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The extremal coefficient function (ECF) of a max-stable process X on some index set T assigns to each fi-
nite subset A ⊂ T the effective number of independent random variables among the collection {Xt }t∈A. We
introduce the class of Tawn–Molchanov processes that is in a 1:1 correspondence with the class of ECFs,
thus also proving a complete characterization of the ECF in terms of negative definiteness. The correspond-
ing Tawn–Molchanov process turns out to be exceptional among all max-stable processes sharing the same
ECF in that its dependency set is maximal w.r.t. inclusion. This entails sharp lower bounds for the finite
dimensional distributions of arbitrary max-stable processes in terms of its ECF. A spectral representation
of the Tawn–Molchanov process and stochastic continuity are discussed. We also show how to build new
valid ECFs from given ECFs by means of Bernstein functions.

Keywords: completely alternating; dependency set; extremal coefficient; max-linear model; max-stable
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1. Introduction

Besides the class of square integrable processes, the class of temporal or spatial max-stable pro-
cesses is of common interest in stochastics and statistics, cf. [3,4,9,13,20,31], for example. In
spite of considerable differences between these two classes, for example, the non-existence of
the first moments in case of max-stable processes with unit Fréchet marginals, connections be-
tween the two classes have been made for instance, by the extremal Gaussian process [25] and
the Brown–Resnick process [16] that are parameterized by a correlation function and a variogram,
respectively.

Naturally, extremal dependence measures such as the extremal coefficients [26,28], the (up-
per) tail dependence coefficients [1,5,8,11] or other special cases of the extremogram [8] are
appropriate summary statistics for max-stable processes. In this article, we capture the full set
of extremal coefficients of a max-stable process X = {Xt }t∈T on some space T in the so-called
extremal coefficient function (ECF) θ , which assigns to each finite subset A of T the effective
number of independent variables among the collection {Xt }t∈A. We introduce a subclass of max-
stable processes that is parameterized by the ECF, and thus reveal some analogies to Gaussian
processes and positive definite functions as follows:

Among (zero mean) square integrable processes, the subclass of Gaussian processes takes
a unique role, since it is in a 1–1 correspondence with the set of covariance functions, which
are precisely the positive definite functions. This fact can be proven by means of Kolmogorov’s
extension theorem and is illustrated in the following graph:
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In case T is a metric space, the Gaussian process Z∗(C) is continuous in the mean square sense
(and then also stochastically continuous) if and only if the covariance function C is continuous
if and only if C is continuous on the diagonal (cf. [23], Theorem 5.3.3). Well-known operations
on the set of positive definite functions C, and hence on the corresponding Gaussian processes
Z∗(C), include convex combinations and pointwise limits. Moreover, Bernstein functions play
an important role for the construction of positive definite functions.

In our case, the crucial role of zero mean Gaussian processes is taken by the class of Tawn–
Molchanov processes (TM processes), which are in fact the spatial generalization of the multi-
variate max-linear model of [26]. Using Kolmogorov’s extension theorem, we shall see that each
ECF θ (of some max-stable process) uniquely determines a TM process X∗(θ) having the same
ECF (Theorem 8). Alongside, we generalize a multivariate result [19], Corollary 1, to the spatial
setting, proving that the ECFs coincide with the functions θ on F(T ) (the set of finite subsets of
T ) that are normalized to θ(∅) = 0 and θ({t}) = 1 for t ∈ T and that are negative definite (or
equivalently completely alternating) in a sense to be explained below (cf. Definition 6). This can
be illustrated in analogy to the above sketch:

Having identified the ECF θ as a negative definite quantity allows for several immediate conse-
quences: First, we obtain an integral representation of θ as a mixture of maps A �→ 1A∩Q �=∅

(Corollary 16) and derive a spectral representation for the corresponding TM process X∗(θ)

(Theorem 18). Second, we consider operations on ECFs that allow to build new ECFs from
given ones. We find that ECFs allow for convex combinations and pointwise limits (Corollaries
13 and 14) and that the class of Bernstein functions operates on ECFs (Corollary 20). We also re-
cover the “triangle inequalities” for θ from [7], Proposition 4, and see that the inequalities therein
correspond to three specific choices of a Bernstein function, whereas we may plug in arbitrary
Bernstein functions to obtain further “triangle inequalities” (Corollary 21).

For T being a metric space, we discuss stochastic continuity: The TM process X∗(θ) is
stochastically continuous if and only if θ is continuous (cf. Definition 22) if and only if the
bivariate map (s, t) �→ θ({s, t}) is continuous if and only if the bivariate map (s, t) �→ θ({s, t})
is continuous on the diagonal (Theorem 25).

Finally, we address the exceptional role of the TM processes among simple max-stable pro-
cesses. To this end, Molchanov’s dependency set K [19] is transferred to max-stable processes X.
It comprises the finite dimensional distributions (f.d.d.) of X (Lemma 29). Now, let K∗(θ) denote
the dependency set of the process X∗(θ). Then we identify K∗(θ) as intersection of halfspaces
that are directly given by the ECF θ (Theorem 32). It turns out that K∗(θ) is exceptional among
the dependency sets K of all max-stable processes sharing the same ECF θ , since K∗(θ) is max-
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Figure 1. Examples of dependency sets in a trivariate setting: a “typical” dependency set K (left) and a
dependency set K∗ stemming from a TM process (right). It is shown that K ⊂ K∗ (middle). For further
details, see the introduction, Example 31, Lemma 30 and Theorem 32.

imal w.r.t. inclusion as illustrated in Figure 1. Since inclusion of dependency sets corresponds
to stochastic ordering, this observation leads to sharp inequalities for the f.d.d. of max-stable
processes in terms of its ECF θ (Corollary 33).

The text is structured as follows. After the introductory Section 2, the characterization of
ECFs and the existence of TM processes is established in Section 3. Section 4 collects several
immediate consequences and related results, while Section 5 exhibits the exceptional role of TM
processes. Sections 4 and 5 can be read independently.

2. Foundations and definitions

2.1. Notation for max-stable processes and ECFs

A stochastic process X = {Xt }t∈T on an arbitrary index set T is said to be max-stable if for each
n ∈ N and independent copies X(1), . . . ,X(n) of X the process of the maxima {∨n

i=1 X(i)}t∈T

has the same law as {an(t)Xt + bn(t)}t∈T for suitable norming functions an(t) > 0 and bn(t) on
T . Without loss of generality, we shall deal with max-stable processes that have standard Fréchet
marginals, that is, P(Xt ≤ x) = e−1/x for t ∈ T and x ≥ 0, and set an(t) = n and bn(t) = 0. Such
processes are called simple max-stable processes.

It has been shown (cf. [9,15,29]) that (simple) max-stable processes X = {Xt }t∈T allow for a
spectral representation (�,A, ν,V ): there exists a (sufficiently rich) measure space (�,A, ν)

and measurable functions Vt : � → R+ (with
∫
�

Vt (ω)ν(dω) = 1 for each t ∈ T ), such that the
law of X = {Xt }t∈T equals the law of{ ∨

(U,ω)∈�

UVt(ω)

}
t∈T

. (1)

Here � denotes a Poisson point process on R+ ×� with intensity u−2 du×ν(dω). The functions
{Vt }t∈T are called spectral functions and the measure ν is called spectral measure.
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In order to describe the finite dimensional distributions (f.d.d.) of X, we shall fix some conve-
nient notation first: Let M ⊂ T be some non-empty finite subset of T . By RM (resp. [0,∞]M )
we denote the space of real-valued (resp. [0,∞]-valued) functions on M . Elements of these
spaces are denoted by x = (xt )t∈M where xt = x(t). The standard scalar product is given through
〈x, y〉 = ∑

t∈M xtyt . For a subset L ⊂ M , we write 1L for the indicator function of L in RM

(resp. [0,∞]M ), such that {1{t}}t∈M forms an orthonormal basis of RM . In this sense, the origin
of RM equals 1∅ being zero everywhere on M . Using this notation, we emphasize the fact that a
multivariate distribution of a stochastic process is not any |M|-variate distribution, but it is bound
to certain points (forming the set M) in the space T . Finally, we consider some reference norm
‖ · ‖ on RM (not necessarily the one from the scalar product) and denote the positive unit sphere
SM := {a ∈ [0,∞)M :‖a‖ = 1}.

In terms of a spectral representation (�,A, ν,V ), the f.d.d. of X are given through

− logP(Xt ≤ xt , t ∈ M) =
∫

�

(∨
t∈M

Vt(ω)

xt

)
ν(dω) (2)

for x ∈ [0,∞)M \ {1∅}. Alternatively, the f.d.d. of X for a finite subset ∅ �= M ⊂ T may be de-
scribed by means of one of the following three quantities that are all equivalent to the knowledge
of the f.d.d.:

• the (finite dimensional) spectral measure HM (cf. [10,22]), that is, the Radon measure on
SM such that for x ∈ [0,∞)M \ {1∅}

− logP(Xt ≤ xt , t ∈ M) =
∫

SM

(∨
t∈M

at

xt

)
HM(da), (3)

• the stable tail dependence function �M (cf. [1]), that is, the function on [0,∞)M defined
through

�M(x) := − logP(Xt ≤ 1/xt , t ∈ M) =
∫

SM

(∨
t∈M

atxt

)
HM(da), (4)

• the (finite dimensional) dependency set KM (cf. [19]), that is, the largest compact convex
set KM ⊂ [0,∞)M satisfying

�M(x) = sup
{〈x, y〉 :y ∈ KM

} ∀x ∈ [0,∞)M. (5)

In order to be a valid finite dimensional spectral measure of a simple max-stable random vector
{Xt }t∈M , the only constraint that a Radon measure HM on SM has to satisfy is that∫

SM

atHM(da) = 1

for each t ∈ M . This ensures standard Fréchet marginals.
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Given a simple max-stable process X on T , we may assign to a non-empty finite subset A ⊂ T

the extremal coefficient θ(A) (cf. [26,28]), that is

θ(A) := lim
x→∞

logP(
∨

t∈A Xt ≤ x)

logP(Xt ≤ x)
=

∫
SM

(∨
t∈A

at

)
HM(da) = �M(1A). (6)

Indeed, the expression logP(
∨

t∈A Xt ≤ x)/ logP(Xt ≤ x) does not depend on x and equals the
right-hand side (r.h.s.) for A ⊂ M . Observe that θ(A) takes values in the interval [1, |A|], where
the value 1 corresponds to full dependence of the random variables {Xt }t∈A and the value |A|
(number of elements in A) corresponds to independence. Roughly speaking, the extremal coef-
ficient θ(A) detects the effective number of independent variables among the random variables
{Xt }t∈A. It is coherent to set θ(∅) := 0 to obtain a function θ on F(T ), the set of finite subsets
of T . We call the function

θ :F(T ) → [0,∞)

extremal coefficient function (ECF) of the process X. The set of all ECFs of simple max-stable
processes on a set T will be denoted by

�(T ) = {
θ :F(T ) → [0,∞) : θ is an ECF of a simple max-stable process on T

}
. (7)

Example 1. The simplest ECFs are the functions θ(A) = |A| corresponding to a process of inde-
pendent random variables, and the indicator function θ(A) = 1A�=∅ corresponding to a process
of identical random variables.

Rather sophisticated examples of ECFs can be obtained using spectral representations
(�,A, ν,V ) of processes X. In these terms the ECF θ of a process X is given by

θ(A) =
∫

�

(∨
t∈A

Vt (ω)

)
ν(dω) (8)

for A ∈F(T ) \ {∅} and θ(∅) = 0.

Example 2 (Mixed Moving Maxima – M3 process). Consider the simple max-stable stationary
process X on Rd that is given through the following spectral representation (�,A, ν,V ):

• (�,A, ν) = (F × Rd,F ⊗ B(Rd),μ ⊗ dz), where (Rd ,B(Rd),dz) denotes the Lebesgue-
measure on the Borel-σ -algebra of Rd and where (F,F ,μ) denotes a measure space of
non-negative measurable functions on Rd with

∫
F
(
∫
Rd f (z)dz)μ(df ) = 1,

• Vt((f, z)) = f (t − z) for t ∈ Rd ,

then we call X a Mixed Moving Maxima process (M3 process) (cf. also [17,25,29,30]). Because
of (8) the ECF θ of a Mixed Moving Maxima process X can be computed as

θ(A) =
∫
F

∫
Rd

(∨
t∈A

f (t − z)

)
dzμ(df )
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for A ∈ F(Rd) \ {∅} and θ(∅) = 0. In case μ is a point mass at an indicator function f the
bivariate coefficient θ({s, t}) will be given by θ({s, t}) = 2 − f ∗ f̌ (s − t), where f ∗ f̌ means
the convolution of f with f̌ and f̌ (t) = f (−t).

Example 3 (Brown–Resnick process). Consider the simple max-stable stationary process X on
Rd that is given through the following spectral representation (�,A, ν,V ):

• (�,A, ν) denotes the probability space of a Gaussian process W on Rd with stationary
increments and variogram γ (z) = E(Wz − Wo)

2 for z ∈ Rd .
• Vt (ω) = exp(Wt(ω) − σ 2(t)/2) for t ∈ Rd , where σ 2(t) denotes the variance of Wt ,

then we call X a Brown–Resnick process (cf. [16]). Because of (8) the ECF θ of a Brown–Resnick
process X is

θ(A) = E exp

(∨
t∈A

Wt − σ 2(t)/2

)
for A ∈ F(Rd) \ {∅} and θ(∅) = 0. Since the f.d.d. of X only depend on the variogram γ ,
the extremal coefficient θ(A) will also depend only on the values {γ (s − t)}s,t∈A. In particular,
we have θ({s, t}) = 1 + erf(

√
γ (s − t)/8) for the bivariate coefficient θ({s, t}), where erf(x) =

2/
√

π
∫ x

0 e−t2
dt denotes the error function (cf. [16]). In case the variogram equals γ (z) = λ‖z‖2

for some λ > 0, explicit expressions for multivariate coefficients of higher orders up to d + 1 can
be found in [12].

2.2. A consistent max-linear model

A multivariate simple max-stable distribution is called max-linear (or spectrally discrete) if it
arises as the distribution of a random vector X of the following form

Xi =
q∨

j=1

aijZj , i = 1, . . . , p,

where Z = {Zj }qj=1 is a vector of i.i.d. unit Fréchet random variables and where {aij }p×q is a

matrix of non-negative entries with
∑q

j=1 aij = 1 for each row i = 1, . . . , p. This is equivalent to
requiring the spectral measure HM from (3) for M = {1, . . . , . . . , p} to be the following discrete
measure on SM

HM =
q∑

j=1

‖aj‖δaj /‖aj ‖,

where aj denote the column vectors of the matrix {aij }p×q . Conversely, any discrete spectral
measure of a simple max-stable random vector gives rise to such a matrix. Surely, the ECF of
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such a random vector X = {Xi}i∈M is

θ(A) =
q∑

j=1

∨
i∈A

aij (9)

for ∅ �= A ⊂ M and θ(∅) = 0 (cf. (6)).
In [26], the authors introduce a max-linear model for X∗ = {X∗

i }i∈M where the column index
j ranges over all non-empty subsets L of M and where non-negative coefficients τL are given
for each column ∅ �= L ⊂ M , more precisely

X∗
i =

∨
∅ �=L⊂M

ai,LZL, i ∈ M, with ai,L = τL1i∈L,

which is equivalent to

X∗
i =

∨
i∈L⊂M

τLZL, i ∈ M. (10)

The model (10) is simple if and only if
∑

∅ �=L⊂M aiL = ∑
L⊂M : i∈L τL = 1 for each i ∈ M . It

follows from (9) that the ECF of model (10) is

θ(A) =
∑

L⊂M : A∩L�=∅

τL

for ∅ �= A ⊂ M and θ(∅) = 0. Now, the interesting aspect of this model (10) with given coef-
ficients τL is that such models are in 1–1 correspondence with ECFs θ on the finite set M (cf.
[26], Theorems 3 and 4). Alongside, this leads to a set of inequalities which fully characterizes
the set of ECFs �(M) for finite sets M (cf. [26], Corollary 5). An alternative proof for these
inequalities is offered in [19], Corollary 1, and it is noticed therein that they are equivalent to a
property called complete alternation (see below).

As we seek a spatial generalization of these results, let us consider a max-stable processes
X∗ = {X∗

t }t∈T on an arbitrary index set T , whose f.d.d. for a finite set M are precisely of the
above form (10), where the coefficients τL now additionally depend on M . That means we set
the spectral measure H ∗

M of the random vector {X∗
t }t∈M

H ∗
M :=

∑
∅ �=L⊂M

τM
L ‖1L‖δ1L/‖1L‖, (11)

such that the f.d.d. of the process X∗ are given by (cf. (3))

− logP
(
X∗

t ≤ xt , t ∈ M
) =

∑
∅ �=L⊂M

τM
L

∨
t∈L

1

xt

. (12)

Here M ranges over all non-empty finite subsets of T , which we express as M ∈ F(T ) \ {∅}.
Figure 2 illustrates this spectral measure for a trivariate distribution where M = {1,2,3} in case
the reference norm is the maximum norm.
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Figure 2. Spectral measure representation of {X∗
t }t∈M for M = {1,2,3} if we choose the reference norm

on RM to be the maximum norm. In this case, the spectral measure simplifies to a sum of weighted point
masses on the vertices of a cube: H∗

M
= ∑

∅ �=L⊂M τM
L

δ1L
.

Lemma 4. Let T be an arbitrary set and let coefficients τM
L be given for M ∈ F(T ) \ {∅} and

L ∈F(M) \ {∅}, such that

(i) τM
L ≥ 0 for all M ∈F(T ) \ {∅} and L ∈F(M) \ {∅},

(ii) τM
L = τ

M∪{t}
L + τ

M∪{t}
L∪{t} for all M ∈ F(T ) \ {∅} and L ∈F(M) \ {∅} and t ∈ T \ M ,

(iii) τ
{t}
{t} = 1 for all t ∈ T .

Then the spectral measures {H ∗
M}M∈F(T )\{∅} from (11) define a simple max-stable process X∗ =

{X∗
t }t∈T on T with f.d.d. as in (12).

Proof. Condition (i) ensures that each spectral measure H ∗
M defines a max-stable distribution

with Fréchet marginals. Subsequently, condition (ii) ensures consistency of these distributions
(i.e., the conditions for Kolmogorov’s extension theorem are satisfied). Hence the spectral mea-
sures H ∗

M define a max-stable process X∗ on T . Finally, condition (iii) ensures that the process
X∗ has standard Fréchet marginals. �

Remark 5. Condition (ii) is equivalent to

τA
K =

∑
J⊂M\A

τM
K∪J ∀M ∈ F(T ) \ {∅},∅ �= K ⊂ A ⊂ M. (13)

3. The TM process and negative definiteness of ECFs

For the following characterization of the set of ECFs �(T ), we use the fact that F(T ), the set
of finite subsets of T , forms a semigroup with respect to the union operation ∪ and with neutral
element the empty set ∅. The following notation is adopted from [18] and [2]. For a function
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f :F(T ) →R and elements K,L ∈F(T ), we set

(�Kf )(L) := f (L) − f (L ∪ K).

Definition 6 (negative definiteness/ complete alternation). A function ψ :F(T ) → R is called
negative definite (in the semigroup sense) on F(T ) if for all n ≥ 2, {K1, . . . ,Kn} ⊂ F(T ) and
{a1, . . . , an} ⊂R with

∑n
j=1 aj = 0

n∑
j=1

n∑
k=1

ajakψ(Kj ∪ Kk) ≤ 0.

A function ψ :F(T ) → R is called completely alternating on F(T ) if for all n ≥ 1, {K1, . . . ,

Kn} ⊂F(T ) and K ∈F(T )

(�K1�K2 · · ·�Knψ)(K) =
∑

I⊂{1,...,n}
(−1)|I |ψ

(
K ∪

⋃
i∈I

Ki

)
≤ 0.

Because the semigroup (F(T ),∪,∅) is idempotent, these two terms coincide. That means
ψ :F(T ) → R is completely alternating if and only if ψ is negative definite (in the semigroup
sense), cf. [2], 4.4.16.

Example 7 ([18], page 52). An important example of a negative definite (completely alternating)
function on F(T ) is the capacity functional C :F(T ) →R of a binary process Y = {Yt }t∈T with
values in {0,1}, which is given by C(∅) = 0 and

C(A) = P(∃t ∈ A such that Yt = 1).

Now, we are in position to characterize the set �(T ) of possible ECFs on F(T ) and to define
a corresponding max-linear process X∗.

Theorem 8.

(a) The function θ :F(T ) → R is the ECF of a simple max-stable process on T if and only if
the following conditions are satisfied:

(i) θ is negative definite,
(ii) θ(∅) = 0,

(iii) θ({t}) = 1 for all t ∈ T .
(b) If these conditions are satisfied, the following choice of coefficients

τM
L := −�{t1} · · ·�{tl}θ(M \ L) =

∑
I⊂L

(−1)|I |+1θ
(
(M \ L) ∪ I

)
∀M ∈ F(T ) \ {∅},∅ �= L = {t1, . . . , tl} ⊂ M

for model (11) defines a simple max-stable process X∗ on T which realizes θ as its own
ECF θ∗.
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Definition 9 (Tawn–Molchanov process (TM process)). Referring to the previous work in [6,19,
26], we will call the simple max-stable process X∗ from Theorem 8(b) Tawn–Molchanov process
(TM process) henceforth.

Proof of Theorem 8. If θ is an ECF of a simple max-stable process X on T , then necessarily
θ(∅) = 0 and θ({t}) = 1 for all t ∈ T (cf. (6)). Further, it is an application of l’Hôpitals rule that
for A ⊂F(T ) \ {∅}

θ(A) = lim
x→∞

− logP(
∨

t∈A Xt ≤ x)

− logP(Xt ≤ x)
= lim

x→∞
1 − P(

∨
t∈A Xt ≤ x)

1 − P(Xt ≤ x)
(14)

= lim
x→∞

P(∃t ∈ A such that Xt ≥ x)

P(Xt ≥ x)
= lim

x→∞
C(x)(A)

p(x)
,

where C(x) denotes the capacity functional for the binary process Yt = 1Xt≥x and p(x) = EYt =
1−e−1/x . Since negative definiteness respects scaling and pointwise limits, negative definiteness
of θ follows from Example 7. This shows the necessity of (i)–(iii).

Now, let θ :F(T ) → R be a function satisfying conditions (i)–(iii) and let the coefficients τM
L

be given as above. We need to check that they fulfill the (in)equalities from Lemma 4. Indeed we
have:

• The inequalities τM
L = −�{t1} · · ·�{tl}θ(M \ L) ≥ 0 follow directly from the complete al-

ternation of θ that is equivalent to (i).
• From the definition of �{t} we observe

τ
M∪{t}
L∪{t} = −�{t}�{t1} · · ·�{tl}θ

((
M ∪ {t}) \ (

L ∪ {t}))
= −�{t1} · · ·�{tl}θ(M \ L) + �{t1} · · ·�{tl}θ

(
M ∪ {t} \ L

)
= τM

L − τ
M∪{t}
L .

• For t ∈ T , we have τ
{t}
{t} = θ({t}) = 1 because of (iii).

Thus, the coefficients τM
L define a simple max-stable process X∗ on T as given by model (11).

Finally, we compute the ECF θ∗ of X∗ and see that it coincides with θ : For the empty set, we
have θ∗(∅) = 0 = θ(∅) because of (ii); otherwise we compute for A ⊂F(T ) \ {∅} that

θ∗(A)
(6),(11)=

∑
∅ �=L⊂A

τA
L =

∑
∅ �=L⊂A

∑
I⊂L

(−1)|I |+1θ
(
(A \ L) ∪ I

)
=

∑
∅ �=K⊂A

θ(K)
∑

∅ �=L⊂A

A\L⊂K

(−1)|K∩L|+1 =
∑

∅ �=K⊂A

θ(K)
(−(−1K=A)

) = θ(A).

This shows sufficiency of (i)–(iii) and part (b). �
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Theorem 8 is in analogy to the following standard result for Gaussian processes (as illustrated
in the sketches in the Introduction):

(a) A function C :T × T →R is a covariance function if and only if it is positive definite.
(b) If C :T × T → R is positive definite, we may choose a (zero mean) Gaussian process

which realizes C as its own covariance function.

Both statements are intrinsically tied together. When proving them by means of Kolmogorov’s
extension theorem, one proceeds in the same manner as we did for Theorem 8. The necessity of
positive definiteness of covariance functions is easily derived even for the bigger class of square-
integrable processes, whilst sufficiency can be established by showing that Gaussian processes
can realize any positive definite function as covariance function. In some points (such as con-
tinuity relations), this analogy will be deepened. Other aspects (such as the exceptional role of
dependency sets in Section 5) seem unsuitable for a direct comparison.

Remark 10. In order to incorporate stationarity w.r.t. some group G acting on T (for example,
Rd acting on Rd by translation), we just have to add the following condition (iv) θ(gA) = θ(A)

for all A ∈ F(T ) \ {∅} and for all g ∈ G. Then the process X∗ will be stationary w.r.t. this group
action.

Remark 11. Instead of requiring the max-stable processes in Theorem 8 to have standard Fréchet
marginals everywhere, we can admit a different scale at different locations, that is, P(Xt ≤ x) =
exp(−st /x) for a positive scaling parameter st for t ∈ T . In that case Theorem 8 holds true
without condition (iii) and the word “simple”. To make sense of the ECF as in (6) in this case,
either use a reference point t ∈ T or set logP(Xt ≤ x) = −1/x in the denominator. Beware of
that the ECF θ cannot be interpreted as the number of independent variables anymore in this
case.

Remark 12. In [26], the last issue of the proof is derived for finite sets T by a Moebius inversion.
The relation to the proof therein becomes more transparent if we compute θ∗(A) for A ⊂ M from
the coefficients {τM

L }∅ �=L⊂M for arbitrary M ⊃ A instead of M = A:

θ∗(A)
(6),(11)=

∑
∅ �=K⊂A

τA
K

(13)=
∑

∅ �=K⊂A

∑
J⊂M\A

τM
K∪J =

∑
L⊂M : L∩A�=∅

τM
L . (15)

4. Direct consequences of Theorem 8

Here, we collect some direct consequences of the above Theorem 8. Therefore, note that the first
part of Theorem 8 can also be expressed as (cf. (7))

�(T ) = {
θ :F(T ) → [0,∞) : θ is negative definite, θ(∅) = 0, θ

({t}) = 1 for t ∈ T
}
. (16)
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4.1. Convexity and compactness

Corollary 13. The set of ECFs �(T ) is convex.

Proof. This can be seen directly from (16) since all involved properties are compatible with con-
vex combinations. As a constructive argument, use the fact that the ECF of the max-combination
αX ∨ (1 − α)Y of two independent simple max-stable processes X and Y on T is the convex
combination of their ECFs for α ∈ (0,1). �

Corollary 14. The set of ECFs �(T ) is compact w.r.t. the topology of pointwise convergence.

Proof. The topology of pointwise convergence on RF(T ) is the product topology. Since θ(∅) =
0 and θ(A) ∈ [1, |A|] for θ ∈ �(T ) and A ∈ F(T ) \ {∅}, the set �(T ) is a subset of the product
space

{0} ×
∏

A∈F(T )\{∅}

[
1, |A|],

which is compact by Tychonoff’s theorem. Moreover, since elements of �(T ) are completely
characterized by finite dimensional equalities and inequalities involving ≤ only (stemming from
(16)), the set �(T ) is closed. Hence, �(T ) is compact. �

Remark 15. Note that even though we say “the topology of pointwise convergence”, the “points”
meant here are indeed elements of F(T ), that is, finite subsets of T . In particular it follows from
the compactness of �(T ) that �(T ) is sequentially closed. That means if (θn)n∈N is a sequence
of ECFs such that θn(A) converges to some value f (A) for each A ∈ F(T ), then f is an ECF.

4.2. Spectral representation of the TM process

Another consequence of Theorem 8 is that ECFs allow for an integral representation as a mixture
of functions A �→ 1A∩Q �=∅, where Q is from the power set of T . To be more precise, let us denote
the power set of T by P(T ) and consider the topology on P(T ) that is generated by the maps
Q �→ 1A∩Q �=∅ for A ∈ F(T ) or equivalently (since F(T ) is generated by the singletons {{t}}t∈T )
the topology on P(T ) that is generated by the maps Q �→ 1t∈Q for t ∈ T . Identifying P(T ) with
{0,1}T , this space is also known as Cantor cube. As in [2], Definition 2.1.1, a measure μ on
the Borel-σ -algebra of P(T ) w.r.t. this topology will be called Radon measure if μ is finite on
compact sets and μ is inner regular.

Corollary 16. Let θ ∈ �(T ) be an ECF. Then θ uniquely determines a positive Radon measure
μ on P(T ) \ {∅} such that

θ(A) = μ
({

Q ∈P(T ) \ {∅} :A ∩ Q �=∅
}) =

∫
P(T )\{∅}

1A∩Q �=∅μ(dQ),

where θ({t}) = 1 for t ∈ T . The function θ is bounded if and only if μ(P(T ) \ {∅}) < ∞.
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Proof. Since θ is negative definite (Theorem 8) and F(T ) is idempotent, we may apply [2],
Proposition 4.4.17. It says that θ uniquely determines a positive Radon measure μ̃ on F̂(T )\{1},
where F̂(T ) denotes the dual semigroup of F(T ) (cf. [2], 4.2.1 and 4.4.16), such that θ(A) =
μ̃({ρ ∈ F̂(T ) \ {1} | ρ(A) = 0}). The function θ is bounded if and only if μ̃(F̂(T ) \ {1}) < ∞.

Now, it can be easily seen that semicharacters on F(T ) are in a 1–1 correspondence with
subsets of T via F̂(T ) � ρ → {t ∈ T :ρ({t}) = 0} ∈ P(T ) and P(T ) � Q → 1(·)∩Q=∅ ∈ F̂(T ).
Here the constant function 1 corresponds to the empty set. Moreover, the topology considered on
F̂(T ) is the topology of pointwise convergence. Transported to P(T ) this is the topology gener-
ated by the maps Q �→ 1A∩Q �=∅ for A ∈ F(T ). Let μ denote the Radon measure μ̃ transported
to P(T ) \ {∅}. Then the corollary follows. �

Remark 17. In case T = M is finite, we have that P(M) = F(M) carries the discrete topology
and

θ(A) = μ
({

Q ∈F(M) \ {∅} :A ∩ Q �=∅
}) =

∑
Q∈F(M)\{∅}

μ
({Q})1A∩Q �=∅.

A comparison with (15) reveals that μ({Q}) = τM
Q . In this sense, the coefficients τM

Q of the max-
linear model (11) can be interpreted as finite dimensional “Fourier coefficients” of the negative
definite function θ .

The integral representation of the ECF θ also yields a spectral representation for the corre-
sponding TM process X∗.

Theorem 18. The TM process X∗ = {X∗
t }t∈T with ECF θ has the following spectral representa-

tion (�,A, ν,V ) (cf. (1)):

• (�,A, ν) is the measure space (P(T ),B(P(T )),μ) from Corollary 16,
• Vt(Q) = 1t∈Q.

Proof. We need to check that the f.d.d. of X∗ satisfy (2). The f.d.d. of X∗ are given by (cf. (12))

− logP
(
X∗

t ≤ xt , t ∈ M
) =

∑
∅ �=L⊂M

τM
L

∨
t∈L

1

xt

,

where the coefficients τM
L can be computed from the ECF θ as in Theorem 8(b) and θ satisfies

the integral representation from Corollary 16, that is,

τM
L =

∑
I⊂L

(−1)|I |+1θ
(
(M \ L) ∪ I

)
=

∑
I⊂L

(−1)|I |+1
∫
P(T )\{∅}

1((M\L)∪I )∩Q �=∅μ(dQ).
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Using the identity∑
I⊂L

(−1)|I |+11((M\L)∪I )∩Q �=∅

=
∑
I⊂L

(−1)|I |+1(1(M\L)∩Q �=∅ + 1I∩Q �=∅ − 1(M\L)∩Q �=∅1I∩Q �=∅)

= 0 · 1(M\L)∩Q �=∅ + (1 − 1(M\L)∩Q �=∅)
∑
I⊂L

(−1)|I |+11I∩Q �=∅

= 1(M\L)∩Q=∅1L⊂Q = 1L=M∩Q,

we obtain that

τM
L =

∫
P(T )\{∅}

1L=M∩Qμ(dQ).

It follows that the f.d.d. of X∗ satisfy

− logP
(
X∗

t ≤ xt , t ∈ M
) =

∫
P(T )\{∅}

∑
∅ �=L⊂M

1L=M∩Q

∨
t∈L

1

xt

μ(dQ)

=
∫
P(T )\{∅}

∨
t∈M

1t∈Q

xt

μ(dQ) =
∫

�

(∨
t∈M

Vt(ω)

xt

)
ν(dω)

as desired. This finishes the proof. �

4.3. Triangle inequalities and operation of Bernstein functions

In [7], Proposition 4, it is shown that an ECF θ on F(T ) satisfies the following bivariate inequal-
ities for r, s, t ∈ T :

θ
({s, t}) ≤ θ

({s, r})θ({r, t}),
θ
({s, t})α ≤ θ

({s, r})α + θ
({r, t})α − 1, 0 < α ≤ 1,

θ
({s, t})α ≥ θ

({s, r})α + θ
({r, t})α − 1, α ≤ 0.

These inequalities have in common, that they are in fact triangle inequalities of the form

g ◦ η
({s, t}) ≤ g ◦ η

({s, r})+ g ◦ η
({r, t}), (17)

if we rewrite them in terms of η := θ − 1 and

g(x) = log(1 + x),

g(x) = (1 + x)τ − 1, 0 < α ≤ 1,

g(x) = 1 − (1 + x)τ , α ≤ 0.

These functions g have in common that they are in fact Bernstein functions.
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Definition 19 (Bernstein function). A function g : [0,∞) → [0,∞) is called a Bernstein func-
tion if one of the following equivalent conditions is satisfied (cf. [2], 4.4.3 and page 141)

(i) The function g is of the form

g(r) = c + br +
∫ ∞

0

(
1 − e−λr

)
ν(dλ),

where c, b ≥ 0 and ν is a positive Radon measure on (0,∞) with
∫ ∞

0
λ

1+λ
ν(dλ) < ∞.

(ii) The function g is continuous and g ∈ C∞((0,∞)) with g ≥ 0 and (−1)ng(n+1) ≥ 0 for
all n ≥ 0. (Here, g(n) denotes the nth derivative of g.)

(iii) The function g is continuous, g ≥ 0 and g is negative definite as a function on the semi-
group ([0,∞),+,0).

For a comprehensive treatise on Bernstein functions including a table of examples, see [24].
Bernstein functions play already an important role in the construction of advanced Gaussian
processes by generating novel covariance functions from given ones, cf. [32] and [21]. Here, we
see that they are equally useful for generating new ECFs from given ECFs and correspondingly
new Tawn–Molchanov processes from given ones.

Corollary 20. Let T be a set and θ ∈ �(T ) an ECF. Let g be a Bernstein function which is not
constant. Then the function on F(T )

A �→ g(θ(A)) − g(0)

g(1) − g(0)

is again an ECF in �(T ).

Proof. The result is immediate from Theorem 8, since Bernstein functions operate on negative
definite kernels (cf. [2], 3.2.9 and 4.4.3). �

For instance, if θ is an ECF, then also log(1 + θ)/ log(2) or ((θ + a)q − aq)/((1 + a)q − aq)

are ECFs for 0 < q < 1 and a ≥ 0. Finally, we show that (17) holds true for arbitrary Bernstein
functions. In fact, the result of [7], Proposition 4, can be generalized to the following extent as a
corollary to Theorem 8.

Corollary 21. Let θ ∈ �(T ) be an ECF. Set η := θ − 1 and let g be a Bernstein function. Then
we have for A,B,C ∈F(T ) \ {∅} that

g ◦ η(A ∪ B) ≤ g ◦ η(C) + g ◦ η(A ∪ B) ≤ g ◦ η(A ∪ C) + g ◦ η(C ∪ B).

Proof. Since θ is an ECF, it is negative definite (cf. Theorem 8). Subtracting 1 does not change
this property. Notice further that θ takes values in {0}∪ [1,∞), where the value 0 is only attained
for the empty set ∅ (the neutral element of F(T )). Thus, the function η := θ −1 : F(T )\ {∅} →
R is negative definite and takes values only in [0,∞). Applying a Bernstein function g does not
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change this property (cf. [2], 3.2.9 and 4.4.3). By [2], 8.2.7, this also means that f := g ◦ η :
F(T ) \ {∅} → R is negative definite on F(T ) \ {∅}. Since we have also f ≥ 0 on F(T ) \ {∅},
we may derive for A,B,C ∈F(T ) \ {∅}

f (C) + f (A ∪ B) − f (A ∪ C) − f (C ∪ B)

= (
f (C) − f (A ∪ C) − f (C ∪ B) + f (A ∪ B ∪ C)

) + (
f (A ∪ B) − f (A ∪ B ∪ C)

)
= �A�Bf (C) + �Cf (A ∪ B) ≤ 0

as desired. This finishes the proof. �

4.4. Stochastic continuity

In this section, we require T to be a metric space. We need to define the notion of continuity
that we will use in connection with ECFs θ :F(T ) → [0,∞). Therefore, let f :F(T ) → R be
a function on the finite subsets of T . Then f induces a family of functions {f (m)}m≥0 where
f (m) :T m →R is given by

f (m)(t1, . . . , tm) = f
({t1, . . . , tm}).

Definition 22. Let f :F(T ) → R be a function on the finite subsets of a metric space T . We say
that f is continuous if all induced functions f (m) :T m → R are continuous for all m ≥ 0, where
T m is endowed with the product topology.

Lemma 23. Let X = {Xt }t∈T be a simple max-stable process with ECF θ . Then the following
implication holds:

X is stochastically continuous �⇒ θ is continuous.

Proof. Stochastic continuity of X means that for any ε > 0, for any t ∈ T and sequence t (n) → t

we have P(|Xt(n) − Xt | > ε) → 0. From this, we can easily derive that for any ε > 0, any m ∈ N,

any (t1, . . . , tm) ∈ T m and a sequence (t
(n)
1 , . . . , t

(n)
m ) → (t1, . . . , tm), also P(‖(X

t
(n)
i

−Xti )
m
i=1‖ >

ε) → 0 for any reference norm ‖ · ‖ on Rm. The latter implies the corresponding convergence
in distribution: F

(t
(n)
1 ,...,t

(n)
m )

→ F(t1,...,tm). Since logF(t1,...,tm) : [0,∞)m → R is monotone and

homogeneous, we have that for x > 0 the point (x, . . . , x) ∈ (0,∞)m is a continuity point
of F(t1,...,tm) (cf. [22], page 277). Thus, the induced function θ(m) on T m is continuous, since
θ(m)(t1, . . . , tm) = −x logF(t1,...,tm)(x, . . . , x). Hence, θ is continuous. �

Second, we prove the following upper bound that shows that stochastic continuity of the TM
process X∗ is indeed controlled by the bivariate extremal coefficients.

Lemma 24. Let X∗ = {X∗
t }t∈T be the TM process with ECF θ . Set η := θ − 1. Then we have for

any ε > 0

P
(∣∣X∗

s − X∗
t

∣∣ > ε
) ≤ 2

(
1 − exp

(
−η({s, t})

ε

))
≤ 2

ε
η
({s, t}).
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Proof. Let ε > 0. We will prove the statement for 2ε instead of ε. Therefore, consider the fol-
lowing disjoint events on a corresponding probability space (�,A,P) for k = 0,1,2, . . .

Ak := {
ω ∈ � :

(
X∗

s (ω),X∗
t (ω)

) ∈ (kε, (k + 2)ε]2 \ (
(k + 1)ε, (k + 2)ε

]2}
.

The disjoint union
⋃∞

k=0 Ak is a subset of {ω ∈ � : |X∗
s (ω) − X∗

t (ω)| ≤ 2ε} and so

P
(|X∗

s − X∗
t | ≤ 2ε

) ≥ P

( ∞⋃
k=0

Ak

)
=

∞∑
k=0

P(Ak) = lim
n→∞

n∑
k=0

P(Ak).

From (12) and Theorem 8, we see that the bivariate distribution of the process X∗ is given by

− logP
(
X∗

s ≤ x,X∗
t ≤ y

) = η({s, t})
x ∨ y

+ 1

x ∧ y
. (18)

For further calculations, we abbreviate for p,q ∈ N∪ {0}
B(p,q) := P

(
X∗

s ≤ p · ε,X∗
t ≤ q · ε).

Note that B(p,q) = B(q,p) and B(p,0) = 0. With this notation, we rearrange

n∑
k=0

P(Ak) = −B(n + 1, n + 1) + 2
n∑

k=0

[
B(k + 2, k + 1) − B(k + 2, k)

]
.

For the second summand, we have (cf. (18))

n∑
k=0

[
B(k + 2, k + 1) − B(k + 2, k)

]
(18)=

n∑
k=0

[
exp

(
−1

ε

[
η({s, t})
k + 2

+ 1

k + 1

])
− exp

(
−1

ε

[
η({s, t})
k + 2

+ 1

k

])]

=
n∑

k=0

exp

(
−1

ε

[
η({s, t})
k + 2

])[
exp

(
− 1

(k + 1)ε

)
− exp

(
− 1

kε

)]

≥
n∑

k=0

exp

(
−η({s, t})

2ε

)[
exp

(
− 1

(k + 1)ε

)
− exp

(
− 1

kε

)]

= exp

(
−η({s, t})

2ε

)
exp

(
− 1

(n + 1)ε

)
.

Finally,

P
(∣∣X∗

s − X∗
t

∣∣ > 2ε
)

= 1 − P
(∣∣X∗

s − X∗
t

∣∣ ≤ 2ε
) ≤ 1 − lim

n→∞

n∑
k=0

P(Ak)
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= 1 + lim
n→∞B(n + 1, n + 1) − 2 lim

n→∞

n∑
k=0

[
B(k + 2, k + 1) − B(k + 2, k)

]
≤ 1 + lim

n→∞ exp

(
−η({s, t}) + 1

(n + 1)ε

)
− 2 lim

n→∞

(
exp

(
−η({s, t})

2ε

)
exp

(
− 1

(n + 1)ε

))
= 2 − 2 exp

(
−η({s, t})

2ε

)
≤ 2

2ε
η
({s, t}).

This finishes the proof. �

Theorem 25. Let X∗ = {X∗
t }t∈T be the TM process with ECF θ . Then the following statements

are equivalent:

(i) X∗ is stochastically continuous.
(ii) θ is continuous.

(iii) The bivariate map (s, t) �→ θ({s, t}) is continuous.
(iv) The bivariate map (s, t) �→ θ({s, t}) is continuous on the diagonal.

Proof. The implication (i) ⇒ (ii) follows from Lemma 23. Clearly, continuity of θ implies con-
tinuity of the induced function θ(2)(s, t) := θ({s, t}), which implies continuity of θ(2) on the diag-
onal. This shows the implications (ii) ⇒ (iii) and (iii) ⇒ (iv). Finally, the implication (iv) ⇒ (i)
follows from Lemma 24, since η({t, t}) = θ({t}) − 1 = 0. �

5. Dependency sets – the special role of TM processes

In this section, we show that the TM process X∗ with ECF θ is exceptional among all max-stable
processes sharing the same ECF θ as X∗ in the sense that its dependency set K∗ (to be introduced
below) is maximal w.r.t. inclusion.

Therefore, recall that for a finite non-empty subset M ⊂ T the dependency set KM of {Xt }t∈M

is the largest compact convex set KM ⊂ [0,∞)M satisfying (cf. (5))

�M(x) = sup
{〈x, y〉 :y ∈KM

} ∀x ∈ [0,∞)M.

The closed convex set KM may also be described as the following intersection of half spaces (cf.
[27], Section 1.7):

KM =
⋂

x∈SM

{
y ∈ [0,∞)M : 〈x, y〉 ≤ �M(x)

}
. (19)

Example 26 ([19], Example 1 and Proposition 2). The simplest examples for dependency sets
KM are the unit cube [0,1]M corresponding to a collection of independent random variables
{Xt }t∈M and the cross-polytope DM := {x ∈ [0,∞)M :

∑
t∈M xt ≤ 1} corresponding to identical

random variables {Xt }t∈M . Any dependency set KM satisfies

DM ⊂KM ⊂ [0,1]M.
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Figure 3. Nested dependency sets K(γ )
M

of the bivariate Brown–Resnick (resp. Hüsler–Reiss) distribution
where M = {1,2} (cf. Example 27). The dependency sets grow as the parameter γ increases. They range
between full dependence (γ = 0) and independence (γ = ∞).

Example 27 (Brown–Resnick process/Hüsler–Reiss distribution). The f.d.d. of a Brown–
Resnick process (cf. Example 3) are the multivariate Hüsler–Reiss distributions (cf. [14]). In
the bivariate case, when M = {1,2} consists of two points only, the distribution function of a
Hüsler–Reiss distributed random vector (X1,X2), standardized to unit Fréchet marginals, is

− logPγ (X1 ≤ x1,X2 ≤ x2) = 1

x1
�

(√
γ

2
+ log(x2/x1)√

γ

)
+ 1

x2
�

(√
γ

2
+ log(x1/x2)√

γ

)
for x1, x2 ≥ 0. Here � denotes the distribution function of the standard normal distribution and
the parameter γ is the value of the variogram between the two points (cf. Example 3). Figure 3
illustrates, how the corresponding dependency sets range between full dependence (γ = 0) and
independence (γ = ∞).

In order to define a single dependency set for a simple max-stable process comprising all
multivariate dependency sets, we write

prM : [0,∞)T → [0,∞)M, (xt )t∈T �→ (xt )t∈M

for the natural projection.

Definition 28. Let X be a simple max-stable process X = {Xt }t∈T and denote for finite M ∈
F(T ) \ {∅} the multivariate dependency set of the random vectors {Xt }t∈M by KM . Then we
define the dependency set K ⊂ [0,∞)T of X as

K :=
⋂

M∈F(T )\{∅}
pr−1

M (KM).
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Analogously to (5), the dependency set K may be characterized as follows.

Lemma 29. The dependency set K of a simple max-stable process X = {Xt }t∈T is the largest
compact convex set K ⊂ [0,∞)T satisfying

�M(x) = sup

{∑
t∈M

xtyt :y ∈K
}

∀x ∈ [0,∞)M∀∅ �= M ∈F(T ), (20)

where �M is the stable tail dependence function of {Xt }t∈M .

Proof. Convexity of K follows from the convexity of each KM and from the linearity of the
projections prM for M ∈ F(T ) \ {∅}. Since K{t} = [0,1] is the unit interval for each t ∈ T , the
set K is contained in the compact space [0,1]T . Moreover, K is closed as the intersection of
closed sets, hence K is compact.

Next, we prove that KM = prM(K). By definition of K it is clear that prM(K) ⊂ KM

for M ∈ F(T ) \ {∅}. To prove the reverse inclusion, let yM be an element of KM and set
V (yM) := pr−1

M ({yM}) ∩ K = pr−1
M ({yM}) ∩ K ∩ [0,1]T . We need to show that V (yM) �= ∅.

Denoting V (yM,A) := pr−1
M ({yM}) ∩ pr−1

A (KA) ∩ [0,1]T , we see that

V (yM) =
⋂

A∈F(T )\{∅}
V (yM,A).

Note that each V (yM,A) is a closed subset of the compact Hausdorff space [0,1]T . Therefore,
it suffices to verify the finite intersection property for the system of sets {V (yM,A)}A∈F(T )\{∅}
in order to show that V (yM) �= ∅. But this follows from the consistency of the finite dimen-
sional dependency sets {KA}A∈F(T )\{∅} as follows: As [19], Section 7, Proposition 8, essentially
says, we have that if A and B are non-empty finite subsets of T with A ⊂ B , then KA is the
projection of KB onto the respective coordinate space. In particular, pr−1

B (KB) ⊂ pr−1
A (KA) and

pr−1
A ({yA}) ∩ pr−1

B (KB) ∩ [0,1]T �= ∅ for yA ∈ KA. Now, let A1, . . . ,Ak be non-empty finite
subsets of T . Then

∅ �= pr−1
M

({yM})∩ pr−1
M∪⋃k

i=1 Ai

(K
M∪⋃k

i=1 Ai
) ∩ [0,1]T

⊂ pr−1
M

({yM})∩
k⋂

i=1

pr−1
Ai

(KAi
) ∩ [0,1]T =

k⋂
i=1

V (yM,Ai),

as desired and we have shown that KM ⊂ prM(K). Both inclusions give KM = prM(K).
By definition, we have �M(x) = sup{〈x, y〉 :y ∈ KM} for x ∈ [0,∞)M . Thus, (20) follows

from KM = prM(K).
Finally, let L ⊂ [0,∞)T be also convex compact and satisfying (20) with K replaced by L.

Then it follows immediately that prM(L) = KM for any non-empty finite subset M ⊂ T . We
conclude that L ⊂K by definition of K. This finishes the proof. �
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In particular, the ECF θ of a simple max-stable process X = {Xt }t∈T can be expressed in terms
of the dependency set K of X as

θ(A) = sup

{∑
t∈A

xt :x ∈K
}
. (21)

In order to make statements about the dependency sets K of processes X = {Xt }t∈T in terms of
the ECF θ , we introduce the following notation: For any non-empty finite subsets A of T , we set
the halfspace

HA(θ) :=
{
x ∈ [0,∞)T :

∑
t∈A

xt ≤ θ(A)

}
that is bounded by the hyperplane

EA(θ) :=
{
x ∈ [0,∞)T :

∑
t∈A

xt = θ(A)

}
.

Lemma 30. Let K be the dependency set of a simple max-stable process X = {Xt }t∈T with
ECF θ . Then the following inclusion holds

K ⊂
⋂

A∈F(T )\{∅}
HA(θ).

On the other hand for each A ∈F(T ) \ {∅} there is at least one point xA in the intersection

xA ∈ K ∩ EA(θ).

Proof. Let A ∈F(T )\{∅} and x ∈K. Then the assumption
∑

t∈A xt > θ(A) contradicts θ(A) =
sup{∑t∈A xt :x ∈ K} > θ(A) (cf. (21)). So

∑
t∈A xt ≤ θ(A). This proves the inclusion. Second,

since K is compact and the map [0,∞)T � x → ∑
t∈A xt is continuous, we know that it attains

its supremum at some xA ∈ K. �

Example 31. We give a simple multivariate example for Lemma 30 (as illustrated in Figure 1 in
the introduction for the trivariate case): The Euclidean norm �M(x) = ‖x‖2 is a stable tail depen-
dence function on [0,∞)M (cf. [19], Example 2) and defines a simple max-stable distribution
(cf. (4)) with ECF θ(A) = √|A| for A ⊂ M , such that

HA(θ) = {
x ∈ [0,∞)M : 〈x,1A〉 ≤ √|A|},

EA(θ) = {
x ∈ [0,∞)M : 〈x,1A〉 = √|A|}

for ∅ �= A ⊂ M . It can be easily seen that for x ∈ [0,∞)M \ {1∅}
�M(x) = ‖x‖2 = 〈

x, x/‖x‖2
〉 = sup

{〈x, y〉 :y ∈ B+}
,
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Figure 4. Dependency set K∗ of the random vector {X∗
t }t∈M for M = {1,2,3}. The dependency set K∗ is

bounded by the hyperplanes EA(θ) that are given by the equations
∑

t∈A xt = θ(A), where θ denotes the
ECF of X∗. The coefficients τL{t} for L ∈F(M) \ {∅} and t ∈ L turn up as lengths of the resulting polytope

K∗ (cf. Theorem 8 (b) and Theorem 32).

where B+ := {y ∈ [0,∞)M :‖y‖2 ≤ 1} denotes the positive part of the (Euclidean) unit ball.
So, the dependency set K is clearly B+ in this case. Now, the planes EA(θ) are tangent to the
boundary of B+ with common points xA = 1A/

√|A| for ∅ �= A ⊂ M , which makes it easy to see
that Lemma 30 holds true in this example. Figure 1 shows the dependency set K = B+ (left) and
the intersection of halfspaces bounded by the planes EA(θ) (right). In the middle it is illustrated
that this intersection contains B+ and the points xA are marked.

The following theorem shows that the inclusion from Lemma 30 is sharp and attained by TM
processes. Figure 4 illustrates the dependency set of a trivariate distribution of a TM process.

Theorem 32. Let K∗ be the dependency set of the TM process X∗ = {X∗
t }t∈T with ECF θ . Then

K∗ =
⋂

A∈F(T )\{∅}
HA(θ).

Proof. First, we prove the theorem in the case, when T = M is finite and K∗ = K∗
M : Therefore,

write

LM :=
⋂

∅ �=A⊂M

HA(θ) = {
x ∈ [0,∞)M : 〈x,1A〉 ≤ θ(A) for all ∅ �= A ⊂ M

}
.
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The inclusion K∗
M ⊂ LM is proven in Lemma 30. So, it remains to show the other inclusion

LM ⊂K∗
M . Due to (19), we have that

K∗
M =

⋂
x∈SM

{
y ∈ [0,∞)M : 〈x, y〉 ≤ �∗

M(x)
}
,

where

�∗
M(x) =

∑
∅ �=L⊂M

τM
L

∨
t∈L

xt

is the stable tail dependence function of {X∗
t }t∈M , here expressed in terms of the coefficients τM

L

from Theorem 8 (b) (cf. (12)). Thus, it suffices to show the following implication in order to
prove LM ⊂K∗

M :

x ∈ SM and y ∈ LM �⇒ 〈x, y〉 ≤ �∗
M(x).

We now prove this implication: Without loss of generality, we may label the elements of M =
{t1, . . . , tm} such that xt1 ≥ xt2 ≥ · · · ≥ xtm . Then we may write x = (xt )t∈M ∈ SM ⊂ [0,∞)M as

x = xtm︸︷︷︸
≥0

1M + (xtn−1 − xtm)︸ ︷︷ ︸
≥0

1M\{tm} + · · · + (xt2 − xt3)︸ ︷︷ ︸
≥0

1{t1,t2} + (xt1 − xt2)︸ ︷︷ ︸
≥0

1{t1}.

Taking the scalar product with y ∈ LM , we conclude

〈x, y〉 ≤ xtmθ(M) + (xtn−1 − xtm)θ
(
M \ {tm})

+ · · · + (xt2 − xt3)θ
({t1, t2})+ (xt1 − xt2)θ

({t1}) (22)

= xtm

(
θ(M) − θ

(
M \ {tm}))+ · · · + xt2

(
θ
({t1, t2})− θ

({t1}))+ xt1θ
({t1}).

On the other hand the stable tail dependence function �∗
M is by this ordering of the components

of x given as

�∗
M(x) =

∑
∅ �=L⊂M

τM
L

∨
t∈L

xt =
m∑

i=1

xti

( ∑
L⊂M : t1,...,ti−1 /∈L,ti∈L

τM
L

)
.

From (15), we see that this expression coincides with the r.h.s. of (22). Thus, we have our desired
inequality 〈x, y〉 ≤ �∗

M(x). This finishes the proof in the case, when T = M is finite.
Otherwise, the definition of the dependency set K∗ and the result for finite M give

K∗ =
⋂

M∈F(T )\{∅}
pr−1

M

(
K∗

M

) =
⋂

M∈F(T )\{∅}

⋂
∅ �=A⊂M

pr−1
M

(
HM

A (θ)
)
,

where HM
A (θ) = {x ∈ [0,∞)M :

∑
t∈A xt ≤ θ(A)}. Since pr−1

M (HM
A (θ)) = HA(θ) for ∅ �= A ⊂

M , the claim follows. �
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So, if we fix the ECF θ of a simple max-stable process on T , then the TM process yields a
maximal dependency set K∗ w.r.t. inclusion, that is

K∗ =
⋃

K dependency set

with the same ECF as K∗

K. (23)

Now, inclusion of dependency sets corresponds to stochastic ordering in the following sense (cf.
[19], page 242): If K′ and K′′ denote the dependency sets of the simple max-stable processes X′
and X′′ respectively, then K′ ⊂K′′ implies

P
(
X′

t ≤ xt , t ∈ M
) ≥ P

(
X′′

t ≤ xt , t ∈ M
) ∀x ∈ [0,∞)M

for all M ∈ F(T ) \ {∅}. This leads to the following sharp inequality.

Corollary 33. Let X = {Xt }t∈T be a simple max-stable process with ECF θ . Let M be a non-
empty finite subset of T . Then

P(Xt ≤ xt , t ∈ M) ≥ exp

(
−

∑
∅ �=L⊂M

τM
L

∨
t∈L

1

xt

)
∀x ∈ [0,∞)M, (24)

where the coefficients τM
L depend only on θ and can be computed as in Theorem 8(b). Equality

holds for the TM process X∗.

Example 34. Let us abbreviate ηA := θ(A) − 1. In the bivariate case, the inequality (24) reads
as

P(Xs ≤ xs,Xt ≤ xt ) ≥ exp

(
−
[

ηst

xs ∨ xt

+ 1

xs ∧ xt

])
= exp

(
−ηst + 1

xs ∧ xt

)
exp

(
ηst

∣∣∣∣ 1

xs

− 1

xt

∣∣∣∣).

Indeed this inequality is much better then the trivial inequality P(Xs ≤ xs,Xt ≤ xt ) ≥ P(Xs ≤
xs ∧ xt ,Xt ≤ xs ∧ xt ), which can be written in the above terms as

P(Xs ≤ xs,Xt ≤ xt ) ≥ exp

(
−ηst + 1

xs ∧ xt

)
.

Further note that ηst = θ({s, t}) − 1 can be interpreted as a normalized madogram:

ηst
(14)= lim

x→∞
P(Xs ≥ x or Xt ≥ x)

P(Xt ≥ x)
− 1 = lim

x→∞
E|1Xs≥x − 1Xt≥x |

2E1Xt≥x

.

If we additionally take into account that (cf. [26], inequality (13))

ηrs ∨ ηst ∨ ηrt ∨ (ηrs + ηst + ηrt − 1) ≤ ηrst ≤ (ηrs + ηst ) ∧ (ηst + ηrt ) ∧ (ηrt + ηrs),
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we obtain from (24) the following (sharp) inequality for the trivariate distribution of a simple
max-stable random vector (Xr,Xs,Xt ) from bivariate quantities:

P(Xr ≤ xr ,Xs ≤ xs,Xt ≤ xt )

≥ exp

(
−
[

1 − ηrs ∨ ηst ∨ ηrt

xr ∧ xs ∧ xt

+ (arst ∧ 1)

(
1

xr ∧ xs

+ 1

xs ∧ xt

+ 1

xr ∧ xt

)
−

(
ηrs

xr ∧ xs

+ ηst

xs ∧ xt

+ ηrt

xr ∧ xt

)
+ arst

(
1

xr

+ 1

xs

+ 1

xt

)
−

(
ηst

xr

+ ηrt

xs

+ ηrs

xt

)])
,

where arst := (ηrs + ηst ) ∧ (ηrs + ηrt ) ∧ (ηst + ηrt ).

Thus, if one can handle the ECF of a max-stable process, sharp lower bounds for its f.d.d.
are available. However, beware that higher variate cases of these inequalities will be numerically
unstable.

Remark 35. It is an open problem and it would be interesting to know whether there exist also
minimal dependency sets in the sense of (23) and if they would help to better understand the
classification of all dependency structures. In view of Lemma 30 and Theorem 32 a very naive
idea would be to take one point from each of the sets K∗ ∩ EA where A ∈ F(T ) \ {∅} and then
to take the convex hull with 0 included. However, this fails to be a dependency set in dimensions
|T | ≥ 3, since it is not even a zonoid, which would be necessary (cf. [19]).
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