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For a class of martingales, this paper provides a framework on the uniform consistency with broad appli-
cability. The main condition imposed is only related to the conditional variance of the martingale, which
holds true for stationary mixing time series, stationary iterated random function, Harris recurrent Markov
chains and I (1) processes with innovations being a linear process. Using the established results, this pa-
per investigates the uniform convergence of the Nadaraya–Watson estimator in a non-linear cointegrating
regression model. Our results not only provide sharp convergence rate, but also the optimal range for the
uniform convergence to be held. This paper also considers the uniform upper and lower bound estimates for
a functional of Harris recurrent Markov chain, which are of independent interests.
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1. Introduction

Let (uk, xk) with xk = (xk1, . . . , xkd), d ≥ 1, be a sequence of random vectors. A common func-
tional of interests Sn(x) of (uk, xk) is defined by

Sn(x) =
n∑

k=1

ukf
[
(xk + x)/h

]
, x ∈ Rd, (1.1)

where h = hn → 0 is a certain sequence of positive constants and f (x) is a real function on Rd .
Such functionals arise in non-parametric estimation problems, where f may be a kernel func-
tion K or a squared kernel function K2 and the sequence h is the bandwidth used in the non-
parametric regression.

The uniform convergence of Sn(x) in the situation that the (uk, xk) satisfy certain stationary
conditions was studied in many articles. Liero [17], Peligrad [24] and Nze and Doukhan [21] con-
sidered the uniform convergence over a fixed compact set, while Masry [19], Bosq [2] and Fan
and Yao [8] gave uniform results over an unbounded set. These work mainly focus on random
sequence xt which satisfies different types of mixing conditions. Investigating a more general
framework, Andrews [1] gave result on kernel estimate when the data sequence is near-epoch
dependent on another underlying mixing sequence. More recently, Hansen [12] provided a set of
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general uniform consistency results, allowing for stationary strong mixing multivariate data with
infinite support, kernels with unbounded support and general bandwidth sequences. Kristensen
[16] further extended Hansen’s results to the heterogenous dependent case under α-mixing con-
dition. Also see Wu, Huang and Huang [32] for kernel estimation in general time series settings.

In comparison to the extensive results where the xk comes from a stationary time series data,
there is little investigation on the the uniform convergence of Sn(x) for the xk being a non-
stationary time series. In this regard, Gao, Li and Tjøstheim [11] derived strong and weak con-
sistency results for the case where the xk is a null-recurrent Markov chain. Wang and Wang [31]
worked with partial sum processes of the type xk = ∑k

j=1 ξj where ξj is a general linear process.
While the rate of convergence in Gao, Li and Tjøstheim [11] is sharp, they impose the indepen-
dence between uk and xk . Using a quite different method, Wang and Wang [31] allowed for the
endogeneity between uk and xk , but their results hold only for the x being in a fixed compact set.

The aim of this paper is to present a general uniform consistency result for Sn(x) with broad
applicability. As a framework, our assumption on the xt is only related to the conditional vari-
ance of the martingale, that is,

∑n
t=1 f 2[(xt + x)/h]. See Assumption 2.3 in Section 2. This

of course is a “high level” condition, but it in fact is quite natural which holds true for many
interesting and important examples, including stationary mixing time series, stationary iterated
random function and Harris recurrent Markov chain. See Sections 2.2 and 2.3 for the identifica-
tion of Assumption 2.3. This condition also holds true for I (1) processes with innovations being
a linear process, but the identification is complicated and requires quite different techniques. We
will report related work in a separate paper. By using the established result, we investigate the
uniform convergence of the Nadaraya–Watson estimator in a non-linear cointegrating regression
model. It confirms that the uniform asymptotics in Wang and Wang [31] can be extended to a
unbounded set and the independence between the ut and xt in Gao, Li and Tjøstheim [11] can
be removed. More importantly, our result not only provides sharp convergence rate, but also the
optimal range for the uniform convergence to be held. It should be mentioned that our work on
the uniform upper and lower bound estimation for a functional of Harris recurrent Markov chain
is of independent interests.

This paper is organized as follows. Our main results are presented in next section, which
includes the establishment of a framework on the uniform convergence for a class of martingale
and uniform upper and lower bound estimation for a functional of Harris recurrent Markov chain.
An application of the main results in non-linear cointegrating regression is given in Section 3. All
proofs are postponed to Section 4. Throughout the paper, we denote constants by C,C1,C2, . . .

which may be different at each appearance. We also use the notation ‖x‖ = max1≤i≤d |xi |.

2. Main results

2.1. Uniform convergence for a class of martingales

We make use of the following assumptions in the development of uniform convergence for the
Sn(x) defined by (1.1). Recall xk = (xk1, . . . , xkd) where d ≥ 1 is an integer.

Assumption 2.1. {ut , Ft }t≥1 is a martingale difference, where Ft = σ(x1, . . . , xt+1, u1, . . . , ut ),
satisfying supt≥1 E(|ut |2p | Ft−1) < ∞, a.s., for some p ≥ 1 specified in Assumption 2.4 below.
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Assumption 2.2. f (x) is a real function on Rd satisfying supx∈Rd |f (x)| < ∞ and |f (x) −
f (y)| ≤ C‖x − y‖ for all x, y ∈ Rd and some constant C > 0.

Assumption 2.3. There exist positive constant sequences cn ↑ ∞ and bn with bn = O(nk) for
some k > 0 such that

sup
‖x‖≤bn

n∑
t=1

f 2[(xt + x)/h
] = OP (cn). (2.1)

Assumption 2.4. h → 0, nh → ∞ and nc
−p
n logp−1 n = O(1), where cn is defined as in Assump-

tion 2.3 and p is defined as in Assumption 2.1.

We remark that Assumption 2.1 ensures that {Sn(x), Fn}n≥1 is a martingale for each fixed x

and is quite weak. Clearly, Assumption 2.1 is satisfied if ut is a sequence of i.i.d. random vari-
ables, which is independent of x1, . . . , xt , with Eu1 = 0 and E|u1|2p < ∞. The Lipschitz condi-
tion used in Assumption 2.2 is standard in the investigation of uniform consistency, where we do
not require the f (x) to have finite compact support. Assumption 2.3 is a “high level” condition
for the xk . We use it here to provide a framework. In Sections 2.2 and 2.3, we will show that this
condition is in fact quite natural which holds true by many interesting and important examples.
Assumption 2.4 provides the connections among the moment condition required in Assump-
tion 2.1, the condition (2.1) and the bandwidth h. In many applications, we have cn = nαhdl(n),
where 0 < α ≤ 1 and l(n) is a slowly varying function at infinite. See Section 2.3 and Examples
1–3 in Section 2.2. In the typical situation that cn = nαhdl(n), if there exists a 0 < ε0 < α such
that nα−ε0hd → ∞, the p required in Assumption 2.1 can be specified to p = [1/ε0] + 1.

We have the following main result.

Theorem 2.1. Under Assumptions 2.1–2.4, we have

sup
‖x‖≤bn

∣∣∣∣∣
n∑

t=1

utf
[
(xt + x)/h

]∣∣∣∣∣ = OP

[
(cn logn)1/2]. (2.2)

If (2.1) is replaced by

sup
‖x‖≤bn

n∑
t=1

f 2[(xt + x)/h
] = O(cn), a.s., (2.3)

the result (2.2) can be strengthened to

sup
‖x‖≤bn

∣∣∣∣∣
n∑

t=1

utf
[
(xt + x)/h

]∣∣∣∣∣ = O
[
(cn logn)1/2], a.s. (2.4)

Theorem 2.1 can be extended to uniform convergence for the Sn(x) = ∑n
t=1 utf [(xt + x)/h]

over unrestricted space Rd . This requires additional condition on the xk and the tail decay for the
function f (x).
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Theorem 2.2. In addition to Assumptions 2.1–2.4, n sup‖x‖>bn/2 |f (x/h)| = O[(cn logn)1/2]
and there exists a k0 > 0 such that

b−k0
n

n∑
t=1

E‖xt‖k0 = O
[
(cn logn)1/2]. (2.5)

Then,

sup
x∈Rd

∣∣∣∣∣
n∑

t=1

utf
[
(xt + x)/h

]∣∣∣∣∣ = OP

[
(cn logn)1/2]. (2.6)

Similarly, if (2.1) is replaced by (2.3) and (2.5) is replaced by

b−k0
n

n∑
t=1

‖xt‖k0 = O
[
(cn logn)1/2], a.s., (2.7)

then

sup
x∈Rd

∣∣∣∣∣
n∑

t=1

utf
[
(xt + x)/h

]∣∣∣∣∣ = O
[
(cn logn)1/2], a.s. (2.8)

Remark 2.1. Theorems 2.1–2.2 allow for the xt to be a stationary or non-stationary time series.
See Examples 1–3 and Section 2.3 below. More examples on non-stationary time series will be
reported in a separate paper. The rates of convergence in both theorems are sharp. For instance,
in the well-known stationary situation such as those appeared in Examples 1–3, the cn can be
chosen as cn = nh. Hence, when there are enough moment conditions on the ut (i.e., p is large
enough), we obtain the optimal rate n2/5 log3/5 n, by taking h ∼ (logn/n)1/5. In non-stationary
situation, the rate of convergence is different. In particular we have cn = √

nh for the xt to be a
random walk given in Corollary 2.1. The reason behind this fact is that the amount of time spent
by the random walk around any particular point is of order

√
n rather than n for a stationary time

series. For more explanation in this regard, we refer to Wang and Phillips [27,28].

2.2. Identifications of Assumption 2.3

This section provides several stationary time series examples which satisfy Assumption 2.3. Ex-
amples 1 and 2 come from Wu, Huang and Huang [32], where more general settings on the xt

are established. Example 3 discusses a strongly mixing time series. This example comes from
Hansen [12]. By making use of other related works such as Peligrad [24], Nze and Doukhan [21],
Masry [19], Bosq [2] and Andrews [1], similar results can be established for other mixing time
series like ρ-mixing and near-epoch-dependent time series. In these examples, we only consider
the situation that d = 1. The extension to d > 1 is straightforward and hence the details are
omitted. Throughout Examples 1–3, we use the notation f 2

h (x) = h−1f 2(x/h).
Example on the Harris recurrent Markov chains, which allows for stationary (positive recur-

rent) or non-stationary (null recurrent) series, is given in Section 2.3. In the section, we also
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consider the uniform lower bound, which is of independent interests. More examples on I (1)

processes with innovations being linear processes will be reported in a separate paper.

Example 1. Let {xt }t≥0 be a linear process defined by

xt =
∞∑

k=0

φkεt−k,

where {εj }j∈Z is a sequence of i.i.d. random variables with Eε2
0 < ∞ and a density pε satisfying

supx |p(r)
ε (x)| < ∞ and ∫

R

∣∣p(r)
ε (x)

∣∣2 dx < ∞, r = 0,1,2,

where p
(r)
ε (x) denotes the r-order derivative of pε(x). Suppose that

∑∞
k=0 |φk| < ∞ and φ ≡∑∞

k=0 φk �= 0, and in addition Assumption 2.2, f (x) has a compact support. It follows from
Section 4.1 of Wu, Huang and Huang [32] that, for any h → 0 and nh log−1 n → ∞,

sup
x∈R

∣∣∣∣∣1

n

n∑
t=1

[
f 2

h (xt + x) − Ef 2
h (xt + x)

]∣∣∣∣∣ = O

[√
logn

nh
+ n−1/2l(n)

]
, a.s., (2.9)

where l(n) is a slowly varying function. Note that xt is stationary process with a bounded density
g(x) under the given conditions on εk . Simple calculations show that

sup
x∈R

n∑
t=1

f 2[(xt + x)/h
] = OP (nh), (2.10)

that is, xt satisfies Assumption 2.3.

Example 2. Consider the non-linear time series of the following form

xk = R(xk−1, εk),

where R is a bivariate measurable function and εk are i.i.d. innovations. This is the iterated
random function framework that encompasses a lot of popular non-linear time series models.
For example, if R(x, ε) = a1xI (x < τ) + a2xI (x ≥ τ) + ε, it is the threshold autoregressive

(TAR) model (see Tong [25]). If R(x, ε) = ε

√
a2

1 + a2
2x, then it is autoregressive model with

conditional heteroscedasticity (ARCH) model. Other non-linear time series models, including
random coefficient model, bilinear autoregressive model and exponential autoregressive model
can be fitted in this framework similarly. See Wu and Shao [33] for details.

In order to identify Assumption 2.3, we need some regularity conditions on the initial distri-
bution of x0 and the function R(x, ε). Define

Lε = sup
x �=x′

|R(x, ε) − R(x′, ε)|
|x − x′| . (2.11)
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Denote by g(x | x0) the conditional density of x1 at x given x0. Further let g′(y | x) = ∂g(y |
x)/∂y and

I (x) =
[∫

R

∣∣∣∣ ∂

∂x
g(y | x)

∣∣∣∣2

dy

]1/2

and J (x) =
[∫

R

∣∣∣∣ ∂

∂x
g′(y | x)

∣∣∣∣2

dy

]1/2

, (2.12)

I (x) and J (x) can be interpreted as a prediction sensitivity measure. These quantities measure
the change in 1-step predictive distribution of x1 with respect to change in initial value x0. Sup-
pose that:

(i) there exist α and z0 such that

E
(|Lε0 |α + ∣∣R(z0, ε0)

∣∣α)
< ∞, E

[
log(Lε0)

]
< 0 and EL2

ε0
< 1;

(ii) supx[I (x) + J (x)] < ∞;
(iii) in addition to Assumption 2.2, f (x) has a compact support.

It follows from Section 4.2 of Wu, Huang and Huang [32] that, for any h → 0 and nh log−1 n →
∞

sup
x∈R

∣∣∣∣∣1

n

n∑
t=1

[
f 2

h (xt + x) − Ef 2
h (xt + x)

]∣∣∣∣∣ = O

[√
logn

nh
+ n−1/2l(n)

]
, a.s., (2.13)

where l(n) is a slowly varying function. Note that xt has a unique and stationary distribution
under the given condition (i) and (ii). See Diaconis and Freedman [7], for instance. Simple cal-
culations show that

sup
x∈R

n∑
t=1

f 2[(xt + x)/h
] = OP (nh), (2.14)

that is, xt satisfies Assumption 2.3.

Example 3. Let {xk}k≥0 be a strictly stationary time series with density g(x). Suppose that:

(i) xt is strongly mixing with mixing coefficients α(m) that satisfy α(m) ≤ Am−β where
β > 2 and A < ∞;

(ii) supx |x|qg(x) < ∞ for some q ≥ 1 satisfying β > 2 + 1/q and there is some j∗ < ∞
such that for all j ≥ j∗, supx,y gj (x, y) < ∞ where gj (x, y) is the joint density of {x0, xj };

(iii) in addition to Assumption 2.2, f (x) has a compact support.

It follows from Theorem 4 (with Yi = 1) of Hansen [12] that, for any h → 0 and nθh log−1 n →
∞ with θ = β − 2 − 1/q ,

sup
x∈R

∣∣∣∣∣1

n

n∑
t=1

[
f 2

h (xt + x) − Ef 2
h (xt + x)

]∣∣∣∣∣ = OP

[√
logn

nh

]
. (2.15)
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If in addition E|x0|2q < ∞, the result (2.15) can be strengthened to almost surely convergence.
Simple calculations show that

sup
x∈R

n∑
t=1

f 2[(xt + x)/h
] = OP (nh), (2.16)

that is, xt satisfies Assumption 2.3.

2.3. Uniform bounds for functionals of Harris recurrent Markov chain

Let {xk}k≥0 be a Harris recurrent Markov chain with state space (E, E ), transition probability
P(x,A) and invariant measure π . We denote Pμ for the Markovian probability with the ini-
tial distribution μ, Eμ for correspondent expectation and P k(x,A) for the k-step transition of
{xk}k≥0. A subset D of E with 0 < π(D) < ∞ is called D-set of {xk}k≥0 if for any A ∈ E +,

sup
x∈E

Ex

(
τA∑

k=1

ID(xk)

)
< ∞,

where E + = {A ∈ E :π(A) > 0} and τA = inf{n ≥ 1 :xn ∈ A}. As is well-known, D-sets not only
exist, but generate the entire sigma E , and for any D-sets C,D and any probability measure ν,μ

on (E, E ),

lim
n→∞

n∑
k=1

νP k(C)
/ n∑

k=1

μP k(D) = π(C)

π(D)
, (2.17)

where νP k(D) = ∫ ∞
−∞ P k(x,D)ν(dx). See Nummelin [20], for instance.

Let a D-set D and a probability measure ν on (E, E ) be fixed. Define

a(t) = π−1(D)

[t]∑
k=1

νP k(D), t ≥ 0.

By recurrence, a(t) → ∞. By virtue of (2.17), the asymptotic order of a(t) depends only on
{xk}k≥0. As in Chen [5], a Harris recurrent Markov chain {xk}k≥0 is called β-regular if

lim
λ→∞a(λt)/a(λ) = tβ ∀t > 0, (2.18)

where 0 < β ≤ 1. It is interesting to notice that, under the condition (2.18), the function a(t) is
regularly varying at infinity, that is, there exists a slowly varying function l(x) such that a(t) ∼
tβ l(t). This implies that the definition of β-regular Harris recurrent Markov chain is similar to
that of β-null recurrent given in Karlsen and Tjøstheim [14] and Gao, Li and Tjøstheim [11], but
it is more natural and simple.

The following theorem provides uniform upper and lower bounds for a functional of xt . The
upper bound implies that xt satisfies Assumption 2.3, allowing for the xt being stationary (β = 1,
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positive recurrent Markov chain) and non-stationary (0 < β < 1, null recurrent Markov chain).
The lower bound plays a key role in the investigation of the uniform consistency for the kernel
estimator in a non-linear cointegrating regression, and hence is of independent interests. See Sec-
tion 3 for more details. Both upper and lower bounds are optimal, which is detailed in Remarks
2.2 and 2.3.

Theorem 2.3. Suppose that:

(i) {xk}k≥0 is a β-regular Harris recurrent Markov chain, where the invariant measure π has
a bounded density function p(s) on R;

(ii) in addition to Assumption 2.2,
∫ ∞
−∞ |f (x)|dx < ∞.

Then, for any h > 0 satisfying n−ε0a(n)h → ∞ for some ε0 > 0, we have

sup
|x|≤nm

n∑
k=1

f 2[(xk + x)/h
] = OP

[
a(n)h

]
, (2.19)

where m can be any finite integer.
For a given sequence of constants bn > 0, if there exists a constant C0 > 0 such that, uniformly

for n large enough,

inf|x|≤bn+1

n∑
k=1

Ef 2[(xk + x)/h
] ≥ a(n)h/C0, (2.20)

then, for any h > 0 satisfying n−ε0a(n)h → ∞ for some ε0 > 0, we have{
inf|x|≤bn

n∑
k=1

f 2[(xk + x)/h
]}−1

= OP

{[
a(n)h

]−1}
. (2.21)

Remark 2.2. The result (2.21) implies that, for any 0 < η < 1, there exists a constant Cη > 0
such that

P

(
inf|x|≤bn

n∑
k=1

f 2[(xk + x)/h
] ≥ a(n)h/Cη

)
≥ 1 − η. (2.22)

This makes both bounds on (2.19) and (2.21) are optimal. On the other hand, since the result
(2.22) implies that

E inf|x|≤bn

n∑
k=1

f 2[(xk + x)/h
] ≥ a(n)h(1 − η)/Cη

for any 0 < η < 1, the condition (2.20) is close to minimal.

Note that random walk is a 1/2-regular Harris recurrent Markov chain. The following corollary
on a random walk shows the range |x| ≤ bn can be taken to be optimal as well.
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Corollary 2.1. Let {εj ,1 ≤ j ≤ n} be a sequence of i.i.d. random variables with Eε0 = 0,
Eε2

0 = 1 and the characteristic function ϕ(t) of ε0 satisfying
∫ ∞
−∞ |ϕ(t)|dt < ∞. Write xt =∑t

j=1 εj , t ≥ 1. If in addition to Assumption 2.2,
∫ ∞
−∞ |f (x)|dx < ∞, then, for h > 0 and

n1/2−ε0h → ∞ where 0 < ε0 < 1/2, we have

sup
|x|≤nm

n∑
k=1

f 2[(xk + x)/h
] = OP (

√
nh) (2.23)

for any integer m > 0, and{
inf

|x|≤τn
√

n

n∑
k=1

f 2[(xk + x)/h
]}−1

= OP

{
(
√

nh)−1} (2.24)

for any 0 < τn → 0.

Remark 2.3. For a random walk xt defined as in Corollary 2.1, it was shown in Wang and Phillips
[27] that

1√
nh

n∑
t=1

f 2[(xt + yn)/h
] →D

∫
f 2(s)dsLW (1, y), (2.25)

where LW(1, y) is a local time of a Brownian motion Wt , and y = 0 if yn/
√

n → 0 and y = y0
if yn/

√
n → y0. Since P(LW(1, y) = 0) > 0 for any y �= 0, it follows from (2.25) that the range

inf|x|≤τn
√

n in (2.24) cannot be extended to inf|x|≤d
√

n for any d > 0.

Remark 2.4. As in Examples 1–3, we may obtain a better result if {xt }t≥0 is stationary (positive
null recurrent) and satisfies certain other restrictive conditions. Indeed, Kristensen [16] provided
such a result.

Let {xn}n≥0 be a time-homogeneous, geometrically ergodic Markov chain. Denote the 1-step
transition probability by p(y | x), such that P(xi+1 ∈ A | xi) = ∫

A
p(y | x)dy. Also denote the

i-step transition probability by pi(y | x), such that pi(y | x) = ∫
R

p(y | z)pi−1(z | x)dz. Since
xt is geometrically ergodic, it has a density g(x). Further suppose that:

(i) (strong Doeblin condition) there exists s ≥ 1 and ρ ∈ (0,1) such that for all y ∈ R,

ps(y | x) ≥ ρg(y); (2.26)

(ii) ∂rp(y | x)/∂yr exists and is uniformly continuous for all x, for some r ≥ 1,
(iii) supy[g(y) + |y|qg(y)] < ∞ for some q ≥ 1,
(iv) in addition to Assumption 2.2, f (x) has a compact support.

It follows from Kristensen [16] that, for any h → 0 and nh → ∞,

sup
x∈R

∣∣∣∣∣ 1

nh

n∑
t=1

f 2[(xt + x)/h
] − g(x)

∫
f 2(s)ds

∣∣∣∣∣ = OP

[
hr +

√
logn

nh

]
, (2.27)
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which yields (2.19) with a(n) = n and (2.21) with a(n) = n and bn = C0, where C0 is a constant
such that inf|x|≤C0 g(x) > 0.

Remark 2.5. It is much more complicated if xt is a null recurrent Markov chain, even in the
simple situation that xt is a random walk defined as in Corollary 2.1. In this regard, we have
(2.25), but it is not clear at the moment if it is possible to establish a result like

sup
|x|≤bn

∣∣∣∣∣ 1√
nh

n∑
t=1

f 2[(xt + x)/h
] −

∫
f 2(s)dsLW (1, x)

∣∣∣∣∣ = OP (cn) (2.28)

for some bn → ∞ and cn → 0. Note that (2.28) implies that

1√
nh

n∑
t=1

f 2[(xt + y)/h
] →P

∫
f 2(s)dsLW (1,0) (2.29)

for any fixed y. This is a stronger convergence than that given in (2.25). Our experiences show
that it might not be possible to prove (2.28) without enlarging the probability space in which the
xt hosts.

3. Applications in non-linear cointegrating regression

Consider a non-linear cointegrating regression model:

yt = m(xt ) + ut , t = 1,2, . . . , n, (3.1)

where ut is a stationary error process and xt is a non-stationary regressor. Let K(x) be a non-
negative real function and set Kh(s) = h−1K(s/h) where h ≡ hn → 0. The conventional kernel
estimate of m(x) in model (3.1) is given by

m̂(x) =
∑n

t=1 ytKh(xt − x)∑n
t=1 Kh(xt − x)

. (3.2)

The point-wise limit behavior of m̂(x) has currently been investigated by many authors. Among
them, Karlsen, Myklebust and Tjøstheim [13] discussed the situation where xt is a recurrent
Markov chain. Wang and Phillips [28,29] and Cai, Li and Park [3] considered an alternative
treatment by making use of local time limit theory and, instead of recurrent Markov chains,
worked with partial sum representations of the type xt = ∑t

j=1 ξj where ξj is a general linear
process. In another paper, Wang and Phillips [28] considered the errors ut to be serially depen-
dent and cross correlated with the regressor xt for small lags. For other related works, we refer
to Kasparis and Phillips [15], Park and Phillips [22,23], Gao et al. [9,10], Marmer [18], Chen, Li
and Zhang [4], Wang and Phillips [30] and Wang [26].

This section provides a uniform convergence for the m̂(x) by making direct use of Theorems
2.1 and 2.3 in developing the asymptotics. For reading convenience, we list the assumptions as
follows.
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Assumption 3.1. (i) {xk}k≥0 is a β-regular Harris recurrent Markov chain defined as in Sec-
tion 3, where the invariant measure π has a bounded density function p(s) on R; (ii) {ut , Ft }t≥1
is a martingale difference, where Ft = σ(x1, . . . , xt+1, u1, . . . , ut ), satisfying supt≥1 E(|ut |2p |
Ft−1) < ∞, where p ≥ 1 + 1/ε0 for some 0 < ε0 < β .

Assumption 3.2. The kernel K satisfies that
∫ ∞
−∞ K(s)ds < ∞, supx K(x) < ∞ and for any

x, y ∈ R, ∣∣K(x) − K(y)
∣∣ ≤ C|x − y|.

Assumption 3.3. There exists a real positive function g(x) such that∣∣m(y) − m(x)
∣∣ ≤ C|y − x|αg(x),

uniformly for some 0 < α ≤ 1 and any (x, y) ∈ �ε , where ε can be chosen sufficiently small and
�ε = {(x, y) : |y − x| ≤ ε, x ∈ R}.

Assumption 3.1 is similar to, but weaker than those appeared in Karlsen, Myklebust and Tjøs-
theim [13], where the authors considered the point-wise convergence in distribution.

Assumption 3.2 is a standard condition on K(x) as in the stationary situation. The Lipschitz
condition on K(x) is not necessary if we only investigate the point-wise asymptotics. See Re-
mark 3.2 for further details.

Assumption 3.3 requires a Lipschitz-type condition in a small neighborhood of the targeted
set for the functionals to be estimated. This condition is quite weak, which may host a wide set
of functionals. Typical examples include that m(x) = θ1 + θ2x +· · ·+ θkx

k−1; m(x) = α +βxγ ;
m(x) = x(1 + θx)−1I (x ≥ 0); m(x) = (α + βex)/(1 + ex).

We have the following asymptotic results.

Theorem 3.1. Suppose Assumptions 3.1–3.3 hold, h → 0 and n−ε0a(n)h → ∞ where 0 < ε0 <

β is given as in Assumption 3.1. It follows that

sup
|x|≤b′

n

∣∣m̂(x) − m(x)
∣∣ = OP

{[
a(n)h

]−1/2 log1/2 n + hαδn

}
, (3.3)

where b′
n ≤ bn, δn = sup|x|≤b′

n
g(x) and bn satisfies that

inf|x|≤bn+1

n∑
k=1

EK
[
(xk + x)/h

] ≥ a(n)h/C0

for some C0 > 0 and all n sufficiently large. In particular, for the random walk xt defined as in
Corollary 2.1, we have

sup
|x|≤b′

n

∣∣m̂(x) − m(x)
∣∣ = OP

{(
nh2)−1/4 log1/2 n + hαδn

}
, (3.4)

where b′
n ≤ τn

√
n for some 0 < τn → 0 and δn = sup|x|≤b′

n
g(x).
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Remark 3.1. When a high moment exists on the error ut , the ε0 can be chosen sufficiently small
so that there are more bandwidth choices in practice. It is understandable that the results (3.3)
and (3.4) are meaningful if only hαδn → 0, which depends on the tail of the unknown regression
function m(x), the bandwidth h and the range |x| ≤ b′

n. When m(x) has a light tail such as
m(x) = (α + βex)/(1 + ex), δn may be bounded by a constant. In this situation, the b′

n in (3.4)
can be chosen to be τn

√
n for some 0 < τn → 0. In contrast to Theorem 2.3 and Remark 2.3, this

kind of range |x| ≤ τn

√
n might be optimal, that is, the b′

n cannot be improved to d
√

n, for any
d > 0, to establish the same rate of convergence as in (3.4).

Remark 3.2. Both results (3.3) and (3.4) are sharp. However, a better result can be obtained if we
are only interested in the point-wise asymptotics for m̂(x). For instance, as in Wang and Phillips
[27,28] with minor modification, we may show that, for each x,

m̂(x) − m(x) = OP

{(
nh2)−1/4 + hα

}
, (3.5)

whenever xt is a random walk defined as in Corollary 2.1. Furthermore m̂(x) has an asymptotic
distribution that is mixing normal, under minor additional conditions. More details are referred
to Wang and Phillips [27,28].

Remark 3.3. Wang and Wang [31] established a similar result to (3.4) with the xt being a partial
sum of linear process, but only for the x being a compact support and imposing a bounded condi-
tion on ut . The setting on the xt in this paper is similar to that given in Gao, Li and Tjøstheim [11],
but our result provides the optimal range for the uniform convergence holding true and removes
the independence between the error ut and xt required by Gao, Li and Tjøstheim [11].

4. Proofs of main results

Proof of Theorem 2.1. We split the set An = {x :‖x‖ ≤ bn} into mn balls of the form

Anj = {
x :‖x − yj‖ ≤ 1/m′

n

}
,

where m′
n = [nh−1/(cn logn)1/2], mn = (bnm

′
n)

d and yj are chosen so that An ⊂ ⋃
Anj . It

follows that

sup
‖x‖≤bn

∣∣∣∣∣
n∑

t=1

utf
[
(xt + x)/h

]∣∣∣∣∣
≤ max

0≤j≤mn

sup
x∈Anj

n∑
t=1

|ut |
∣∣f [

(xt + x)/h
] − f

[
(xt + yj )/h

]∣∣
(4.1)

+ max
0≤j≤mn

∣∣∣∣∣
n∑

t=1

utf
[
(xt + yj )/h

]∣∣∣∣∣
:= λ1n + λ2n.



Uniform convergence rates for a class of martingales 219

Recalling the Assumption 2.2, it is readily seen that

λ1n ≤
n∑

t=1

|ut | max
0≤j≤mn

sup
x∈Anj

∣∣f [
(xt + x)/h

] − f
[
(xt + yj )/h

]∣∣
≤ C

(
hm′

n

)−1
n∑

t=1

|ut | (4.2)

≤ C(cn logn)1/2 1

n

n∑
t=1

|ut | = O
[
(cn logn)1/2], a.s.

by the strong law of large number.
In order to investigate λ2n, write u′

t = utI [|ut | ≤ (cn/ logn)1/2] and u∗
t = u′

t − E(u′
t | Ft−1).

Recalling E(ut | Ft−1) = 0 and supx |f (x)| < ∞, we have

λ2n ≤ max
0≤j≤mn

∣∣∣∣∣
n∑

t=1

u∗
t f

[
(xt + yj )/h

]∣∣∣∣∣
+ max

0≤j≤mn

∣∣∣∣∣
n∑

t=1

[∣∣ut − u′
t

∣∣ + E
(∣∣ut − u′

t

∣∣ | Ft−1
)]

f
[
(xt + yj )/h

]∣∣∣∣∣
(4.3)

≤ max
0≤j≤mn

∣∣∣∣∣
n∑

t=1

u∗
t f

[
(xt + yj )/h

]∣∣∣∣∣ + C

n∑
t=1

[∣∣ut − u′
t

∣∣ + E
(∣∣ut − u′

t

∣∣ | Ft−1
)]

:= λ3n + λ4n.

Routine calculations show that, under supt≥1 E(|ut |2p | Ft−1) < ∞ and nc
−p
n logp−1 n = O(1),

λ4n ≤
n∑

t=1

[|ut |I
{|ut | > (cn/ logn)1/2} + E

(|ut |I
{|ut | > (cn/ logn)1/2} | Ft−1

)]
≤ C

(
cn

logn

)(1−2p)/2 n∑
t=1

[|ut |2p + E
(|ut |2p | Ft−1

)]
(4.4)

≤ C(cn logn)1/2 1

n

n∑
t=1

[|ut |2p + E
(|ut |2p | Ft−1

)]
= O

[
(cn logn)1/2], a.s.

by the strong law of large number again.
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We next consider λ3n. As E[(u∗
t )

2 | Ft−1] ≤ 2(E[|ut |2p | Ft−1])1/p , a.s., Assumptions 2.1
and 2.3 imply that

max
0≤j≤mn

n∑
t=1

f 2[(xt + yj )/h
]
E

[(
u∗

t

)2 | Ft−1
] = OP (cn). (4.5)

Hence, for any η > 0, there exists a M0 > 0 such that

P

(
max

0≤j≤mn

n∑
t=1

σ 2
tj ≥ M0cn

)
≤ η,

where σ 2
tj = f 2[(xt + yj )/h]E[(u∗

t )
2 | Ft−1], whenever n is sufficiently large. This, together

with |u∗
t | ≤ 2(cn/ logn)1/2 and the well-known martingale exponential inequality (see, e.g., de

la Peña [6]), implies that, for any η > 0, there exists a M0 ≥ 6d(k+3) (k is as in Assumption 2.3)
such that, whenever n is sufficiently large,

P
[
λ3n ≥ M0(cn logn)1/2]
≤ P

[
λ3n ≥ M0(cn logn)1/2, max

0≤j≤mn

n∑
t=1

σ 2
tj ≤ M0cn

]
+ η

(4.6)

≤
mn∑
j=0

P

[
n∑

t=1

u∗
t f

[
(xk + yj )/h

] ≥ M0(cn logn)1/2,

n∑
t=1

σ 2
tj ≤ M0cn

]
+ η

≤ mn exp

{
−M2

0cn logn

6M0cn

}
+ η ≤ mnn

−M0/6 + η ≤ 2η,

where we have used the following fact:

mn ≤ C
[
nk+1h−1/(cn logn)1/2]d ≤ C1n

(k+2)d

as cn → ∞ and nh → ∞. This yields λ3n = OP [(cn logn)1/2]. Combining (4.1)–(4.6), we es-
tablish (2.2).

To prove (2.4), by checking (4.1)–(4.4), it suffices to show that

λ3n = O
[
(cn logn)1/2], a.s. (4.7)

under the alternative condition (2.3). In fact, as in (4.5), it follows from (2.3) that

max
0≤j≤mn

n∑
t=1

f 2[(xt + yj )/h
]
E

[(
u∗

t

)2 | Ft−1
] = O(cn), a.s.
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Similarly to proof of (4.6), we have for sufficiently large M0 (M0 ≥ 6d(k + 4), say),

P
[
λ3n ≥ M0(cn logn)1/2, i.o.

]
= P

[
λ3n ≥ M0(cn logn)1/2, max

0≤j≤mn

n∑
k=1

σ 2
k ≤ M0cn, i.o.

]

≤ lim
s→∞

∞∑
n=s

P

[
λ3n ≥ M0(cn logn)1/2, max

0≤j≤mn

n∑
k=1

σ 2
k ≤ M0cn

]
(4.8)

≤ lim
s→∞

∞∑
n=s

mn exp

{
−M2

0 cn logn

6M0cn

}

≤ C lim
s→∞

∞∑
n=s

n(k+2)dn−M0/6 = 0,

which yields (4.7). The proof of Theorem 2.1 is now complete. �

Proof of Theorem 2.2. We only prove (2.6). It is similar to prove (2.8) and hence the details are
omitted. We may write

n∑
t=1

utf
[
(xt + x)/h

]
=

n∑
t=1

utf
[
(xt + x)/h

]
I
(‖xt‖ ≤ bn/2

)
(4.9)

+
n∑

t=1

utf
[
(xt + x)/h

]
I
(‖xt‖ > bn/2

)
= λ5n(x) + λ6n(x) say.

It is readily seen from (2.2) and n sup‖x‖>bn/2 |f (x/h)| = O[(cn logn)1/2] that

sup
x∈Rd

∣∣λ5n(x)
∣∣ ≤ sup

‖x‖≤bn

∣∣λ5n(x)
∣∣ + sup

‖x‖>bn

∣∣λ5n(x)
∣∣

≤ OP

[
(cn logn)1/2]

+ sup
‖x‖>bn/2

∣∣f (x/h)
∣∣ n∑

t=1

|ut |

≤ OP

[
(cn logn)1/2]
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as 1
n

∑n
t=1 |ut | = O(1), a.s. by the strong law. As for λ6n(x), we have

E sup
x∈Rd

∣∣λ6n(x)
∣∣ ≤ C

n∑
t=1

E
[|ut |I

(‖xt‖ > bn/2
)]

≤ C

n∑
t=1

P
(‖xt‖ > bn/2

) ≤ Cb−k0
n

n∑
t=1

E‖xt‖k0

= O
[
(cn logn)1/2],

which yield supx∈Rd |λ6n(x)| = OP [(cn logn)1/2]. Taking these estimates into (4.9), we obtain
(2.6). The proof of Theorem 2.2 is complete. �

Proof of Theorem 2.3. First, assume there exists a C ∈ E + such that

P(x,A) ≥ bIC(x)ν(A), x ∈ E,A ∈ E , (4.10)

for some b > 0 and probability measure ν on (E, E ) with ν(C) > 0. Under this addition assump-
tion, Theorem 2.3 can be established by using the so-called split chain technique. To this end,
define new random variables Y0, Y1, . . . and x̄0, x̄1, . . . by

P(x̄0 ∈ A) = ν(A),

P (Yn = 1 | x̄n = x) = h(x),

P (Yn = 0 | x̄n = x) = 1 − h(x),

P (x̄n+1 ∈ A | x̄n = x,Yn = 1) = ν(A),

P (x̄n+1 ∈ A | x̄n = x,Yn = 0) = P(x,A) − h(x)ν(A)

1 − h(x)
,

where h(x) = bIC(x). As easily seen, {x̄n, Yn}∞n=0 is a Harris recurrent Markov chain with state
space E × {0,1} and {x̄n}∞n=0 has the same transition probability P(x,A) as those of {xn}∞n=0.
Since our result is free of the initial distribution, {xn}∞n=0 can be assumed to be identical with
{x̄n}∞n=0, that is, x0 has the distribution ν.

Further define ρ0 = −1,

ρk = min{i : i ≥ ρk−1, Yi = 1}, k = 1,2, . . . ,

N(n) = max{k :ρk ≤ n}, and

Zj (x) =
ρj∑

k=ρj−1+1

f 2[(xk + x)/h
]
, Zjn(x) =

ρj ∧n∑
k=ρj−1∧n+1

f 2[(xk + x)/h
]

for j = 1,2, . . . . It is well known that the blocks

(xρi+1, . . . , xρi+1), i = 0,1,2, . . . ,
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are i.i.d. blocks, xρi+1 having the distribution ν. Hence, for each h and x, {Z∗
j (x), ρj −ρj−1}∞j=1,

where Z∗
j (x) = Zj (x) or Zjn(x) is a sequence of i.i.d. random vectors. Furthermore, by recalling

that π has a bounded density function p(s),
∫ ∞
−∞ |f (x)|dπ(x) < ∞ and sups |f (s)| < ∞, we

have

EZ1(x) = b

∫ ∞

−∞
f 2[(s + x)/h

]
π(ds)

(4.11)

= bh

∫ ∞

−∞
f 2(s)p(−x + sh)ds ≤ C∗h

for any x ∈ R and

sup
x∈R

E
∣∣Z1(x)

∣∣2k ≤ Ch (4.12)

for any integer k. See Lemma 5.2 of Karlsen and Tjøstheim [14] or Lemma B.1 of Gao, Li and
Tjøstheim [11]. We also have the following lemma.

Lemma 4.1. Suppose that dn ∼ C0a(n), where C0 > 0 is a constant, and all yj , j =
0,1, . . . ,mn, are different, where |yj | ≤ nm0 and mn ≤ nm1 for some m0,m1 > 0. Then,

Rn := max
0≤j≤mn

∣∣∣∣∣
dn∑

k=0

[
Z∗

k (yj ) − EZ∗
k (yj )

]∣∣∣∣∣ = OP

[
n−ε0/4a(n)h

]
, (4.13)

�n := max
0≤j≤mn

E

∣∣∣∣∣
dn∑

k=0

[
Z∗

k (yj ) − EZ∗
k (yj )

]∣∣∣∣∣ = O
[
n−ε0/4a(n)h

]
, (4.14)

where ε0 is a constant such that n−ε0a(n)h → ∞.

Proof. Only consider Z∗
k (x) = Zk(x), as the situation that Z∗

k (x) = Zkn(x) is similar. To

this end, write Z̃i(yj ) = Zi(yj )I (|Zi(yj )| ≤ n−ε0/2a(n)h) and Ẑi(yj ) = Zi(yj )I (|Zi(yj )| >

n−ε0/2a(n)h). We have

Rn ≤ max
0≤j≤mn

∣∣∣∣∣
dn∑
i=1

[
Z̃i(yj ) − EZ̃i(yj )

]∣∣∣∣∣ + max
0≤j≤mn

dn∑
i=1

[
Ẑi(yj ) + EẐi(yj )

]
(4.15)

:= R1n + R2n.

By taking k ≥ (m1 + 2)/ε0 in (4.12) and noting n−ε0a(n)h → ∞, simple calculations show that

ER2n ≤ Cmna(n) max
0≤j≤mn

EZ1(yj )I
(∣∣Zi(yj )

∣∣ > n−ε0/2a(n)h
)

≤ C1a(n)h
(
nm1+1−kε0h−1) ≤ C1a(n)h(nh)−1 (4.16)

≤ C2n
−ε0/2a(n)h,
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which yields R2n = OP [n−ε0/2a(n)h]. As for R1n, by using (4.12) with k = 2 and noting

Eet (Z̃i (yj )−EZ̃i(yj )) ≤ 1 + t2

2
EZ2

1(yj )e
2tn−ε0/2a(n)h ≤ eC0t

2h

for any t ≤ (n−ε0/2a(n)h)−1 and some C0 > 0, the standard Markov inequality implies that

P
(
R1n ≥ Mn−ε0/4a(n)h

)
≤ Cmn max

0≤j≤mn

P

(∣∣∣∣∣
Cεa(n)∑
i=1

[
Z̃i(yj ) − EZ̃i(yj )

]∣∣∣∣∣ ≥ Mn−ε0/4a(n)h

)
(4.17)

≤ Cmn exp
(−Mtn−ε0/4a(n)h + Cεa(n)t2h

)
≤ Cmn exp

(−Mnε0/4/4
) → 0

as n → ∞. Hence, R1n = OP [n−ε0/4a(n)h]. Combining (4.15)–(4.17), we prove (4.13).
The proof of (4.14) is similar except more simpler. Indeed, by independence of Z̃i(x), we

obtain

�n ≤ max
0≤j≤mn

E

∣∣∣∣∣
dn∑
i=1

[
Z̃i(yj ) − EZ̃i(yj )

]∣∣∣∣∣
+ 2 max

0≤j≤mn

dn∑
i=1

EẐi(yj )

≤ 2 max
0≤j≤mn

d
1/2
n

[
EZ̃2

1(yj )
]1/2 + Cn−ε0/2a(n)h

≤ Cn−ε0/4a(n)h,

due to the fact:

EZ̃2
1(yj ) ≤ n−ε0/2a(n)hEZ1(yj ) ≤ Cn−ε0/2a(n)h2.

The proof of Lemma 4.1 is complete. �

We are now ready to prove (2.19) and (2.21) under the additional condition (4.10).
(2.19) first. As in proof of (4.1) and (4.2), but letting yj = −[nm] − 1 + j/m′

n, j =
0,1,2, . . . ,mn, where m′

n = [nh−2/a(n)] and mn = 2([nm] + 1)m′
n, we have

sup
|x|≤nm

n∑
k=0

f 2[(xk + x)/h
] ≤ max

0≤j≤mn

n∑
k=0

f 2[(xk + yj )/h
] + Ca(n)h. (4.18)
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Note that

n∑
k=0

f 2[(xk + x)/h
] ≤

ρN(n+1)∑
k=0

f 2[(xk + x)/h
] =

N(n+1)∑
i=1

Zi(x),

and {N(n)/a(n)}n≥1 is bounded in probability. See, for example, Chen [5]. For each ε > 0, there
exist 0 < Cε,C1ε < ∞ such that

P
(
C1εa(n) ≤ N(n) ≤ Cεa(n)

) ≥ 1 − ε, (4.19)

whenever n is sufficiently large. Consequently, for each a > 0, ε > 0 and n large enough,

P

(
max

0≤j≤mn

n∑
k=0

f 2[(xk + yj )/h
] ≥ a

)
≤ P

(
max

0≤j≤mn

Cεa(n)∑
i=1

Zi(yj ) ≥ a

)
+ ε.

This, together with (4.13) with Z∗
k (x) = Zk(x), implies (2.19) under (4.10), since

max
0≤j≤mn

Cεa(n)∑
i=1

Zi(yj ) ≤ Cεa(n) max
0≤j≤mn

EZ1(yj ) + Rn = OP

[
a(n)h

]
.

We next consider (2.21) under (4.10). To this regard, let yj = −[bn] − 1 + j/m′
n, j =

0,1,2, . . . ,mn, where m′
n = [n1+ε0/2h−2/a(n)] and mn = 2([bn] + 1)m′

n. Since

max
0≤j≤mn−1

sup
x∈[yj ,yj+1]

n∑
t=1

∣∣f 2[(xt + x)/h
] − f 2[(xt + yj )/h

]∣∣
≤ Cnh−1 max

0≤j≤mn−1
|yj+1 − yj | ≤ Cn−ε0/2a(n)h,

it is readily seen that

inf|x|≤bn

n∑
t=1

f 2[(xt + x)/h
] ≥ �1n − OP

[
n−ε0/2a(n)h

]
, (4.20)

where �1n = inf1≤j≤mn

∑n
t=1 f 2[(xt + yj )/h]. Furthermore, by recalling (4.19) and noting that

n∑
k=0

f 2[(xk + x)/h
] ≥

ρN(n)∧n∑
k=0

f 2[(xk + x)/h
] =

N(n)∑
i=1

Zin(x),

we have, for each a > 0, ε > 0 and n large enough,

P(�1n ≥ a) ≥ P

(
inf

0≤j≤mn

C1εa(n)∑
i=1

Zin(yj ) ≥ a

)
− ε. (4.21)



226 Q. Wang and N. Chan

On the other hand, it follows from (4.13) with Z∗
k (x) = Zkn(x) that

inf
0≤j≤mn

C1εa(n)∑
i=1

Zin(yj ) ≥ C1εa(n) inf
0≤j≤mn

EZ1n(yj ) − Rn

(4.22)
≥ C1εa(n) inf

0≤j≤mn

EZ1n(yj ) − OP

[
n−ε0/4a(n)h

]
.

Combining (4.20)–(4.22), the result (2.21) under (4.10) will follow if we prove: there exists a
b0 > 0 such that

inf
0≤j≤mn

EZ1n(yj ) ≥ b0h (4.23)

for all n sufficiently large. To prove (4.23), first note that there exists a b1 > 0 such that
EN2(n)/a2(n) ≤ b1. See Lemma 3.3 of Karlsen and Tjøstheim [14], for instance. Therefore,
by taking dn = [b2a(n)] + 1, where b2 > b1 is chosen later, we have for some b0 > 0,

inf
0≤j≤mn

EZ1n(yj ) = 1

dn

inf
0≤j≤mn

E

dn∑
i=1

Zin(yj )

= 1

dn

inf
0≤j≤mn

E

ρdn∧n∑
t=1

f 2[(xt + yj )/h
]

≥ 1

dn

inf
0≤j≤mn

E

(
n∑

t=1

f 2[(xt + yj )/h
] − I (ρdn ≤ n)

ρdn∑
t=1

f 2[(xt + yj )/h
])

≥ 1

dn

(
inf|x|≤bn+1

E

n∑
k=1

f 2[(xt + x)/h
] − Mn

)

≥ 1

dn

[
a(n)h/C0 − Mn

]
≥ b0h,

whenever n is sufficiently large, where we have used the condition (2.20) and the fact: it follows
from (4.11), (4.14) and ρdn ≤ n if and only if N(n) > dn that

Mn := max
0≤j≤mn

E

[
I (ρdn ≤ n)

ρdn∑
t=1

f 2[(xt + yj )/h
]]

= max
0≤j≤mn

E

[
I (ρdn ≤ n)

dn∑
i=1

Zi(yj )

]

≤ dn max
0≤j≤mn

EZ1(yj )P
(
N(n) ≥ dn

) + max
0≤j≤mn

E

∣∣∣∣∣
dn∑
i=1

[
Zi(yj ) − EZi(yj )

]∣∣∣∣∣
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≤ b−1
2 C∗ha−1(n)EN2(n) + O

[
n−ε0/4a(n)h

]
≤ C−1

0 a(n)h/2

by choosing b2 = 3C0b1C
∗ and n sufficiently large. This proves (4.23) and also completes the

proof of (2.21) under (4.10).
We now consider general situation. Let 0 < t < 1 be fixed. Define a transition probability

Pt(x,A) on (E, E ) by

Pt (x,A) = (1 − t)

∞∑
k=1

tk−1P k(x,A), x ∈ E,A ∈ E .

Let {βn}n≥1 be an i.i.d. Bernoulli random variables with the common law

P(β1 = 0) = t and P(β1 = 1) = 1 − t

and assume {βn}n≥1 and {xn}n≥0 are independent. Define a renewal sequence {σ(k)}k≥0 by

σ(0) = 0 and σ(k) = inf
{
n :n ≥ σ(k − 1);βn = 1

}
, k ≥ 1.

With these notations, {xσ(n)}n≥0 is a Harris recurrent Markov chain with the invariant measure π .
The transition probability Pt (x,A) of {xσ(n)}n≥0 satisfies the additional condition (4.10) and

at (n) := π(D)−1
n∑

k=1

νP k
t (D) ∼ (1 − t)1−γ a(n).

See Chen [5], for instance. By virtue of these facts, it follows from the first part proof of (2.19)
that, for any fixed m > 0 and h > 0,

sup
|x|≤nm

σ(n)∑
k=1

βkf
2[(xk + x)/h

] = sup
|x|≤nm

n∑
k=1

f 2[(xσ(k) + x)/h
] = OP

[
at (n)h

]
.

Now by noting σ([λn])/n →a.s. λ/(1− t) by the strong law and taking λ such that λ/(1− t) ≥ 1,
simple calculations show that

sup
|x|≤nm

n∑
k=1

βkf
2[(xk + x)/h

] ≤ sup
|x|≤nm

σ([λn])∑
k=1

f 2[(xσ(k) + x)/h
] = OP

[
a(n)h

]
.

Similarly,

sup
|x|≤nm

n∑
k=1

(1 − βk)f
2[(xk + x)/h

] = OP

[
a(n)h

]
and hence the result (2.19) under general situation follows.

The proof of (2.21) under general situation is similar and hence the details are omitted. �
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Proof of Corollary 2.1. We first notice that:

(F) xk = ∑k
j=1 εj is a Harris null recurrent Markov chain, satisfying (4.10), a(t) = √

t and
the invariant measure π is the Lebesgue measure.

Due to the fact (F), (2.23) follows immediately from Theorem 2.3.
To prove (2.24), by Theorem 2.3, it suffices to show that (2.20) holds true with bn = τn

√
n

and a(n) = √
n. In fact, under the conditions of Corollary 2.1, xk/

√
k has a density pk(x), satis-

fying supx |pk(x) − φ(x)| → 0, as k → ∞, where φ(x) = e−x2/2/
√

2π , due to the central limit
theorem. This implies that

inf|x|≤3τn

pk(x) ≥ inf|x|≤3τn

φ(x) − sup
x

∣∣pk(x) − φ(x)
∣∣ ≥ A0 > 0

for some A0 > 0 and all sufficiently large k. Hence, for n/2 < k ≤ n and n sufficiently large, we
have

inf
|x|≤τn

√
n+1

Ef 2[(xk + x)/h
] = inf

|x|≤τn
√

n+1

∫ ∞

−∞
f 2[(√ky + x)/h

]
pk(y)dy

≥ h√
k

inf
|x|≤τn

√
n+1

∫ ∞

−∞
f 2(y)pk

[
(yh − x)/

√
k
]

dy

≥ h√
k

inf|x|≤3τn

pk(x)

∫
|y|≤M1

f 2(y)dy

≥ A0h

2
√

n

∫
|y|≤M1

f 2(y)dy,

where M1 is chosen such that
∫
|y|≤M1

f 2(y)dy > 0. Consequently, there exists a constant C0 > 0
such that

inf
|x|≤τn

√
n+1

n∑
k=1

Ef 2[(xk + x)/h
] ≥ inf

|x|≤τn
√

n+1

n∑
k=n/2

Ef 2[(xk + x)/h
] ≥ √

nh/C0

as required. The proof of Corollary 2.1 is now complete. �

Proof of Theorem 3.1. We may write m̂(x) − m(x) as

m̂(x) − m(x) =
∑n

t=1 utKh(xt − x)∑n
t=1 Kh(xt − x)

+
∑n

t=1[m(xt ) − m(x)]Kh(xt − x)∑n
t=1 Kh(xt − x)

(4.24)
:= �1n(x) + �2n(x).

Note that, for any |x| ≤ b′
n, there exists a C0 > 0 such that K[(xt − x)/h] = 0 if |xt − x| ≥ hC0.

It follows from Assumption 3.3 that, whenever n is sufficiently large,

sup
|x|≤b′

n

∣∣�2n(x)
∣∣ ≤ C1δn sup

|x|≤b′
n

∑n
t=1 |xt − x|αK[(xt − x)/h]∑n

t=1 K[(xt − x)/h] ≤ Chαδn.



Uniform convergence rates for a class of martingales 229

This, together with (2.21) [taking f 2(s) = K(s)] in Theorem 2.3, implies that (3.3) will follow
if we prove

sup
|x|≤bn

n∑
t=1

utK
[
(xt − x)/h

] = OP

[[
a(n)h

]1/2 log1/2 n
]
. (4.25)

In fact, with p ≥ 1 + 1/ε0 and cn = a(n)h → ∞, we have

nc
−p
n logp−1 n ≤ (

n−ε0a(n)h
)−1−1/ε0n−ε0 logp−1 n → 0,

since n−ε0a(n)h → ∞. Now, by recalling (2.19), it is readily seen that the conditions of The-
orem 2.1 hold for f (x) = K(x) and cn = a(n)h. The result (4.25) follows from (2.2) in Theo-
rem 2.1. �
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