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We investigate the behavior of optimal alignment paths for homologous (related) and independent random
sequences. An alignment between two finite sequences is optimal if it corresponds to the longest com-
mon subsequence (LCS). We prove the existence of lowest and highest optimal alignments and study their
differences. High differences between the extremal alignments imply the high variety of all optimal align-
ments. We present several simulations indicating that the homologous (having the same common ancestor)
sequences have typically the distance between the extremal alignments of much smaller size than indepen-
dent sequences. In particular, the simulations suggest that for the homologous sequences, the growth of the
distance between the extremal alignments is logarithmical. The main theoretical results of the paper prove
that (under some assumptions) this is the case, indeed. The paper suggests that the properties of the optimal
alignment paths characterize the relatedness of the sequences.
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1. Introduction

Let A be a finite alphabet. In everything that follows, X = X1 . . .Xn ∈ An and Y = Y1 . . . Yn ∈
An are two strings of length n. A common subsequence of X and Y is a sequence that is a
subsequence of X and at the same time of Y . We denote by Ln the length of the longest common
subsequence (LCS) of X and Y . LCS is a special case of a sequence alignment that is a very
important tool in computational biology, used for comparison of DNA and protein sequences
(see, e.g., [3,7,9,21,22]). They are also used in computational linguistics, speech recognition
and so on. In all these applications, two strings with a relatively long LCS, are deemed related.
Hence, to distinguish related pairs of strings from unrelated via the length of LCS (or other
similar optimality measure), it is important to have some information about the (asymptotical)
distribution of Ln. Unfortunately, although studied for a relatively long time, not much about the
statistical behavior of Ln is known even when the sequences X1,X2, . . . and Y1, Y2, . . . are both
i.i.d. and independent of each other. Using the subadditivity, it is easy to see the existence of a
constant γ such that

Ln

n
→ γ a.s. and in L1. (1.1)
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(see, e.g., [1,15,22]). Referring to the celebrated paper of Chvatal and Sankoff [8], the constant
γ is called the Chvatal–Sankoff constant; its value is unknown for even as simple cases as i.i.d.
Bernoulli sequences. In this case, the value of γ obviously depends on the Bernoulli parameter p.
When p = 0.5, the various bounds indicate that γ ≈ 0.81 [4,13,19]. For a smaller p, γ is even
bigger. Hence, a common subsequence of two independent Bernoulli sequences typically makes
up large part of the total length, if the sequences are related, LCS is even larger. As for the mean of
Ln, not much is also known about the variance of Ln. In [8], it was conjectured that for Bernoulli
parameter p = 0.5, the variance is of order o(n2/3). Using an Efron–Stein type of inequality,
Steele [19] proved Var[Ln] ≤ 2p(1 − p)n. In [20], Waterman conjectured that Var[Ln] grows
linearly. In series of papers, Matzinger and others prove the Waterman conjecture for different
models [6,12,14,17].

Because of relatively rare knowledge about its asymptotics, it is rather difficult to build any
statistical test based on Ln or any other global optimality criterion. The situation is better for local
alignments (see e.g., [3,20]), because for these alignments approximate p-values were recently
calculated [10,18].

In the present paper, we propose another approach – instead of studying the length of LCS,
we investigate the properties and behavior of the optimal alignments. Namely, even for moderate
n, the LCS is hardly unique. Every LCS corresponds to an optimal alignment (not necessarily
vice versa), so in general, we have several optimal alignments. The differences can be of the
local nature meaning that the optimal alignments do not vary much, or they can be of global
nature. We conjecture that the variation of the optimal alignments characterizes the relatedness
or homology of the sequences. To measure the differences between various optimal alignment,
we consider so-called extremal alignments and study their differences.

Example. Let us consider a practical example to give an insight in what follows. Let
X = ATAGCGT, Y = CAACATG. There are two longest common subsequences: AACG and
AACT. Thus, L7 = 4. To every longest common subsequence corresponds two optimal align-
ments. These optimal alignments can be presented as follows:

First, two alignments correspond to optimal subsequence AACG, the last two correspond to
AACT. In the following, we shall often consider the alignments as the pairs {(i1, j1), . . . , (ik, jk)},
where Xit = Yit for every t = 1, . . . , k. With this notation, the four optimal alignments above
are {(1,2), (3,3), (5,4), (6,7)}, {(1,2), (3,3), (4,4), (6,7)}, {(1,2), (3,3), (5,4), (7,6)} and
{(1,2), (3,3), (4,4), (7,6)}. We now represent every alignment as two-dimensional plot. For
the alignments in our example, the two dimensional plots are
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Putting all four alignment into one graph, we see that on some regions all alignments are unique,
but on some region, they vary:

In the picture above, the alignment (1,2), (3,3), (4,4), (6,7) (corresponding to AACG) lies
above all others. This alignment will be called highest alignment. Similarly the alignment
(1,2), (3,3), (5,4), (7,6) (corresponding to AACT) lies below all others. This alignment will be
called lowest alignment. The highest and lowest alignment will be called extremal alignments.

Thus, the highest (lowest) alignment is the optimal alignment that lies above (below) all other
optimal alignments in two-dimensional representation. For big n, we usually align the dots in
the two dimensional representation by lines. Then, to every alignment corresponds a curve. We
shall call this curve the alignment graph (when it is obvious from the context, we skip “graph”).
In Figure 1, there are extremal alignments of two independent i.i.d. four letter sequences (with
uniform marginal distributions) of length n = 1000. It is visible that the extremal alignments
are rather far from each other, in particular, the maximum vertical and horizontal distances are
relatively big.

We call the sequences X and Y unrelated, if they are independent. There are many ways to
model the related sequences, the model in the present paper is based on the assumption that there
exists a common ancestor, from which both sequences X and Y are obtained by independent
random mutations and deletions. The sequences with common ancestor are called homologous,
detecting homology of given sequences is one of the major tasks in modern computational molec-
ular biology [7]. In this paper, we shall call the homologous sequences related.
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Figure 1. The extremal alignments of two independent i.i.d. four letter sequences.

More precisely, we consider an A-valued i.i.d. process Z1,Z2, . . . that will be referred to as
the common ancestor or the ancestor process. A letter Zi has a probability to mutate according
to a transition matrix that does not depend on i. The mutations of the letters are assumed to be
independent. After mutations, some letters of the mutated process disappear. The disappearance
is modeled via a deletion process Dx

1 ,Dx
2 , . . . that is assumed to be an i.i.d. Bernoulli sequence

with parameter p, that is, P(Dx
i = 1) = p. If Dx

i = 0, then the ith (possibly mutated letter)
disappears. In such a way, a random sequence X1,X2, . . . is obtained. The sequence Y1, Y2, . . . is
obtained similarly: the ancestor process Z1,Z2, . . . is the same, but the mutations and deletions
(with the same probabilities) are independent of the ones used to generate X-sequence. The
formal definition is given in Section 4.1.

Figure 2 presents a typical picture or extremal alignments of two related four-letter sequences
(of uniform marginal distribution) of length 949. The sequences in Figure 2, thus, have the same
marginal distribution as the ones in Figure 1, but they are not independent any more. Clearly the
extremal alignments are close to each other; in particular the maximal vertical and horizontal
distance is much smaller than these ones in Figure 1.

Figures 1 and 2 as well as many other similar simulations (see [16]) clearly indicate that for re-
lated sequences the differences of optimal alignments are of local nature, whilst for independent
sequences they vary much more. This motivates us to find a way to quantify the non-uniqueness
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Figure 2. The extremal alignments of two related four letter sequences.

and use the obtained characteristic as a measure of the relatedness. For that we measure the dif-
ferences of extremal alignments in several ways: the maximal vertical and horizontal distance
and Hausdorff’s distance (see Section 1.1.2 for formal definition of Hausdorff’s distance). The
simulations in Section 7 show that for independent sequences, the growth of both of them is al-
most linear; for related sequence, however, it is logarithmic. Under some assumptions, the latter
is confirmed by the main theoretical results about related sequences, Theorems 1.1, 1.2 and 1.3.
More specifically, Theorem 1.1 states that under some assumption that never holds for indepen-
dent sequences, there exist universal constants C and D so that for n big enough,

P
(
ho(H,L) > C lnn

)≤ Dn−2.

Here, ho(H,L) stands for a slight modification of Hausdorff’s distance between extremal align-
ments, which we shall call restricted Hausdorff’s distance. We conjecture the result also holds for
(full) Hausdorff’s distance, denoted by h. Note that by Borel–Cantelli lemma, from the inequality
above, it follows that

P
(
ho(H,L) ≤ C lnn, eventually

)= 1,
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that is, the ratio ho(H,L)/ lnn is eventually bounded above by C, a.s. Theorem 1.2 states the
similar result with maximal vertical distance instead of Hausdorff’s distance.

Theorem 1.3 considers the sequences with random lengths. The expected length of both se-
quences is n, the randomness comes from the fact that instead of fixing the lengths of both
sequences, we fix the length of the common ancestor process. In a sense, this situation is more
realistic, since in practice the sequences are hardly of exactly the same lengths; however, when
they are related, then the common ancestor must be of the same length for both of the sequences.
It turns out that the case of the random lengths the statement of Theorems 1.1 and 1.2 hold with
(full) Hausdorff’s distance h instead of the restricted Hausdorff’s distance ho. More precisely,
Theorem 1.3 states that under the same assumptions as in Theorem 1.1, there exist universal
constants Cr and Dr so that

P
(
h
(
Hr,Lr

)
> Cr lnn

)≤ Drn
−2,

where h(Hr,Lr) stands for (full) Hausdorff’s distance between extremal alignments of random-
length sequences.

Another measure could be the length of the biggest non-uniqueness stretch, that is, the (hor-
izontal) length between ∗’s. The simulations in Section 7 show that the length of the biggest
non-uniqueness stretch behaves similarly: the growth is almost linear for the independent and
logarithmic for the related sequences. The latter has not been proven formally in this paper, but
we conjecture that it can be done using similar arguments as in the proof of Theorems 1.1, 1.2
and 1.3.

1.1. The organization of the paper and the main results

1.1.1. Preliminary results

The paper is organized as follows. In Section 2, the necessary notation is introduced and the ex-
tremal alignments are formally defined and proven to exist (Proposition 2.1). Also some proper-
ties of the extremal alignments are proven. The section also provides some combinatorial bounds
needed later.

Section 3 considers the case, where X and Y are independent. The main result of the section is
Theorem 3.1 that states for independent sequences the Chvatal–Sankoff constant γ satisfies the
inequality

γ log2 po + 2(1 − γ ) log2 q + 2h(γ ) ≥ 0, (1.2)

where

pa := P(Xi = a), q := 1 − min
a

pa,

(1.3)
po :=

∑
a∈A

p2
a, h(p) := −p log2 p − (1 − p) log2(1 − p),

that is, h is the binary entropy function. The equality γ log2 po +2(1−γ ) log2 q +2h(γ ) = 0 has
two solutions, hence, as a byproduct, (1.2) gives (upper and lower) bounds to unknown γ . These
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Table 1. Upper bounds to Chvatal–Sankoff constant via inequality (1.2)

K 2 3 4 5 6 7 8

γ̄ 0.866595 0.786473 0.729705 0.686117 0.650983 0.621719 0.596756
γ̂ 0.81 0.72 0.66 0.61 0.57 0.54 0.52

bounds need not to be the best possible bounds, but they are easy and universal in the sense that
they hold for any independent model. For example, taking the distribution of Xi and Yi uniform
over the alphabet with K letters (thus q = 1 − 1

K
and po = 1

K
), we obtain the following upper

bounds γ̄ to unknown γ . In the last row of the table, the estimators γ̂ of unknown γ is obtained
via simulations. It is interesting to note that, independently of K , the upper bound overestimates
γ about the same amount. We also obtain the lower bounds, but for these model the lower bounds
are very close to zero and therefore not informative.

In Section 4, the preliminary results for related (homologous) sequences are presented. In
Section 4.1, the formal definition of related sequences are given. Our definition of relatedness
is based on the existence of common ancestor. Hence, our model models the homology in most
natural way. In our model, the related sequences X1,X2, . . . and Y1, Y2, . . . both consists of i.i.d.
random variables, but the sequences are, in general, not independent. Independence is a special
case of the model so that all results for related sequences automatically hold for the independent
ones. It is also important to note that (unless the sequences are independent), the two dimensional
process (X1, Y1), (X2, Y2), . . . is not stationary, hence also not ergodic. Hence, for the related se-
quences ergodic theorems cannot be automatically applied. In particular, Kingsman’s subadditive
ergodic theorem cannot be applied any more to prove the convergence (1.1). This convergence as
well as the corresponding large deviation bound has been proven in Section 4.2. Since we often
consider the sequences of unequal length, instead of (1.1), we prove a more general convergence
(Proposition 4.1):

L(X1, . . . ,Xn;Y1, . . . , Y�na	)
n

→ γR(a), a.s. (1.4)

Here γR(a) is a constant. We shall denote γR(1) =: γR. From (1.4), it follows that for any a > 0,

γR(a) = aγR

(
1

a

)
.

If the sequences are independent and a = 1, then γR(a) = γ . Corollary 4.1 postulates the corre-
sponding large deviation result, stating that for every � > 0 there exists c > 0 such that for every
n big enough

P

(∣∣∣∣L(X1, . . . ,Xn;Y1, . . . , Y�na	)
n

− γR(a)

∣∣∣∣> �

)
≤ exp[−cn]. (1.5)

In the Appendix, it is proven that γR(a) > γR, if a > 1 and γR(a) < γR, if a < 1 (Lemma A.1).
That result together with (1.5) (obviously (1.4) follows from (1.5)) are the basic theoretical tools
for proving the main results of the paper, Theorems 1.1, 1.2 and 1.3.



Path properties 1299

1.1.2. (Restricted) Hausdorff’s distance and the main results

Definition of (restricted) Hausdorff’s distance. We are interested in measuring the distance
between the lowest and highest alignment. One possible measure would be the maximum vertical
or horizontal distance (provided they are somehow defined). However, those distances need not
match the intuitive meaning of the closeness of the alignment. For example, the following two
alignments (marked with x and o, respectively) have a relatively long maximal vertical distance
(3), though they are intuitively rather close:

(1.6)

To overcome the problem, we measure the distance between two alignments also in terms of
Hausdorff’s distance. More precisely, let U,V ⊂ {1, . . . , n}2, be two alignments, both repre-
sented as sets of two-dimensional points. The Hausdorff’s distance between U and V is:

h(U,V ) := max
{

sup
u∈U

inf
v∈V

d(u, v), sup
v∈V

inf
u∈U

d(u, v)
}
,

where d is a distance in R
2. In our case, we take d as the maximum-distance (but one can also

consider the usual Eucledian metric). We remark that Hausdorff’s distance is defined for any kind
of sets. For the alignments in (1.6), the Hausdorff’s distance is obviously 1 (if d were Euclidean,
the Hausdorff’s distance would be

√
2).

Let now, for every n, αn ∈ (0,1) be fixed, and we define the subset Uo ⊆ U consisting of those
elements (i, j) of U that have the first coordinate at least nαn further from n: i ≤ n(1 − αn).
Similarly, the subset Vo ⊂ V is defined. Formally, thus

Uo := {
(i, j) ∈ U : i ≤ n(1 − αn)

}
, Vo := {

(i, j) ∈ V : i ≤ n(1 − αn)
}
.

The restricted Hausdorff’s distance between U and V is defined as follows:

ho(U,V ) := max
{

sup
u∈Uo

inf
v∈V

d(u, v), sup
v∈Vo

inf
u∈U

d(u, v)
}
,

where d is a distance in R
2. Clearly ho(U,V ) ≤ h(U,V ). Since in our case U and V are align-

ments so that different points have different coordinates, the definition of ho can be (somehow
loosely) interpreted as a fraction αn of both alignments are left out when applying maximum in
Hausdorff’s distance. We shall consider the case αn → 0. Hence, the proportion of points left out
decreases as n grows.
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Sequences with fixed length. We now state our main theorems for the sequences of fixed
lengths. Recall the definition of po and q from (1.3). Let

p̄ := max
a∈A

pa, q̄ := 1 − min
a,b∈A

P(X1 = a|Y1 = b,p = 1). (1.7)

Here P(X1 = a|Y1 = b,p = 1) is the conditional probability given that no deletion occurs, or, in
other words X1 and Y1 have the common ancestor (see Section 4.1 for formal definition). Finally,
let

ρ := p0q̄

p̄q
.

In the following theorems, ho(L,H) stands for the restricted Hausdorff’s distance between align-
ments L and H , both represented as a set of 2-dimensional points. Recall that Hausdorff’s dis-
tance could be defined with the help in any metric in R

2. In the following, we shall consider
both maximum and l2-norms. Throughout the paper, we shall use ∧ and ∨ for min and max,
respectively.

Theorem 1.1. Let X and Y be related. Let L,H be the (2-dimensional representations of) lowest
and highest alignments of X and Y . Assume

γR log2 p̄ + (1 − γR) log2(qq̄) + (
(1 − γR) ∧ γR

)
log2(ρ ∨ 1) + 2h(γR) < 0. (1.8)

Then there exist positive constants M,C,D < ∞ such that, for n big enough,

P
(
ho(L,H) > C lnn

)≤ Dn−2, (1.9)

where ho is defined with

αn := M

√
16 lnn

pn

and Hausdorff’s distance is defined using maximum norm. If ho is defined with respect to l2
norm, then (1.9) holds with C replaced by

√
2C.

For independent sequences q̄ = q , thus ρ = po

p̄
≤ 1. Then also γ = γR so that

γR log2 p̄ + (1 − γR) log2(qq̄) + (
(1 − γR) ∧ γR

)
log2(ρ ∨ 1)

= γ log2 p̄ + 2(1 − γ ) log2 q ≥ γ log2 p0 + 2(1 − γ ) log2 q ≥ −2h(γ ).

The last inequality follows from (1.2) (Theorem 3.1). Hence, for unrelated (independent) se-
quences the condition (1.8) fails. It does not necessarily mean that in this case (1.9) holds not
true, but based on our simulations in Section 7 we conjecture that this is indeed the case.

In Theorem 1.1, we used the 2-dimensional representation of alignments, so an alignment
were identified with a finite set of points. In the alignment graph, these points are joined by a
line. We consider the highest and lowest alignment graphs, and we are interested in the maximal
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vertical (horizontal) distance between these two piecewise linear curves. This maximum is called
vertical (horizontal) distance between lowest and highest alignment graphs. The following theo-
rem is stated in terms of vertical distance. Clearly the same result holds for horizontal distance
as well. In the theorem, we shall also use the letters L and H , but now they stand for extremal
alignment graphs rather than for the alignments as the sets of the points. Since an alignment and
the corresponding alignment graph are very closely related, we hope that the notation is not too
ambiguous and the difference will be clear from the context.

Theorem 1.2. Let X and Y be related. Let L,H be the lowest and highest alignment graphs of
X and Y . Assume (1.8). Then for n big enough,

P
(

sup
x∈[0,n(1−αn)]

H(x) − L(x) > 2C lnn
)

≤ Dn−2, (1.10)

where the constants C, D and αn are the same as in Theorem 1.1.

Hence, Theorems 1.1 and 1.2 state that when γR is sufficiently bigger than (corresponding) γ ,
then the distance between the extremal alignment (either measured with restricted Hausdorff’s
metric or using alignment graphs) grows no faster than logarithmically in n. Clearly, γR is the
bigger the more X and Y are related. Hence, the inequality (1.8) measures the degree of the
relatedness – if this is big enough, then the distance between extremal values grows (at most)
logarithmically. Theorem 3.1 states that for independent sequence (1.8) fails, so that the assump-
tions of Theorems 1.1 and 1.2 hold for related sequences, only.

The fact that the distances between extremal alignments are measured with respect to the
restricted Hausdorff’s distance, that is, so that a small fraction of the alignments left out is ob-
viously a bit disappointing. Technically, this is due to the requirement that both sequences are
of the same length. As we shall see, this is not the case when the lengths of the sequences are
random. However, as also the simulations in Section 7 suggest, we believe that the results of
Theorems 1.1 and 1.2 hold also when ho is replaced by the (full) Hausdorff’s distance h and
supremum is taken over [0, n].

Theorems 1.1 and 1.2 are proven in Section 5. The proof is based on the observation that under
(1.8) the probability that the sequences with length about n do not contain any related pairs is ex-
ponentially small in n (Lemmas 5.1 and 5.2). Section 5.2 studies the location of the related pairs
in two dimensional representation. It turns out that with high probability, the gaps between them
are no longer then A lnn, where A is suitable big constant. Applying these properties together
with Lemma 5.2, we obtain that every optimal alignment, including the extremal ones, cannot
be far away from the related points, since otherwise it would have a long piece without any re-
lated pair contradicting Lemma 5.2. This argument is formalized in Lemma 5.3 and Lemma 5.4
in Section 5.3. The formal proof of Theorems 1.1 and 1.2 are given in Sections 5.4 and 5.5,
respectively.

The sequences with random length. The related sequences are defined as follows: there is a
common ancestor process Z1,Z2, . . . consisting on A-valued i.i.d. random variables. Every letter
Zi has a probability to mutate according to a transition matrix that does not depend on i. The
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mutations are independent of each other. After mutations, some of the letters disappears. Thus,
to every letter Zi , there is associated a Bernoulli random variables Dx

i with P(Dx
i = 1) = p.

When Dx
i = 0, then the corresponding (mutated) letter disappears. The deletions Dx

1 ,Dx
2 , . . . are

independent and the remaining letters form the sequence X1,X2, . . . . The Y sequence is defined
in the same way: every ancestor letter Zi has another random mutation (independent of the all
other mutations including the ones that were used to define the X-sequence), and independent
i.i.d. deletions D

y
i with the same probability. For more detailed definition, see Section 4.1.

When dealing with the sequences of random length, we consider exactly m ancestors
Z1, . . . ,Zm. Hence after deletions, the length of obtained X-sequence is nx := ∑m

i=1 Dx
i and

the length of Y -sequence is ny :=∑m
i=1 D

y
i . The expected length of both sequences is thus mp

and we choose m(n) := n
p

so that the expected length of the both sequences is n. For simplic-
ity, m(n) is assumed to be integer. Thus, we shall consider the sequences X := X1, . . . ,Xnx and
Y := Y1, . . . , Yny of random lengths. It turns out that mathematically this case is somehow easier
so that the counterpart of Theorem 1.3 holds with full Hausdorff’s distance h instead of ho.

Theorem 1.3. Let X and Y be the related sequences of random lengths. Let L,H be the (2-
dimensional representation) of the highest and lowest alignment. Assume (1.8). Then there exist
constants Cr and Dr so that

P
(
h(H,L) > Cr lnn

)≤ Drn
−2, (1.11)

where h is the Hausdoff’s distance with respect to maximum norm. If h is defined with respect to
l2 norm, then (1.9) holds with Cr replaced by

√
2Cr .

From the proofs, it is easy to see that the random length analogue of Theorem 1.2 with αn = 0
holds as well. Theorem 1.3 is proven in Section 6.

Finally, in Section 7, some simulations about the speed of the convergence are studied. The
simulation clearly indicate that for related sequences the growth of Hausdorff’s and vertical dis-
tance is at order of O(lnn), hence the simulations fully confirm the main results of the paper.

We would like to mention that to our best knowledge, the idea of considering the extremal
alignments as a characterization of the homology has not been exploited, although the optimal
and sub-optimal alignments have deserved some attention before [2,5]. Therefore, the present
paper as the first step does not aim to minimize the assumptions or propose any ready-made
tests. These are the issues of the further research. In a follow-up paper [11], we apply some
extremal-alignments based characteristics to the real DNA-sequences, and compare the results
with standard sequence-alignment tools like BLAST.

2. Preliminaries

Let X1, . . . ,Xnx and Y1, . . . , Yny be two sequences of lengths nx and ny from finite alphabet
A = {0,1, . . . , |A| − 1}. Let there exist two subsets of indices {i1, . . . , ik} ⊂ {1, . . . , nx} and
{j1, . . . , jk} ⊂ {1, . . . , ny} satisfying i1 < i2 < · · · < ik , j1 < j2 < · · · < jk and Xi1 = Yj1 ,Xi2 =
Yj2 , . . . ,Xik = Yjk

. Then Xi1 · · ·Xik is a common subsequence of X and Y and the pairs{
(i1, j1), . . . , (ik, jk)

}
(2.1)



Path properties 1303

are (the 2-dimensional representation of) the corresponding alignment. Let

L(X1, . . . ,Xnx ;Y1, . . . , Yny )

be the biggest k such that there exist such subsets of indices. The longest common subsequence
is any common subsequence with length L(X1, . . . ,Xnx ;Y1, . . . , Yny ) and any alignment corre-
sponding to a longest common subsequence is called optimal. In the following, we shall often
consider the case, where, for some constants a, b > 0, nx = �bn	, ny = �an	. Let us denote

Lbn,an = L(X1, . . . ,X�bn	;Y1, . . . , Y�an	), Ln := Ln,n.

Thus Ln is the length of the longest common sequence, when both sequences are of equal length,
nx = ny = n. The random variable Ln is the main objet of interest.

Extremal alignments: Definition and properties

We now formally define the highest (optimal) alignment corresponding to Ln. Let{((
i1
1 , j1

1

)
, . . . ,

(
i1
k , j1

k

))
, . . . ,

((
i
|A|
1 , j

|A|
1

)
, . . . ,

(
i
|A|
k , j

|A|
k

))}
be the set of all optimal alignments. Hence, k = Ln and A = {1, . . . , |A|} is the index set so that
the elements of A will be identified with optimal alignments. For every iαl (resp., jα

l ), where
α ∈ A and l ∈ {1, . . . , k}, we shall denote j (iαl ) := jα

l (resp., i(jα
l ) := iαl ). We define

J := {
jα
l : α ∈ A, l = 1, . . . , k

}
, I := {

iαl : α ∈ A, l = 1, . . . , k
}
.

Let jh
k := maxα jα

k = maxJ . There might be many alignments α such that jα
k = jh

k . Among such
alignments take ihk to be minimum. Formally, ihk = min{iαk : jα

k = jh
k }. After fixing (ihk , jh

k ), we
take jh

k−1 as the biggest j ∈ J such that the corresponding i is smaller than ihk . Formally,

jh
k−1 := max

{
jα
l : i(jα

l

)
< ihk ,α ∈ A, l = 1, . . . , k

}
.

There might be several i’s such that corresponding j is jh
k−1. Amongst them, we choose the

minimum. Thus,

ihk−1 := min
{
iαl : j(iαl )= jh

k−1, α ∈ A, l = 1, . . . , k
}
.

Proceeding so, we obtain an alignment. We call this the highest alignment procedure. We now
prove that the procedure can be repeated k times, that is, the obtained alignment is optimal.

Proposition 2.1. The highest alignment procedure produces an optimal alignment{(
ih1 , jh

1

)
, . . . ,

(
ihk , jh

k

)}
,

where (iht , jh
t ) can be obtained as follows

jh
t := max

{
jα
t : α ∈ A

}
, iht := min

{
iαt : j(iαt )= jh

t , α ∈ A
}
, t = 1, . . . , k. (2.2)
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Figure 3. An example of the highest alignment.

Proof. Clearly the pair (ihk , jh
k ) is the last pair of an optimal alignment, that is, there exists

α ∈ A such that (ihk , jh
k ) = (iαk , jα

k ). So (2.2) holds with t = k. Similarly, there exists a β ∈ A

such that jh
k−1 = j

β

k−1. Let us show this. There exists a β such that jh
k−1 = j

β
l , we have to show

that l = k − 1. Note that l cannot be k, since otherwise (i
β

1 , j
β

1 ), . . . , (i
β
k , j

β
k ), (ihk , jh

k ) would

be an alignment of length k + 1. Suppose l ≤ k − 2. Since j
β
l < j

β

k−1 < j
β
k ≤ jh

k = maxJ ,

by definition of jh
k−1, it must be that ihk ≤ i

β

k−1. Since ihk = iαk > iαk−1, we have that iαk−1 <

i
β

k−1 < i
β
k . On the other hand, jα

k−1 ≤ jh
k−1 = j

β
l < j

β

k−1 implying that jα
k−1 < j

β

k−1 < j
β
k . Hence,

(iα1 , jα
1 ), . . . , (iαk−1, j

α
k−1), (i

β

k−1, j
β

k−1), (i
β
k , j

β
k ) would be an alignment of length k + 1. There-

fore, jh
k−1 = max{jα

k−1 : iαk−1 < ihk ,α ∈ A}. Let us now prove that (2.2) with t = k − 1 holds. If
this were not the case, then jh

k−1 < max{jα
k−1 : α ∈ A}. This implies the existence of β so that

j
β

k−1 > jh
k−1 and i

β

k−1 ≥ ihk > ihk−1. But as we saw, those inequalities would give an alignment
with the length k + 1. This concludes the proof of (2.2) with t = k − 1. For t = k − 2, . . . ,1
proceed similarly. �

Figure 3 is an example of an highest alignment. The solid lines are aligned pairs (the upper-
index h is dropped from the notation). If Yj3+2 = Yj3 , then, as showed by dashed line, Xi3 could
be aligned with Yj3+2 that contradicts the highest alignment procedure. Thus, every Yjt in the
highest alignment is different from all Yj that are right after Yjt and before Yjt+1 . This observation
is postulated as statements (2.4) and (2.5) in the following corollary. Similarly, if Xi2+1 = Xi3 ,
then, as showed by dashed line, Xi2+1 could be aligned with Yj3 that also contradicts the highest
alignment procedure. Thus, in the highest alignment all Xi -s right after Xit−1 and before Xit

must differ from Xit . This observation is formulated as the statements (2.6) and (2.7) in the
following corollary. In the highest alignment, typically, i1 < j1 and jk > ik . If X1 is not aligned,
then it must be that Yi �= X1 for i = 1, . . . , j1 − 1, otherwise they could be aligned (as showed by
dashed line) contradicting the optimality. These observations are statements (2.8) and (2.9) in the
following corollary. Similarly, if Yn is not aligned, it should be different from all Xik+1, . . . ,Xn.
These observations are statements (2.10) and (2.11) in the following corollary.

Corollary 2.1. The highest alignment has the following properties:

Xiht
= Yjh

t
, t = 1, . . . , k; (2.3)

Yjh
t

�= Yj , jh
t < j < jh

t+1, t = 1, . . . , k − 1; (2.4)
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Yjh
k

�= Yj , jh
k < j ≤ n; (2.5)

Xiht
�= Xi, iht > i > iht−1, t = 2, . . . , k; (2.6)

Xih1
�= Xi, 1 ≤ i < ih1 ; (2.7)

if ih1 > 1, then X1 �= Yj , 1 ≤ j < jh
1 ; (2.8)

if jh
1 > 1, then Y1 �= Xi, 1 ≤ i < ih1 ; (2.9)

if n > jh
k , then Yn �= Xi, ihk < i ≤ n; (2.10)

if n > ihk , then Xn �= Yj , jh
k < j ≤ n. (2.11)

Proof. The equalities (2.3) are obvious. Suppose that for a t = 1, . . . , k − 1 there exists an index
j such that jh

t < j < jh
t+1 and Yjh

t
= Yj . Then the pairs

{(
ih1 , jh

1

)
, . . . ,

(
iht−1, j

h
t−1

)
,
(
iht , j

)
,
(
iht+1, j

h
t+1

)
, . . . ,

(
ihk , jk

)}
would correspond to an optimal alignment, say β , satisfying

j
β
t = j > jh

t = max
{
jα
t : α ∈ A

}
.

Thus, (2.4) holds. The same argument proves (2.5), (2.6) and (2.7). If one of the inequalities in
(2.8)–(2.11) is not fulfilled, then it would be possible to align one more pair without disturbing
already existing aligned pairs. This contradicts the optimality. �

One can also think of the left-most or nord-west alignment. It could be defined as an alignment
{(iw1 , jw

1 ), . . . , (iwk , jw
k )}, where iw1 = min I , jw

1 = max{jα
l : i(jα

l ) = iw1 , α ∈ A, l = 1, . . . , k} and
for every t = 2, . . . , k,

iwt := min
{
iαl : j(iαl )> jw

t−1, α ∈ A, l = 1, . . . , k
}
,

jw
t := max

{
jα
l : i(jα

l

)= iwt , α ∈ A, l = 1, . . . , k
}
.

Here the superscript “w” stands for west. By the analogue of Proposition 2.1,

iwt = min
{
iαt : α ∈ A

}
, jw

t = max
{
jα
t : i(jα

t

)= iwt , α ∈ A
}
, t = 1, . . . , k. (2.12)

Using (2.2) and (2.12), it is easy to see that the left-most and highest alignments actually coincide.
Indeed, by (2.2) and (2.12), jh

t ≥ jw
t and iwt ≤ iht , ∀t . If, for a t , (iht , jh

t ) �= (iwt , jw
t ), then, by the

definitions, both inequalities have to be strict, that is, iwt < iht and jw
t < jh

t . To see this, suppose
iwt = iht . This means that there exists an alignment α, such that iαt = iwt and jα

t = jh
t . This, in

turn, implies that

max
{
jα
t : i(jα

t

)= iwt , α ∈ A
}= max

{
jα
t , α ∈ A

}
,
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that is, jw
t = jh

t . The same argument shows that if jw
t = jh

t , then also iwt = iht . Thus (iht , jh
t ) �=

(iwt , jw
t ) implies that iwt < iht and jw

t < jh
t . These inequalities, however, would imply the exis-

tence of an alignment with the length k + 1.
The lowest (the right-most) alignment {(il1, j l

1), . . . , (i
l
k, j

l
k)} will be defined similarly:

j l
t := min

{
jα
t : α ∈ A

}
, ilt := max

{
iαt : j(iαt )= j l

t , α ∈ A
}
, t = 1, . . . , k. (2.13)

Remark. Note that the left-most alignment equals the lowest alignment of (Yn, . . . , Y1) and
(Xn, . . . ,X1) implying that the highest alignment of (X1, . . . ,Xn) and (Y1, . . . , Yn) equals to
the lowest alignment of (Yn, . . . , Y1) and (Xn, . . . ,X1). Thus, the lowest alignment between
(X1, . . . ,Xn) and (Y1, . . . , Yn) can be defined as the highest alignment between (Yn, . . . , Y1) and
(Xn, . . . ,X1).

Combinatorics

Another way to study an alignment of X1, . . . ,Xnx and Y1, . . . , Yny is to present it as a strictly
increasing mapping

v : {1, . . . , nx} ↪→ {1, . . . , ny}. (2.14)

Notation (2.14) means: There exists I (v) ⊂ {1, . . . , nx} and a mapping

v : I → {1, . . . , ny}
such that Yv(i) = Xi, ∀i ∈ I and v is strictly increasing: v(i2) > v(i1), if i2 > i1. The length of v

is denoted as |v|. In the notation of previous sections, thus, jt := v(it ), t = 1, . . . , |v|.
Consider now the case nx = ny = n, that is, both sequences are of length n. Let then Vk be the

set of all alignments with length k. Formally,

Vk := {
v : {1, . . . , n} ↪→ {1, . . . , n} : |v| = k

}
.

Fix � > 0, γ ∈ (0,1) and let

Wn(γ,�) :=
(γ+�)n⋃

k=(γ−�)n

Vk. (2.15)

Hence, Wn consists of these alignments that have length not smaller that (γ −�)n and not bigger
that (γ +�)n. In the subsequent sections, we shall show that there exists a constant γ (depending
on the model) so that for n big enough all optimal alignments belong to Wn with high probability.
Thus, in a sense the set Wn contains all alignments of interest. We are interested in bounding the
size of that set. For that, we use the binary entropy function

h(p) := −p log2 p − (1 − p) log2(1 − p).

Let, for γ,� ∈ (0,1) such that 0 < γ − �,γ + � < 1

H(γ,�) := max
α∈[γ−�,γ+�]h(α). (2.16)
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Since (
n

pn

)
≤ 2h(p)n,

for every

(γ − �)n ≤ k ≤ (γ + �)n, (2.17)

it holds

|Vk| =
(

n
k
n
n

)2

≤ 22H(γ,�)n.

Hence, the number of alignments in Wn can be bounded as follows:∣∣Wn(γ,�)
∣∣≤ 2�n22H(γ,�)n. (2.18)

Let us consider now a more general case ny > nx . Denote m = ny > nx = n. Assume that m ≤
n(1 + �). Then

|Vk| =
(

n
k
n
n

)(
m
k
m

m

)
≤ 2h(k/n)n+h(k/m)n(1+�).

Instead of (2.17), we assume k to satisfy

γ − � ≤ k

n
≤ γ + 2�. (2.19)

Then

γ − 2� ≤ γ − �

1 + �
≤ k

m
≤ k

n
≤ γ + 2�

and

2h(k/n)n+h(k/m)n(1+�) ≤ 2H(γ,2�)n+H(γ,2�)n(1+�) = 2H(γ,2�)n(2+�).

In this case, defining

Wn,m(γ,�) :=
(γ+2�)n⋃

k=(γ−�)n

Vk,

it holds

|Wn,m| ≤ 3�n2(2+�)H(γ,2�)n.

3. Independent sequences

In this section, only, let X = X1, . . . ,Xn and Y = Y1, . . . , Yn be two independent i.i.d. sequences
from the alphabet A. Recall that for any a > 0, Lan,n = L(X1, . . . ,X�an	;Y1, . . . , Yn) and Ln =
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Ln,n. By the Kingman’s subbadditive ergodic theorem, there exists a constant γ (a) ∈ (0,1] so
that

Lan,n

n
→ γ (a) a.s. and in L1.

We shall denote γ := γ (1), the constant γ is often called the Chvatal–Sankoff constant. In the
Appendix, it will be shown that when a < 1, then γ (a) < γ (Lemma A.1).

Note that Lan,n is a function of n(1 + a) i.i.d. random variables. Clearly, changing one of the
variables changes the value of Ln at most by one, so that by McDiarmid inequality (see, e.g.,
[15]), for every � > 0

P
(|Lan,n − ELan,n| > n�

)≤ 2 exp

[
− 2�2

(1 + a)
n

]
. (3.1)

Take no(�,a) so big that |ELan,n

n
− γ (a)| < �

2 . Then

P
(∣∣Lan,n − γ (a)n

∣∣≥ n�
)

≤ P
(|Lan,n − ELan,n| +

∣∣ELan,n − γ (a)n
∣∣≥ n�

)
(3.2)

≤ P

(
|Lan,n − ELan,n| ≥ n

�

2

)
≤ 2 exp

[
− �2

2(1 + a)
n

]
, n > no.

Taking a = 1, we see the existence of no(�) so that for n > no with high probability all optimal
alignments are contained in the set Wn(γ,�) as defined in (2.15).

Recall that for any optimal alignment v, (ih1 , jh
1 ) and (ih|v|, jh|v|) are the first and last pairs

of indexes of the highest alignment of X and Y . We consider the random variables S := jh
1 −

1, T := n− ih|v|. Clearly S and T have the same law. The following proposition states that for any
c ∈ (0,1), the probabilities P(S > cn) = P(T > cn) decrease exponentially fast.

Proposition 3.1. Let c ∈ (0,1). Then there exists constant d(c) > 0, so that, for n big enough,
P(T > cn) = P(S > cn) ≤ exp[−dn].
Proof. Note that {T > cn} ⊂ {L(1−c)n,n = Ln} and for any γ̄ ,

{L(1−c)n,n = Ln} ⊂ {L(1−c)n,n ≥ γ̄ n} ∪ {Ln ≤ γ̄ n}.
Let a := 1 − c. By Lemma A.1, γ > γ (a). Let

γ̄ := γ+γ (a)

2
, � := γ − γ̄ = γ̄ − γ (a).

Use (3.2) to see that for n big enough,

P(T > cn) ≤ P(Lan,n ≥ γ̄ n) + P(Ln ≤ γ̄ n)

= P
(
Lan,n ≥ (

γ (a) + �
)
n
)+ P

(
Ln ≤ (γ − �)n

)
≤ 2 exp

[
− �2

2(1 + a)
n

]
+ 2 exp

[
−�2

4
n

]
.
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This concludes the proof. �

Recall the definition of q and po in (1.3). Note that for independent sequences, po = P(Xi =
Yi). The following lemma bounds the probability that an alignment v ∈ Vk is the highest optimal
alignment.

Lemma 3.1. Let v ∈ Vk . Let B(v) be the event that v is the highest optimal alignment of X

and Y . Then

P
(
B(v)

)≤ pk
oq

2(n−k)−(j1−1)−(n−ik). (3.3)

Proof. Let v ∈ Vk be an alignment. We denote by i1, . . . , ik the elements of I (v) and we define
jt := v(it ), t = 1, . . . , k.

Since all random variables X1, . . . ,Xn,Y1, . . . , Yn are independent, by Corollary 2.1 the prob-
ability of B(v) could be estimated as follows

P
(
B(v)

)≤
k∏

t=1

P
(
Bt(v)

)
,

where, for t = 2, . . . , k − 1

Bt(v) := {Xit = Yjt ;Yj �= Yjt , jt < j < jt+1;Xi �= Xit , it−1 < i < it }
and

B1(v) :=
⎧⎨
⎩

{Xi1 = Yj1;Xi �= Xi1, i < i1;X1 �= Yj ,

j < j1;Yj �= Yj1, j1 < j < j2}, if i1 > 1;
{Xi1 = Yj1;Yj �= Yj1, j1 < j < j2}, if i1 = 1.

Bk(v) :=
⎧⎨
⎩

{Xik = Yjk
;Xi �= Xik , ik−1 < i < ik;

Yj �= Yjk
, jk < j ;Xi �= Yn, ik < i}, if jk > n;

{Xik = Yjk
;Xi �= Xik , ik−1 < i < ik}, if jk = n.

By independence, clearly for t = 2, . . . , k − 1,

P
(
Bt(v)

)=
∑
a

p2
a(1 − pa)

it−it−1−1+jt+1−jt−1 ≤ poq
it−it−1+jt+1−jt−2.

For the events B1(v) and Bk(v), we estimate

P
(
B1(v)

) ≤
{

poq
j2−j1−1, if i1 = 1;

poq
j2−j1−1+j1−1+i1−1, if i1 > 1.

P
(
Bk(v)

) ≤
{

poq
ik−ik−1−1, if jk = n;

poq
ik−ik−1−1+n−jk+n−ik , if jk < n.

These equations yield (3.3). Note that in (3.3), the term (n − ik) disappears when jk < n and the
term (j1 − 1) disappears, when i1 > 1. �
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Our first main result is a bound to the unknown Chvatal–Sankoff constant γ .

Theorem 3.1. Let X1,X2, . . . and Y1, Y2, . . . be two independent i.i.d. sequences with the same
distribution. Let γ be the corresponding Chvatal–Sankoff constant. Then the following condition
holds

γ log2 po + 2(1 − γ ) log2 q + 2h(γ ) ≥ 0. (3.4)

Proof. The proof is based on the contradiction: assuming that (3.4) fails leads to the existence
of constants c > 0, b > 0 (independent of n) such that for n big enough, P(S + T ≤ 2cn) ≤
exp[−bn]. Then, for big n,

1 − exp[−bn] ≤ P(S + T > 2cn) ≤ P(S > cn) + P(T > cn)

contradicting Proposition 3.1.
If (3.4) is not fulfilled, then it is possible to find constants � > 0, c > 0 so small that

−b1 := (γ − �) log2 po + 2(1 − γ − � − c) log2 q + 2H(γ,�) < 0. (3.5)

Fix now � > 0, c > 0 so small that (3.5) holds. Let

E� := {|Ln − nγ | < n�
}
.

When E� holds, then all optimal alignments belong to the set Wn := Wn(γ,�). By Lemma 3.1,
for every v ∈ Wn

P
(
B(v)

)≤ p
n(γ−�)
o q2n(1−γ−�)−(n−ik)−(j1−1). (3.6)

Note that
⋃

v∈Wn
B(v) = E�. Let, for every v, s(v) := j1 − 1 and t (v) := n − i|v|. Then by (3.2)

and (2.18), there exists b > 0 (independent of n) so that for n big enough

P(S + T ≤ 2cn) ≤
∑

v∈Wn:s(v)+t (v)≤2cn

P
(
B(v)

)+ P
(
Ec

�

)

≤ 2�n2n(2H(γ,�)+(γ−�) log2 po+2(1−γ−�−c) log2 q) + P
(
Ec

�

)
≤ 2�n2−b1n + 2 exp

[
−�2

4
n

]
≤ exp[−bn]. �

4. Related sequences: Definition and theory

4.1. Definition of relatedness

Let us now define the relatedness of the sequences (X,Y ). Our concept of relatedness is based
on the assumption that there exists a common ancestor, from which both sequences X and Y are
obtained by independent random mutations and deletions. In the following, the common ancestor
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is an A-valued i.i.d. process Z1,Z2, . . . . We could imagine that X and Y is the genome of two
species whilst Z is the genome of a common ancestor. In computational linguistics, X and Y

could be words from two languages which both evolved from the word Z in an ancient language.
A letter Zi has a probability to mutate according to a transition matrix that does not depend

on i. Hence, a mutation of the letter Zi can be formalized as f (Zi, ξi), where f :A×R → A is a
mapping and ξi is a standard normal random variable. The mapping fi(·) := f (·, ξi) from A to A
will be referred as the random mapping. The mutations of the letters are assumed to be indepen-
dent. This means that the random variables ξ1, ξ2, . . . or the random mappings f1, f2, . . . are inde-
pendent (and identically distributed). After mutations, the sequence is f1(Z1), f2(Z2), . . . . Some
of its elements disappear. This is modeled via a deletion process Dx

1 ,Dx
2 , . . . that is assumed to

be an i.i.d. Bernoulli sequence with parameter p that is, P(Dx
i = 1) = p. If Dx

i = 0, then fi(Zi)

is deleted. The resulting sequence, let it be X, is, therefore, the following: Xi = fj (Zj ) if and

only if Dx
j = 1 and

∑j

k=1 Dx
k = i. We call the index j the ancestor of i, it shall be denoted by

ax(i). The mapping ax depends on the deletion process Dx , only. Now

Xi = fax(i)(Zax(i)), i = 1, . . . , n.

Similarly, the sequence Y is obtained from Z. For mutations, fix an i.i.d. standard normal se-
quence η1, η2, . . . so that the mutated sequence is g1(Z1), g2(Z2), . . . with gi(·) := f (·, ηi).

Note that the transition matrix corresponding to Y -mutations equals the one corresponding to
X-mutations implying that the random mappings gi and fi have the same distribution. Since the
mutations of X and Y are supposed to be independent, we assume the sequences ξ and η or the
random mappings sequences f1, f2, . . . and g1, g2, . . . are independent. Note that then the pairs
(f1(Z1), g1(Z1)), (f2(Z2), g2(Z2)), . . . are independent, but fi(Zi) and gi(Zi), in general, are
not. Finally,

Yi = fay(i)(Zay(i)),

where, as previously, ay(i) = j if and only if D
y
j = 1 and

∑j

k=1 D
y
k = i. Here, D

y

1 ,D
y

2 , . . . is
an i.i.d. Bernoulli sequence with the same parameter as Dx but independent of Dx. Hence, the
deletions of Y and X are independent.

In the following, we shall call the sequences X = X1 . . .Xn and Y = Y1 . . . Yn related, if they
follow the model described above. Note that for the related sequences, the random variables
X1,X2, . . . as well as Y1, Y2, . . . are still i.i.d., but these two sequences are, in general, not in-
dependent any more. As mentioned above, the process (X1, Y1), (X2, Y2), . . . is not stationary,
hence also not ergodic. It is, however, a regenerative process. We shall also call the random vari-
ables Xi and Yj related, if they have the same ancestor. However, the definition of the related
sequences does not exclude the case, when the functions f and g do not depend on Zi so that
the sequences X and Y are independent. Thus, in what follows, all results for related sequences
automatically hold for independent sequences as well.

With this notation (recall (1.7)), q̄ = 1 − mina,b∈A P(f (ξ,Z) = a|g(η,Z) = b). Note that
P(f (ξ,Z) = a|g(η,Z) = b) = P(Xi = a|Yj = b) given Xi and Yj are related.
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4.2. Limits and large deviation inequalities for related sequences

In this subsection, we consider the random variables Ln,an, where a > 0. By symmetry, for any
n, the random variable Ln,an has the same law as Lan,n; moreover, the processes {Lan,n} and
{Ln,an} have the same distribution so that in what follows, everything holds for Lan,n as well.

The existence of γR(a)

At first, we shall prove the convergence (1.4). As mentioned in the Section 3, for independent
sequences, this follows from subadditive ergodic theorem. The same holds, if the sequences are
related, but no deletion occurs, that is, p = 1. In the presence of deletion, however, an additional
argument is needed.

Proposition 4.1. Let a > 0. Then there exists a constant γR(a) such that (1.4) holds.

Proof. At first note that without loss of generality, we may assume a ≤ 1. Indeed, with m :=
�na	,

L(X1, . . . ,Xn;Y1, . . . , Y�na	) = L(X1, . . . ,X�m/a�;Y1, . . . , Ym)

= L(X1, . . . ,Xm;Y1, . . . , Y�m/a�),

where the last equality follows from the symmetry of the model. Hence, the limit in (1.4) exists
if and only if the limit of 1

m
L(X1, . . . ,Xm;Y1, . . . , Y�m/a�) exists. The latter is equivalent to the

existence of limit 1
m

Lm,m/a . Hence, to the end of the proof, let 0 < a ≤ 1.
We consider the sequence of i.i.d. random vectors U1,U2, . . ., where

Ui := (
fi(Zi), gi(Zi),D

x
i ,D

y
i

)
. (4.1)

Let, for any positive integer m, nx(m) :=∑m
i=1 Dx

i and ny(m) :=∑�am	
i=1 D

y
i . Thus X1, . . . ,Xnx

and Y1, . . . , Yny are both determined by i.i.d. random vectors U1, . . . ,Um. Let

L(U1, . . . ,Um) := L(X1, . . . ,Xnx ;Y1, . . . , Yny ).

By subadditivity, there exists constant γU such that

lim
m→∞

L(U1, . . . ,Um)

m
= γU, a.s. and in L1. (4.2)

Let n(m) := nx(m) ∧ ny(m)

a
and n(m) := nx(m) ∨ ny(m)

a
. Thus,

n

m

L(X1, . . . ,Xn;Y1, . . . , Y�an	)
n

≤ L(U1, . . . ,Um)

m
≤ n

m

L(X1, . . . ,Xn,Y1, . . . , Y�na�)
n

. (4.3)

By SLLN, n(m)
m

→ p, a.s. and n(m)

m
→ p, a.s. Since

lim sup
n

Ln,an

n
= lim sup

m

Ln(m),an(m)

n(m)
, lim inf

n

Ln,an

n
= lim inf

m

Ln(m),an(m)

n(m)
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and

lim inf
m

Ln(m),an(m)

n(m)
= lim inf

m

1

n(m)
L(X1, . . . ,Xn(m);Y1, . . . , Y�an(m)�),

from (4.3), it follows

lim sup
n

1

n
L(X1, . . . ,Xn;Y1, . . . , Y�an	)p

≤ γU ≤ lim inf
n

1

n
L(X1, . . . ,Xn;Y1, . . . , Y�an	)p, a.s.

This is the a.s. convergence in (1.4) with γR(a) = γU
p

. The convergence in L1 follows by domi-
nated convergence theorem. �

Large deviation inequalities

Next, we prove a large deviation lemma for related sequences.

Lemma 4.1. Assume X and Y are related. Then, for every � > 0 and 0 < a ≤ 1,

P
(|Ln,an − ELn,an| ≥ n�

)≤ 4 exp

[
−p

8
�2an

]
. (4.4)

Proof. As we saw in Section 3, for independent sequence, this type of inequality (3.1) trivially
follows from McDiarmid inequality. In the present case, we have to add an extra control over the
deletion process.

Fix positive integer m and consider the vectors U1, . . . ,Um defined in (4.1). Recall nx(m) and
ny(m). Fix n and let

L̃m := L(X1, . . . ,Xn∧nx ;Y1, . . . , Y�an	∧ny ).

Note that L̃m is a function of 5m independent random variables:

L̃m = L̃m

(
Z1, . . . ,Zm, ξ1, . . . , ξm,η1, . . . , ηm,Dx

1 , . . . ,Dx
m,D

y

1 , . . . ,D
y
m

)
.

Changing Zi (given all other variables are fixed) corresponds to possible change of an element
of X and an element of Y . A change of one element of X (or Y ) causes the change of L̃m at most
by 1. Hence, the maximum change of L̃m induced by changing of Zi (given all other variables are
fixed) is 2. Similarly, the maximum change of L̃m due to the change of ξi or ηi (given all other
variables are fixed) is 1. Changing Dx

i from 1 to 0 corresponds to removing one element of X-
side and, in the case nx > n adding one more X to the end. Changing Dx

i from 0 to 1 corresponds
to adding one element to X-side and, perhaps, removing the last X (when nx ≥ n). This, again,
changes the value of L̃m at most by 1. Any change of ηi has the same effect. Denoting by ri ,
i = 1, . . . ,5m the maximum change of L̃m induced by the ith variable, we have that ri = 2 if
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i = 1, . . . ,m and ri = 1 for i = m + 1, . . . ,5m so that
∑5m

i=1 r2
i = 8m. Therefore, by McDiarmid

inequality,

P
(|L̃m − EL̃m| ≥ m�

)≤ 2 exp

[
−�2

4
m

]
. (4.5)

Let Em be the event that nx ≥ n and ny ≥ an. Formally, Em := Ey(m)∩Ex(m), where Ex(m) :=
{∑m

i=1 Dx
i ≥ n} and Ey(m) := {∑�am	

i=1 D
y
i ≥ an}. When Em holds, then L̃m = Ln,an, so that

{|Ln,an − ELn,an| < m�
}⊃ {|L̃m − EL̃m| < m�

}∩ Em

and

P
(|Ln,an − ELn,an| ≥ m�

)≤ P
(|L̃m − EL̃m| ≥ m�

)+ P
(
Ec

m

)
. (4.6)

Take m = 2
p
n. Then (4.5) is

P

(
|L̃m − EL̃m| ≥ 2

p
n�

)
≤ 2 exp

[
−�2

2p
n

]
. (4.7)

To estimate P(Ec
m) ≤ P(Ec

x) + P(Ec
y), use Hoeffding inequality (with m = 2n

p
)

P
(
Ec

y

) = P

(
am∑
i=1

D
y
i < an

)
= P

(
am∑
i=1

D
y
i − amp < an − amp

)

≤ P

(
am∑
i=1

D
y
i − amp < −amp

2

)
≤ exp

[
−p2

2
am

]
= exp[−pan],

P
(
Ec

x

) = P

(
m∑

i=1

Dx
i < n

)
≤ exp[−pn] ≤ exp[−pan].

Thus, with m = 2n
p

, P(Ec
m) ≤ 2 exp[−pan] and plugging it together with (4.7) into (4.6) entails

P

(
|Ln,an − ELn,an| ≥ 2n

p
�

)
≤ 2 exp

[
−�2

2p
n

]
+ 2 exp[−pan]. (4.8)

Take �′ = 2�
p

. Then (4.8) is

P
(|Ln,an − ELn,an| ≥ �′n

)≤ 2 exp

[
− (�′)2p

8
n

]
+ 2 exp[−pan].

If �′ ≤ 1, then 2 exp[−apn] ≤ 2 exp[−(�′)2apn], implying that the right-hand side is bounded

by 4 exp[− (�′)2

8 apn]. This proves (4.4) for � ≤ 1. Since Ln,an ≤ n, for � > 1, (4.4) trivially
holds. �
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The following corollary states an inequality similar to that of (3.2) for related sequences.

Corollary 4.1. Assume X and Y are related, 0 < a ≤ 1. Then, for every � > 0 there exists
no(�,a) big enough so that

P
(∣∣Ln,an − γR(a)n

∣∣≥ n�
)≤ 4 exp

[
− p

32
�2an

]
, n > no. (4.9)

Proof. Let n be so big that |ELn,an/n− γR(a)| < �/2. Then |ELn,an − γR(a)n| ≤ (�/2)n and

P
(∣∣Ln,an − γR(a)n

∣∣≥ n�
) ≤ P

(|Ln,an − ELn,an| +
∣∣ELn,an − γR(a)n

∣∣≥ n�
)

≤ P

(
|Ln,an − ELn,an| ≥ n

�

2

)
≤ 4 exp

[
− p

32
a�2n

]
,

where the last inequality follows from (4.4) �

5. Proofs of main results for related sequences

5.1. Every highest alignment contains a related pair

5.1.1. The key lemma

The following lemma is the cornerstone of what follows.

Lemma 5.1. Assume that X = X1 . . .Xn and Y = Y1 . . . Yn are related and satisfy (1.8). Then
there exists a constant b2 > 0 such that for every n big enough,

P(highest alignment of X and Y alignes no related letters) ≤ e−nb2 . (5.1)

Proof. Let v ∈ Vk be an alignment. Let I = I (v) = {i1, . . . , ik} and let jt := v(it ). Hence Xit =
Yjt , for every t = 1, . . . , k. We denote by J the set {j1, . . . , jk}.

We are bounding the probability that v is the highest optimal alignment of X and Y and that
the random variables Xit and Yjt are not related for every t = 1, . . . , k. Let us introduce some
notations and events. Let, for every j = j1 + 1, . . . , n, b(j) be the last element of J strictly
smaller than j . Formally, b(j) := max{jt : jt < j}. Similarly, for every i = 1, . . . , ik − 1, let c(i)

be the first element of I strictly larger than i. Formally, c(i) := min{it : it > i}. Also denote

ax = (
ax(i1), . . . , a

x(ik)
)
, ay = (

ay(j1), . . . , a
y(jk)

)
and let ax �= ay be ax(jt ) �= ay(jt ) for every t = 1, . . . , k. We now define the following events

A(v) := {Xi1 = Yj1, . . . ,Xik = Yjk
},

B(v) := {
Yj �= Yb(j), j ∈ {j1 + 1, . . . , n} \ J

}
,

C(v) := {
Xi �= Xc(i), i ∈ {1, . . . , ik − 1} \ I

}
,

D(v) := {
ax �= ay

}
, E(v) := A(v) ∩ B(v) ∩ C(v) ∩ D(v).
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By Corollary 2.1, it holds

{v is the highest optimal alignment and no aligned pair of v is related} ⊂ E(v).

Note that the vectors ax and ay depend on the deletion processes Dx and Dy , only. Thus, given
ax and ay , the events A(v), B(v) and C(v) depend on the ancestor process Z and on the random
mappings g and f , only. In particular, given ax and ay , the dependence structure (related pairs)
is fixed as well. In the following, we shall consider the case ax �= ay . This means that there exists
no t = 1, . . . , k such that Xit is related to Yjt .

We shall bound the probability P(E(v)|ax, ay).
At first, let us bound the probability P(A(v)|ax, ay), ax �= ay . Thus, in what follows, we

assume ax and ay satisfying ax �= ay are fixed. For any two indexes s, t ∈ {1, . . . , k}, let s ↔ t

denote that either Xit and Yjs are related (i.e., they have the same ancestor) or Xis and Yjt are
related. We call a subset G = {t1, . . . , tl} ⊂ {1, . . . , k} a dependence group, if:

1. ti ↔ ti+1 for every i = 1, . . . , l − 1;
2. there is no index in {1, . . . , k} \ G that is related to t1 or tl .

Note that a group with |G| elements contains |G| − 1 related pairs. Let {t1, . . . , tl} be a depen-
dence group. Without loss of generality, assume that Xit1

is related to Yjt2
. Then Xit2

is related
to Yjt3

and so on. In particular, Xitk
is independent of Yjtl

, l ≤ k. Recall the definition of po, p q

and q̄ from (1.3) and (1.7). Hence,

P(Xit = Yjt ; t ∈ G)

= P(Xit1
= Yjt1

)

l∏
k=2

P(Xitk
= Yjtk

|Xit1
= Yjt1

, . . . ,Xitk−1
= Yjtk−1

)

= po

l∏
k=2

(∑
a∈A

P(Xitk
= a)P (Yjtk

= a|Xit1
= Yjt1

, . . . ,Xitk−1
= Yjtk−1

)

)
≤ po(p)l−1.

By 2., the random variables {Xit , Yjt : t ∈ G} are all independent of the random variables
{Xit , Yjt : t ∈ {1, . . . , k} \G}. Let G1, . . . ,Gu be all dependence groups. Let G = G1 ∪ · · · ∪Gu.
Thus, r := |G| − u is the number of related pairs amongst Xi1, . . . ,Xik and Yj1 , . . . , Yjk

. By
independence of the groups,

P
(
A(v)|ax, ay

) =
u∏

s=1

P(Xit = Yjt ; t ∈ Gs)
∏
t /∈G

P (Xit = Yjt )

(5.2)
≤ pu

o(p)|G|−upk−|G|
o = pk−r

o (p)r .

Let us now bound the probability P(B(v)|A(v), ax, ay), where, as previously, ax �= ay . Recall
the sets I and J . Let

I c := {1, . . . , ik − 1} \ I, J c := {j1 + 1, . . . , n} \ J.
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Let J c
1 be the set of indexes in J c with the property that the corresponding Y -s are related to an

element in Xi, i ∈ I . Formally, j ∈ J c
1 if and only if there exists a i ∈ I so that Yj is related to

Xi . Let J c
2 = J c \ J c

1 . It means, if j ∈ J c
2 , then Yj is either related to an Xi with i /∈ I or not

related to any other random variable at all. In particular, the random variables {Yj : j ∈ J c
2 } are

independent of the event A(v). Since Y1, Y2, . . . are independent, we obtain (let us omit the fixed
ax and ay from the notations)

P
(
B(v)|A(v)

) = P
(
Yj �= Yb(j), j ∈ J c

2 ∪ J c
1 |A(v)

)
= P

(
Yj �= Yb(j), j ∈ J c

2

)
P
(
Yj �= Yb(j), j ∈ J c

1 |A(v)
)
.

Clearly,

P
(
Yj �= Yb(j), j ∈ J c

2

)≤ q |J c
2 |. (5.3)

Let us estimate P(Yj �= Yb(j), j ∈ J c
1 |A(v)). Note

P
(
Yj �= Yb(j), j ∈ J c

1 |A(v)
)

=
∑

(y1,...,yk)∈Ak

P
(
Yj �= Yb(j), j ∈ J c

1 |Yjt = Xit = yt ,∀t
)
P
(
Xit = yt ,∀t |A(v)

)
.

Given (y1, . . . , yk), let yb(j) be the value of Yb(j). Let us estimate

P
(
Yj �= Yb(j), j ∈ J c

1 |Yjt = Xit = yt ,∀t
) = P

(
Yj �= yb(j), j ∈ J c

1 |Yjt = Xit = yt ,∀t
)

= P
(
Yj �= yb(j), j ∈ J c

1 |Xit = yt ,∀t
)

= P(Yj �= yb(j), j ∈ J c
1 ;Xit = yt ,∀t)∏k

t=1 P(Xit = yt )
.

The last two equalities follow from the fact that Y1, Y2, . . . are independent and X1,X2, . . . are
independent. When j ∈ J c

1 , then Yj is related to a Xit . Denote J c
1 := {j1, . . . , j s}. Clearly,

s := |J c
1 | ≤ |J c| ∧ k = (n − j1 + 1 − k) ∧ k. (5.4)

Without loss of generality, assume that the random variables in J c
1 are related to the Xi1, . . . ,Xis .

Then the pairs of related random variables (Yj1 ,Xt1), . . . , (Yjs ,Xts ) are independent so that

P(Yj �= yb(j), j ∈ J c
1 ;Xit = yt ,∀t)∏k

t=1 P(Xit = yt )
=
∏s

t=1 P(Yjt �= yb(j t ),Xit = yt )∏s
t=1 P(Xit = yt )

=
s∏

t=1

P(Yjt �= yb(j t )|Xit = yt ) ≤ (q̄)s .

Therefore,

P
(
Yj �= Yb(j); j ∈ J c

1 |A(v)
)≤ (q̄)s . (5.5)
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By entirely similar argument, we estimate P(C(v)|A(v) ∩ B(v)). Indeed, given (y1, . . . , yk) ∈
Ak ,

P
(
C(v)|A(v) ∩ B(v),Yjt = yt ,∀t

)
= P

(
Xi �= Xc(i), i = I c|Yjt = Xit = yt ,∀t;Yj �= Yb(j), j = J c

)
= P

(
Xi �= ac(i), i = I c|Yjt = yt ,∀t;Yj �= yb(j), j = J c

)
.

Every Xi is related to at most one Yj . Let I c
0 , I c

1 , I c
2 be mutually exclusive set of indexes so that:

• If i ∈ I c
0 , then Xi is not related to any Yj from J ∪ J c.

• If i ∈ I c
1 , then Xi is related to a Yj so that j ∈ J . Let t (i) ∈ {1, . . . , k} be the corresponding

index.
• If i ∈ I c

2 , then Xi is related to a Yj so that j ∈ J c . Let jr (i) ∈ J be the corresponding index.

Then, just like previously, using the independence of related pairs, we obtain

P
(
Xi �= yc(i), i = I c|Yjt = yt ,∀t;Yj �= yb(j), j = J c

)
=
∏
i∈I c

0

P(Xi �= yc(i))
∏
i∈I c

1

P(Xi �= yc(i)|Yt(i) = yt(i))
∏
i∈I c

2

P(Xi �= yc(i)|Yjr (i) �= yb(jr (i)))

≤ q |I c
0 |(q̄)|I c

1 |+|I c
2 | ≤ (q̄)|I c|,

where the second last inequality follows from the fact that given Xi and Yj are related, for any
a, b ∈ A

P(Xi �= a|Yj �= b) =
∑
c �=b

P (Xi �= a|Yj = c)P (Yj = c|Yj �= b)

=
∑
c �=b

(
1 − P(Xi = a|Yj = c)

)
P(Yj = c|Yj �= b) ≤ q̄

and the last inequality follows from the fact that q ≤ q̄ . Therefore,

P
(
C(v)|A(v) ∩ B(v)

)≤ (q̄)|I c| = (q̄)ik−k. (5.6)

By (5.2), (5.3), (5.5), (5.6) with ρ = (poq̄)/(p̄q) and r + s ≤ k, we have

P
(
E(v)|ax, ay

) ≤ pk−r
o (p̄)rqn−j1+1−k−s(q̄)s+ik−k = pk

o

(
p̄

po

)r(
q̄

q

)s

qn−j1+1−k(q̄)ik−k

≤ pk
o

(
p̄

po

)k−s(
q̄

q

)s

qn−j1+1−k(q̄)ik−k ≤ (p̄)kρsqn−j1+1−k(q)ik−k.

By (5.4), it holds 0 ≤ s ≤ k ∧ (n − j1 + 1 − k) ≤ k ∧ (n − k), so that

max
s

ρs ≤
{

ρk∧(n−k), if ρ ≥ 1;
1, if ρ < 1.
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Hence,

P
(
E(v)

) ≤
∑

ax,ay :ax �=ay

P
(
E(v)|ax, ay

)
P
(
Dx = ax,Dy = ay

)
(5.7)

≤ (p̄)k(ρ ∨ 1)k∧(n−k)(qq̄)n−kq1−j1(q)ik−n.

Recall that (1.8) is

γR log2 p̄ + (1 − γR) log2(qq̄) + (
(1 − γR) ∧ γR

)
log2(ρ ∨ 1) + 2h(γR) < 0.

When this holds, then it is possible to find � > 0 so small that

−b := (γR − �) log2 p̄ + (1 − γR − �) log2(qq̄)

+ (
(1 − γR + �) ∧ (γR + �)

)
log2(ρ ∨ 1) − � log2(qq̄) + 2H(γR,�) < 0.

Let

E� := {|Ln − nγR| < n�
}
.

When E� holds, then all optimal alignments belong to the set Wn := Wn(γR,�). For every
v ∈ Wn, with |v| = k, it holds

n(γR − �) ≤ k ≤ n(γR + �). (5.8)

Let, for every v, s(v) = j1 − 1 and t (v) = n − ik . Let

Un(γR,�) := {
v ∈ Wn : s(v) ≤ �n, t (v) ≤ �n

}
.

Using these two inequalities together with (5.8), we have that for every v ∈ Un,

log2 P
(
E(v)

) ≤ n

[
(γR − �) log2 p̄ + (1 − γR − �) log2(qq̄)

+ (
(1 − γR) ∧ γR + �

)
log2(ρ ∨ 1) − s(v)

n
log2 q − t (v)

n
log2 q̄

]

≤ (−b − 2H(γR,�)
)
n.

Let

E := {∃ highest alignment ofX and Y alignes no related letters}.
Recall that S = jh

1 − 1, T = n − ihk and, by (2.18), it holds

|Un| ≤
∣∣Wn(γR,�)

∣∣≤ 2�n22H(γR,�).
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Then by Corollary A.1 and Corollary 4.1, for n big enough

P(E) ≤
∑
v∈Un

P
(
E(v)

)+ P(S > �n) + P(T > �n) + P
(
Ec

�

)

≤ |Un|2(−b−2H(γR,�)) + P(S > �n) + P(T > �n) + P
(
Ec

�

)
≤ 2�n2−bn + 4 exp

[
−�2

32
n

]
+ 2 exp

[−d(�)n
]
.

Hence, for big n, the inequality (5.1) holds. �

Sequences with unequal lengths. In the previous lemma, X and Y were of the same length,
n. This lemma can be generalized for the case X and Y are of different length, provided that
the difference is not too big. Let Xn := X1 . . .Xn, Ym := Y1 . . . Ym. Without loss of gener-
ality, let us assume m ≥ n. We know that if (1.8) holds, then there exists � > 0 so small
that

(γR − �) log2 p̄ + (1 − γR − 2�) log2(qq̄) + (
(1 − γR) ∧ γR + 2�

)
log2(ρ ∨ 1)

(5.9)
− 2� log2(qq̄) + 2H(γR,2�) < 0.

The restriction for m is: m ≤ (1 + �)n.

Lemma 5.2. Let n ≤ m ≤ (1 + �)n, where � > 0 satisfies (5.9). Assume that Xn and Ym are
related. Then there exists a constant b3(�) > 0 such that for every n > no,

P
(
the highest alignment of Xn and Ym aligns no related letters

)≤ e−nb3 .

Proof. The proof follows the one of Lemma 5.1; � is now taken from the assumptions, so
it satisfies (5.9). This � defines the set E� as in the previous lemma. However, by defini-
tion, Ln is the length of the LCS between Xn and Yn, whilst in the present case we are deal-
ing with the LCS between Xn and Ym. Clearly Ln ≤ Ln,m ≤ Ln + n�. Hence, if E� holds,
then

γR − � ≤ Ln

n
≤ Ln,m

n
≤ Ln

n
+ � ≤ γR + 2�,

that is, all optimal alignments belong to the set Wn,m(γR,�). The set Un,m is defined as fol-
lows

Un,m(γR,�) := {
v ∈ Wn,m(γR,�) : s(v) ≤ 2�n, t (v) ≤ 2�n

}
.

The upper bound (5.7) holds with n replaced by m:

P
(
E(v)

)≤ (p̄)k(ρ ∨ 1)k∧(m−k)(qq̄)m−kq1−j1(q)ik−m.
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Using the bounds (γR −�)n ≤ |u| ≤ (γR + 2�)n and n ≤ m ≤ n(1 +�), for every v ∈ Un,m, we
obtain the following estimate

log2 P
(
E(v)

) ≤ n

[
(γR − �) log2 p̄ + (

(1 − γR) ∧ γR + 2�
)

log2(ρ ∨ 1)

+ (1 − γR − 2�) log2(qq̄) − s(v)

n
logq2 − t (v)

n
log2 q̄

]

≤ −(b + 2H(γR,�)
)
n,

where b > 0 by the assumption (5.9) on �. The rest of the proof goes as the one of Lemma 5.1
with P(S > 2�n) and P(T > 2�n) instead of P(S > �n) and P(T > �n) and 3�n2−bn

instead of 2�n2−bn. �

5.1.2. Applying Lemma 5.2 repeatedly: The B-events

Regenerativity. Let τx
0 = τ

y

0 = 0 and let τx
k (τy

k ), k = 1,2, . . . be the indexes of the kth related
pair. So, (Xτx

1
, Yτ

y
1
) is the first related pair, (Xτx

2
, Yτ

y
2
) is the second related pair and so on. Let

a0 = 0 and ak be the common ancestor of the kth related pair, that is,

ak = ax
(
τx
k

)= ay
(
τ

y
k

)
.

We shall use the fact that the process (X1, Y1), (X2, Y2), . . . is regenerative with respect to the
times (τ x

k , τ
y
k ), i.e.

(Xτx
k +1, Yτ

y
k +1), (Xτx

k +2, Yτ
y
k +2), . . . (5.10)

has the same law as (X1, Y1), (X2, Y2), . . . . The Z-process for (5.10) is Zak+1,Zak+2, . . . .

Definition of B-events. In what follows, let � > 0 and 0 < A < ∞. Denote n′ := A lnn. We
shall consider the following events:

Bk(ñ, m̃) := {the highest alignment of Xτx
k +1, . . . ,Xτx

k +ñ and Yτ
y
k +1, . . . , Yτ

y
k +m̃

contains a related pair},
B1

k

(
n′,�

) :=
⋂

n′≤ñ≤m̃≤ñ(1+�)

Bk(ñ, m̃), B2
k

(
n′,�

) :=
⋂

n′≤m̃≤ñ≤m̃(1+�)

Bk(ñ, m̃),

Bh
k

(
n′,�

) := B1
k

(
n′,�

)∩ B2
k

(
n′,�

)
.

Let Bl
k(n

′,�) be defined similarly, with “lowest” instead of “highest” in the definition of
Bk(ñ, m̃). Finally, let

B
(
k,n′,�

) := Bl
k

(
n′,�

)∩ Bh
k

(
n′,�

)
.
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Let Bn(n
′,�) be the event that for every k that satisfies max{τx

k , τ
y
k } ≤ n, B(k,n′,�) holds.

Formally,

Bn

(
n′,�

) :=
n⋃

i=0

(
{K = i} ∩

(
i⋂

k=0

B
(
k,n′,�

)))
,

where

K := arg max
k=0,1,...

{
max

{
τx
k , τ

y
k

}≤ n
}
. (5.11)

The bound on P(Bn(n
′,�)) for small �. We aim to bound P(Bn(n

′,�)) from below. We use
the regenerativity described above: for every k, the event Bk(ñ, m̃) has the same probability as
B0(ñ, m̃) so that for every k, Lemma 5.2 applies:

P
(
Bk(ñ, m̃)

)≥ 1 − exp[−ñb3],

provided ñ(1 + �) ≥ m̃ ≥ ñ ≥ no and � > 0 is small enough to satisfy the assumptions (5.9).
Thus, for small enough � and big enough n′, we have

P
(
B2

k

(
n′))= P

(
B1

k

(
n′))≥ 1 −

∑
ñ≥n′

∑
ñ(1+�)≥m̃≥ñ

e−b3ñ = 1 −
∑
ñ≥n′

(�ñ + 1)e−b3ñ. (5.12)

Clearly, for every 0 < b4 < b3, for every n big enough, (n+�−1)e−b3n ≤ e−b4n for every n > n1.
Let 0 < b4 < b3 and without loss of generality assume no being so big that for every n > no the
inequality above holds. Then (5.12) can be bounded as follows

P
(
B1

k

(
n′,�

))≥ 1 − �
∑
ñ≥n′

e−b4ñ ≥ 1 − B

4
e−b4n

′
, n′ ≥ no, (5.13)

where B is a constant depending on �. Hence,

P
(
B
(
k,n′,�

))≥ 1 − Be−b4n
′
, n′ ≥ no.

Finally, since
⋂n

k=0 B(k,n′) ⊂ Bn(n
′), we have that (recall n′ = A lnn)

P
(
Bc

n

(
n′,�

)) ≤ (n + 1)P
(
Bc

k

(
n′,�

))
(5.14)

≤ B(n + 1) exp
[−b4n

′]≤ 2Bn exp
[−b4n

′]= 2Bn1−b4A.

5.2. The location of the related pairs

We consider the related sequences X1,X2, . . . and Y1, Y2, . . . . Recall the definition of τx
k , τ

y
k and

ak . As previously, we take n′ = A lnn.
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5.2.1. The location of the first and last related pair: G-events

The location of last related pair: Definition of Gn(�). Let i(n) and j (n) be the biggest τx
k and

τ
y
k before n, that is,

i(n) := max
{
τx
k : τx

k ≤ n
}
, j (n) := max

{
τ

y
k : τy

k ≤ n
}
.

Clearly i(n) = n if and only if the ancestor of Xn is also an ancestor of a Yj that is, D
y

ax(n) = 1.
Similarly, i(n) = u < n if and only if

D
y

ax(u) = 1, D
y

ax(u+1) = · · · = D
y

ax(n) = 0.

Since the process Dy is independent of Dx and, therefore, also independent of the random vari-
ables ax(i), i = 1,2 . . . , we have that for every u = 1,2, . . . , n

P
(
i(n) = u

)= (1 − p)n−up, P
(
i(n) = 0

)= (1 − p)n.

Hence, for any � > 0,

P
(
n − i(n) ≥ �n

) = P
(
n − i(n) ≥ ��n�)= (1 − p)��n�

(5.15)
≤ (1 − p)�n = exp

[
�n ln(1 − p)

]
.

Hence, the probability that the last related Xi before n is further that �n from n is exponentially
small in n. The same obviously holds for j (n) so that

P
(
n − i(n) < �n,n − j (n) < �n

)≥ 1 − 2 exp
[
ln(1 − p)�n

]
. (5.16)

However, the event {(n−j (n))∨(n− i(n)) < �n} does not necessarily imply that the last related
pair, let that be (i′, j ′) is necessarily such that {(n − j ′) ∨ (n − i′) < �n}. Indeed, if (i′, j ′) is
the last related pair, then either i′ = i(n) or j ′ = j (n) but the both inequalities need not hold
simultaneously. We shall now show that also the event {(n − j ′) ∨ (n − i′)} ≤ �n} holds with
great probability. Let us first define the last related pair formally as follows

i′(n) := τx
l(n), j ′(n) := τ

y

l(n)
,

(5.17)
where l(n) := max

{
l = 0,1,2, . . . : τx

k ≤ n, τ
y
k ≤ n

}
.

Let 0 < � < 1, r(n) := (1 − 3
4�) n

p
and consider the event

Gx
n :=

{
n(1 − �) ≤

r∑
j=1

Dx
j ≤ n

(
1 − �

2

)}
, G

y
n :=

{
n(1 − �) ≤

r∑
j=1

D
y
j ≤ n

(
1 − �

2

)}
.

To simplify the calculations, let us assume without the loss of generality that r is an integer. As-
sume that Gx

n ∩G
y
n holds, i(n) > n(1 − �

2 ) and let Yj be related to Xi(n). Let a be their common
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ancestor, that is, a := ay(j) = ax(i(n)). Since i(n) > n(1 − �
2 ), the event Gx

n guarantees that
a > r . Indeed, if a ≤ r , then we reach to the contradiction, since

i(n) =
a∑

j=1

Dx
j ≤

r∑
j=1

Dx
j ≤ n

(
1 − �

2

)
.

Thus a > r and because of G
y
n, it holds

j =
a∑

j=1

D
y
j ≥

r∑
j=1

D
y
j ≥ n(1 − �).

Hence, if τx
l(n) ≥ τ

y

l(n) (i.e., i(n) = i′(n) ≥ j ), then we have that τ
y

l(n) = j ′(n) ≥ n(1 − �). The
roles of X and Y can be changed so that{(

n − j (n)
)∨ (n − i(n)

)
<

�

2
n

}
∩ Gx

n ∩ G
y
n

(5.18)
⊂ {(

n − j ′(n)
)∨ (n − i′(n)

)≤ �n
}=: Gn(�).

When Gn(�) holds, then the last related pair, say (i′, j ′), satisfies: (i′, j ′) ∈ [(1 − �)n,n] ×
[(1 − �)n,n]. In 2-dimensional representation, this means that the last related pair is located in
a square of size �n in the upper-right corner.

The bound on P(Gn(�)). By Hoeffding’s inequality,

P
((

Gx
n(�)

)c) = P

(∣∣∣∣∣
r∑

j=1

Dx
j − rp

∣∣∣∣∣> �

4
n

)
= P

(∣∣∣∣∣
r∑

j=1

Dx
j − rp

∣∣∣∣∣> p�

4 − 3�
r

)

≤ 2 exp

[
−2

(
p�

4 − 3�

)2

r

]
= 2 exp

[
− p�2

2(4 − 3�)
n

]
.

Therefore, for � small enough,

P
(
Gc

n(�)
) ≤ P

((
Gx

n(�)
)c)+ P

((
G

y
n(�)

)c)+ P

(
n − i(n) ≥ �

2
n

)
+ P

(
n − j (n) ≥ �

2
n

)

≤ 4 exp

[
− p�2

2(4 − 3�)
n

]
+ 2 exp

[
�

2
n ln(1 − p)

]

≤ 4 exp

[
−p�2

8
n

]
+ 2 exp

[
�

2
n ln(1 − p)

]

≤ 6 exp

[
−p�2

8
n

]
.



Path properties 1325

Finally, we shall apply the event Gn(�n) with �n :=
√

16 lnn
pn

. Then

P
(
Gc

n(�n)
)≤ 6 exp

[
−p

8
�2

nn

]
= 6n−2. (5.19)

5.2.2. The location of the rest of the related pairs: F -events

Fix � > 0 and denote α := 1 + �
2 , β := 1 + � and l(n) := α

p
n. Again, to simplify the technical-

ities, let us assume that l(n) is an integer.

F -events: The definition. At first, we consider the events

Fx
n :=

{
n <

l∑
i=1

Dx
i ≤ βn

}
, F

y
n :=

{
n <

l∑
i=1

D
y
i ≤ βn

}
, Fn := Fx

n ∩ F
y
n .

These events are similar to the events Gx
n and G

y
n defined in the previous section and we shall

argue similarly. Suppose Xi and Yj are related and i ≤ n. When Fx
n holds, then the ancestor of

Xi is at most l, that is, ax(i) ≤ l. Since Xi and Yj are related, ax(i) = ay(j) =: a. If F
y
n holds,

we have
∑a

i=1 D
y
i ≤∑l

i=1 D
y
i ≤ βn, implying that j ≤ βn = (1 + �)n. By symmetry, the roles

of i and j can be changed. Thus, when the event Fn holds and (i, j) is a related pair, then the
following implication holds true: if min{i, j} ≤ n, then max{i, j} ≤ (1 + �)n.

We now consider more refined events

F
(
k,n′) :=

⋂
m≥n′

{
ak + m <

l(m)∑
i=1

Dx
ak+i ,

l(m)∑
i=1

D
y
ak+i ≤ ak + (1 + �)m

}
, k = 0,1,2, . . . .

The event F(k,n′) states that for any other related pair Xτx
l

, Yτ
y
l

, l > k, the following holds: if

τx
l − τx

k ≤ n′, then τ
y
l − τ

y
k ≤ n′(1 + �). If τx

l − τx
k = m > n′, then τ

y
l − τ

y
k ≤ m(1 + �) =

(τ x
l − τx

k )(1 + �). The roles of X and Y can be changed, so that the statements above can be
restated as follows:

max
{(

τx
l − τx

k

)∨ n′,
(
τ

y
l − τ

y
k

)∨ n′}≤ min
{(

τx
l − τx

k

)∨ n′,
(
τ

y
l − τ

y
k

)∨ n′}(1 + �). (5.20)

Finally, let Fn(n
′,�) denote the event that for every k that satisfies max{τx

k , τ
y
k } ≤ n, F(k,n′)

holds. Formally,

Fn

(
n′,�

) :=
n⋃

i=0

(
{K = i} ∩

(
i⋂

k=0

H
(
k,n′))),

where K is as in (5.11). The event Fn(n
′,�) ensures that (5.20) holds for every k ≤ K . In

particular, if (i, j) is a related pair such that i ≤ n and j ≤ n and (i′, j ′) is another related pair,
then

max
{∣∣i − i′

∣∣∨ n′,
∣∣j − j ′∣∣∨ n′}≤ min

{∣∣i − i′
∣∣∨ n′,

∣∣j − j ′∣∣∨ n′}(1 + �). (5.21)
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The bound on P(Fn(n
′,�)). Let us first estimate from below the probability of Fn. Since

(
Fx

n

)c =
{

l∑
i=1

Dx
i ≤ n

}
∪
{

l∑
i=1

Dx
i > βn

}
,

by Hoeffding’s inequality (recall that l = α
p
n)

P

(
l∑

i=1

Dx
i − pl ≤ n − pl

)
≤ exp

[
−2p

(1 − α)2

α
n

]
,

P

(
l∑

i=1

Dx
i − pl > βn − pl

)
≤ exp

[
−2p

(β − α)2

α
n

]
.

Since (β−α)2

α
= (1−α)2

α
= �2

2(2+�)
=: d(�)

2 , it holds

P
(
Fc

n

)≤ 2 exp[−pdn]. (5.22)

For estimating P(Fn(n
′,�)), we use the regenerativity argument to see that for every k, the event

F(k,n′) has the same probability as
⋂

m≥n′ Fm so that by (5.22), there exist constant R(�,p) <

∞, b6(�,p) > 0

P
(
Fc
(
k,n′))≤

∑
m≥n′

P
(
Fc

m

)≤ 2
∑
m≥n′

exp[−pdm] ≤ R exp
[−b6n

′].
Finally, since

⋂n
k=0 F(k,n′) ⊂ Fn(n

′,�), we have (n′ = A lnn)

P
(
Fc

n (n,�)
) ≤ (n + 1)P

(
Fc
(
k,n′))≤ M(n + 1) exp

[−b6n
′]

(5.23)
≤ 2Rn exp

[−b6n
′]= 2Rn1−Ab6 .

5.3. The related pairs in extremal alignments

In previous subsection, we showed that with the high probability the related pairs are rather uni-
formly located almost in the main diagonal of the two-dimensional representation of alignments
(the F -event). We also know that with high probability every piece of length A lnn of extremal
alignments contains at least one related pair (the B-event). Hence, both extremal alignments can-
not diverge from the main diagonal too much and therefore they cannot be too far from each
other. The following lemma postulates this observation.

In the following, let Kh and Kl be the random number of related pairs of the highest and
lowest alignment, respectively. We shall denote by (i∗h

1 , j∗h
1 ), . . . , (i∗h

Kh, j
∗h
Kh) the related pairs of

the highest alignment and (i∗l
1 , j∗l

1 ), . . . , (i∗l
Kl , j

∗l
Kl ) the related pairs of the lowest alignment. Let

i := i∗h
Kh ∧ i∗l

Kl .
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We also agree that i∗h
0 :=: j∗h

0 :=: i∗l
0 :=: j∗l

0 := 0 and with some abuse of terminology, we shall
call also the pair (0,0) related of both highest and lowest alignments.

Lemma 5.3. Let � > 0 and assume that Bn(n
′,�) ∩ Fn(n

′, �
2 ) holds. Let (ih, jh) be a pair of

the highest alignment of X and Y such that ih ≤ i. Then there exists a related pair (i∗l
u , j∗l

u ),
u ∈ {0, . . . ,Kl} of the lowest alignment such that

∣∣ih − i∗l
u

∣∣∨ ∣∣jh − j∗l
u

∣∣ ≤ n′(1 + �). (5.24)

Moreover, there exists a related pair (i∗l
l , j∗l

l ), l ∈ {0, . . . ,Kl} of the lowest alignment such that

i∗l
l ≤ ih and

∣∣jh − j∗l
l

∣∣≤ 2n′(1 + �). (5.25)

Similarly, for every pair (il, j l) of the lowest alignment of X and Y such that il ≤ i, there exists
a related pair (i∗h

u , j∗h
u ), u ∈ {0, . . . ,Kh} such that

∣∣il − i∗h
u

∣∣∨ ∣∣j l − j∗h
u

∣∣≤ n′(1 + �). (5.26)

Moreover, there exists a related pair (i∗h
l , j∗h

l ) of the highest alignment such that

i∗h
l ≤ il and |j l − j∗h

l | ≤ 2n′(1 + �). (5.27)

Proof. At first, we shall see that for every 0 ≤ t ≤ Kh − 1,

(
i∗h
t+1 − i∗h

t

)∧ (j∗h
t+1 − j∗h

t

) ≤ n′, (5.28)(
i∗h
t+1 − i∗h

t

)∨ (j∗h
t+1 − j∗h

t

) ≤ n′(1 + �). (5.29)

Suppose there exists t such that (5.28) fails. The pairs (i∗h
t , j∗h

t ) and (i∗h
t+1, j

∗h
t+1) are both in the

highest alignment, let it be v. Since v is highest, the restriction of v between

Xi∗h
t +1, . . . ,Xi∗h

t+1−1, and Yj∗h
t +1, . . . , Yj∗h

t+1−1

must be highest as well. Denote ñ = i∗h
t+1 − 1 − i∗h

t and m̃ = j∗h
t+1 − 1 − j∗h

t . If (5.28) does not

hold, then m̃, ñ ≥ n′. Suppose, without loss of generality that m̃ ≥ ñ. Since Fn(n
′, �

2 ) holds, then
(5.21) states that (m̃+1) ≤ (ñ+1)(1+ �

2 ) implying that m̃ ≤ ñ(1+�). Therefore, we have that
the sequences

Xi∗h
t +1, . . . ,Xi∗h

t +ñ, and Yj∗h
t +1, . . . , Yj∗h

t +m̃

with n′ ≤ ñ ≤ m̃ ≤ ñ(1+�) have an optimal alignment that contains no related pair. This contra-
dicts Bn(n

′,�). Hence, (5.28) holds. Since t < Kh, then (5.21) proves (5.29) (recall that (5.21)
also holds for i = j = 0).
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Consider an arbitrary (not necessarily related) pair (ih, jh) of the highest alignment so that
ih ≤ i ≤ i∗h

Kh . By (5.29), there exists 0 ≤ k < Kh such that i∗h
k ≤ ih ≤ i∗h

k+1 and

(
i∗h
k+1 − i∗h

k

)∨ (j∗h
k+1 − j∗h

k

)≤ n′(1 + �). (5.30)

Similarly, since ih ≤ i ≤ i∗l
Kl , by applying (5.29) to the lowest alignment, there exists 0 ≤ l < Kl

such that i∗l
l ≤ ih ≤ i∗l

l+1 and

(
i∗l
l+1 − i∗l

l

)∨ (j∗l
l+1 − j∗l

l

)≤ n′(1 + �). (5.31)

Hence i∗l
l ≤ ih and |i∗l

u − ih| ≤ n′(1 + �), for u = l, l + 1. For (5.25), it suffices to show that
|jh − j∗l

l | ≤ 2n′(1 + �). For (5.24), it suffices to show that minu=l,l+1 |jh − j∗l
u | ≤ n′(1 + �).

For that, we consider three cases separately:
(1) Suppose i∗h

k ≤ i∗l
l . Because (i∗h

k , j∗h
k ), (i∗l

l , j∗l
l ), (i∗h

k+1, j
∗h
k+1) are related pairs and i∗l

l ≤
ih ≤ i∗h

k+1, we have j∗l
l ≤ j∗h

k+1 so that by i∗h
k ≤ i∗l

l , it holds j∗h
k ≤ j∗l

l ≤ j∗h
k+1. Clearly at least one

inequality is strict. Since (i∗h
k , j∗h

k ), (ih, jh), (i∗h
k+1, j

∗h
k+1) are aligned pairs, we have j∗h

k ≤ jh ≤
j∗h
k+1 (with at least one of the inequalities being strict). By (5.30), we have j∗h

k+1 −j∗h
k ≤ n′(1+�),

implying that |jh − j∗l
l | ≤ n′(1 + �). Thus, (5.24) holds with u = l and then (5.25) trivially

holds.
(2) Suppose i∗l

l+1 ≤ i∗h
k+1. The pairs (i∗h

k , j∗h
k ), (i∗l

l+1, j
∗l
l+1), (i

∗h
k+1, j

∗h
k+1) are related. Since i∗h

k ≤
ih ≤ i∗l

l+1 ≤ i∗h
k+1, we have that j∗h

k ≤ j∗l
l+1 ≤ j∗h

k+1 (again, at least one inequality is strict). Since
(i∗h

k , j∗h
k ), (ih, jh), (i∗h

k+1, j
∗h
k+1) are aligned pairs, we have j∗h

k ≤ jh ≤ j∗h
k+1. By (5.30), we have

j∗h
k+1 − j∗h

k ≤ n′(1 + �), implying that |jh − j∗l
l+1| ≤ n′(1 + �). Therefore, (5.24) holds for

u = l + 1. For (5.25), use the inequalities (5.31) together with the inequalities |jh − j∗l
l | ≤

|jh − j∗l
l+1| + |j∗l

l − j∗l
l+1| ≤ 2n′(1 + �).

(3) Suppose i∗l
l < i∗h

k and i∗h
k+1 < i∗l

l+1. Since all pairs, except perhaps (ih, jh) are related,
we have that i∗l

l < i∗h
k ≤ ih ≤ i∗h

k+1 < i∗l
l+1 and j∗l

l < j∗h
k ≤ jh ≤ j∗h

k+1 < j∗l
l+1. By (5.31),

|jh − j∗l
l | ≤ j∗l

l+1 − j∗l
l ≤ n′(1 + �). Hence, (5.24) holds with u = l and then (5.25) trivially

holds.
By symmetry, the second statement of the lemma holds by the same argument. �

Recall the definition of �n :=
√

16
p

lnn
n

.

Lemma 5.4. Let 1 > � > 0 and assume that Bn(n
′,�)∩Gn(�n)∩Fn(n

′, �
2 ) holds. Then there

exists n1(�) < ∞ and M(�) < ∞ so that for every n > n1, n − i ≤ M�nn.

Proof. Let (i∗, j∗) := (i∗h
Kh, j

∗h
Kh). Since Gn(�n) holds, there exists a related pair (i′, j ′) so that

i′, j ′ ≥ (1 − �n)n. Without loss of generality, we can take (i′, j ′) the last related pair satisfying
i′ ≤ n and j ′ ≤ n so that i′ ≥ i∗ and j ′ ≥ j∗. Let now M(�) be so big that

1 < (M − 1)
�

2 + �
. (5.32)
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First, we shall show that n − i∗ ≤ M�nn. If not, then for n big enough,

i′ − i∗ > n(M�n − �n) = n�n(M − 1) > n′. (5.33)

Then, by the definition of M

n�n ≤ n�n(M − 1)
�/2

1 + �/2
≤ (

i′ − i∗
) �/2

1 + �/2
≤ (

i′ − i∗
)�

2
. (5.34)

We shall now show that when (5.33) holds, then(
n − i∗

)≤ (
n − j∗)(1 + �),

(
n − j∗)≤ (

n − i∗
)
(1 + �). (5.35)

Consider two cases separately:
(a) i′ − i∗ ≤ j ′ − j∗. Since Fn(n

′, �
2 ) holds, we have that j ′ − j∗ ≤ (i′ − i∗)(1 + �

2 ) so that

n− j∗ = (
n− j ′)+ (j ′ − j∗)≤ n�n + (i′ − i∗

)(
1+ �

2

)
≤ (

i′ − i∗
)
(1+�) ≤ (

n− i∗
)
(1+�),

where the second last inequality holds due to (5.34). We also have that

n− i∗ = (
n− i′

)+ (i′ − i∗
)≤ n�n + (j ′ − j∗)≤ (

i′ − i∗
)�

2
+ (j ′ − j∗)≤ (

j ′ − j∗)(1 + �

2

)
.

(b) i′ − i∗ ≥ j ′ − j∗. By Fn(n
′, �

2 ) we have again that i′ − i∗ ≤ (j ′ − j∗)(1 + �
2 ) so that by

(5.34), we have

n�n ≤ (
i′ − i∗

) �/2

1 + �/2
≤ (

j ′ − j∗)�
2

(5.36)

and arguing similarly as in the case (a), we now obtain

n − j∗ ≤ (
i′ − i∗

)(
1 + �

2

)
, n − i∗ ≤ (

j ′ − j∗)(1 + �).

We are now applying the same argument as in the previous lemma. Recall that (i∗, j∗) belongs
to the highest alignment. The restriction of the highest alignment between

Xi∗+1, . . . ,Xn and Yj∗+1, . . . , Yn

must be highest as well. Moreover, the restriction contains no related pairs. The lengths of
Xi∗+1, . . . ,Xn and Yj∗+1, . . . , Yn are n − i∗ and n − j∗, respectively. By (5.33) and (5.35),
for n big enough, both lengths are bigger than n′; by (5.35) their lengths are comparable, so
that by event Bn(n

′,�), they have to contain a related pair. This contradicts the assumption that
(i∗, j∗) is the last related pair of the highest alignment. The contradiction is due to assumption
n − i∗ > M�nn. Hence, n − i∗ ≤ M�nn, eventually. The same argument holds for the lowest
alignment, hence i ≥ n − M�nn, eventually. �



1330 J. Lember, H. Matzinger and A. Vollmer

5.4. Proof of Theorem 1.1

Choose 1 > � > 0 so small that (5.9) holds. Let M(�) be defined as in (5.32) and αn = M�n.
Clearly αn → 0, in particular, αn < 1 for n big enough. Recall the definition of Hausdorff’s
distance between extremal alignments both represented as a set of 2-dimensional points. More
precisely, let H and L be the highest and lowest alignments, both represented as the set of two-
dimensional points. Clearly, |H | = |L| = Ln. In the statement of Theorem 1.1, the subsets of H

and L, where the pairs (i, j) satisfying i > n − αnn are left out, are considered. More precisely,
we consider the consider the points

Ho := {(
ih, jh

) ∈ H : ih ≤ n(1 − αn)
}
, Lo := {(

il , j l
) ∈ L : il ≤ n(1 − αn)

}
.

If for an arbitrary element (ih, jh) of Ho, there exists an element (il, j l) of L such that |ih −
il | ∨ |jh − j l | ≤ (1 + �)n′, then max(i,j)∈Ho min(il ,j l )∈L |i − il | ∨ |j − j l | ≤ (1 + �)n′. If, in
addition, for an arbitrary element (il, j l) of Lo, there exists an element (ih, jh) of H such that
|ih − il | ∨ |jh − j l | ≤ (1 + �)n′, then the restricted Hausdorff’s distance with respect to the
maximum norm between H and L is at most (1 + �)n′. The restricted Hausdorff’s distance
between H and L with respect to the l2-norm is then

√
2n′(1 + �).

Proof of Theorem 1.1. Choose 1 > � > 0 so small that (5.9) holds. Now, let M := M(�)

as in (5.32), b4 := b4(�) > 0 and no(�) be as in the bound (5.14), b6 := b6(
�
2 ) > 0 be as in

(5.23). Let, moreover, n > n1 ∨ no, where n1(�) is as in Lemma 5.4 and let ho be the restricted

Hausdorff’s distance with respect to the maximum norm and αn := M�n = M
√

16 lnn
pn

. Since

n > n1, αn < 1 so that ho is correctly defined. Finally, choose A so big that min{Ab4,Ab6} ≥ 3.
We aim to bound the probability of the event En := {ho(L,H) ≤ 2n′}, where n′ = A lnn. If the
event Bn(n

′,�) ∩ Gn(�n) ∩ Fn(n
′, �

2 ) holds, then by Lemma 5.4, i ≥ n(1 − αn) so that for
every (ih, jh) ∈ Ho and (il, j l) ∈ Lo Lemma 5.3 applies. Since (1 + �) < 2, (5.24) and (5.26)
of Lemma 5.3 ensure that ho(H,L) ≤ 2n′. Therefore,

Bn

(
n′,�

)∩ Gn(�n) ∩ Fn

(
n′, �

2

)
⊂ En.

Hence, from (5.14), (5.19) and (5.23), for n > no ∨ n1,

P
(
Ec

n

) ≤ P
(
Bc

n

(
n′,�

))+ P

(
Gc

n

(
n′, �

2

))
+ P

(
Fc

n

(
n′, �

2

))

≤ 2Bn1−Ab4 + 6n−2 + 2Rn1−Ab6

≤ 2(R + B + 3)n−2.

Thus, the theorem holds with D = 2(R + B + 3) and C = 2A. �
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5.5. Proof of Theorem 1.2

In Theorem 1.1, we used the 2-dimensional representation of alignments, so an alignment were
identified with a finite set of points. In the alignment graph, these points are joined by a line. We
consider the highest and lowest alignment graphs, and we are interested in the maximal vertical
(horizontal) distance between these 2 piecewise linear curves. This maximum is called vertical
(horizontal) distance between lowest and highest alignment graphs.

Proof of Theorem 1.2. From Lemma 5.4 and (5.25) of Lemma 5.3, it follows that on the event
Fn(n

′, �
2 ) ∩ G(�n) ∩ Bn(n

′,�) the following holds: for every pair (ih, jh) of the highest align-
ment such that ih ≤ i, there exists a pair (ilk, j

l
k) (including the possibility that k = 0) of the

lowest alignment such that ilk ≤ ih and |jh − j l
k| ≤ 2n′(1 + �). Recall that L and H are the

lowest and highest alignment graphs, respectively. Since L in non-decreasing, it follows that
H(ih) − L(ih) = jh − L(ih) ≤ jh − j l

k ≤ 2n′(1 + �). By (5.27) of Lemma 5.3, we obtain (us-
ing the same argument) that for every pair (il, j l) of the lowest alignment such that il ≤ i, the
following inequality holds: H(ih) − L(ih) ≤ 2n′(1 + �). Since the function H − L is piecewise
linear, we obtain that supx∈[0,i](H(x) − L(x)) ≤ 2n′(1 + �).

The rest of the proof is the same as the one of Theorem 1.1. �

6. Proof of Theorem 1.3

When dealing with the sequences of random lengths, it is more convenient to consider the loca-
tions of ancestors. Recall the i.i.d. vectors Ui as defined in (4.1). Thus, given k, l ∈ N (k < l),
with some abuse of terminology, we shall call the highest (lowest) alignment of Uk+1, . . . ,Uk+l

the highest (lowest) alignment between these X and Y sequences that have the ancestors in the
interval [k +1, k + l]. Note that these sequences as well as corresponding optimal alignments are
all functions of Uk+1, . . . ,Uk+l , only. This justifies the terminology. Hence, the highest align-
ment of the random lengths sequences X and Y (as defined above) is the highest alignment of
U1, . . . ,Um(n).

Let now k = 0 and let l ≥ 1 be fixed. We shall consider the vectors U1, . . . ,Ul and the cor-
responding X and Y sequences. Thus, nx(l) :=∑l

j=1 Dx
j , ny(l) :=∑l

j=1 D
y
j are their lengths.

Let us define the events

Ax
l :=

{∣∣nx(l) − lp
∣∣< p

2
l

}
, A

y
l :=

{∣∣ny(l) − lp
∣∣< p

2
l

}
, Al := Ax

l ∩ A
y
l .

For a fixed � > 0, let

Cl(�) := Al ∩
{∣∣nx(l) − ny(l)

∣∣< p

2
�l

}
.

Hence, on Cl the following inequalities hold true:

l
p

2
< nx(l) ∧ ny(l) ≤ nx(l) ∨ ny(l) <

3p

2
l, nx(l) ∨ ny(l) ≤ (

nx(l) ∧ ny(l)
)
(1 + �).
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Let

Bl(�) :=
{
(ñ, m̃) ∈N

2 : l p
2

< ñ ∧ m̃ ≤ ñ ∨ m̃ <
3p

2
l, ñ ∨ m̃ ≤ (ñ ∧ m̃)(1 + �)

}
.

Thus,

Cl ⊂
⋃

(ñ,m̃)∈Bl (�)

{
nx(l) = ñ, ny(l) = m̃

}
. (6.1)

With applying Hoeffding’s inequality three times, it is easy to see the existence of a constant c1
(depending on � and p) so that

P(Cl) ≥ 1 − 6 exp[−c1l]. (6.2)

The B-event for the sequences of random lengths

We shall now study the random lengths analogue of the B-events. Recall that the event B0(ñ, m̃)

states that the highest alignment between the sequences X1, . . . ,Xñ and Y1, . . . , Ym̃ contains a
related pair. We shall define now the event

Ek(l) := {the highest alignment of Uk+1, . . . ,Uk+l contains a related pair}.
We shall bound the probability of P(Ek(l)). Clearly P(Ek(l)) = P(E0(l)) for every k =
1,2, . . . , hence we shall consider the event E0(l). Obviously,⋃

(ñ,m̃)∈Bl (�)

(
B0(ñ, m̃) ∩ {nx(l) = ñ, ny(l) = m̃

})⊂ E0(l).

Since

P
(
B0(ñ, m̃) ∩ {nx(l) = ñ, ny(l) = m̃

})≥ P
(
nx(l) = ñ, ny(l) = m̃

)− P
(
Bc

0(ñ, m̃)
)
.

Since ñ and m̃ belong to Bl(�), by Lemma 5.2, we obtain

P
(
Bc

0(ñ, m̃)
)≤ exp

[
−b3

p

2
l

]
,

provided that l is big and � small enough. Thus, by (6.1) and (6.2), we obtain

P
(
E0(l)

) ≥
∑

(ñ,m̃)∈Bl (�)

(
P
(
nx(l) = ñ, ny(l) = m̃

)− P
(
Bc

0(ñ, m̃)
))

≥ P(Cl) − ∣∣Bl(�)
∣∣ exp

[
−b3

p

2
l

]
≥ 1 − 4 exp[−c1l] − (pl)2 exp

[
−b3

p

2
l

]
.

Hence, there exists lo and a constant c2 > 0 (both depending on � and p) so that for any l > lo,

P
(
E0(l)

)≥ 1 − e−c2l . (6.3)
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Let now l(n) := 2
p
A lnn and we assume n to be fixed and so big that l > lo so that (6.3) holds for

any l ≥ l. Let, for any k = 0,1, . . .

Ek :=
⋃
l≥l

Ek(l), Eh :=
m−l⋃
k=0

Ek.

When the event Eh holds, then the following is true: the highest alignment of Uk+1, . . . ,Uk+l

contains a related pair whenever l ≥ l and k + l ≤ m. By (6.3), we obtain the estimate

P
(
Ec

k

)≤
∑
l≥l

P
(
Ec

k(l)
)≤

∑
l≥l

e−c2l ≤ Ke−c2l = Kn−2c2A/p, (6.4)

where K is a constant. Thus,

P
((

Eh
)c)≤ m(n)Kn−2c2A/p = n

p
Kn−2c2A/p = K

p
n1−2c2A/p.

The event Eh was defined for the highest alignment. Similar event, let it be El can be defined for
the lowest alignment. The bound (6.4) holds also for El . Hence, with E := Eh ∩ El , we obtain
that P(E) ≥ 1 − 2Kp−1n−2c2A/p . Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Choose 1 > � > 0 so small that (5.9) holds. Now let c2(�) be as in
(6.3) and choose A so big that 2c2(�)A

p
> 3. By (6.4), the event E holds then with probability at

least 1 − 2Kp−1n−2. Now proceed as in the proof of Lemma 5.3. Let ah
1 , . . . , ah

Kh the ancestors

of all related pairs in the highest alignment. Let ah
0 := 0 and ah

Kh+1
:= m + 1. Assume that E

holds. Then we have that for every k = 0, . . . ,Kh, ah
k+1 − ah

k < l. Hence, for every pair of the
highest alignment (ih, jh), there exists k ∈ {0, . . . ,Kh} such that ah

k ≤ ax(ih) ≤ ah
k+1 so that

|ax(ih) − ah
k | ∨ |ax(ih) − ah

k+1| ≤ l = 2
p
A lnn. Clearly,

(
i∗h
k+1 − i∗h

k

)∨ (j∗h
k+1 − j∗h

k

)≤ ∣∣ah
k+1 − ah

k

∣∣≤ 2

p
A lnn

and also |i∗h
k − ih| ∨ |i∗h

k+1 − ih| ≤ 2
p
A lnn.

Similarly, by El , there exists 0 ≤ l ≤ Kl so that al
l ≤ ax(ih) ≤ al

l+1, where al
l , k = 1, . . . ,Kl

are the ancestors of the related pairs in the lowest alignment, al
0 := 0 and al

Kl+1
:= m + 1. Thus,

(
i∗l
l+1 − i∗l

l

)∨ (j∗l
l+1 − j∗l

l

)≤ ∣∣al
l+1 − al

l

∣∣≤ 2

p
A lnn

and also |i∗l
l − ih| ∨ |i∗l

l+1 − ih| ≤ 2
p
A lnn. Hence, the inequalities (5.30) and (5.31) hold. Now

proceed as in the proof of Lemma 5.3 and Theorem 1.1 to see that

P

(
h(H,L) >

2

p
A lnn

)
≤ P

(
Ec
)≤ 2Kp−1n−2
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so that (1.11) holds with Cr := 2
p
A and Dr := 2Kp−1, where K is as in (6.4). �

7. Simulations

We now present some simulations about the growth of the distance between the extremal align-
ments as well as another statistics. In simulations, for different n-s up to 10 000, 100 pairs of
i.i.d. sequences of length n with were generated. Half of them were independent i.i.d. sequences
with X1 and Y1 distributed uniformly over four letter alphabet. Another half of the sequences
were related with following parameters: the common ancestor process Z1,Z2, . . . is i.i.d. with
Z1 being uniformly distributed over four letter. The mutation matrix for generating X and Y

sequences were the following:

(
P
(
f1(Z1) = aj |Z1 = ai

))
i,j=1,...,4 =

⎛
⎜⎜⎝

0.9 0.02 0.02 0.06
0.02 0.9 0.06 0.02
0.02 0.06 0.9 0.02
0.06 0.02 0.02 0.9

⎞
⎟⎟⎠ .

The deletion probability 1 − p = 0.05. Thus, the mutation matrix is such that X1,X2, . . . and
Y1, Y2, . . . were, as for unrelated case, i.i.d. sequences with X1 and Y1 distributed uniformly over
four letter alphabet, but the sequences X and Y are clearly not independent any more. The same
models were used in generating Figures 1 and 2. Since, the marginal distributions of X and Y are
uniform, we have po = p = 1

4 and q = 3
4 . From the mutation matrix, it follows that for related

sequences q = 1 − 0.02 = 0.98. Hence, for related sequences ρ = q
q

> 1 and the left-hand side
of (1.8) is (clearly γR > 0.5)

γR log2 p + (1 − γR)
(
log2(qq) + log2

(
qq−1))+ 2h(γR)

= −2γR + 2(1 − γR) log2(0.98) + 2h(γR).

Hence, (1.8) in this case is

h(γR) < γR − (1 − γR) log2(0.98). (7.1)

The condition (7.1) holds, if γR is big enough. Since the solution of h(x) = x −(1−x) log2(0.98)

is about 0.770481, (7.1) holds if and only if γR > 0.770481. From Figure 2, we estimate γR as
747
949 = 0.787. Another simulations confirm that γR is somewhere around 0.79. Thus, it is rea-
sonable believe that for our model, the condition (1.8) holds true. Recall that for independent
sequences, (1.8) always fails.

In both cases – related and unrelated sequences – the average of following statistics were
found: Ln, the horizontal length of the maximum non-uniqueness stretch, the maximum vertical
distance and the maximum (full) Hausdorff’s distance.

The top-plot in Figure 4 shows the growth of Ln as n grows. The standard deviation around
the means are marked with crosses. For independent case, the crosses are almost overlapping
implying that the deviation is relatively small. As the picture shows, the growth of Ln is linear in
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Figure 4. Growth of Ln (top). Growth of non-uniqueness stretch (bottom).
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both cases, the slope, however, is different: the upper line corresponds to the related sequences,
the lower line is for independent sequences.

The bottom-plot in Figure 4 shows the horizontal length of maximum non-uniqueness stretch.
For independent sequences (upper curve), the growth is, perhaps, smaller than linear but consid-
erably faster than logarithmic. The straight line is, in some sense, the best linear approximation.
The +-signs mark the standard deviation around the mean that in this case is rather big, meaning
that these simulations do not give enough evidence to conclude the non-linear growth. For related
sequences (lower curve), the growth is clearly logarithmic because it almost overlaps with the
4 lnn-curve. We also point out that the standard deviation for this case is remarkably smaller and
this only confirms the logarithmic growth.

In Figure 5, the maximum vertical distance (top) and (full) Hausdorff’s distance with respect
to the maximum-norm (bottom) are plotted. Both pictures are similar to the bottom picture of
Figure 4 and can be interpreted analogously. For the related case, the growth is clearly logarithmic
(the best approximation is 1.25 lnn for maximum vertical distance, and 0.65 lnn for Hausdorff’s
distance) and that is a full correspondence with Theorems 1.1, 1.2 and 1.3. Note that we have
used the full Hausdorff’s distance instead of the restricted one so that the simulations confirm the
conjecture that Theorems 1.1 and 1.2 also hold with h instead of ho.

In Figure 6, there is a zoomsection fragment of two extremal alignment of the related se-
quences. Recall the definition of related pairs – the corresponding sites have the same ancestor.
It does not necessarily mean that they have the color of the common ancestor, but often it is so.
In the last picture, the related pars with the color of the common ancestor are marked with dots.
Note that in some small region, there are relatively many those pairs, on same other region, there
are less those pairs. The picture (and other similar simulations) also shows that in the regions
with many these pairs, the extremal alignments coincide with them. This means that in both se-
quences, there are parts that relatively less mutated and the behavior of the extremal alignments
indicate the existence of such region rather well. In the area with relatively few dots, the extremal
alignments fluctuate indicating that in this part (at least in one sequence) many mutations have
been occurred. Hence, based on these simulations, we can conclude the extremal alignments
are rather good tools for finding the less mutated regions and obtaining information about the
common ancestor.

Appendix

In the following, let X1,X2, . . . , Y1, Y2, . . . be related sequences. Recall, that our model for re-
lated sequences incorporates the independent case. Recall the convergence (1.4):

1

n
L(X1, . . . ,X�na	;Y1, . . . , Yn) → γR(a), a.s.

Lemma A.1. For every 0 < a < 1, γR(a) < γR, for every a > 1, γR(a) > γR.

Proof. Clearly the function a �→ γR(a) is nondecreasing in a and there exists a K ∈ N so big
that γR(K) > γR.
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Figure 5. Growth of maximal vertical distance (top). Growth of Hausdorff’s distance (bottom).
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Figure 6. The related pairs with the color of the common ancestor (dots) and extremal alignments.

Fix 0 < a < 1 and choose ε > 0 be so small that 1−a
ε

> K . For every m ∈ Z, a, b > 0 let

Lm:an,bn := L(Xm+1, . . . ,X�na	;Ym+1, . . . , Y�nb	).

Let c := 1 − a. By superadditivity,

Ln(1+c),n ≥ Ln(1−ε),n(1−ε) + L�n(1−ε)	:n(1+c),n.

Let m = �n(1 − ε)	. Since, c > Kε and for every c ≥ 0,⌊
n(1 − ε)

⌋+ ⌊
n(c + ε)

⌋≤ ⌊⌊
n(1 − ε)

⌋+ n(c + ε)
⌋≤ ⌊

n(1 + c)
⌋
,

it holds

Lm:n(1+c),n ≥ Lm:m+n(c+ε),m+nε ≥ Lm:m+�nε	K,m+�nε	.

Clearly

lim
n

1

n
Ln(1−ε),n(1−ε) = (1 − ε) lim

u→∞
Lu

u
= (1 − ε)γR a.s. (A.1)
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Let us now show that

lim
n

1

n
Lm:m+�nε	K,m+�nε	 = lim

u

ε

u
LKu,u = γR(K)ε a.s. (A.2)

For independent sequences, (A.2) follows from (3.2). Indeed, for i.i.d. sequences, the random
variables Lm:m+�nε	K,m+�nε	 and L�nε	K,�nε	 are identically distributed. By (3.2), thus, for any
� > 0 (and ignoring �·	, for simplicity)

P
(∣∣Lm:m+nεK,m+nε − γ (K)εn

∣∣> �n
) = P

(∣∣LnεK,nε − γ (K)εn
∣∣> �n

)
= P

(∣∣∣∣LnεK,nε − 1

K
γ (K)Kεn

∣∣∣∣> �n

)

= P

(∣∣∣∣LnεK,nε − γ

(
1

K

)
Kεn

∣∣∣∣> �n

)

= P

(
Luk,k − γ (u)k > �

uk

ε

)

≤ 2 exp

[
− �2u2

2ε2(1 + u)
k

]
= 2 exp

[
− �2

ε(K + 1)
n

]
.

Here u = 1
K

and k = εnK . In the third equality, the relation Kγ ( 1
K

) = γ (K) is used. For re-
lated sequences, the random variables Lm:m+�nε	K,m+�nε	 and L�nε	K,�nε	 are not necessarily
identically distributed, hence another argument should be used. Let a(m) := ax(m) ∨ ay(m) and
a(m) := ax(m)∧ay(m). Let Ym+ky (resp., Xm+kx ) be the smallest element in Y (resp., in X) that
has ancestor at least a(m). Similarly, let Xm−lx (resp., Ym−ly ) be the smallest element in X (resp.,
in Y ) that has ancestor at least a(m). If ax(m) ≥ ay(m), then kx = ly = 0 and if ax(m) ≤ ay(m),
then ky = lx = 0. Hence,

L(Xm−lx+1, . . . ,Xm+K�nε	;Ym−ly+1, . . . , Ym+�nε	)
(A.3)

≥ Lm:m+�nε	K,m+�nε	
≥ L(Xm+kx+1, . . . ,Xm+K�nε	;Ym+ky+1, . . . , Ym+�nε	). (A.4)

Note that the random variables Xm+kx+1,Xm+kx+2, . . . and Ym+ky+1, Ym+ky+2, . . . depend
on i.i.d. random vectors Ua(m)+1,Ua(m)+2, . . . , where Ui is defined as in (4.1). Similarly
Xm−lx+1,Xm−lx+2, . . . and Ym−ly+1, Ym−ly+2, . . . depend on i.i.d. random vectors Ua(m)+1,

Ua(m)+2, . . . . Hence, the random variables

L(Xm+kx+1, . . . ,Xm+kx+K�nε	;Ym+ky+1, . . . , Ym+ky+�nε	)

and

L(X1, . . . ,XK�nε	;Y1, . . . , Y�nε	)
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have the same distribution so that (as in the independent case) by (4.9)

P
(∣∣L(Xm+kx+1, . . . ,Xm+kx+K�nε	;Ym+ky+1, . . . , Ym+ky+�nε	) − εγR(K)n

∣∣> �n
)

= P
(∣∣L(X1, . . . ,XK�nε	;Y1, . . . , Y�nε	) − εγR(K)n

∣∣> �n
)≤ 4 exp

[
− 1

32

�2

εK2
n

]
.

Thus, as n grows,

1

n
L(Xm+kx+1, . . . ,Xm+kx+K�nε	;Ym+ky+1, . . . , Ym+ky+�nε	) → εγR(K) a.s.

The random variables k := kx ∨ ky and l := lx ∨ ly satisfy

k ∨ l ≤ a(m) − a(m).

Note that
ax(m)∑
i=1

Dx
i =

ay(m)∑
i=1

D
y
i = m.

Now, using Hoeffding inequality for i.i.d. random variables Dx
i and D

y
i , it is easy to see that

ax(m)

m
→ 1

p
a.s.,

ay(m)

m
→ 1

p
a.s.

Therefore,

k ∨ l

m
≤ a(m) − a(m)

m
→ 0 a.s.

so that k(n)
n

→ 0 a.s. and l(n)
n

→ 0 a.s. Since∣∣L(Xm+kx+1, . . . ,Xm+K�nε	;Ym+ky+1, . . . , Ym+�nε	)

− L(Xm+kx+1, . . . ,Xm+kx+K�nε	;Ym+ky+1, . . . , Ym+ky+�nε	)
∣∣≤ k(n),

from k(n)
n

→ 0 a.s., we get that

lim
n

1

n
L(Xm+kx+1, . . . ,Xm+K�nε	;Ym+ky+1, . . . , Ym+�nε	)

(A.5)

= lim
u

1

u
εLKu,u = γR(K)ε a.s.

By similar argument,

lim
n

1

n
L(Xm−lx+1, . . . ,Xm+K�nε	;Ym−ly+1, . . . , Ym+�nε	)

(A.6)

= lim
u

1

u
εLKu,u = γR(K)ε a.s.
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The inequalities (A.5) and (A.6) together with (A.3) and(A.4) imply (A.2). The convergences
(A.1) and (A.2) imply

lim
n

1

n
Ln(1+c),n = γR(1 + c) > γR a.s. (A.7)

The limit in (A.7) exists by Proposition 4.1, the inequality γR(1 + c) > γR follows from (A.1)
and (A.2), since εγR(K) + (1 − ε)γR > γR. This proves that γR(a) > γR, when a > 1.

Finally,

1

2n
L2n,2n ≥ 1

2n
Ln(1+c),n + 1

2n
L(X�n(1+c)	+1, . . . ,X2n;Yn+1, . . . , Y2n).

Since 1
2n

L2n,2n → γR, a.s. and, using the same argument as proving (A.2), we get

lim
n

1

2n
L(X�n(1+c)	+1, . . . ,X2n;Yn+1, . . . , Y2n) = 1

2
lim
n

1

n
L(1−c)n,n = γR(1 − c)

2
a.s.,

by (A.7), we have γR ≥ γR(1+c)
2 + γR(1−c)

2 >
γR+γR(1−c)

2 . This implies that γR(a) = γR(1 − c) <

γR. �

The following corollary generalizes Proposition 3.1 for related sequences. Moreover, we al-
low the sequences to be unequal length. Hence, we consider the case X = X1, . . . ,Xn, Y =
Y1, . . . , Ym, n ≤ m ≤ n(1 + �), where � ≥ 0. The case � = 0 corresponds to the case m = n.
Recall the random variables S := jh

1 − 1 and T := n − ihk , that obviously are the functions of X

and Y . The proof of the following corollary is very similar to that one of Proposition 3.1.

Corollary A.1. Let 1 > c > �. Then there exists constant d(c) > 0, so that, for n big enough,
P(T > cn) ≤ exp[−dn], P(S > cn) ≤ exp[−dn].

Proof. As in the proof of Proposition 3.1, note that for any γ̄ ,

{S > cn} ⊂ {Ln,m−cn = Ln,m} ⊂ {Ln,m−cn ≥ γ̄ n} ∪ {Ln,m ≤ γ̄ n}.

By Lemma A.1, γR > γR(1 + � − c). Let γ̄ := 1
2 (γR + γR(1 + � − c)). Let ε := γR − γ̄ . Since

Ln,m−cn ≤ Ln,(1+�−c)n and Ln = Ln,n ≤ Ln,m, Corollary 4.1 states that for n big enough,

P(S > cn) ≤ P(Ln,(1+�−c)n ≥ γ̄ n) + P(Ln ≤ γ̄ n)

= P
(
Ln,(1+�−c)n ≥ (

γR(1 + � − c) + ε
)
n
)+ P

(
Ln ≤ (γR − ε)n

)
≤ 8 exp

[
− p

32
(1 + � − c)ε2n

]
.

This concludes the proof. �
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