−1,i}

∣∣X(
tN+1
s

) − X(ts)
∣∣ +

m0∑
l=m+1

∑
s∈{i−1,i}

∣∣X(
t ls

) − X
(
t l+1
s

)∣∣

+
N∑

l=m0+1

∑
s∈{i−1,i}

(∣∣X(
t ls

) − X
(
t l+1
s

)∣∣ − 2−l+m̄ c

3

)
+
.

Putting together estimates (2.9), (2.10) and (2.11), we obtain the following decomposition
lemma.

Lemma 1. For any partition �n = {t0, . . . , tn}, where n ≥ 0, 0 ≤ t0 < t1 < · · · < tn ≤ S and
N > m0 the following estimate holds

n∑
i=1

(∣∣X(ti) − X(ti−1)
∣∣ − c

)
+ ≤ V1 + V2 + W1 + W2 +

n∑
i=1

∑
s∈{i−1,i}

∣∣X(ts) − X
(
tN+1
s

)∣∣,
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where

V1 :=
m0∑

m=0

∑
i∈Jm

m0∑
l=m+1

∑
s∈{i−1,i}

∣∣X(
t ls

) − X
(
t l+1
s

)∣∣;

W1 :=
m0∑

m=0

∑
i∈Jm

∣∣X(
tm+1
i

) − X
(
tm+1
i−1

)∣∣;

V2 :=
∞∑

m=0

∑
i∈Jm

N∑
l=m̄+1

∑
s∈{i−1,i}

(∣∣X(
t ls

) − X
(
t l+1
s

)∣∣ − 2−l+m̄ c

3

)
+
;

W2 :=
∞∑

m=m0+1

∑
i∈Jm

(∣∣X(
tm+1
i

) − X
(
tm+1
i−1

)∣∣ − c

3

)
+
.

For each i ∈ Jm, m ≥ 0 we say that tm+1
s , tm+2

s , . . . , tN+1
s , s = i −1, i are path approximations

of ti−1 and ti , respectively (see Figure 1). Note that for i ∈ {1, . . . , n − 1} there are two path
approximations of ti , one from the pair ti−1, ti and the second from the pair ti , ti+1, that coincide,
starting from some point, yet may differ on the length since i ∈ Jm, i + 1 ∈ Jm′ and numbers
m and m′ may be different. The fundamental property of the path approximation is that for

Figure 1. Path approximations.
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a given u ∈ Tl+1 the step πl(u),u may occur in at most two path approximations of some ti ,
i ∈ {0,1, . . . , n}.
Lemma 2. Consider u ∈ Tl+1, l ∈ {0,1, . . . , n}. The step πl(u),u may occur in at most two path
approximations of some ti , i ∈ {0,1, . . . , n}, that is, there exits no more than one i ∈ {0,1, . . . , n}
such that i ∈ Jm, m + 1 ≤ l and t li = πl(u), t l+1

i = u or i + 1 ∈ Jm′ , m′ + 1 ≤ l and t li = πl(u),
t l+1
i = u for some m,m′ = 0,1,2, . . . ,N .

Proof. Recall that r ≥ 4. It suffices to prove that for a given i ∈ Jm, l ≥ m+1 points t l+1
i and t l+1

i−1

are different. Indeed since t l+1
0 ≤ t l+1

1 ≤ · · · ≤ t l+1
n the property implies that there can be at most

one i ∈ {0,1, . . . , n} such that t l+1
i = u. To prove the assertion, we use d(ti , ti−1) > r−m−1Sq

which implies that for l ≥ m + 1

d
(
t l+1
i , t l+1

i−1

) ≥ r−m−1Sq − d
(
t l+1
i−1 , ti−1

) − d
(
t l+1
i , ti

)
≥ r−m−1Sq − 2

∞∑
j=l+1

r−j Sq ≥ r−m−1Sq − 2
r−m−2Sq

1 − r−1
> 0.

�

In the sequel, we will use two simple observations concerning increasing function ψ that is
convex starting from some C0 ≥ 0, that is, convex for x ≥ C0.

Lemma 3. Let ψ : [0;+∞) → [0;+∞) be a strictly increasing function. Assume that ψ is con-
vex on the interval [C0;+∞) where C0 ≥ 0, then for any nonnegative x1, . . . , xk and positive
α1, . . . , αk such that

∑k
i=1 αi ≤ M we have

k∑
i=1

αixi ≤ Mψ−1

(
M−1

k∑
i=1

αiψ(xi) + ψ(C0)

)
. (2.12)

Proof. Observe that the function ψ̄(x) = ψ(x + C0) − ψ(C0) for x ≥ 0 is convex, strictly in-
creasing and such that ψ̄(0) = 0. Consequently, ψ̄−1(y) = ψ−1(y + ψ(C0)) − C0 is concave
with ψ̄−1(0) = 0 and we have

k∑
i=1

αixi ≤
k∑

i=1

αiψ
−1(ψ(xi) + ψ(C0)

)

=
k∑

i=1

αi

(
ψ̄−1(ψ(xi)

) + C0
) ≤ MC0 + M

k∑
i=1

αi

M
ψ̄−1(ψ(xi)

)

≤ MC0 + Mψ̄−1

(
k∑

i=1

αi

M
ψ(xi)

)

= Mψ−1

(
M−1

k∑
i=1

αiψ(xi) + ψ(C0)

)
,
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where the last inequality follows from Jensen’s inequality

(
1 −

k∑
i=1

αi

M

)
ψ̄−1(0) +

k∑
i=1

αi

M
ψ̄−1(ψ(xi)

) ≤ ψ̄−1

(
k∑

i=1

αi

M
ψ(xi)

)
.

�

Further, we also have the following lemma.

Lemma 4. For any strictly increasing function ψ : [0;+∞) → [0;+∞) such that ψ is convex
on the interval [C0;+∞) where C0 ≥ 0 and for any M > 0 and y ≥ 0, we have

ψ−1(y + ψ(C0)
) ≤ max{M,1}ψ−1(y/M + ψ(C0)

)
. (2.13)

Proof. Again, we consider the function ψ̄−1. If M < 1, then (2.13) follows from the monotonic-
ity of ψ̄−1. Now assume that M ≥ 1. By concavity and ψ̄−1(0) = 0, for y ≥ 0 and M ≥ 1, we
get

Mψ̄−1(y/M) ≥ ψ̄−1(y),

which reads as

M
(
ψ−1(y/M + ψ(C0)

) − C0
) ≥ ψ−1(y + ψ(C0)

) − C0,

Mψ−1(y/M + ψ(C0)
) ≥ ψ−1(y + ψ(C0)

) + (M − 1)C0

and which gives

ψ−1(y + ψ(C0)
) ≤ Mψ−1(y/M + ψ(C0)

)
. �

Now we formulate some basic bounds on increments in the chaining argument. For simplicity,
we use the following notation


(u,v) = ϕ

( |X(u) − X(v)|
Cd(u, v)

)
, for all u,v ∈ T .

Recall that m̄ = max{m,m0}.

Lemma 5. Suppose that i ∈ Jm, m ≥ 0 then

1. for any m ≤ m0, l ∈ {m + 1, . . . ,m0}∣∣X(
t li

) − X
(
t l+1
i

)∣∣ ≤ Cr−lSqϕ−1(
(
t li , t

l+1
i

));
2. for any m ≥ 0, l ∈ {m̄ + 1, . . . ,N}(∣∣X(

t li
) − X

(
t l+1
i

)∣∣ − 2−l+m̄ c

3

)
+

≤ bl,m̄

[
ϕ−1(a−1

l,m̄

(
t li , t

l+1
i

))]1/q
,
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where

al,m̄ = ϕ

(
2−l+m̄rlc

6CLSq

)
, bl,m̄ =

(
c

6
2−l+m̄

)(q−1)/q(
CLr−lSq

)1/q;

3. for m ≤ m0 ∣∣X(
tm+1
i

) − X
(
tm+1
i−1

)∣∣ ≤ 2Cr−mSqϕ−1(
(
tm+1
i , tm+1

i−1

));
4. and for m > m0(∣∣X(

tm+1
i

) − X
(
tm+1
i−1

)∣∣ − c

3

)
+

≤ bm

[
ϕ−1(a−1

m 

(
tm+1
i , tm+1

i−1

))]1/q
,

where

am = ϕ

(
rmc

12CLSq

)
, bm =

(
c

6

)(q−1)/q(
2CLr−mSq

)1/q
.

Remark 6. Note that the choice of M0 in the definition of m0 guarantees that al,m̄ ≥ 1 and
am ≥ 1 for m > m0. Moreover, for ϕ convex on the whole real line, that is, Cϕ = 0 one can
deduce a−1

l,m̄ ≤ (r/2)−l+m̄ and a−1
m ≤ r−m+m0+1.

Proof of Lemma 5. Let us denote u = t li , then the construction of approximation paths implies
that t l+1

i = πl(u). Clearly d(u,πl(u)) ≤ r−lSq and hence∣∣X(
πl(u)

) − X(u)
∣∣ ≤ Cr−lSqϕ−1(
(

πl(u),u
))

. (2.14)

To prove the second assertion, we use (2.14) to get(∣∣X(
πl(u)

) − X(u)
∣∣ − 2−l+m̄ c

3

)
+

≤
(

Cr−lSqϕ−1(
(
πl(u),u

)) − 2−l+m c

3

)
+
. (2.15)

Now we rewrite (2.15) using al,m̄(∣∣X(
πl(u)

) − X(u)
∣∣ − 2−l+m̄ c

3

)
+

≤
[
Cr−lSq

(
ϕ−1(
(

πl(u),u
)) − Lϕ−1(al,m̄)

)
+ − 2−l+m̄ c

6

]
+
.

Therefore, we can apply (2.1) and see(∣∣X(
πl(u)

) − X(u)
∣∣ − 2−l+m̄ c

3

)
+

≤
(

CLr−lSqϕ−1(a−1
l,m̄


(
πl(u),u

)) − 2−l+m̄ c

6

)
+
. (2.16)
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Using the inequality (x − 1)+ ≤ x1/q valid for x ≥ 0, we get(∣∣X(
πl(u)

) − X(u)
∣∣ − 2−l+m̄ c

3

)
+

≤ c

6
2−l+m̄

(
6c−12l−m̄CLr−lSqϕ−1(a−1

l,m̄

(
πl(u),u

)) − 1
)
+

≤ c

6
2−l+m̄

(
6c−12l−m̄CLr−lSq

)1/q[
ϕ−1(a−1

l,m̄

(
πl(u),u

))]1/q

= bl,m̄

[
ϕ−1(a−1

l,m̄

(
πl(u),u

))]1/q
.

To prove the third assertion, we first observe that d(ti , ti−1) ≤ r−mSq for i ∈ Jm and hence

d
(
tm+1
i , tm+1

i−1

) ≤ d(ti , ti−1) + d
(
tN+1
i , ti

) + d
(
tN+1
i−1 , ti−1

) +
N∑

l=m+1

[
d
(
t l+1
i , t li

) + d
(
t l+1
i−1 , t li−1

)]

≤ r−mSq + 2
∞∑

l=m+1

r−lSq,

so

d
(
tm+1
i , tm+1

i−1

) ≤ 2r−mSq. (2.17)

Denoting u = tm+1
i and v = tm+1

i−1 we get in the same way as (2.14) that∣∣X(u) − X(v)
∣∣ ≤ 2Cr−mSqϕ−1(
(u,v)

)
.

Then using the same idea as for the second assertion we deduce the remaining inequality. �

We turn to apply the above lemmas to bound increments in the chaining bound formulated in
Lemma 1. First, we consider a bound on V1 + W1.

Lemma 6. There exists a universal constant K1(ϕ, r, q) < ∞ and a random variable Z1 ≥ 0
independent from the partition �n, such that EZ1 ≤ 1 and for V1 and W1 defined in Lemma 1
one has

V1 + W1 ≤ K1(ϕ, r, q)c(q−1)/qSϕ−1(Z1 + Dϕ).

Proof. By Lemma 2 and the first bound in Lemma 5, we get

V1 ≤ 2
m0∑
l=0

∑
u∈Tl+1

∣∣X(u) − X
(
πl(u)

)∣∣
(2.18)

≤ V1 := 2C

m0∑
l=0

r−lSq
∑

u∈Tl+1

ϕ−1(
(
πl(u),u

))
.
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To bound W1 we use (2.17), that is, that d(tm+1
i , tm+1

i−1 ) ≤ 2r−mSq for i ∈ Jm. Using the already
defined sets Im(u) = {v ∈ Tm+1 :d(u, v) ≤ 2r−mSq}, and the third bound in Lemma 5

W1 ≤
m0∑
l=0

∑
u∈Tl+1

∑
v∈Il+1(u)

∣∣X(u) − X(v)
∣∣

(2.19)

≤ W1 := C

m0∑
l=0

2r−lSq
∑

u∈Tl+1

∑
v∈Il+1

ϕ−1(
(u,v)
)
.

We calculate the sum of all weights appearing in (2.18) and (2.19). By (2.8) for each u ∈ Tm+1
we have |Il+1(u)| ≤ B(r, q) and hence, using also (2.6)

M1 :=
m0∑
l=0

r−lSq

[
|Tl+1| +

∑
u∈Tl+1

∣∣Il+1(u)
∣∣]

≤ [
1 + B(r, q)

]
Sq

m0∑
l=0

r−l |Tl+1|

≤ A(r, q)
[
1 + B(r, q)

]
rm0(1−q)/qSq.

Therefore by c ≤ M0r
−m0Sq we get M0r

m0(1−q)/qSq ≤ M
1/q

0 c(q−1)/qS and hence

M1 ≤ M
1/q

0 A(r, q)
[
1 + B(r, q)

]
c(q−1)/qS.

Using Lemma 3 for ϕ which is convex above Cϕ we get

V1 +W1 ≤ 2CM1ϕ
−1(Z1 + ϕ(Cϕ)

) ≤ K1(r, q)c(q−1)/qSϕ−1(Z1 + ϕ(Cϕ)
)
, (2.20)

where K1(ϕ, r, q) := 2CM
1/q

0 A(r, q)[1 + B(r, q)] (the dependence on ϕ is through C and L)
and

Z1 = M−1
1

m0∑
l=0

r−lSq
∑

u∈Tl+1

(



(
πl(u),u

) +
∑

v∈Il+1(u)


(u, v)

)
.

Obviously Z1 ≥ 0 and EZ1 ≤ 1 by (2.2) and the definition of M1. Combining (2.18), (2.19) and
(2.20) we get the result. �

Our second goal is to prove a bound for V2 + W2 in Lemma 1 above the level m0.

Lemma 7. There exists a universal constant K2(ϕ, r, q) < ∞ and a random variable Z2 ≥ 0
independent from the partition �n such that EZ2 ≤ 1 and for V2 and W2 defined in Lemma 1 the
following inequality holds

V2 + W2 ≤ K2(ϕ, r, q)
[
ϕ−1(Z2 + Dϕ,q)

]1/q
.
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Proof. First, we prove a bound for V2. We analyze the increment(∣∣X(
t l+1
i

) − X
(
t li

)∣∣ − 2m̄−l c

3

)
+
, l > m̄, i ∈ Jm,m ≥ 0.

Using the second inequality in Lemma 5, we obtain that(∣∣X(
t l+1
i

) − X
(
t li

)∣∣ − 2−l+m̄ c

3

)
+

≤ bl,m̄

[
ϕ−1(a−1

l,m̄

(
t l+1
i , t li

))]1/q
.

Now observe that |ti − ti−1| ≥ r−(m̄+1)/qS for i ∈ Jm, m ≥ 0. Therefore,

N∑
l=m̄+1

bl,m̄ =
N∑

l=m̄+1

(
c

6
2l−m̄

)(q−1)/q(
CLr−lSq

)1/q

≤ (
61−qCL

)1/q
∞∑

l=m̄+1

(
2(q−1)/qr−1/q

)l−m̄
c(q−1)/qr−m̄/qS (2.21)

≤ M2c
(q−1)/q |ti − ti−1|,

where M2 = M2(ϕ, r, q) is defined by

(
61−qCL

)1/q
r1/q

∞∑
l=m̄+1

(
2(q−1)/qr−1/q

)l−m̄ ≤ (
(12)1−qCL

)1/q
∞∑

l′=0

(
2(1−q)/qr−1/q

)l′

= (
(12)1−qCL

)1/q(
1 − 2(1−q)/qr−1/q

)−1 =: M2.

Consequently

∞∑
m=0

∑
i∈Jm

N∑
l=m̄+1

∑
s∈{i−1,i}

bl,m̄ ≤ 2M2c
(q−1)/q

n∑
i=1

|ti − ti−1| = 2M2c
(q−1)/qS.

Thus we can apply Lemma 3 for ϕ(xq) which is convex above Cϕ,q and get

V2 ≤ 2M2c
(q−1)/qS

[
ϕ−1(V̄2 + Dϕ,q)

]−1
, (2.22)

where

V̄2 := (2M2)
−1

∞∑
m=0

∑
i∈Jm

N∑
l=m̄+1

∑
s∈{i−1,i}

b̄l,m̄

al,m̄



(
t li , t

l+1
i

)
and

b̄l,m̄ = (
c(q−1)/qS

)−1
bl,m̄ = (

6−12−l+m̄
)(q−1)/q(

CLr−l
)1/q

.
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Observe that

b̄l,m̄ ≤ b̄l,m0, al,m̄ ≥ al,m0,

which implies b̄l,m̄/al,m̄ ≤ b̄l,m0/al,m0 . Hence by Lemma 2, we have

V̄2 ≤ V2 := M−1
2

∞∑
l=m0+1

b̄l,m0

al,m0

∑
u∈Tl+1



(
πl(u),u

)
. (2.23)

By the construction, al,m0 ≥ 1, furthermore by (2.5)

M−1
2

∞∑
l=m0+1

b̄l,m0

al,m0

|Tl+1| ≤ M−1
2

∞∑
l=m0+1

(6−12−l+m0)(q−1)/q(CLr−l )1/q

ϕ((2−l+m0rlc)/(6CLSq))

(
r(l+1)/q + 1

)

≤ 2M−1
2

(
(12)1−qCL

)1/q
∞∑

l′=0

2l′(1−q)/q

ϕ(2−l′rl′)
=: M3,

where we have used the fact that (r(l+1)/q + 1) ≤ 2r(l+1)/q and the definition of m0, that is,
r−m0−1Sq < c/M0, M0 = 12CL, together with the monotonicity of ϕ. Note that by Remark 6,
for convex ϕ, that is, Cϕ = 0,

∞∑
l′=0

2l′(1−q)/q

ϕ(2−l′rl′)
≤

∞∑
l′=0

4l′r−l′ = (
1 − 4r−1)−1

. (2.24)

For ϕ which is convex for x ≥ Cϕ basically the same argument works but l′ must be large enough
to apply the convexity. Indeed, using that ψ(x) = ϕ(x + Cϕ) − ϕ(Cϕ) is convex and ψ(0) = 0
we deduce ψ(2−l′rl′x) ≥ 2−l′rl′ψ(x) for x ≥ 0 and thus for all x ≥ 0,

ϕ
(
2−l′rl′x + Cϕ

) ≥ 2−l′rl′(ϕ(x + Cϕ) − ϕ(Cϕ)
) + ϕ(Cϕ). (2.25)

Now choosing a suitable x one can get a bound similar to (2.24) yet for general ϕ. Note that in
this case the bounding constant may depend on ϕ. It proves that M3 < ∞. Finally, by (2.22),
(2.23) and Lemma 4 we get

V2 ≤ 2M2 max{M3,1}c(q−1)/qS
[
ϕ−1(V2/M3 + Dϕ,q)

]1/q
. (2.26)

Clearly, by (2.2) and the definition of M3 we have EV2/M3 ≤ 1.
A similar argument can be used to bound increments in W2. Namely using the forth inequality

in Lemma 5 we get that for m > m0 and i ∈ Jm(∣∣X(
tm+1
i

) − X
(
tm+1
i−1

)∣∣ − c

3

)
+

≤ bm

[
ϕ−1(a−1

m 

(
tm+1
i , tm+1

i−1

))]1/q
.
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Using that r−(m+1)/qS ≤ |ti − ti−1| ≤ r−m/qS we get

bm =
(

c

6

)(q−1)/q(
2CLr−mSq

)1/q ≤ M4c
(q−1)/q |ti − ti−1|,

where M4 = (2 · 61−qCLr−1)1/q . Therefore,

∞∑
m=m0+1

∑
i∈Jm

bm ≤ M4c
(q−1)/q

n∑
i=1

|ti − ti−1| = M4c
(q−1)/qS,

and thus using Lemma 3 for ϕ(xq) we get

W2 ≤ M4c
(q−1)/qS

[
ϕ−1(W̄2 + Dϕ,q)

]1/q
, (2.27)

where

W̄2 := M−1
4

∞∑
m=m0+1

∑
i∈Jm

b̄m

am



(
tm+1
i , tm+1

i−1

)

and b̄m = (c(q−1)/qS)−1bm = (2 ·61−qCLr−m)1/q . By (2.17) we have d(tm+1
i , tm+1

i−1 ) ≤ 2r−mSq

and thus using the definition of the set Im+1(u) for each m > m0 and u ∈ Tm+1

W̄2 ≤ W2 = M−1
4

∞∑
m=m0+1

b̄m

am

∑
u∈Tm+1

∑
v∈Im+1(u)


(u, v).

Note that by (2.5), (2.8)∑
u∈Tm+1

∣∣Im+1(u)
∣∣ ≤ 2−1B(r, q)

(
r(m+1)/q + 1

) ≤ B(r, q)r(m+1)/q .

Hence

M−1
4 B(r, q)

∞∑
m=m0+1

b̄m

am

r(m+1)/qM−1
4 B(r, q)

∞∑
m=m0+1

(2 · 61−qCLr)1/q

ϕ((rmc)/(12CLSq))

≤ M−1
4 B(r, q)

(
2 · 61−qCLr

)1/q
∞∑

m′=0

(
ϕ
(
rm′))−1 =: M5,

where in the last line we used that r−m0−1Sq < c/M0, M0 = 12CL. The same argument
as for M3 proves that M5 < ∞. Note that in the case of convex ϕ we can easily bound∑∞

m′=0(ϕ(rm′
))−1 by (1 − r−1)−1. By (2.27) and Lemma 4, we get

W2 ≤ M4 max{M5,1}c(q−1)/qS
[
ϕ−1(W2/M5 + Dϕ,q)

]1/q
. (2.28)
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Obviously EW2/M5 ≤ 1, consequently by (2.26), (2.28) and Jensen’s inequality we obtain the
desired result. �

Now we are ready to finish the proof of Theorem 1.

Proof of Theorem 1. Note that for fixed q and ϕ we may minimize constants K1(ϕ, r, q)

and K2(ϕ, r, q) appearing Lemmas 6, 7 with respect to r ≥ 4. It is clear from our discussion
about the finitness of M3,M5 that one can set r = 4 in the case of convex ϕ. If Cϕ > 0 the
choice of r ≥ 4 may be of meaning as we have explained in (2.25). Such minimal constants
depend only on ϕ and q , and we will denote them by K1(ϕ, q) and K2(ϕ, q) respectively.
Now it suffices to use Lemma 1, then universal bounds given in Lemmas 6, 7 and finally let
N → ∞. Recall that by the construction variables Z1 and Z2 of Lemmas 6, 7 do not depend
on N and limN→∞ d(t,πN+1(t)) = 0 for any t ∈ T . From condition (2.2), for a given partition
�n = {t0, t1, . . . , tn} we get RN := ∑n

i=1 |X(ti) − X(tN+1
i )| → 0 in probability as N ↑ +∞.

Taking subsequence Nk such that RNk
→ 0 almost surely, we get the universal bound for the

sum
∑n

i=1(|X(ti) − X(ti−1)| − c)+. Since �n was arbitrary we get the result for TVc(X,S). �

2.3. Application to the fractional Brownian motion

Let WH (t), t ≥ 0, be a fractional Brownian motion of the Hurst parameter H ∈ (0,1), that is, a
centered Gaussian process which has the following covariance function

E
(
WH (s)WH (t)

) = 1
2

(
s2H + t2H − |s − t |2H

)
. (2.29)

Let us consider T = [0, S] with distance d(s, t) = |t − s|H . From (2.29), it follows that WH (t)−
WH (s) ∼N (0, |t − s|2H ) and thus, for some constant C(H),

Eϕ2

( |WH (t) − WH (s)|
C(H)|t − s|H

)
≤ 1, for s, t ∈ T , s �= t.

Consequently, all assumptions of Corollary 2 are satisfied with p = 2, q = H and we get the
following corollary.

Corollary 3. For any fractional Brownian motion WH (t), t ∈ T , the following inequality holds

P
(
TVc(WH ,S) ≥ c(H−1)/H S(AH + BH u)

) ≤ CH exp
(−u2H

)
, for u > 0,

where AH ,BH ,CH are universal constants and CH = 1 for H ≥ 1/2.

Note that Corollary 3 implies that E TVc(WH ,S) ≤ KH c(H−1)/H S, where KH < ∞. On the
other hand c(H−1)/H S is also the proper lower bound for E TVc(WH ,S) when Sc−1/H is not too
small. Indeed, let us consider the partition � = {0 ≤ t0 < t1 < · · · < tN ≤ S} given by ti = ic1/H ,
i = 0,1,2, . . . ,N = �Sc−1/H �. We have

TVc(WH ,S) ≥
N∑

i=1

(∣∣WH (ti) − WH (ti−1)
∣∣ − c

)
+.
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Clearly, for Sc−1/H ≥ 2, N > Sc−1/H −1 ≥ Sc−1/H /2 and E(|WH (ti)−WH (ti−1)|−c)+ ≥ kH c

for some positive constant kH . It proves that when Sc−1/H ≥ 2, c(H−1)/H S is comparable with
E TVc(WH ,S) up to a constant depending only on H . Therefore, we have another formulation
of Corollary 3.

Corollary 4. Assume that Sc−1/H ≥ 2. For any fractional Brownian motion WH (t), t ∈ T , the
following inequality holds

P
(
TVc(WH ,S) ≥ E TVc(WH ,S)(ĀH + B̄H u)

) ≤ C̄H exp
(−u2H

)
, for u > 0,

where ĀH , B̄H , C̄H < ∞ are universal constants. Moreover C̄H = 1 for H ≥ 1/2.

3. Application to the standard Brownian motion and diffusions

For a standard Brownian motion W = W1/2, which is the only fractional Brownian motion with
independent increments one may, using this property, strengthen the results obtained for gen-
eral fBm and obtain Gaussian concentration of TVc(W,S). The generalization of this result for
diffusions with moderate growth, driven by W , is also possible.

Let us assume that Xt , t ≥ 0, is a one-dimensional diffusion satisfying

X(t) = x0 +
∫ t

0
μ

(
s,X(s)

)
ds +

∫ t

0
σ
(
s,X(s)

)
dW(s). (3.1)

We assume that σ : [0;+∞) × R → [−R;R] is measurable and bounded (i.e., 0 < R < +∞)
and μ : [0;+∞) × R → R is measurable and satisfying the following linear growth condition:
there exists C,D ≥ 0 such that for all t ≥ 0∣∣μ(t, x)

∣∣ ≤ C + D|x|. (3.2)

We will also need the natural assumption that X is a Markov process. With this assumption, we
have the following theorem.

Theorem 2. For X being a Markov process satisfying (3.1) with μ and σ as above and λ ≥ 0
one has

E exp
(
λTVc(X,S)

) ≤ 2 exp
(
λ2SαR + λSc−1βR + λγx0,C,D,S

)
× (

1 + 8ληD,R,S exp
(
λ2η2

D,R,S

))
,

where γx0,C,D,S = (C + D|x0|)SeDS , δD,S = DSeDS and ηD,R,S = δD,SR
√

S/2. In particular,
when D = 0 we get

E exp
(
λTVc(X,S)

) ≤ 2 exp
(
λ2SαR + λS

(
c−1βR + C

))
and for the standard Brownian motion X = W we get

E exp
(
λTVc(W,S)

) ≤ 2 exp
(
λ2Sα + λSc−1β

)
, (3.3)
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where α,β are universal constants.

Proof. Let us define

M(t) :=
∫ t

0
μ

(
s,X(s)

)
ds, Y (t) :=

∫ t

0
σ
(
s,X(s)

)
dW(s)

and Y ∗ = sup0≤s≤S |Y(s)|. We have X(t) = x0 + M(t) + Y(t), and due to (3.2) we estimate

∣∣M(t)
∣∣ ≤

∫ t

0

∣∣μ(
s,X(s)

)∣∣ds ≤
∫ t

0
C + D

∣∣X(s)
∣∣ds

≤
∫ t

0
C + D|x0| + D

∣∣M(s)
∣∣ + DY ∗ ds (3.4)

≤ (
C + D|x0| + DY ∗)S + D

∫ t

0

∣∣M(s)
∣∣ds.

Hence, from Gronwall’s lemma (cf. Revuz and Yor [15], Appendix §1), we get∣∣M(t)
∣∣ ≤ (

C + D|x0| + DY ∗)SeDt . (3.5)

Notice that due to (3.5) M is adapted, absolute continuous process with locally bounded total
variation. Indeed, repeating estimates (3.4) and using (3.5) we get

TV(M,S) ≤
∫ S

0

∣∣μ(
s,X(s)

)∣∣ds

≤ (
C + D|x0| + DY ∗)S + D

∫ S

0

∣∣M(t)
∣∣ds

(3.6)

≤ (
C + D|x0| + DY ∗)S + D

(
C + D|x0| + DY ∗)S ∫ S

0
eDt ds

= (
C + D|x0|

)
SeDS + DSeDSY ∗.

(TV = TV0 denotes here the total variation.)
By Łochowski and Miłoś [12], Fact 17, we have

TVc(X,S) ≤ TV(M,S) + TVc(Y,S). (3.7)

Now we will investigate TVc(Y,S).
First, let us prove that Y satisfies condition (2.1) with ϕ = ϕ2 and d(s, t) = |s − t |1/2. Indeed,

let us fix 0 ≤ s < t ≤ S and consider the following martingale Z(u) := Y(s + u) − Y(s), u ∈
[0; t − s]. We have

Z(u) =
∫ s+u

s

σ
(
τ,X(τ)

)
dW(τ)
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and

〈Z〉(u) =
∫ s+u

s

σ
(
τ,X(τ)

)2 dτ ≤ R2(t − s).

Hence, by Bernstein’s inequality (cf. Revuz and Yor [15], Chapter IV, Exercise 3.16), we have

P
(∣∣Y(t) − Y(s)

∣∣ ≥ x
) ≤ 2P

(
sup

u∈[0;t−s]
Z(u) ≥ x

)

= 2P
(

sup
u∈[0;t−s]

Z(u) ≥ x, 〈Z〉(t − s) ≤ R2(t − s)
)

(3.8)

≤ 2 exp
(−x2/

(
2R2(t − s)

))
.

From (3.8), we immediately get that Y satisfies condition (2.1) for ϕ = ϕ2 and d(s, t) = |s− t |1/2.
Hence, from Corollary 2 we obtain the following bound on the tails of TVc(Y,S):

P
(
TVc(Y,S) ≥ c−1S(A + Bu)

) ≤ e−u, (3.9)

where A = A(R) and B = B(R) depend on R only. Notice that for δ > 0 applying Bernstein’s
inequality to Y ∗ we get P(Y ∗ ≥ x) ≤ 2 exp(−x2/(2R2S)) and using integration by parts we have

E exp
(
δY ∗) ≤ 1 + 2δ

∫ ∞

0
eδye−y2/(2R2S) dy ≤ 1 + 8δR

√
S/2eδ2R2S/2. (3.10)

Now, we will strengthen estimate (3.9) using the Markov property of X. First, using (3.9) and
integration by parts we have

E exp
(
λ
[
TVc(Y,S) − c−1SA

]) ≤ 1

1 − λSB/c
(3.11)

for λ < c(SB)−1. Let now S = S1 + S2, where S1, S2 > 0. Using the inequality TVc(Y,S) ≤
TVc(Y,S1) + c + TVc(Y, [S1, S]), which follows easily from the estimate:(∣∣Y(t) − Y(u)

∣∣ − c
)
+ ≤ (∣∣Y(t) − Y(S1)

∣∣ − c
)
+ + (∣∣Y(S1) − Y(u)

∣∣ − c
)
+ + c

for 0 ≤ t < S1 < u ≤ S, and then the Markov property of X we get

E exp
(
λ
[
TVc(Y,S) − c−1SA

])
≤ E exp

(
λTVc(Y,S1) + λc + λTVc

(
Y, [S1, S]) − λc−1SA

)
(3.12)

= eλcE
(
eλTVc(Y,S1)−λc−1S1AE

[
eλTVc(Y,[S1,S])−λc−1S2A|X(S1)

])
≤ eλc 1

1 − λS1B/c

1

1 − λS2B/c
.

The last inequality follows by (3.11), since the right-hand side of (3.11) does not depend on x0,
and using the Markov property in similar way we have the universal estimate for the conditional
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expectation

E
(
exp

{
λTVc

(
Y, [S1, S]) − λc−1S2A

}|X(S1) = x1
) ≤ 1

1 − λS2B/c

(note that the length of interval [S1, S] is S2). Notice now that from (3.12) it follows that
E exp(λ[TVc(Y,S) − c−1SĀ]) < +∞ for λ < min{c(S1B)−1, c(S2B)−1}. Let us fix integer
n ≥ 1. Iterating (3.12) we obtain

E exp
(
λ
[
TVc(Y,S) − c−1SA

]) ≤ eλc(n−1)

(
1

1 − λSB(cn)−1

)n

(3.13)

for λ < cn(SB)−1, which gives that E exp(λ[TVc(Y,S) − c−1SA]) < +∞ for any λ ∈ R. Now,
let us fix λ > 0 and set n = �2λSBc−1�. Using (3.13), we get

E exp
(
λ
[
TVc(Y,S) − c−1SA

]) ≤ eλc(n−1)2n

≤ 2 exp
(
2λ2SB + 2(ln 2)λSBc−1)

and thus

E exp
(
λTVc(Y,S)

) ≤ 2 exp
(
2λ2SB + λSc−1(A + 2(ln 2)B

))
(3.14)

= 2 exp
(
λ2SαR + λSc−1βR

)
,

where αR = 2B = 2B(R) and βR = A+ 2(ln 2)B = A(R)+ 2(ln 2)B(R). Now, from (3.7), (3.6)
and (3.14) we get

E exp
(
λTVc(X,S)

) ≤ E exp
(
λTV(M,S) + λTVc(Y,S)

)
≤ 2 exp

(
λ2SαR + λSc−1βR + λγx0,C,D,S

)
E exp

(
λδD,SY ∗),

where γx0,C,D,S = (C + D|x0|)SeDS , δD,S = DSeDS . Finally, using (3.10) with δ = λδD,S we
get

E exp
(
λTVc(X,S)

) ≤ 2 exp
(
λ2SαR + λSc−1βR + λγx0,C,D,S

)
× (

1 + 8ληD,R,S exp
(
λ2η2

D,R,S

))
,

where ηD,R,S = δD,SR
√

S/2. �

Remark 7. Let us notice that the condition that σ is bounded is essential for obtaining the Gaus-
sian concentration of TVc(X,S). To see this it is enough to consider the equation dX(t) =
2−1X(t)dt + X(t)dW(t) with the starting condition X(0) = 1. Notice that TVc(X,S) ≥
(X(S) − X(0) − c)+ and that (X(S) − X(0) − c)+ = (expW(S) − 1 − c)+ does not reveal
the Gaussian concentration.
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Remark 8. Notice that for the standard Brownian motion X = W and Sc−2 ≥ 2, Sc−1 is com-
parable up to a universal constant with E TVc(W,S). Hence, from (3.3) we obtain that for c > 0
such that Sc−2 ≥ 2, there exist universal constants Ā, B̄ < +∞ such that the Gaussian concen-
tration holds

P
(
TVc(W,S) ≥ ĀE TVc(W,S) + B̄

√
Su

) ≤ exp
(−u2), for u ≥ 0.

4. Existence of moment-generating functions of the truncated
variation of Lévy processes

In this section, we will deal with the existence of finite exponential moments of the truncated
variation of a Lévy process X. We will state the necessary and sufficient condition for the finite-
ness of E exp(α TVc(X,S)) in terms of the generating triplet of the process X (cf. Sato [16],
Chapter 2, Section 11). The methodology used here is very similar to the methodology used in
Łochowski [10] for a Wiener process W , where the existence of E exp(α TVc(W,S)) for any
complex α was proved.

We start with the following lemma.

Lemma 8. Let X be a Lévy process. For any c > 0 and α > 0 one has E exp(α TVc(X,S)) <

+∞ if and only if

E exp
(
α sup

0≤s≤S

∣∣X(s)
∣∣) < +∞.

Proof. The ‘only if’ part follows from the inequality

TVc(X,S) ≥ sup
0≤s≤S

max
{∣∣X(s) − X(0)

∣∣ − c,0
}

= max
{

sup
0≤s≤S

∣∣X(s)
∣∣ − c,0

}
≥ sup

0≤s≤S

∣∣X(s)
∣∣ − c.

To prove the opposite implication let us define T c
0 = 0 and for i = 1,2, . . .

T c
i = inf

{
t > T c

i−1 :
∣∣X(t) − X

(
T c

i−1

)∣∣ > c/2
} ∧ (

S + T c
i−1

)
.

Observe that T c
1 = inf{t > 0 : |X(t)| > c/2} ∧ S ≤ S and that (X(t))t≥0

d= (X(t) − X(T c
1 ))t≥T c

1
,

where “
d=” denotes the equality of distributions. Now let us define

Xc
t =

∞∑
i=0

X
(
T c

i

)
I[T c

i ,T c
i+1)

(t).

Since ‖Xc − X‖∞ ≤ c/2, we have

TVc(X,S) ≤ TV
(
Xc,S

)
(4.1)
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and since Xc is piecewise constant with the first jump at T c
1 ≤ S, denoting 
Xc(T c

1 ) = Xc(T c
1 )−

Xc(T c
1 −) we have

TV
(
Xc,S

) = ∣∣
Xc
(
T c

1

)∣∣ + TV
(
Xc,

[
T c

1 , S
])

(4.2)
≤ sup

0≤s≤T c
1

∣∣X(s)
∣∣ + TV

(
Xc,

[
T c

1 , S
])

.

Let now δ ∈ (0;S) be such a small number that

E
[
exp

(
α sup

0≤s≤S

∣∣X(s)
∣∣);T c

1 ≤ δ
]

(4.3)
:= E

[
exp

(
α sup

0≤s≤S

∣∣X(s)
∣∣)I{T c

1 ≤δ}
]

< 1.

Note that such a number exists, since we assume that E exp(α sup0≤s≤S |X(s)|) < +∞
and from the càdlàg property and stochastic continuity of X it follows that P(T c

1 ≤ δ) =
P(sup0≤s≤δ |X(s)| > c/2) ↓ 0 as δ ↓ 0.

Let us fix M > 0. Note that on the set {T c
1 > δ} we have TV(Xc, δ) = 0, hence

E exp
(
α TV

(
Xc, δ

) ∧ M
) = E

[
exp

(
α TV

(
Xc, δ

) ∧ M
);T c

1 ≤ δ
]

+ E
[
exp(0 ∧ M);T c

1 > δ
]

(4.4)
= E

[
exp

(
α TV

(
Xc, δ

) ∧ M
);T c

1 ≤ δ
]

+ P
(
T c

1 > δ
)
.

Now, applying (4.2), the independence of the process X(t) − X(T c
1 ), t ≥ T c

1 , and the two-
dimensional r.v. (sup0≤s≤T c

1
|X(s)|, T c

1 ) (to see this notice that T c
1 is a stopping time and use

the strong Markov property of Lévy processes) and the equality of distributions of TV(Xc, s)

and TV(Xc, [T c
1 ;T c

1 + s]) for any s ≥ 0, we have

E
[
exp

(
α TV

(
Xc, δ

) ∧ M
);T c

1 ≤ δ
]

≤ E
[
exp

(
α
(

sup
0≤s≤T c

1

∣∣X(s)
∣∣ + TV

(
Xc; [T c

1 ; δ])) ∧ M
)
;T c

1 ≤ δ
]

≤ E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣ + α TV

(
Xc; [T c

1 ; δ + T c
1

]) ∧ M
)
;T c

1 ≤ δ
]

= E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣);T c

1 ≤ δ
]
E exp

(
α TV

(
Xc, δ

) ∧ M
) + P

(
T c

1 > δ
)

≤ E
[
exp

(
α sup

0≤s≤S

∣∣X(s)
∣∣);T c

1 ≤ δ
]
E exp

(
α TV

(
Xc, δ

) ∧ M
)
.
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By this and by (4.4), (4.3) we have

E exp
(
α TV

(
Xc, δ

) ∧ M
) ≤ P(T c

1 > δ)

1 − E[exp(α sup0≤s≤S |X(s)|);T c
1 ≤ δ] . (4.5)

Using similar arguments as before (i.e., (4.2), independence of X(t) − X(T c
1 ), t ≥ T c

1 , and
(sup0≤s≤T c

1
|X(s)|, T c

1 ) and the equality of distributions of TV(Xc, s) and TV(Xc, [T c
1 ;T c

1 + s])
for s ≥ 0) we obtain

E exp
(
α TV

(
Xc,S

) ∧ M
)

≤ E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣ + α TV

(
Xc; [T c

1 ;S + T c
1

]) ∧ M
)
;T c

1 ≤ δ
]

+ E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣ + α TV

(
Xc; [T c

1 ;S + T c
1 − δ

]) ∧ M
)
;T c

1 > δ
]

= E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣);T c

1 ≤ δ
]
E

[
exp

(
α TV

(
Xc,S

) ∧ M
)]

+ E
[
exp

(
α sup

0≤s≤T c
1

∣∣X(s)
∣∣);T c

1 > δ
]
E

[
exp

(
α TV

(
Xc,S − δ

) ∧ M
)]

≤ E
[
exp

(
α sup

0≤s≤S

∣∣X(s)
∣∣);T c

1 ≤ δ
]
E

[
exp

(
α TV

(
Xc,S

) ∧ M
)]

+ E exp
(
α sup

0≤s≤S

∣∣X(s)
∣∣)E

[
exp

(
α TV

(
Xc,S − δ

) ∧ M
)]

.

From this, we have

E exp
(
α TV

(
Xc,S

) ∧ M
)

≤ E exp(α sup0≤s≤S |X(s)|)
1 − E[exp(α sup0≤s≤S |X(s)|);T c

1 ≤ δ]E exp
(
α TV

(
Xc,S − δ

) ∧ M
)
.

Similarly, if S − 2δ > 0

E exp
(
α TV

(
Xc,S − δ

) ∧ M
)

≤ E exp(α sup0≤s≤S−δ |X(s)|)
1 − E[exp(α sup0≤s≤S−δ |X(s)|);T c

1 ≤ δ]E exp
(
α TV

(
Xc,S − 2δ

) ∧ M
)

≤ E exp(α sup0≤s≤S |X(s)|)
1 − E[exp(α sup0≤s≤S |X(s)|);T c

1 ≤ δ]E exp
(
α TV

(
Xc,S − 2δ

) ∧ M
)
.
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Iterating and putting together the above inequalities, we finally obtain

E exp
(
α TV

(
Xc,S

) ∧ M
) ≤

(
E exp(α sup0≤s≤S |X(s)|)

1 − E[exp(α sup0≤s≤S |X(s)|);T c
1 ≤ δ]

)�S/δ�

(4.6)
× E exp

(
α TV

(
Xc, δ

) ∧ M
)
.

By (4.5) and (4.6), and letting M → ∞ we get E exp(α TV(Xc,S)) < +∞. Finally, from (4.1)
we get

E exp
(
α TVc(X,S)

)
< +∞. �

Now let (A, ν, γ ) be the generating triplet of the process X. By Sato [16], Theorem 28.15, we
have

E exp
(
α sup

0≤s≤S

∣∣X(s)
∣∣) < +∞

if and only if

E exp
(
α
∣∣X(1)

∣∣) < +∞
which, by Sato [16], Corollary 25.8, is equivalent with∫

|x|>1
eα|x|ν(dx) < +∞. (4.7)

From equivalence of these conditions and Lemma 8 we obtain the following theorem.

Theorem 3. Let (A, ν, γ ) be the generating triplet of the Lévy process X. For any α > 0 we
have

E exp
(
α TVc(X,S)

)
< +∞

if and only if ∫
|x|>1

eα|x|ν(dx) < +∞.

Theorem 3 may be applied in situations, when the process X satisfies condition (4.7) with some
α > 0 but it is neither Brownian motion nor finite variation process. This holds, for example, for
tempered stable process, that is, processes with the Lévy measure given by

ν(dx) = cp

x1+αp
e−λpx1x>0 dx + cn

(−x)1+αn
eλnx1x<0 dx,

where αp,αn < 2, λp,λn, cp, cn > 0. They satisfy (4.7) for any α < min(λp,λn) and have infi-
nite variation when αp,αn ≥ 1. Another example are Meixner processes, used in financial mod-
eling (cf. Kyprianou et al. [7], Chapter I), with Lévy measure given by

ν(dx) = δ
exp(βx/η)

x sinh(πx/η)
dx,
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where δ, η > 0, |β| < π. They satisfy (4.7) for α < (π − |β|)/η.
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