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Continuation refers to the operation by which the cumulative distribution function of a discontinuous ran-
dom vector is made continuous through multilinear interpolation. The copula that results from the applica-
tion of this technique to the classical empirical copula is either called the multilinear or the checkerboard
copula. As shown by Genest and Nešlehová (Astin Bull. 37 (2007) 475–515) and Nešlehová (J. Multivariate
Anal. 98 (2007) 544–567), this copula plays a central role in characterizing dependence concepts in discrete
random vectors. In this paper, the authors establish the asymptotic behavior of the empirical process asso-
ciated with the multilinear copula based on d-variate count data. This empirical process does not generally
converge in law on the space C([0,1]d ) of continuous functions on [0,1]d , equipped with the uniform norm.
However, the authors show that the process converges in C(K) for any compact K ⊂ O, where O is a dense
open subset of [0,1]d , whose complement is the Cartesian product of the ranges of the marginal distribution
functions. This result is sufficient to deduce the weak limit of many functionals of the process, including
classical statistics for monotone trend. It also leads to a powerful and consistent test of independence which
is applicable even to sparse contingency tables whose dimension is sample size dependent.

Keywords: checkerboard copula; contingency table; count data; empirical process; Kendall’s tau;
mid-ranks; multilinear extension copula; Spearman’s rho; test of independence

1. Introduction

This paper’s central message is that there are advantages, both conceptual and technical, to view-
ing a contingency table as arising from a multivariate distribution having uniform margins on
the unit interval, that is, a copula. As will be shown here, this approach leads to new statistical
methodology that can be used to analyze tables that are sparse or whose number of categories
grows with the sample size.

To go straight to the point, consider the simple case of a K × L contingency table derived
from a random sample of size n of ordinal or interval responses in ordered categories A1 < · · · <
AK and B1 < · · · < BL. For arbitrary k ∈ {1, . . . ,K} and � ∈ {1, . . . ,L}, let fk� be the relative
frequency of the pair (Ak,B�) and denote by fk+ and f+� the row-wise and column-wise totals,
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respectively. Further set

Fk+ =
k∑

i=1

fi+, F+� =
�∑

i=1

f+i ,

and let F0+ = F+0 = 0. A density ĉ�
n with respect to the Lebesgue measure can then be defined

(almost everywhere) on [0,1]2 by setting

ĉ�
n (u, v) = fk�

fk+f+�

whenever u ∈ (F(k−1)+,Fk+) and v ∈ (F+(�−1),F+�). As shown in Section 2, the corresponding
distribution function Ĉ�

n is a copula, that is, its margins are uniform on [0,1]. Moreover, when
fk� = fk+f+� for all k ∈ {1, . . . ,K} and � ∈ {1, . . . ,L}, Ĉ�

n becomes the independence copula
� whose Lebesgue density is identically equal to 1 on [0,1]2.

More significantly, several standard measures of association in the pair (X,Y ), and classical
tests of independence between X and Y , are based on Ĉ�

n . For example, Pearson’s χ2 statistic
and the likelihood ratio statistic G2 are immediately seen to satisfy

χ2 = n

K∑
k=1

L∑
�=1

(fk� − fk+f�+)2

fk+f�+
= n

∫ 1

0

∫ 1

0

{
ĉ�
n (u, v) − 1

}2 dv du, (1.1)

G2 = 2n

K∑
k=1

L∑
�=1

fk� ln

(
fk�

fk+f+�

)
= 2n

∫ 1

0

∫ 1

0
ln
{
ĉ�
n (u, v)

}
dĈ�

n (u, v). (1.2)

With some additional work (Nešlehová [14]) it can also be shown that the well-known Spearman
and Kendall statistics for testing monotone trend (Agresti [1]) can be rewritten in terms of Ĉ�

n .
Many other examples could be given.

The introduction of the multilinear empirical copula Ĉ�
n in this context is not merely a neat

way of unifying various known statistics for frequency data analysis. Because integral expres-
sions such as (1.1) and (1.2) make sense even when the number of categories changes with n,
Ĉ�

n is rather a key tool for the investigation of new or existing procedures that can be used even
in cases where the table is sparse or of varying dimension.

Further, it may be seen that when X and Y are continuous, Ĉ�
n is a smoothed version of

the classical empirical copula (Deheuvels [3]) from which it differs by at most a factor of 1/n

uniformly. Statistical tools based on Ĉ�
n can thus bridge the gap between continuous and dis-

crete outcomes. In particular, the problems associated with ties, which invalidate many of the
procedures developed for continuous data (Genest, Nešlehová and Ruppert [8]), are then auto-
matically taken care of. While it seems intuitively reasonable to base inference on Ĉ�

n , this new
approach generally requires the knowledge of its limit C� and the asymptotic behavior of the
corresponding empirical process

Ĉ
�
n = √

n
(
Ĉ�

n − C�), (1.3)

which has hitherto never been studied in the literature.
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This paper contributes to the problem by determining the asymptotic behavior of the pro-
cess (1.3) in general dimension d ≥ 2 when the components of the underlying random vector
X = (X1, . . . ,Xd) are either integer-valued or strictly increasing transformations thereof. As
will be seen, Ĉ�

n is a consistent estimator of the so-called multilinear extension (or checker-
board) copula C� of X. This limiting copula, defined in Section 2, has been studied earlier, for
example, by Genest and Nešlehová [7] and Nešlehová [14], who showed that it captures many
important dependence properties of X when d = 2. In particular, when the components of X are
independent, C� is the independence copula �.

The main result, stated in Section 3, gives the asymptotic behavior of the process (1.3). Un-
less the components of X are mutually independent, Ĉ

�
n does not generally converge on the

space C([0,1]d) of continuous functions on [0,1]d equipped with the uniform norm because C�

has discontinuous partial derivatives. Fortunately, Ĉ
�
n converges – without any regularity condi-

tions – in the subspace C(K) for any compact subset K ⊂ O, where O is a dense open subset
of [0,1]d whose complement is the Cartesian product of the ranges of the marginal distribution
functions. The proof of the main result is involved; it is outlined in Section 4 and detailed in the
Appendix.

To illustrate the usefulness of the process (1.3) for inference, Section 5 provides a few initial
examples of application. It is first shown that the main result is sufficient to deduce the limiting
distribution of classical statistics for monotone trend such as Spearman’s rho and Kendall’s tau.
Moreover, a new and consistent Cramér–von Mises type test of independence is proposed that
can be used whatever the margins. As illustrated through a small simulation study, it performs
very well even for sparse contingency tables whose dimension is sample size dependent; in all
cases considered, it is consistently more powerful than the classical chi-squared test. Section 6
concludes.

2. The multilinear extension copula

Suppose that X = (X1, . . . ,Xd) is a vector of discrete random variables with joint cumulative
distribution function H . For each j ∈ {1, . . . , d}, let Fj denote the distribution function of Xj

and assume that there exists a strictly increasing function Aj : N → R such that supp(Xj ) ⊆
{Aj(k): k ∈ N}. Note that the inclusion may be strict; in particular, it is not assumed that Pr{Xj =
Aj(k)} > 0 holds for all k ∈ N or that the support of Xj is infinite. Furthermore, observe that
the closure of the range of Fj , viz. Rj = {0,1,Fj {Aj(0)},Fj {Aj(1)}, . . .}, defines a partition of
[0,1]. In what follows, Aj(−1) = Aj(0) − 1 for all j ∈ {1, . . . , d} by convention.

Definition 2.1. The multilinear extension copula C� of H is the unique copula whose density
with respect to the Lebesgue measure is given by

c�(u1, . . . , ud) = Pr{X1 = A1(k1), . . . ,Xd = Ad(kd)}
Pr{X1 = A1(k1)} × · · · × Pr{Xd = Ad(kd)}

whenever for all j ∈ {1, . . . , d}, Fj {Aj(kj − 1)} < uj ≤ Fj {Aj(kj )} for some kj ∈ N.
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An explicit form of C�, which is easily verified by differentiation, is given in Proposition 2.1
below. For each j ∈ {1, . . . , d} and u ∈ [0,1], let u−

j and u+
j be, respectively, the greatest and the

least element of Rj such that u−
j ≤ u ≤ u+

j . Further let

λFj
(u) =

{(
u − u−

j

)
/
(
u+

j − u−
j

)
, if u−

j 	= u+
j ,

1, otherwise.

Thus when k ∈ N is such that �Fj {Aj(k)} = Pr{Xj = Aj(k)} > 0, then for all u ∈ (Fj {Aj(k −
1)},Fj {Aj(k)}), one has u−

j = Fj {Aj(k − 1)}, u+
j = Fj {Aj(k)} and

λFj
(u) = u − Fj {Aj(k − 1)}

�Fj {Aj(k)} .

Furthermore, if F−1
j is the pseudo-inverse of Fj , then Fj ◦ F−1

j (u−
j ) = Fj {Aj(k − 1)} and Fj ◦

F−1
j (u+

j ) = Fj {Aj(k)}. Finally, for any S ⊂ {1, . . . , d} and u1, . . . , ud ∈ [0,1], set

λH,S(u1, . . . , ud) =
∏
�∈S

λF�
(u�)

∏
�/∈S

{
1 − λF�

(u�)
}
,

which depends on H only through its margins F1, . . . ,Fd .

Proposition 2.1. The multilinear extension copula C� of H is given by

C�(u1, . . . , ud) =
∑

S⊆{1,...,d}
λH,S(u1, . . . , ud)H

{
F−1

1 (uS1), . . . ,F
−1
d (uSd

)
}
,

where for each j ∈ {1, . . . , d}, uSj
= u+

j if j ∈ S and uSj
= u−

j otherwise. In particular,

C�(uS1 , . . . , uSd
) = H {F−1

1 (uS1), . . . ,F
−1
d (uSd

)} for any S ⊆ {1, . . . , d}.

It is easily seen that C� satisfies Sklar’s representation, that is, for all x1, . . . , xd ∈ R,

H(x1, . . . , xd) = C�{F1(x1), . . . ,Fd(xd)
}
.

This is because in effect, this identity needs only be verified if for all j ∈ {1, . . . , d}, xj = Aj(kj )

for some kj ∈ N such that �Fj {Aj(kj )} > 0. In fact, C� is precisely the construction used to
extend a sub-copula to a copula in the proof of Sklar’s theorem; see, for example, Nelsen [13]
for details in the bivariate case.

The copula C� is known to capture many important dependence properties of H , as summa-
rized by Genest and Nešlehová [7]. As shown by Nešlehová ([14], Corollary 6), C� is invariant
with respect to strictly increasing transformations of the margins.

Now consider a random sample X = {(X11, . . . ,X1d), . . . , (Xn1, . . . ,Xnd)} from H and let
Hn be the corresponding empirical distribution function. Because Hn is itself a discrete distri-
bution, one can define its multilinear extension copula Ĉ�

n and its corresponding density ĉ�
n

with respect to the Lebesgue measure as above. To be explicit, fix j ∈ {1, . . . , d} and denote by
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Anj (0) < · · · < Anj (nj ) the distinct values of X1j , . . . ,Xnj . Let also Anj (−1) = Anj (0)−1. The
range Rnj of Fnj then consists of

0 = Fnj

{
Anj (−1)

}
< Fnj

{
Anj (0)

}
< · · · < 1 = Fnj

{
Anj (nj )

}
.

If (u1, . . . , ud) is such that for all j ∈ {1, . . . , d}, Fnj {Anj (kj − 1)} < uj ≤ Fnj {Anj (kj )} for
some kj ∈ {0, . . . , nj }, then

ĉ�
n (u1, . . . , ud) = hn{An1(k1), . . . ,And(kd)}

�Fn1{An1(k1)} × · · · × �Fnd{And(kd)} ,

whose numerator is the proportion of data with Xij = Anj (kj ) for j ∈ {1, . . . , d}, and

Ĉ�
n (u1, . . . , ud) =

∑
S⊆{1,...,d}

λHn,S(u1, . . . , ud)Hn

{
F−1

n1 (uS1), . . . ,F
−1
nd (uSd

)
}
.

Observe that ĉ�
n and Ĉ�

n are both functions of the component-wise ranks. As announced in
the Introduction, Ĉ�

n is a consistent estimator of the multilinear extension copula C� of H . This
fact will be a consequence of this paper’s main result, Theorem 3.1, which characterizes the limit
of the process Ĉ

�
n defined in (1.3).

Remark 2.1. When X1, . . . ,Xd are continuous, Ĉ�
n was actually used by Deheuvels [4] to con-

struct tests of independence. It is then asymptotically equivalent to the empirical copula Ĉn given,
for all u1, . . . , ud ∈ [0,1], by

Ĉn(u1, . . . , ud) = 1

n

n∑
i=1

1
{
Fn1(Xi1) ≤ u1, . . . ,Fnd(Xid) ≤ ud

}
.

Indeed, if for all j ∈ {1, . . . , d}, Fnj {Anj (kj − 1)} ≤ uj < Fnj {Anj (kj )} for some kj ∈
{0, . . . , nj }, then Ĉn(u1, . . . , ud) = Hn{An1(k1 − 1), . . . ,And(kd − 1)}. Because the coefficients
λHn,S are non-negative and add up to 1 by the multinomial formula, the fact that Hn is non-
decreasing component-wise implies that

Ĉn(u1, . . . , ud) ≤ Ĉ�
n (u1, . . . , ud) ≤ Hn

{
An1(k1), . . . ,And(kd)

}
.

Hence, |Ĉn(u1, . . . , ud) − Ĉ�
n (u1, . . . , ud)| is bounded above by

Hn

{
An1(k1), . . . ,And(kd)

}− Hn

{
An1(k1 − 1), . . . ,And(kd − 1)

}
≤

d∑
j=1

∣∣Fnj

{
Anj (kj )

}− Fnj

{
Anj (kj − 1)

}∣∣,
from which it follows that ‖Ĉn − Ĉ�

n ‖ ≤ d/n almost surely. This also implies that Ĉ�
n is asymp-

totically equivalent to other versions of the empirical copula commonly used in the literature;
see, for example, Fermanian, Radulović and Wegkamp [6].
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To ease the notation, it will be assumed henceforth, without loss of generality, that X1, . . . ,Xd

are integer-valued. In this case, one has the following alternative representation of C�, which is
useful to study the process (1.3).

Proposition 2.2. Let (X1, . . . ,Xd) be a random vector in N
d with distribution function H .

Let also U1, . . . ,Ud be independent standard uniform random variables, independent of
(X1, . . . ,Xd). Then C� is the unique copula of the distribution function H� of (X1 + U1 −
1, . . . ,Xd + Ud − 1) with margins F�

1 , . . . ,F�
d , that is, for all u1, . . . , ud ∈ [0,1],

C�(u1, . . . , ud) = H�{F�−1
1 (u1), . . . ,F

�−1
d (ud)

}
.

Given an empirical distribution function Hn based on a random sample from a multivariate
integer-valued distribution H , one can proceed as in Proposition 2.2 to define a multilinear ex-
tension H�

n whose margins F�
n1, . . . ,F

�
nd are continuous extensions of the margins Fn1, . . . ,Fnd

of Hn. Furthermore,

Ĉ�
n (u1, . . . , ud) = H�

n

{
F�−1

n1 (u1), . . . ,F
�−1
nd (ud)

}
holds for all u1, . . . , ud ∈ [0,1], which will come in handy in Section 3.

3. The empirical multilinear copula process

In what follows, C(K) stands for the space of all continuous functions from a compact set K ⊆
[0,1]d to R equipped with the uniform norm, that is, ‖f ‖K = sup{|f (u1, . . . , ud)|: (u1, . . . ,

ud) ∈ K}. When K = [0,1]d , the index on ‖ · ‖ is suppressed. Similarly, let �∞(K) denote
the space of all bounded functions from K to R equipped with the uniform norm. For each
j ∈ {1, . . . , d} and all u1, . . . , ud ∈ (0,1) where the partial derivatives exist, set

Ċ�
j (u1, . . . , ud) = ∂

∂uj

C�(u1, . . . , ud).

Furthermore, let BC� be a C�-Brownian bridge, that is, a centred Gaussian process on [0,1]d
with covariance given, for all s1, . . . , sd , t1, . . . , td ∈ [0,1], by

C�(s1 ∧ t1, . . . , sd ∧ td ) − C�(s1, . . . , sd)C�(t1, . . . , td ).

Here, a ∧ b = min(a, b) for arbitrary a, b ∈ R. The limit of Ĉ
�
n can be expressed in terms of a

transformation of BC� involving the following operator.

Definition 3.1. Let H be a multivariate distribution function with support included in N
d and

margins F1, . . . ,Fd . The multilinear interpolation operator MH : �∞([0,1]d) → �∞([0,1]d) :
g �→ MH (g) is defined, for every g ∈ �∞([0,1]d), by

MH (g)(u1, . . . , ud) =
∑

S⊆{1,...,d}
λH,S(u1, . . . , ud)g(uS1 , . . . , uSd

).
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As was the case with λH,S , the operator MH depends on H only through its margins. Although
the paths of the process Ĉ

�
n are continuous on [0,1]d for every n, it cannot possibly converge

in C([0,1]d) in general. This is because unless C� = �, its partial derivatives exist only on the
open set

O =
⋃

(k1,...,kd )∈Nd

(
F1(k1 − 1),F1(k1)

)× · · · × (
Fd(kd − 1),Fd(kd)

)
.

Fortunately, the convergence of Ĉ
�
n can be established in C(K) for any compact K ⊂ O. The

symbol � is used henceforth to denote weak convergence.

Theorem 3.1. Let C
� = MH (BC�) and let K be any compact subset of O. Then, as n → ∞,

Ĉ
�
n � Ĉ

� in C(K), where, for all (u1, . . . , ud) ∈ O,

Ĉ
�(u1, . . . , ud) = C

�(u1, . . . , ud) −
d∑

j=1

Ċ�
j (u1, . . . , ud)C�(1, . . . ,1, uj ,1, . . . ,1).

This theorem can be strengthened when X1, . . . ,Xd are mutually independent, which is the
case if and only if C� is the independence copula �.

Corollary 3.1. Suppose that C� = �. Then, as n → ∞, Ĉ
�
n � Ĉ

� in C([0,1]d).

Remark 3.1. When X1, . . . ,Xd are continuous, C� = C is the unique copula of H and Ĉ�
n is

asymptotically equivalent to the empirical copula Ĉn by Remark 2.1. Rüschendorf [16] showed
that under suitable regularity conditions on C, Ĉ

�
n � Ĉ as n → ∞, where Ĉ is defined in terms

of a C-Brownian bridge BC , for all u1, . . . , ud ∈ [0,1], by

Ĉ(u1, . . . , ud) = BC(u1, . . . , ud) −
d∑

j=1

Ċj (u1, . . . , ud)BC(1, . . . ,1, uj ,1, . . . ,1).

This result has since been refined in various ways; see Segers [18] and references therein.

4. Proof of Theorem 3.1

The proof of the main result is quite involved. It rests on a series of steps and propositions that
are described below. All proofs may be found in Appendix B.

Because C� is a copula of H , it can be assumed without loss of generality that the sample
X from H arises from a random sample V = {(V11, . . . , V1d), . . . , (Vn1, . . . , Vnd)} from C�,
that is, for every i ∈ {1, . . . , n}, one has Xi1 = F−1

1 (Vi1), . . . ,Xid = F−1
d (Vid). If Bn denotes

the empirical distribution function of this latent sample V , it is well known that as n → ∞, the
corresponding empirical process Bn = √

n(Bn − C�) converges weakly in �∞([0,1]d) to the
C�-Brownian bridge BC� (van der Vaart and Wellner [19]).
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The first step consists of considering the case where the margins of H are known. In
contrast to the continuous case, the variables F1(X1), . . . ,Fd(Xd) are not uniform and their
joint distribution function D is not a copula. Observe that C� = MH (D) and introduce
C�

n = MH (Dn), where Dn denotes the empirical distribution function of the transformed data
(F1(X11), . . . ,Fd(X1d)), . . . , (F1(Xn1), . . . ,Fd(Xnd)). Note that C�

n cannot be computed in
practice, because it relies on the unknown marginal distribution functions. As is easily seen by
differentiation, C�

n is a continuous distribution function on [0,1]d whose j th margin is given,
for all u ∈ [0,1], by

C�
nj (u) = λFj

(u)Dnj

(
u+)+ {

1 − λFj
(u)

}
Dnj

(
u−).

Because its margins are not uniform, C�
n is not a copula. The following proposition shows that

the empirical process C
�
n = √

n(C�
n − C�) converges. Its proof rests on the fact that MH is a

continuous linear contraction. This is because the weights λH,S are non-negative and add up to 1,
so that for any g,g∗ ∈ �∞([0,1]d), one has ‖MH (g) − MH (g∗)‖ ≤ ‖g − g∗‖.

Proposition 4.1. As n → ∞, C
�
n � C

� = MH (BC�) in C([0,1]d).

Next, the process Ĉ
�
n in which margins are unknown can be written in the form

Ĉ
�
n = C̃

�
n + D̃n, (4.1)

where the summands are defined, for all u1, . . . , ud ∈ [0,1], by

C̃
�
n (u1, . . . , ud) = √

n
[
H�

n

{
F�−1

n1 (u1), . . . ,F
�−1
nd (ud)

}− H�{F�−1
n1 (u1), . . . ,F

�−1
nd (ud)

}]
and

D̃n(u1, . . . , ud) = √
n
[
C�{F�

1 ◦ F�−1
n1 (u1), . . . ,F

�
d ◦ F�−1

nd (ud)
}− C�(u1, . . . , ud)

]
.

The next proposition shows that C̃�
n has the same asymptotic behavior as C�

n .

Proposition 4.2. As n → ∞, ‖C
�
n − C̃

�
n ‖ p→ 0.

Next, one needs to determine the limit of the second summand in (4.1). The following result
first shows that D̃n has the same asymptotic behavior as that of the auxiliary process Dn defined,
for all u1, . . . , ud ∈ [0,1], by

Dn(u1, . . . , ud) = √
n

[
C�

{
u1 − C

�
n1(u1)√

n
, . . . , ud − C

�
nd(ud)√

n

}
− C�(u1, . . . , ud)

]
,

where C
�
n1, . . . ,C

�
nd are the margins of C

�
n .

Proposition 4.3. As n → ∞, ‖Dn − D̃n‖ p→ 0.



1352 C. Genest, J.G. Nešlehová and B. Rémillard

Finally, fix an arbitrary compact subset K of O and consider the mapping DK : C([0,1]d) →
C(K) defined, for all g ∈ C([0,1]d) and (u1, . . . , ud) ∈ K , by

DK(g)(u1, . . . , ud) = −
d∑

j=1

Ċ�
j (u1, . . . , ud)g(1, . . . ,1, uj ,1, . . . ,1).

This mapping is clearly linear and continuous because for any g, g∗ ∈ C([0,1]d),

∥∥DK(g) − DK

(
g∗)∥∥≤

d∑
j=1

Ċ�
j (u1, . . . , ud)

∥∥g − g∗∥∥≤ d
∥∥g − g∗∥∥.

For, when they exist, the partial derivatives of any copula take values in [0,1]. The Continuous
Mapping theorem then implies that, as n → ∞, DK(C�

n ) � DK(C�) in C(K). As shown next,
the difference between Dn and DK(C�

n ) is asymptotically negligible.

Proposition 4.4. As n → ∞, ‖Dn − DK(C�
n )‖K

p→ 0 for any compact K ⊂ O.

To complete the proof of Theorem 3.1, let K be any compact subset of O. Combining Propo-
sitions 4.1–4.4, one finds that, as n → ∞,∥∥Ĉ

�
n − C

�
n − DK

(
C

�
n

)∥∥
K

p→ 0.

The Continuous Mapping theorem can then be invoked together with Proposition 4.1 to conclude
that Ĉ

�
n � Ĉ

� = C
� + DK(C�). To establish Corollary 3.1, first note that when C� = �, Ċ�

j

is continuous on [0,1]d for all j ∈ {1, . . . , d}. One can then define D as DK with K = [0,1]d
and use the following result to conclude.

Proposition 4.5. When C� = �, ‖Dn − D(C�
n )‖ p→ 0 as n → ∞.

Remark 4.1. Although the process Ĉ
�
n fails to converge on C([0,1]d) in general, the sequence

‖Ĉ
�
n ‖ is tight. Indeed, the definition of Dn and the Lipschitz property of C� imply that ‖Dn‖ ≤

‖C
�
n1‖ + · · · + ‖C

�
nd‖ ≤ d‖C

�
n ‖. From (4.1) and the triangle inequality,∥∥Ĉ

�
n

∥∥≤ (d + 1)
∥∥C

�
n

∥∥+ ∥∥C
�
n − C̃

�
n

∥∥+ ‖Dn − D̃n‖. (4.2)

The result thus follows because the three summands form tight sequences. Indeed, C
�
n converges

weakly in C([0,1]d) by Proposition 4.1 and the other two terms converge in probability to 0 by
Propositions 4.2 and 4.3, respectively. It is further of interest to observe that because ‖Ċ�

j ‖O ≤ 1

for all j ∈ {1, . . . , d}, one has ‖Ĉ
�‖O ≤ (d + 1)‖C

�‖.

Finally, note that Ĉ�
n is a uniformly consistent estimator of C�. This follows immediately

from (4.2), the Continuous Mapping theorem and Slutsky’s lemma.

Corollary 4.1. As n → ∞, ‖Ĉ�
n − C�‖ p→ 0.
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5. Applications

Theorem 3.1 characterizes the weak limit of the empirical process Ĉ
�
n in C(K) for any compact

subset K of O. To illustrate the usefulness of this result for inference, a few initial examples of
application are provided below. They pertain to classical statistics for monotone trend and tests
of independence, respectively.

5.1. Tests of monotone trend

Kendall’s tau and Spearman’s rho are two classical measures of monotone trend for two-way
cross-classifications of ordinal or interval data. As described, for example, in Agresti [1], pow-
erful tests of independence can be based on these statistics. Both of them are functions of (mid-)
ranks that can be expressed as functionals of Ĉ�

n (Nešlehová [14]).
Given a random sample X = {(X11,X12), . . . , (Xn1,Xn2)} from a bivariate distribution func-

tion H , let Rij denote the component-wise mid-rank of Xij for i ∈ {1, . . . , n} and j ∈ {1,2}. Let
also an and bn, respectively, represent the number of strictly concordant and discordant pairs in
the sample. The non-normalized versions of Kendall’s and Spearman’s coefficients then satisfy

τn = an − bn(
n
2

) = n − 1

n

{
−1 + 4

∫ 1

0

∫ 1

0
Ĉ�

n (u, v)dĈ�
n (u, v)

}
,

ρn = 12

n3

n∑
i=1

(
Ri1 − n + 1

2

)(
Ri2 − n + 1

2

)
= 12

∫
[0,1]2

{
Ĉ�

n (u, v) − uv
}

d�(u,v).

It is immediate from Corollary 4.1 that τn and ρn are consistent estimators of

τ = −1 + 4
∫ 1

0

∫ 1

0
C�(u, v)dC�(u, v), ρ = 12

∫
[0,1]2

{
C�(u, v) − uv

}
d�(u,v).

It is well known that τn is a U -statistic and hence asymptotically Gaussian (Lee [11]). Its limiting
behavior can also be deduced from Theorem 3.1. To see this, first call on Hoeffding’s identity
(Nelsen [13], Corollary 5.1.2) to write∫

[0,1]2
C�(u, v)dĈ�

n (u, v) =
∫

[0,1]2
Ĉ�

n (u, v)dC�(u, v).

Given that Ĉ�
n and C� are absolutely continuous with respect to the Lebesgue measure, the fact

that the complement of O in [0,1]d has Lebesgue measure 0 then implies that

√
n

{∫
[0,1]2

Ĉ�
n (u, v)dĈ�

n (u, v) −
∫

[0,1]2
C�(u, v)dC�(u, v)

}
=
∫

O
Ĉ

�
n (u, v)dĈ�

n (u, v) +
∫

O
Ĉ

�
n (u, v)dC�(u, v).
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The following representation for the limit of
√

n(τn − τ) can be deduced from this relation.
Details are provided in Appendix C.

Proposition 5.1. In dimension d = 2,
√

n(τn − τ) converges weakly, as n → ∞, to the centred
Gaussian random variable

T2 = 8
∫

O
Ĉ

�(u, v)dC�(u, v).

Similarly, the asymptotic normality of
√

n(ρn − ρ) can be deduced from the theory of U -
statistics; see, for example, Quessy [15]. The latter paper also considers several d-variate ex-
tensions of ρn which mimic the multivariate versions of these coefficients for continuous data
proposed by Schmid and Schmidt [17]. Recently, we proposed alternative estimators of ρ in
the multivariate case and showed that they lead to powerful tests of independence and a graph-
ical tool for visualizing dependence in discrete data (Genest, Nešlehová and Rémillard [9]). In
particular, we considered

ρnd = 
d

[
− 1

2d
+ 1

n

n∑
i=1

{
d∏

j=1

(
2n + 1

2n
− Rij

n

)}]
,

where 
d = 2d(d + 1)/{2d − (d + 1)} and for each i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, Rij denotes
the mid-rank of Xij among X1j , . . . ,Xnj . The latter reduces to ρn in the bivariate case and can
be rewritten as

ρnd = 
d

∫
[0,1]d

{
Ĉ�

n (u1, . . . , ud) − �(u1, . . . , ud)
}

d�(u1, . . . , ud).

Furthermore, it is a consistent estimator of

ρd = 
d

∫
[0,1]d

{
C�(u1, . . . , ud) − �(u1, . . . , ud)

}
d�(u1, . . . , ud).

The asymptotic normality of
√

n(ρnd −ρd), established by Genest, Nešlehová and Rémillard [9],
can be shown alternatively using Theorem 3.1. A detailed proof of the following result is given
in Appendix C.

Proposition 5.2. In arbitrary dimension d ≥ 2,
√

n(ρnd − ρd) converges weakly, as n → ∞, to
the centred Gaussian random variable

Rd = 
d

∫
O

Ĉ
�(u1, . . . , ud)d�(u1, . . . , ud).

5.2. Tests of independence

When dealing with contingency tables that are sparse or whose dimension varies with the sample
size, Theorem 3.1 can be used to construct consistent and powerful tests of independence. This
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is because random variables X1, . . . ,Xd are mutually independent if and only if C� = �. To
test the null hypothesis H0 of mutual independence between X1, . . . ,Xd , one could consider, for
example, the Cramér–von Mises statistic

Sn = n

∫
[0,1]d

{
Ĉ�

n (u1, . . . , ud) − �(u1, . . . , ud)
}2 d�(u1, . . . , ud).

Note that when X1, . . . ,Xd are continuous, Sn is equivalent to the statistic suggested by De-
heuvels [4] and later studied by Genest and Rémillard [10]. The limiting distribution of Sn under
H0 is easily deduced from Corollary 3.1 when the variables are integer-valued or increasing
transformations thereof. In fact, a straightforward adaptation of the proof of Proposition 5.2
yields the following result.

Proposition 5.3. Under H0 one has, as n → ∞, Sn � S, where

S =
∫

[0,1]d
{
Ĉ

�(u1, . . . , ud)
}2 d�(u1, . . . , ud).

If H0 does not hold, then, as n → ∞,

Sn

n

p→
∫

[0,1]d
{
C�(u1, . . . , ud) − �(u1, . . . , ud)

}2 d�(u1, . . . , ud) > 0.

In particular, Proposition 5.3 implies that a test based on Sn is consistent against any alterna-
tive, that is, when H0 fails then, as n → ∞, Pr(Sn > ε) → 1 for all ε > 0.

Unfortunately, the limiting null distribution of Sn depends on the margins of H which are
generally unknown. To carry out the test, one must thus resort to resampling techniques, such as
the multiplier bootstrap (van der Vaart and Wellner [19]). An illustration of how this can be done
is presented below in the case d = 2.

Algorithm 5.1. Given a random sample X = {(X11,X12), . . . , (Xn1,Xn2)} from a bivariate dis-
tribution function H , define, for i ∈ {1, . . . , n} and j ∈ {1,2},

Vnj,i(u) = λFnj
(u)1

{
Xij ≤ Anj (kj )

}+ {
1 − λFnj

(u)
}
1
{
Xij ≤ Anj (kj − 1)

}
,

whenever Fnj {Anj (kj − 1)} < u ≤ Fnj {Anj (kj )} for some kj ∈ {0, . . . , nj }. The test based on Sn

can now be carried out as follows.

Step 1: For each m ∈ {1, . . . ,M}, generate an independent random sample ξ
(m)
1 , . . . , ξ

(m)
n of

size n from a univariate distribution with mean zero and variance 1, and set ξ̄ (m) = (ξ
(m)
1 +

· · · + ξ
(m)
n )/n.

Step 2: For each m ∈ {1, . . . ,M}, define the process C
(m)
n at each u,v ∈ [0,1] by

C(m)
n (u, v) = 1√

n

n∑
i=1

(
ξ

(m)
i − ξ̄ (m)

){
Vn1,i (u) − u

}{
Vn2,i (v) − v

}
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and compute

S(m)
n =

∫ 1

0

∫ 1

0

{
C(m)

n (u, v)
}2 dv du.

Step 3: Estimate the p-value for the test by

1

M

M∑
m=1

1
(
S(m)

n > Sn

)
.

An efficient implementation of this procedure is described in a companion paper in prepara-
tion, in which the validity of the multiplier bootstrap is established in this specific context. Here,
the finite-sample properties of this test are merely illustrated through a small simulation study
involving:

• five copulas: independence, Clayton (Cl) and Gaussian (Ga) with τ ∈ {0.1,0.2};
• four margins: Binomial(3,0.5), Poisson(1), Poisson(20), Geometric(0.5), respectively, de-

noted by F1, F2, F3 and F4;
• three statistics: Sn, the standard χ2, and a modified version available in R in which the

p-value is computed by a Monte Carlo method;
• sample size n = 100 and nominal level α = 5%;
• M = 1000 multiplier replicates and N = 1000 repetitions of the simulation.

The results of the study are displayed in Table 1 below. The test based on Sn maintains its nominal
level very well in every scenario. In contrast, the standard χ2 statistic performs rather poorly
except when one of the margins is F1. Resorting to the Monte Carlo χ2 statistic improves the
level, but the test is still slightly liberal in some cases.

The power of the test based on Sn is way better than that of its two competitors in columns 1–
7 and 9. In columns 8 and 10, χ2 is slightly better when τ = 0.1. Note however that in these
cases, the level of the χ2 statistic is completely off. For a more thorough simulation study, see
Murphy [12].

6. Conclusion

This paper considered the empirical multilinear copula process Ĉ
�
n based on count data. Its

convergence was established in C(K) for any compact K ⊂ O, where O is an open subset of
[0,1]d avoiding the points at which the first order partial derivatives of C� do not exist. The
convergence of Ĉ

�
n in C(K) is sufficient to deduce the asymptotic behavior of simple functionals

thereof that are commonly used in statistical inference. This was demonstrated in Section 5 using
two standard measures of association based on mid-ranks. While these specific results could have
been obtained using the theory of U -statistics, knowledge of the limiting behavior of Ĉ

�
n will

be essential in other situations. The new consistent test of independence studied in Section 5
provides an example.

It is natural to ask whether the present findings can be extended to the empirical multilinear
copula process based on arbitrary discontinuous data. Such an extension may well be possible,
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Table 1. Percentage of rejection of the null hypothesis H0 of mutual independence for the three tests
considered in the simulation study under various conditions

Distribution of X1

F1 F1 F2 F1 F2 F3 F1 F2 F3 F4

Distribution of X2

F1 F2 F2 F3 F3 F3 F4 F4 F4 F4

τ C Test

0 � Sn 4.6 5.1 4.9 5.2 5.0 4.8 4.5 4.8 4.9 5.0
χ2 4.5 5.2 9.6 4.6 13.9 14.6 5.8 11.6 17.0 14.1
χ2-MC 4.6 5.4 7.1 5.3 7.1 4.4 5.5 6.1 6.1 5.7

0.1 Cl Sn 26.6 25.4 22.3 29.2 27.0 29.3 22.0 19.1 22.5 18.2
χ2 17.5 9.4 14.6 8.3 10.2 23.7 6.2 16.2 11.7 22.3
χ2-MC 17.6 9.8 9.1 9.9 4.3 9.1 6.5 7.2 3.6 6.3

Ga Sn 27.1 26.2 25.7 28.7 27.7 29.3 25.5 25.0 26.2 23.7
χ2 11.5 9.9 21.9 6.0 15.8 17.0 8.7 27.4 20.0 34.2
χ2-MC 11.9 10.6 15.7 6.5 7.7 7.2 8.4 14.5 7.8 13.1

0.2 Cl Sn 72.2 69.2 68.8 76.6 75.4 81.0 62.1 59.9 65.1 52.9
χ2 56.3 34.1 32.7 27.6 16.0 42.6 18.3 32.0 16.8 36.5
χ2-MC 56.2 33.4 22.8 30.1 7.3 22.7 18.4 16.7 4.5 13.0

Ga Sn 73.5 74.4 74.7 78.2 78.0 82.0 72.4 72.5 75.4 68.2
χ2 41.9 33.8 52.1 14.8 29.8 31.3 25.3 56.7 33.7 66.4
χ2-MC 43.2 33.4 39.5 16.9 15.2 13.3 26.7 34.2 14.1 36.7

given that the estimator Ĉ�
n is defined in general. We are currently investigating this issue. Once

this task has been completed, the process Ĉ
�
n will provide a solid foundation for inference in

copula models with arbitrary margins.

Appendix A: Proofs from Section 2

Proof of Proposition 2.2. For all x1, . . . , xd ∈ R, one has

H�(x1, . . . , xd) =
∫

[0,1]d
H(x1 + u1, . . . , xd + ud)du1 · · · dud.

If (x1, . . . , xd) ∈ [k1 − 1, k1) × · · · × [kd − 1, kd) for some k1, . . . , kd ∈ N, one can replace each
xj + uj by kj − 1 or by kj , according as 0 < uj < kj − xj or kj − xj ≤ uj < 1 because H is
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supported on N
d . After straightforward simplification, it follows that

H�(x1, . . . , xd) =
∑

S⊆{1,...,d}
H(kS)

{∏
�/∈S

(k� − x�)

}{∏
�∈S

(x� − k� + 1)

}
,

where kS = (kS1 , . . . , kSd
) and kSj

= kj if j ∈ S and kSj
= kj − 1 otherwise.

If F� is a generic margin of H�, then F� is a linear interpolation of F , that is, F �(x) = 0
for x < −1 while

F �(x) = F(k − 1) + �F(k)(x − k + 1) (A.1)

when x ∈ [k − 1, k) for some k ∈ N. Thus when u ∈ (F (k − 1),F (k)], one has

F�−1(u) = k − 1 + u − F(k − 1)

�F(k)
. (A.2)

If u = 0, one can set F�−1(0) = −1 for convenience, because the support of X is bounded below
by 0 by hypothesis. It is then immediate that H�{F �−1

1 (u1), . . . ,F
�−1
d (ud)} yields the formula

for C� given in Proposition 2.1. �

Appendix B: Proofs from Section 4

The following elementary result is used in the sequel.

Lemma B.1. If G is a cumulative distribution function, then for all u ∈ (0,1) and x ∈ R, one
has u ≤ G(x) ⇔ G−1(u) ≤ x ⇔ G ◦ G−1(u) ≤ G(x).

Proof of Proposition 4.1. First note that for fixed values of k1, . . . , kd ∈ N, one has

Dn

{
F1(k1), . . . ,Fd(kd)

} = 1

n

n∑
i=1

d∏
j=1

1
{
Fj (Xij ) ≤ Fj (kj )

}

= 1

n

n∑
i=1

d∏
j=1

1
{
Fj ◦ F−1

j (Vij ) ≤ Fj (kj )
}
.

In view of Lemma B.1, it follows that

Dn

{
F1(k1), . . . ,Fd(kd)

}= 1

n

n∑
i=1

d∏
j=1

1
{
Vij ≤ Fj (kj )

}= Bn

{
F1(k1), . . . ,Fd(kd)

}
.

From the definition of MH , one then has MH (Dn) = MH (Bn) and hence C�
n = MH (Bn). The

linearity of MH and the fact that MH (C�) = C� further imply that C
�
n = MH (Bn) from which

it also follows that ∥∥C
�
n

∥∥= ∥∥MH (Bn)
∥∥≤ ‖Bn‖ (B.1)
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because the operator MH is a contraction. Given that MH is a continuous mapping and that
Bn � BC� as n → ∞, the Continuous Mapping theorem yields the conclusion. �

The following auxiliary results are needed for the proof of Proposition 4.2.

Lemma B.2. For all u1, . . . , ud ∈ [0,1],

C�
n (u1, . . . , ud) = H�

n

{
F�−1

1 (u1), . . . ,F
�−1
d (ud)

}
.

Proof. First note that the functions on both sides of the above identity are continuous on [0,1]d .
This is the case for C�

n , as explained in Section 4. To see why this is true for the other one, fix
arbitrary u1, . . . , ud ∈ [0,1) and observe that∣∣H�

n

{
F�−1

1 (u1+), . . . ,F �−1
d (ud+)

}− H�
n

{
F�−1

1 (u1), . . . ,F
�−1
d (ud)

}∣∣
≤

d∑
j=1

∣∣F�
nj ◦ F�−1

j (uj+) − F �
nj ◦ F�−1

j (uj )
∣∣.

Now each of the summands on the right-hand side must vanish. For, even if uj is a point of
discontinuity of F�−1

j for some j ∈ {1, . . . , d}, the fact that F�
j is continuous implies that F�

j ◦
F�−1

j (uj ) = F�
j ◦ F�−1

j (uj+) = uj . Now for arbitrary x, y ∈ R, one has

F�
j (x) = F�

j (y) ⇒ F �
nj (x) = F�

nj (y), (B.2)

because Fnj can only jump where Fj does. Hence F �
nj ◦ F�−1

j (uj ) = F�
nj ◦ F�−1

j (uj+).
Therefore, it suffices to look at the case where u1, . . . , ud ∈ (0,1). Suppose that for each

j ∈ {1, . . . , d}, uj ∈ (Fj (kj − 1),Fj (kj )] for some kj ∈ N. It then follows from (A.2) that, for
all j ∈ {1, . . . , d},

F�−1
j (uj ) = kj − 1 + uj − Fj (kj − 1)

�Fj (kj )
,

and hence

kj − F�−1
j (uj ) = Fj (kj ) − uj

�Fj (kj )
,

F �−1
j (uj ) − kj + 1 = uj − Fj (kj − 1)

�Fj (kj )
.

Consequently,

H�
n

{
F�−1

1 (u1), . . . ,F
�−1
d (ud)

}=
∑

S⊂{1,...,d}
λH,S(u1, . . . , ud)Hn(kS1 , . . . , kSd

).
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Now in view of Lemma B.1, one has

Hn(k1, . . . , kd) = 1

n

n∑
i=1

d∏
j=1

1(Xij ≤ kj ) = 1

n

n∑
i=1

d∏
j=1

1
{
F−1

j (Vij ) ≤ kj

}

= 1

n

n∑
i=1

d∏
j=1

1
{
Vij ≤ Fj (kj )

}= Bn

{
F1(k1), . . . ,Fd(kd)

}
.

Therefore,

H�
n

{
F�−1

1 (u1), . . . ,F
�−1
d (ud)

}=
∑

S⊂{1,...,d}
λH,S(u1, . . . , ud)Bn

{
F1(kS1), . . . ,Fd(kSd

)
}
,

which is MH (Bn)(u1, . . . , ud). From the proof of Proposition 4.1, MH (Bn) = C�
n . �

Lemma B.3. For arbitrary n ∈ N, Gn = F�
n ◦ F�−1 is a continuous distribution function on

[0,1] and G−1
n = F� ◦ F�−1

n .

Proof. As Gn is the convolution of two non-decreasing functions, it is non-decreasing. Further-
more, Gn(0) = 0 and Gn(1) = 1 by construction. Proceeding as in the proof of Lemma B.2,
one can show that Gn is indeed continuous. Turning to G−1

n , fix u ∈ [0,1] and observe that
for any x ∈ R such that F �

n (x) ≥ u, one has F� ◦ F�−1
n (u) ≤ F �(x) because F � is non-

decreasing. Now suppose that y ∈ R is such that for all x ∈ R, F�
n (x) ≥ u ⇒ y ≤ F�(x). By

virtue of Lemma B.1, this is equivalent to saying that for all x ∈ R, F�
n (x) ≥ u ⇒ F�−1(y) ≤ x.

This implies that F�−1(y) ≤ F�−1
n (u). Applying Lemma B.1 once again, one can see that

y ≤ F� ◦ F�−1
n (u). Consequently,

F� ◦ F�−1
n (u) = inf

{
F �(x): F�

n (x) ≥ u
}
.

Next, F� ◦ F�−1(u) = u by continuity of F�. Hence, for all x ∈ R, F� ◦ F�−1 ◦ F�(x) =
F�(x). Invoking implication (B.2), one deduces that F �

n ◦ F�−1 ◦ F�(x) = F�
n (x), which

implies

inf
{
F �(x): F�

n (x) ≥ u
} = inf

{
F�(x): F�

n ◦ F�−1 ◦ F�(x) ≥ u
}

= inf
{
v: F�

n ◦ F�−1(v) ≥ u
}= inf

{
v: Gn(v) ≥ u

}
.

In other words, F� ◦ F�−1
n = G−1

n . �

Proof of Proposition 4.2. First note that in view of Lemma B.2 and Proposition 2.2, one has,
for all u1, . . . , ud ∈ [0,1],

C
�
n (u1, . . . , ud) = √

n
[
H�

n

{
F�−1

1 (u1), . . . ,F
�−1
d (ud)

}− H�{F�−1
1 (u1), . . . ,F

�−1
d (ud)

}]
.
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Next observe that, for all u1, . . . , ud ∈ [0,1],
C̃

�
n (u1, . . . , ud) = C

�
n

{
F�

1 ◦ F�−1
n1 (u1), . . . ,F

�
d ◦ F�−1

nd (ud)
}
. (B.3)

Indeed, one can write

C
�
n

{
F�

1 ◦ F�−1
n1 (u1), . . . ,F

�
d ◦ F�−1

nd (ud)
}

= √
n
[
H�

n

{
F�−1

1 ◦ F�
1 ◦ F�−1

n1 (u1), . . . ,F
�−1
d ◦ F�

d ◦ F�−1
nd (ud)

}
− H�{F�−1

1 ◦ F�
1 ◦ F�−1

n1 (u1), . . . ,F
�−1
d ◦ F�

d ◦ F�−1
nd (ud)

}]
.

Furthermore, ∣∣H�
n

{
F�−1

1 ◦ F�
1 ◦ F�−1

n1 (u1), . . . ,F
�−1
d ◦ F�

d ◦ F�−1
nd (ud)

}
− H�

n

{
F�−1

n1 (u1), . . . ,F
�−1
nd (ud)

}∣∣
≤

d∑
j=1

∣∣F�
nj ◦ F�−1

j ◦ F�
j ◦ F�−1

nj (uj ) − F�
nj ◦ F�−1

nj (uj )
∣∣.

Now the right-hand side is zero by Lemma B.3 and the fact that for all j ∈ {1, . . . , d} and uj ∈
[0,1], F�

nj ◦ F�−1
nj (uj ) = uj because F �

nj is a continuous distribution function. As F�
1 , . . . ,F�

d

are also continuous distribution functions, one has∣∣H�{F�−1
1 ◦ F�

1 ◦ F�−1
n1 (u1), . . . ,F

�−1
d ◦ F�

d ◦ F�−1
nd (ud)

}
− H�{F�−1

n1 (u1), . . . ,F
�−1
nd (ud)

}∣∣
≤

d∑
j=1

∣∣F�
j ◦ F�−1

j ◦ F�
j ◦ F�−1

nj (uj ) − F�
j ◦ F�−1

nj (uj )
∣∣= 0.

Therefore, identity (B.3) holds and one can write∥∥C
�
n − C̃

�
n

∥∥= ∥∥C
�
n − C

�
n

{
F�

1 ◦ F�−1
n1 , . . . ,F�

d ◦ F�−1
nd

}∥∥.
Next, using (A.1) and (A.2) applied to F and Fn, respectively, a direct calculation yields

√
n
{
uj − F�

j ◦ F�−1
nj (uj )

}
= Bnj

{
Fj (kj − 1)

}{Fnj (kj ) − uj

�Fnj (kj )

}
+ Bnj

{
Fj (kj )

}{uj − Fnj (kj − 1)

�Fnj (kj )

}
,

whenever uj ∈ (Fnj (kj − 1),Fnj (kj )] for some kj ∈ N. It follows that

sup
uj ∈[0,1]

∣∣F�
j ◦ F�−1

nj (uj ) − uj

∣∣≤ 1√
n
‖Bnj‖ ≤ 1√

n
‖Bn‖. (B.4)
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As n → ∞, ‖Bn‖ � ‖BC�‖ and hence ‖Bn‖/√n
p→ 0. Now for arbitrary ε > 0, one has

P ∗(∥∥C
�
n − C̃

�
n

∥∥> ε
)= P ∗{∥∥C

�
n − C

�
n

(
F�

1 ◦ F�−1
n1 , . . . ,F�

d ◦ F�−1
nd

)∥∥> ε
}
,

where P ∗ denotes outer probability. Given δ > 0, the right-hand side is the same as

P ∗
{∥∥C

�
n − C

�
n

(
F�

1 ◦ F�−1
n1 , . . . ,F�

d ◦ F�−1
nd

)∥∥> ε,
‖Bn‖√

n
< δ

}
+ P ∗

{∥∥C
�
n − C

�
n

(
F�

1 ◦ F�−1
n1 , . . . ,F�

d ◦ F�−1
nd

)∥∥> ε,
‖Bn‖√

n
≥ δ

}
,

and in view of (B.4), the latter is bounded above by

P ∗{ωn

(
C

�
n , δ

)
> ε

}+ P ∗
(‖Bn‖√

n
≥ δ

)
,

where

ωn

(
C

�
n , δ

)= sup
uj ,vj ∈[0,1]: |uj −vj |<δ,

j∈{1,...,d}

∣∣C�
n (u1, . . . , ud) − C

�
n (v1, . . . , vd)

∣∣.
Therefore,

lim sup
n→∞

P ∗(∥∥C
�
n − C̃

�
n

∥∥> ε
)≤ lim sup

n→∞
P ∗{ωn

(
C

�
n , δ

)
> ε

}
.

Finally, recall that C
�
n converges weakly in C([0,1]d) to a measurable random element

MH (BC�). Because C([0,1]d) is complete and separable, Theorem 11.5.4. in Dudley [5] im-
plies that MH (BC�) is tight. It then follows from Lemma 1.3.8. and Theorem 1.5.7. in van der
Vaart and Wellner [19] that the sequence C

�
n is asymptotically tight and hence asymptotically

uniformly equicontinuous in probability, viz.

lim
δ↓0

lim sup
n→∞

P ∗{ωn

(
C

�
n , δ

)
> ε

}= 0.

This means that as n → ∞, P ∗(‖C
�
n − C̃

�
n ‖ > ε) → 0 for all ε > 0. �

Proof of Proposition 4.3. For fixed j ∈ {1, . . . , d} and uj ∈ [0,1], first write F�
j ◦F�−1

nj (uj ) in

the form uj − √
n{uj − F�

j ◦ F�−1
nj (uj )}/√n. Then

∥∥Dn − D̃n

∥∥ = √
n sup

u1,...,ud∈[0,1]

∣∣∣∣C�
{
u1 − C

�
n1(u1)√

n
, . . . , ud − C

�
nd(ud)√

n

}

− C�
[
u1 −

√
n{u1 − F�

1 ◦ F�−1
n1 (u1)}√

n
, . . . , ud

−
√

n{ud − F�
d ◦ F�−1

nd (ud)}√
n

]∣∣∣∣.



Empirical copula process for count data 1363

The Lipschitz property of copulas further implies that

‖Dn − D̃n‖ ≤
d∑

j=1

sup
uj ∈[0,1]

∣∣C�
nj (uj ) − √

n
{
uj − F�

j ◦ F�−1
nj (uj )

}∣∣.
For any j ∈ {1, . . . , d}, one can now call upon Proposition 4.2 with d = 1 and H = Fj to con-

clude that, as n → ∞, supuj ∈[0,1] |C�
nj (uj ) − √

n{uj − F�
j ◦ F�−1

nj (uj )}| p→ 0. �

The proof of Proposition 4.4 relies on the following lemma.

Lemma B.4. Let u1, . . . , ud ∈ [0,1] and v1, . . . , vd ∈ [0,1] be such that for each j ∈ {1, . . . , d},
uj , vj ∈ (Fj (kj − 1),Fj (kj )) for some kj ∈ N. Then

C�(v1, . . . , vd) − C�(u1, . . . , ud) =
d∑

m=1

(vm − um)Ċ�
m (wm1, . . . ,wmd),

where wmj equals uj or vj according as j < m or j ≥ m, respectively.

Proof. First, write C�(v1, . . . , vd) − C�(u1, . . . , ud) in the alternative form

d∑
m=1

{
C�(wm1, . . . ,wmd) − C�(w(m+1)1, . . . ,w(m+1)d )

}
.

It must then be shown that for all m ∈ {1, . . . , d}, one has

C�(wm1, . . . ,wmd) − C�(w(m+1)1, . . . ,w(m+1)d )
(B.5)

= (vm − um)Ċ�
m (wm1, . . . ,wmd).

To this end, observe that on the left-hand side of (B.5), C� is evaluated at two vectors whose
components are identical, except in position m. Let w1, . . . ,wm−1,wm+1, . . . ,wd be the match-
ing components and note that wmm = vm while w(m+1)m = um. Given S ⊂ {1, . . . , d}, let sm be
the size of S ∩ {m}. From the definition of λH,S , one has

λH,S(wm1, . . . ,wmd) = λH,S(w1, . . . ,wm−1, vm,wm+1, . . . ,wd)

=
{

vm − Fm(km − 1)

�Fm(km)

}sm

×
{

Fm(km) − vm

�Fm(km)

}1−sm

×
{∏

�/∈S
�	=m

F�(k�) − w�

�F�(k�)

}
×
{∏

�∈S
�	=m

w� − F�(k� − 1)

�F�(k�)

}
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and

λH,S(w(m+1)1, . . . ,w(m+1)d ) = λH,S(w1, . . . ,wm−1, um,wm+1, . . . ,wd)

=
{

um − Fm(km − 1)

�Fm(km)

}sm

×
{

Fm(km) − um

�Fm(km)

}1−sm

×
{∏

�/∈S
�	=m

F�(k�) − w�

�F�(k�)

}
×
{∏

�∈S
�	=m

w� − F�(k� − 1)

�F�(k�)

}
.

Consequently, their difference is equal to

(vm − um)
(−1)1−sm

�Fm(km)
×
{∏

�/∈S
�	=m

F�(k�) − w�

�F�(k�)

}
×
{∏

�∈S
�	=m

w� − F�(k� − 1)

�F�(k�)

}
.

It then follows from the definition of C� that

C�(wm1, . . . ,wmd) − C�(w(m+1)1, . . . ,w(m+1)d )

=
∑

S⊂{1,...,d}
H(kS)

{
λH,S(wm1, . . . ,wmd) − λH,S(w(m+1)1, . . . ,w(m+1)d )

}
= (vm − um)

∑
S⊂{1,...,d}

H(kS)
(−1)1−sm

�Fm(km)

{∏
�/∈S
�	=m

F�(k�) − w�

�F�(k�)

}
×
{∏

�∈S
�	=m

w� − F�(k� − 1)

�F�(k�)

}

= (vm − um)Ċ�
m (wm1, . . . ,wmd).

This completes the argument. �

Proof of Proposition 4.4. Recall from the definition of O that because K is compact, it can be
covered by finitely many open cubes of the form

O� = (
F1(k1� − 1),F1(k�1)

)× · · · × (
Fd(kd� − 1),Fd(kd�)

)
,

where k1�, . . . , kd� ∈ N for � ∈ {1, . . . ,L}. Given that the sets O1, . . . , OL are mutually disjoint,
K� = K ∩ O� is compact for each � ∈ {1, . . . ,L}. Therefore, K = K1 ∪ · · · ∪ KL is a union of
finitely many disjoint compact sets. For arbitrary δ > 0, let

K�,δ =
⋃

(x1,...,xd )∈K�

{
(u1, . . . , ud) ∈ R

d : |u1 − x1| + · · · + |ud − xd | < δ
}
.

Because K1, . . . ,KL are compact, there exists δ0 > 0 such that K�,δ0 ⊂ O� for all � ∈ {1, . . . ,L}.
Now fix δ∗ < δ0 and let K∗ denote the closure of Kδ∗ = K1,δ∗ ∪ · · · ∪ Kd,δ∗ , which is compact.
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Then for all δ ∈ (0, δ∗), one has K ⊂ Kδ ⊂ K∗ ⊂ O. For fixed δ ∈ (0, δ∗) and ε > 0, write

P ∗{∥∥Dn − DK

(
C

�
n

)∥∥
K

> ε
}

= P ∗
{∥∥Dn − DK

(
C

�
n

)∥∥
K

> ε,
‖Bn‖√

n
<

δ

d

}
+ P ∗

{∥∥Dn − DK

(
C

�
n

)∥∥
K

> ε,
‖Bn‖√

n
≥ δ

d

}
.

When the event {‖Bn‖/√n < δ/d} holds and (u1, . . . , ud) ∈ K� for some � ∈ {1, . . . ,L},

(v1, . . . , vd) =
(

u1 − C
�
n1(u1)√

n
, . . . , ud − C

�
nd(ud)√

n

)
∈ K�,δ

because, for all j ∈ {1, . . . , d}, ‖C
�
nj‖ ≤ ‖C

�
n ‖ ≤ ‖Bn‖ by (B.1). From Lemma B.4,

∣∣Dn(u1, . . . , ud) − DK

(
C

�
n

)
(u1, . . . , ud)

∣∣
=
∣∣∣∣∣

d∑
j=1

C
�
nj (uj )

{
Ċ�

j (u1, . . . , ud) − Ċ�
j (u1, . . . , uj−1, vj , . . . , vd)

}∣∣∣∣∣
≤ ‖Bn‖

d∑
j=1

∣∣Ċ�
j (u1, . . . , ud) − Ċ�

j (u1, . . . , uj−1, vj , . . . , vd)
∣∣.

Consequently, ‖Dn − DK(C�
n )‖K is bounded above by

‖Bn‖
d∑

j=1

sup
(u1,...,ud )∈K

∣∣Ċ�
j (u1, . . . , ud) − Ċ�

j (u1, . . . , uj−1, vj , . . . , vd)
∣∣

≤ ‖Bn‖
d∑

j=1

sup
(u1,...,ud )∈K,

(w1,...,wd )∈Kδ,∑d
m=1 |um−wm|<δ

∣∣Ċ�
j (u1, . . . , ud) − Ċ�

j (w1, . . . ,wd)
∣∣

≤ ‖Bn‖ω(δ),

where

ω(δ) =
d∑

j=1

sup
(u1,...,ud ),(w1,...,wd )∈K∗,∑d

m=1 |um−wm|<δ

∣∣Ċ�
j (u1, . . . , ud) − Ċ�

j (w1, . . . ,wd)
∣∣.
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This observation implies that

lim sup
n→∞

P ∗
{∥∥Dn − DK

(
C

�
n

)∥∥
K

> ε,
‖Bn‖√

n
<

δ

d

}
≤ lim sup

n→∞
P ∗

{
‖Bn‖ω(δ) > ε,

‖Bn‖√
n

<
δ

d

}
≤ lim sup

n→∞
P ∗{‖Bn‖ω(δ) > ε

}= P ∗{‖BC�‖ω(δ) > ε
}
,

where the equality is justified by the fact that ‖Bn‖ � ‖BC�‖ as n → ∞. Now ω(δ) → 0
as δ → 0 because Ċ�

j is absolutely continuous on K∗ for all j ∈ {1, . . . , d}. Therefore,
P ∗{‖BC�‖ω(δ) > ε} → 0 as δ → 0. Finally, observe that

lim sup
n→∞

P ∗
(∥∥Dn − DK

(
C

�
n

)∥∥
K

> ε,
‖Bn‖√

n
≥ δ

d

)
≤ lim sup

n→∞
P ∗

(‖Bn‖√
n

≥ δ

d

)
= 0

because ‖Bn‖/√n
p→ 0 as n → ∞. As ε > 0 is arbitrary, one can conclude. �

The proof of Proposition 4.5 relies on the following lemma.

Lemma B.5. Let G be the distribution function of a uniform random variable on (0,1). Then
for every j ∈ {1, . . . , d} and as n → ∞,

Ynj = √
n sup

0≤u≤1

∣∣∣∣G{
u − C

�
nj (u)√

n

}
− u + C

�
nj (u)√

n

∣∣∣∣ p→ 0.

Proof. Fix j ∈ {1, . . . , d} and write

Ynj = √
n sup

0≤u≤1

[{
C

�
nj (u)√

n
− u

}
1
{
u <

C
�
nj (u)√

n

}

+
{
−C

�
nj (u)√

n
− (1 − u)

}
1
{

1 − u < −C
�
nj (u)√

n

}]
.

Observe that if ‖C
�
nj‖ ≤ M for some constant M > 0, then as n → ∞,

Ynj ≤ sup
0≤u≤M/

√
n

∣∣C�
nj (u)

∣∣+ sup
1−M/

√
n≤u≤1

∣∣C�
nj (u)

∣∣ p→ 0

because C
�
nj � C

�
j in C([0,1]) and C

�
j (0) = C

�
j (1) = 0. Now fix ε > 0 and invoke the tightness

of C
�
nj to find M > 0 such that Pr(‖C

�
nj‖ > M) < ε/2 for all n ∈ N. Thus,

Pr(Ynj > ε) ≤ Pr
(∥∥C

�
nj

∥∥> M
)+ Pr

(
sup

0≤u≤M/
√

n

∣∣C�
nj (u)

∣∣+ sup
1−M/

√
n≤u≤1

∣∣C�
nj (u)

∣∣> ε
)
.
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If n is large enough, the right-hand side of the above inequality is at most ε. �

Proof of Proposition 4.5. For all u1, . . . , ud ∈ [0,1], let

D
∗
n(u1, . . . , ud) = √

n

[
d∏

j=1

{
uj − C

�
nj (u)√

n

}
−

d∏
j=1

uj

]
.

Then

∥∥Dn − D
∗
n

∥∥≤
d∑

j=1

√
n sup

0≤u≤1

∣∣∣∣G{
u − C

�
nj (u)√

n

}
− u + C

�
nj (u)√

n

∣∣∣∣
because |∏d

j=1 aj − ∏d
j=1 bj | ≤ ∑d

j=1 |aj − bj | for all a1, . . . , ad , b1, . . . , bd ∈ (0,1). Lem-

ma B.5 thus implies that ‖Dn − D
∗
n‖

p→ 0 as n → ∞. Now by the multinomial formula,

∥∥D
∗
n − D

(
C

�
n

)∥∥≤ √
n

∑
S⊂{1,...,d},|S|≥2

∏
j∈S

‖C
�
nj‖√
n

p→ 0.
�

Appendix C: Proofs from Section 5

The proofs of Propositions 5.1 and 5.2 have much in common. They both rely on the following
straightforward consequence of Proposition 6.3.9 in Brockwell and Davis [2].

Lemma C.1. Let Zn be a sequence of random variables. Suppose that for all δ, ε > 0, there
exists a sequence Yn,δ,ε of random variables such that for all n ∈ N, Pr(|Zn − Yn,δ,ε | > δ) < ε

and Yn,δ,ε � Yδ,ε as n → ∞. Further assume that there exists a random variable Z such that
for all δ, ε > 0, Pr(|Z − Yδ,ε | > δ) < ε. Then Zn � Z as n → ∞.

The convergence of Spearman’s rho is presented first.

Proof of Proposition 5.2. Because the complement of O in [0,1]d has Lebesgue measure zero,
it suffices to show that

Zn =
∫

O
Ĉ

�
n d� � Z =

∫
O

Ĉ
� d�.

Given δ, ε > 0, call on Remark 4.1 to pick M > 0 such that Pr(‖Ĉ�‖O > M) < ε and
Pr(‖Ĉ

�
n ‖ > M) < ε for all n ∈ N. Then choose a compact set K = Kδ,ε ⊂ O such that

�(O \ K) < δ/M . Now define

Yn,δ,ε =
∫

K

Ĉ
�
n d�, Yδ,ε =

∫
K

Ĉ
� d�.
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Theorem 3.1 implies that Yn,δ,ε � Yδ,ε as n → ∞. Furthermore,

|Zn − Yn,δ,ε | =
∣∣∣∣∫O\K

Ĉ
�
n d�

∣∣∣∣≤ ∥∥Ĉ
�
n

∥∥�(O \ K) <
δ

M

∥∥Ĉ
�
n

∥∥,
while

|Z − Yδ,ε | =
∣∣∣∣∫O\K

Ĉ
� d�

∣∣∣∣≤ ∥∥Ĉ
�∥∥

O�(O \ K) <
δ

M

∥∥Ĉ
�∥∥

O.

For all n ∈ N, one then has Pr(|Zn −Yn,δ,ε | > δ) ≤ Pr(‖Ĉ�
n ‖δ/M > δ) < ε and similarly Pr(|Z −

Yδ,ε | > δ) < ε. The conclusion is then a consequence of Lemma C.1. �

The following lemma, needed for the proof of Proposition 5.1, is excerpted from Genest,
Nešlehová and Rémillard [9].

Lemma C.2. Let H be a distribution function on R
d and denote by Hn its empirical counterpart

corresponding to a random sample of size n. If the sequence of processes Gn is tight with respect
to the uniform norm on the space Cb(R

d) of bounded and continuous functions on Rd , then, as

n → ∞, Rn = ∫
Gn dHn − ∫

Gn dH
p→ 0.

Proof of Proposition 5.1. Observe that

√
n(τn − τ) = 4

∫
O

Ĉ
�
n (u, v)dĈ�

n (u, v) + 4
∫

O
Ĉ

�
n (u, v)dC�(u, v).

First, it will be shown that, as n → ∞,

Zn =
∫

O
Ĉ

�
n (u, v)dC�(u, v) � Z =

∫
O

Ĉ
�(u, v)dC�(u, v).

To see this, fix arbitrary δ, ε > 0 and use Remark 4.1 to pick M > 0 such that Pr(‖Ĉ
�‖O >

M) < ε and Pr(‖Ĉ
�
n ‖ > M) < ε for all n ∈ N. Then choose a compact set K = Kδ,ε ⊂ O such

that C�(O \ K) < δ/M . Setting

Yn,δ,ε =
∫

K

Ĉ
�
n (u, v)dC�(u, v),

Yδ,ε =
∫

K

Ĉ
�(u, v)dC�(u, v),

one can invoke Theorem 3.1 to deduce that Yn,δ,ε � Yδ,ε as n → ∞. The rest of the argument
rests on Lemma C.1, in analogy to the proof of Proposition 5.2.

Secondly, to establish that, as n → ∞,∫
O

Ĉ
�
n (u, v)dĈ�

n (u, v) �
∫

O
Ĉ

�(u, v)dC�(u, v), (C.1)



Empirical copula process for count data 1369

use a change of variables and the definition of H�
n to write∫

[0,1]2
Ĉ

�
n (u, v)dĈ�

n (u, v) =
∫

R2
Ĉ

�
n

{
F�

n1(x1),F
�
n2(x2)

}
dH�

n (x1, x2)

=
∫

R2
Gn(x1, x2)dHn(x1, x2),

where, for all x1, x2 ∈ R,

Gn(x1, x2) =
∫

[0,1]2
Ĉ

�
n

{
F�

n1(x1 + u − 1),F�
n2(x2 + v − 1)

}
dv du.

It is clear that ‖Gn‖ ≤ ‖Ĉ
�
n ‖ and hence, by virtue of Remark 4.1, the sequence of processes Gn

is tight on Cb(R
2). Lemma C.2 thus implies that, as n → ∞,∣∣∣∣∫

R2
Gn(x1, x2)dHn(x1, x2) −

∫
R2

Gn(x1, x2)dH(x1, x2)

∣∣∣∣ p→ 0.

Undoing the change of variables and using the definitions of H� and C�, one finds∫
R2

Gn(x1, x2)dH(x1, x2) =
∫

R2
Ĉ

�
n

{
F�

n1(x1),F
�
n2(x2)

}
dH�(x1, x2)

=
∫

[0,1]2
Ĉ

�
n

{
F�

n1 ◦ F�−1
1 (u),F �

n2 ◦ F�−1
2 (v)

}
dC�(u, v)

=
∫

O
Ĉ

�
n

{
F�

n1 ◦ F�−1
1 (u),F �

n2 ◦ F�−1
2 (v)

}
dC�(u, v).

Claim (C.1) is established if one can show that, as n → ∞,∥∥Ĉ
�
n

(
F�

n1 ◦ F�−1
1 ,F�

n2 ◦ F�−1
2

)− Ĉ
�
n

∥∥
K

p→ 0 (C.2)

for any fixed compact set K ⊂ O. Given such a set, one can proceed exactly as in the proof of
Proposition 4.4 to find δ∗ > 0 and a compact set K∗ ⊂ O such that for all δ ∈ (0, δ∗), K ⊂ Kδ ⊂
K∗.

Next, fix ε > 0 and δ ∈ (0, δ∗) and recall that ‖C
�
nj‖ ≤ ‖Bn‖ for j = 1,2. As in the proof of

Proposition 4.4, one has that when {‖Bn‖/√n < δ/2} holds,

(
F�

n1 ◦ F�−1
1 (u),F �

n2 ◦ F�−1
2 (v)

)=
(

u + C
�
n1(u)√

n
, v + C

�
n2(v)√

n

)
∈ Kδ

whenever (u, v) ∈ K . Therefore,

P ∗{∥∥Ĉ
�
n

(
F�

n1 ◦ F�−1
1 ,F�

n2 ◦ F�−1
2

)− Ĉ
�
n

∥∥
K

> ε
}
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is bounded above by

P ∗{ sup
(u,v),(u∗,v∗)∈K∗
|u−u∗|+|v−v∗|<δ

∣∣Ĉ�
n

(
u∗, v∗)− Ĉ

�
n (u, v)

∣∣> ε
}

+ P ∗(‖Bn‖/√n ≥ δ/2
)
.

Given that Ĉ
�
n converges to Ĉ

� on C(K∗),

lim
δ↓0

lim sup
n→∞

P ∗{ sup
(u,v),(u∗,v∗)∈K∗
|u−u∗|+|v−v∗|<δ

∣∣Ĉ�
n

(
u∗, v∗)− Ĉ

�
n (u, v)

∣∣> ε
}

= 0.

Claim (C.2) now readily follows from the fact that ‖Bn‖/√n
p→ 0, as n → ∞. In conclusion,√

n(τn − τ) � T2 = 8
∫

O Ĉ
�(u, v)dC�(u, v) as n → ∞, as claimed. �
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