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We consider a nonparametric regression model Y = r(X)+ε with a random covariate X that is independent
of the error ε. Then the density of the response Y is a convolution of the densities of ε and r(X). It can
therefore be estimated by a convolution of kernel estimators for these two densities, or more generally by
a local von Mises statistic. If the regression function has a nowhere vanishing derivative, then the convolu-
tion estimator converges at a parametric rate. We show that the convergence holds uniformly, and that the
corresponding process obeys a functional central limit theorem in the space C0(R) of continuous functions
vanishing at infinity, endowed with the sup-norm. The estimator is not efficient. We construct an additive
correction that makes it efficient.

Keywords: density estimator; efficient estimator; efficient influence function; functional central limit
theorem; local polynomial smoother; local U-statistic; local von Mises statistic; monotone regression
function

1. Introduction

Smooth functionals of densities can be estimated by plug-in estimators, and densities of functions
of two or more random variables can be estimated by local von Mises statistics. Such estimators
often converge at the parametric rate n1/2. The response density of a nonparametric regression
model can be written in both ways, but it also involves an additional infinite-dimensional param-
eter, the regression function. As explained below, this usually leads to a slower convergence rate
of response density estimators, except when the regression function is strictly monotone in the
strong sense that it has a nowhere vanishing derivative. In the latter case, we can again obtain the
rate n1/2.

Specifically, consider the nonparametric regression model Y = r(X) + ε with a one-
dimensional random covariate X that is independent of the unobservable error variable ε. We
impose the following assumptions:

(F) The error variable ε has mean zero, a moment of order greater than 8/3, and a density f ,
and there are bounded and integrable functions f ′ and f ′′ such that f (z) = ∫ z

−∞ f ′(x)dx

and f ′(z) = ∫ z

−∞ f ′′(x)dx for z ∈ R.
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(G) The covariate X is quasi-uniform on the interval [0,1] in the sense that its density g is
bounded and bounded away from zero on the interval and vanishes outside. Furthermore,
g is of bounded variation.

(R) The unknown regression function r is twice continuously differentiable on [0,1], and r ′
is strictly positive on [0,1].

Assume that (X1, Y1), . . . , (Xn,Yn) are n independent copies of (X,Y ). We are interested in
estimating the density h of the response Y . An obvious estimator is the kernel estimator

1

n

n∑
j=1

Kb(y − Yj ), y ∈ R,

where Kb(t) = K(t/b)/b for some kernel K and some bandwidth b. Under the above assump-
tions on f and g, the density h has a Lipschitz-continuous second derivative as demonstrated
in Section 2. Thus, if the kernel has compact support and is of order three, and the bandwidth b

is chosen proportional to n−1/7, then the mean squared error of the kernel estimator is of order
n−6/7. This means that the estimator has the nonparametric rate n3/7 of convergence.

The above kernel estimator neglects the structure of the regression model. We shall see that by
exploiting this structure one can construct estimators that have the faster (parametric) rate n1/2

of convergence. For this we observe that the density h is the convolution of the error density f

and the density q of r(X). The latter density is given by

q(z) = g(r−1(z))

r ′(r−1(z))
, z ∈ R.

By our assumptions on r and g, the density q is quasi-uniform on the interval [r(0), r(1)], which
is the image of [0,1] under r . Furthermore, q is of bounded variation. The convolution repre-
sentation h = f ∗ q suggests a plug-in estimator or convolution estimator ĥ = f̂ ∗ q̂ based on
estimators f̂ and q̂ of f and q , for example the kernel estimators

f̂ (x) = 1

n

n∑
j=1

kb(x − ε̂j ) and q̂(x) = 1

n

n∑
j=1

kb

(
x − r̂(Xj )

)
, x ∈ R,

with nonparametric residuals ε̂j = Yj − r̂(Xj ). Setting K = k ∗ k, the convolution estimator
ĥ(y) has the form of a local von Mises statistic

1

n2

n∑
i=1

n∑
j=1

Kb

(
y − ε̂i − r̂(Xj )

)
.

In Section 3, we show that the estimator ĥ is root-n consistent in the sup-norm and obeys a
functional central limit theorem in the space C0(R) of all continuous function on R that vanish
at plus and minus infinity. As an auxiliary result, Section 2 treats the case of a known regression
function r . When r is unknown, we estimate it by a local quadratic smoother. The required
properties of this smoother are proved in Section 5. The convergence rate of ĥ follows from



2252 A. Schick and W. Wefelmeyer

a stochastic expansion which in turn is implied by equations (3.1)–(3.4). These equations are
proved in Sections 6–9.

Plug-in estimators in nonparametric settings are often efficient; see, for example, Bickel and
Ritov [2], Laurent [8], Chaudhuri et al. [3] and Efromovich and Samarov [4]. In Section 4, we
first calculate the asymptotic variance bound and the efficient influence function for estimators
of h(y). Surprisingly our estimator ĥ(y) is not efficient unless the error distribution happens to
be normal. We construct an additive correction term Ĉ(y) such that ĥ(y) − Ĉ(y) is efficient for
h(y). This estimator again obeys a uniform stochastic expansion and a functional central limit
theorem in C0(R). The proof of this result is given in Section 10.

The estimator ĥ used here goes back to Frees [6]. He observed that densities of some (known)
transformations T (X1, . . . ,Xm) of m ≥ 2 independent and identically distributed random vari-
ables X1, . . . ,Xm can be estimated pointwise at the parametric rate by a local U-statistic. Saave-
dra and Cao [15] consider the transformation T (X1,X2) = X1 + ϕX2 with ϕ �= 0. Schick and
Wefelmeyer [19] and [20] obtain this rate in the sup-norm and in L1-norms for transformations
of the form T (X1, . . . ,Xm) = T1(X1)+· · ·+Tm(Xm) and T (X1,X2) = X1 +X2. Giné and Ma-
son [7] obtain such functional results in Lp-norms for 1 ≤ p ≤ ∞ and general transformations
T (X1, . . . ,Xm). The results of Nickl [12] and [13] are also applicable in this context.

The same convergence rates have been obtained for convolution estimators or local von Mises
statistics of the stationary density of linear processes. Saavedra and Cao [14] treat pointwise
convergence for a first-order moving average process. Schick and Wefelmeyer [18] and [17] con-
sider higher-order moving average processes and convergence in L1, and Schick and Wefelmeyer
[21] and [22] obtain parametric rates in the sup-norm and in L1 for estimators of the station-
ary density of invertible linear processes. Analogous pointwise convergence results for response
density estimators in nonlinear regression (with responses missing at random) and in nonpara-
metric regression are in Müller [9] and Støve and Tjøstheim [25], respectively. Escanciano and
Jacho-Chávez [5] consider the nonparametric regression model and show uniform convergence,
on compact sets, of their local U-statistic. Their results allow for a multivariate covariate X, but
require the density of r(X) to be bounded and Lipschitz.

In the above applications to regression models and time series, and also in the present paper,
the (auto-)regression function is assumed to have a nonvanishing derivative. This assumption is
essential. Suppose there is a point x at which the regression function behaves like r(y) = r(x) +
c(y − x)ν + o(|y − x|ν), for y to the left or right of x, with ν ≥ 2. Then the density q of r(X)

has a strong peak at r(x). This slows down the rate of the convolution density estimator or local
von Mises statistic for h = f ∗ q . For densities of transformations T (X1,X2) = |X1|ν + |X2|ν
of independent and identically distributed random variables, see Schick and Wefelmeyer [24]
and [23] and the review paper by Müller et al. [11]. In their simulations, Escanciano and Jacho-
Chávez [5] consider the regression function r(x) = sin(2πx) and a covariate following a Beta
distribution. This choice does not fit their assumptions because the density of r(X) is neither
bounded nor Lipschitz. Indeed, for x = 1/4 and x = 3/4, the regression function behaves as
above with ν = 2. In this case, the convolution density estimator does not have the rate

√
n, but

at best the slower rate
√

n/ logn.
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2. Known regression function

We begin by proving an auxiliary result for the (unrealistic) case that the regression function r

is known. Then we can observe the error ε = Y − r(X), and we can apply the results for known
transformations cited in Section 1. We obtain a root-n consistent estimator of the response density
h by the local von Mises statistic

h̃(y) = 1

n2

n∑
i=1

n∑
j=1

Kb

(
y − εi − r(Xj )

)
, y ∈ R.

In the following, we specify conditions under which the convergence holds in C0(R). We shall
assume that K is the convolution k ∗ k for some continuous third-order kernel k with compact
support. Then we can write

h̃(y) = f̃ ∗ q̃(y), y ∈ R,

where

f̃ (x) = 1

n

n∑
j=1

kb(x − εj ) and q̃(x) = 1

n

n∑
j=1

kb

(
x − r(Xj )

)
, x ∈ R.

Setting fb = f ∗ kb and qb = q ∗ kb, we have the decomposition

f̃ ∗ q̃ = fb ∗ qb + fb ∗ (q̃ − qb) + qb ∗ (f̃ − fb) + (f̃ − fb) ∗ (q̃ − qb).

Note that fb ∗qb = f ∗q ∗kb ∗kb = h∗Kb . Since q is of bounded variation and is quasi-uniform
on [r(0), r(1)], we may and do assume that q is of the form

q(x) =
∫

u≤x

φ(u)ν(du), x ∈ R,

where ν is a finite measure with ν(R − [r(0), r(1)]) = 0, and φ is a measurable function such
that |φ| ≤ 1. This allows us to write

h(y) =
∫

f (y − x)q(x)dx =
∫

F(y − u)φ(u)ν(du),

where F is the distribution function corresponding to the error density f . Indeed,

h(y) =
∫

q(y − x)f (x)dx

=
∫ ∫

u≤y−x

f (x)φ(u)ν(du)dx

=
∫ ∫

x≤y−u

f (x)dxφ(u)ν(du).
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The properties of f now yield that h is three times differentiable with bounded derivatives

h′(y) =
∫

f (y − u)φ(u)ν(du), y ∈ R, (2.1)

h′′(y) =
∫

f ′(y − u)φ(u)ν(du), y ∈ R, (2.2)

h′′′(y) =
∫

f ′′(y − u)φ(u)ν(du), y ∈ R. (2.3)

As k is of order three, so is K . Thus, it follows from a standard argument that

‖h ∗ Kb − h‖ = sup
y∈R

∣∣h ∗ Kb(y) − h(y)
∣∣ ≤ Cb3

for some constant C.
Next, we note that fb ∗ (q̃ − qb) = H1 ∗ Kb with

H1(y) = 1

n

n∑
j=1

(
f

(
y − r(Xj )

) − h(y)
)
, y ∈ R.

Similarly, qb ∗ (f̃ − fb) = H2 ∗ Kb with

H2(y) = 1

n

n∑
j=1

(
q(y − εj ) − h(y)

)
, y ∈ R.

As shown in Schick and Wefelmeyer [21], n1/2H1 converges in C0(R) to a centered Gaussian
process with covariance function

�1(s, t) = Cov
(
f

(
s − r(X)

)
, f

(
t − r(X)

))
, s, t ∈ R,

and the following approximation holds,

‖H1 ∗ Kb − H1‖ = op

(
n−1/2).

We can write

H2(y) =
∫ (

F(y − x) − F(y − x)
)
φ(x)ν(dx), y ∈ R,

where F is the empirical distribution function based on the errors ε1, . . . , εn,

F(t) = 1

n

n∑
j=1

1[εj ≤ t], t ∈ R.
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Setting � = n1/2(F − F) and writing ‖ · ‖1 for the L1-norm, we obtain for each δ > 0 the
inequalities

T1(δ) = sup
|y1−y2|≤δ

n1/2
∣∣H2 ∗ Kb(y1) − H2 ∗ Kb(y2)

∣∣
≤ sup

|y1−y2|≤δ

∫ ∫ ∣∣�(y1 − x − bu) − �(y2 − x − bu)
∣∣∣∣K(u)

∣∣duν(dx)

≤ ‖K‖1ν(R) sup
|y1−y2|≤δ

∣∣�(y1) − �(y2)
∣∣.

Similarly, we obtain the inequalities

T2(M) = sup
|y|>2M

n1/2
∣∣H2 ∗ Kb(y)

∣∣
≤ sup

|y|>2M

∫ ∫ ∣∣�(y − x − bu)
∣∣∣∣K(u)

∣∣duν(dx)

≤ ‖K‖1ν(R) sup
|y|>M

∣∣�(y)
∣∣

for all M such that −M < r(0) − bB < r(1) + bB < M , where the constant B is such that
the interval [−B,B] contains the support of K . From these inequalities, the characterization of
compactness as given in Corollary 4 of Schick and Wefelmeyer [21], and the properties of the
empirical process, we obtain tightness of the process n1/2H2 ∗ Kb in C0(R). We also have

n1/2‖H2 ∗ Kb − H2‖ ≤ ‖K‖1ν(R) sup
|y1−y2|≤bB

∣∣�(y1) − �(y2)
∣∣.

It is now easy to conclude that n1/2H2 ∗ Kb converges in C0(R) to a centered Gaussian process
with covariance function

�2(s, t) = Cov
(
q(s − ε), q(t − ε)

)
, s, t ∈ R.

Finally, we have∥∥(f̃ − fb) ∗ (q̃ − qb)
∥∥ ≤ ‖f̃ − fb‖2‖q̃ − qb‖2 = Op

(
(nb)−1),

where ‖ · ‖2 denotes the L2-norm.
The above yield the following result.

Theorem 1. Suppose (F), (G) and (R) hold, the kernel K is the convolution k ∗ k of some con-
tinuous third-order kernel k with compact support, and the bandwidth b satisfies nb6 → 0 and
nb2 → ∞. Then n1/2(h̃−h) converges in distribution in the space C0(R) to a centered Gaussian
process with covariance function �1 + �2. Moreover,

‖h̃ − h − H1 − H2‖ = op

(
n−1/2).
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3. Unknown regression function

Our main result concerns the case of an unknown regression function r . Then we do not observe
the random variables εi = Yi − r(Xi) and r(Xj ). In the local von Mises statistic h̃ of Section 2,
we therefore replace r by a nonparametric estimator r̂ , substitute the residual ε̂i = Yi − r̂(Xi)

for the error εi , and plug in surrogates r̂(Xj ) for r(Xj ). The resulting estimator for h = f ∗ q is
then

ĥ(y) = 1

n2

n∑
i=1

n∑
j=1

Kb

(
y − ε̂i − r̂(Xj )

)
, y ∈ R.

Our estimator r̂ will be a local quadratic smoother. More precisely, for a fixed x in [0,1], we
estimate r(x) by the first coordinate r̂(x) = β̂1(x) of the weighted least squares estimator

β̂(x) = arg max
β

1

nc

n∑
j=1

w

(
Xj − x

c

)(
Yj − β�ψ

(
Xj − x

c

))2

,

where ψ(x) = (1, x, x2)�, the weight function w is a three times continuously differentiable
symmetric density with compact support [−1,1], and the bandwidth c is proportional to n−1/4.
This means that we undersmooth, since an optimal bandwidth for estimating a twice differen-
tiable regression function is proportional to n−1/5.

We assume that K is the convolution k ∗ k for some twice continuously differentiable third-
order kernel k with compact support. Then we can write our estimator for h as the convolution

ĥ(y) = f̂ ∗ q̂(y), y ∈ R,

of the residual-based kernel estimator of f ,

f̂ (x) = 1

n

n∑
j=1

kb(x − ε̂j ), x ∈ R,

with the surrogate-based kernel estimator of q ,

q̂(x) = 1

n

n∑
j=1

kb

(
x − r̂(Xj )

)
, x ∈ R.

Similarly as in Section 2, we have the decomposition

f̂ ∗ q̂ = fb ∗ qb + fb ∗ (q̂ − qb) + qb ∗ (f̂ − fb) + (f̂b − f ) ∗ (q̂ − qb).

Let us introduce

ε̄ = 1

n

n∑
j=1

εj
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and

H3(y) = 1

n

n∑
j=1

εj

(
f ′(y − r(Xj )

) − h′(y)
)
, y ∈ R.

We can write H3 as the convolution M ∗ f ′′ with

M(z) = 1

n

n∑
j=1

εj

(
1
[
r(Xj ) ≤ z

] − Q(z)
)
, z ∈ R,

where Q denotes the distribution function of r(X). Write σ 2 = E[ε2] for the error variance. Since
nE[M2(z)] equals σ 2Q(z)(1 − Q(z)) and (1 − Q)Q is integrable, we obtain from Corollary 4
in Schick and Wefelmeyer [21] and the remark after it that n1/2H3 converges in distribution in
C0(R) to a centered Gaussian process with covariance function σ 2�3, where

�3(s, t) = Cov
(
f ′(s − r(X)

)
, f ′(t − r(X)

))
, s, t ∈ R.

Note that f ′ and f ′′ are bounded and integrable and therefore square-integrable.
We shall show in Sections 6–9 that∥∥qb ∗ (f̂ − f̃ ) − ε̄h′∥∥ = op

(
n−1/2), (3.1)∥∥fb ∗ (q̂ − q̃) + ε̄h′ + J

∥∥ = op

(
n−1/2), (3.2)

‖f̂ − fb‖2
2 = Op

(
1

nb

)
, (3.3)

‖q̂ − qb‖2
2 = op(b). (3.4)

The last two statements require also nb4/ log4 n → ∞. These four statements and Theorem 1
yield our main result.

Theorem 2. Suppose (F), (G) and (R) hold, the kernel K is the convolution k ∗ k of some twice
continuously differentiable third-order kernel k with compact support, and the bandwidth b sat-
isfies nb6 → 0 and nb4/ log4 n → ∞. Let r̂ be the local quadratic estimator for a weight func-
tion w that is a three times continuously differentiable symmetric density with compact support
[−1,1], and for a bandwidth c proportional to n−1/4. Then n1/2(ĥ−h) converges in distribution
in the space C0(R) to a centered Gaussian process with covariance function � = �1 +�2 +σ 2�3.
Moreover, we have the uniform stochastic expansion

‖ĥ − h − H1 − H2 − H3‖ = op

(
n−1/2). (3.5)

We should point out that �(s, t) = Cov(H(s),H(t)) for s, t ∈ R, where

H(y) = f
(
y − r(X)

) + q(y − ε) − ε
(
f ′(y − r(X)

) − h′(y)
)
, y ∈ R.
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4. An efficient estimator

In this section, we treat the question of efficient estimation for h. For the theory of efficient
estimation of real-valued functionals on nonparametric statistical models, we refer to Theorem 2
in Section 3.3 of the monograph by Bickel et al. [1]. It follows from (3.5) that the estimator ĥ(y)

has influence function

Iy(X,Y ) = q(y − ε) − h(y) + f
(
y − r(X)

) − h(y) − ε
(
f ′(y − r(X)

) − h′(y)
)
.

We shall now show that this differs in general from the efficient influence function. The latter can
be calculated as the projection of Iy(X,Y ) onto the tangent space of the nonparametric regression
model considered here. The tangent space consists of all functions of the form

α(X) + β(ε) + γ (X)�(ε),

where the function α satisfies
∫

α(x)g(x)dx = 0 and
∫

α2(x)g(x)dx < ∞, the function β satis-
fies

∫
β(z)f (z)dz = 0 = ∫

zβ(z)f (z)dy and
∫

β2(z)f (z)dz < ∞, and the function γ satisfies∫
γ 2(x)g(x)dx < ∞; see Schick [16] for details. The projection of the influence function onto

the tangent space is

I ∗
y (X,Y ) = [

f
(
y − r(X)

) − h(y)
] + [

q(y − ε) − h(y) − d(y)�(ε)
]

+
[
d(y) − 1

J

(
f ′(y − r(X)

) − h′(y)
)]

�(ε).

Here � = −f ′/f denotes the score function for location, J = ∫
�2(y)f (y)dy is the Fisher in-

formation, which needs to be finite for efficiency considerations, and d(y) is the expectation
E[q(y − ε)ε]. For later use, we set

λ(y) = �(y)

J
− y, y ∈ R.

To see that I ∗
y (X,Y ) is indeed the projection of the influence function onto the tangent space, we

note that I ∗
y (X,Y ) belongs to the tangent space and that the difference

Iy(X,Y ) − I ∗
y (X,Y ) = (

f ′(y − r(X)
) − h′(y)

)
λ(ε)

is orthogonal to the tangent space. For this, one uses the well-known identities E[�(ε)] = 0 and
E[ε�(ε)] = 1.

We have Iy(X,Y ) = I ∗
y (X,Y ) if and only if λ = 0, which in turn holds if and only if f is a

mean zero normal density. Consequently, our estimator is efficient for normal errors, but not for
other errors.

In order to see why our estimator for h(y) is not efficient in general, consider for simplicity
the case of known f and g. The efficient influence function is then −f ′(y − r(X))�(ε)/J . Thus,
an estimator ĥ(y) of h(y) is efficient if it satisfies the stochastic expansion

ĥ(y) = h(y) − 1

n

n∑
j=1

1

J
f ′(y − r(Xj )

)
�(εj ) + op

(
n−1/2).
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A candidate would be obtained by replacing, in the relevant terms on the right-hand side, the
unknown r by an estimator r̂ , resulting in the estimator

∫
f

(
y − r̂(x)

)
g(x)dx − 1

n

n∑
j=1

1

J
f ′(y − r̂(Xj )

)
�
(
Yj − r̂(Xj )

)
.

This shows that a correction term to the plug-in estimator
∫

f (y − r̂(x))g(x)dx is required for
efficiency.

In the general situation, with f , g and r unknown, we must construct a stochastic term Ĉ(y)

such that

Ĉ(y) = 1

n

n∑
j=1

(
f ′(y − r(Xj )

) − h′(y)
)
λ(εj ) + op

(
n−1/2). (4.1)

Then the estimator ĥ(y) − Ĉ(y) has influence function I ∗
y (X,Y ),

ĥ(y) − Ĉ(y) = 1

n

n∑
j=1

I ∗
y (Xj ,Yj ) + op

(
n−1/2), (4.2)

and hence is efficient. We shall construct Ĉ(y) such that (4.1), and hence (4.2), hold uniformly
in y. This implies a functional central limit theorem in C0(R) also for the improved estimator
ĥ − Ĉ. We mention that tightness of n1/2C, with

C(y) = 1

n

n∑
j=1

λ(εj )
(
f ′(y − r(Xj )

) − h′(y)
)
, y ∈ R,

is verified by the same argument as used for n1/2H3.
To construct the correction term, we use sample splitting. Let m denote the integer part

of n/2. Let r̂1 and r̂2 denote the local quadratic smoothers constructed from the observations
(X1, Y1), . . . , (Xm,Ym) or (Xm+1, Ym+1), . . . , (Xn,Yn), both with the same bandwidth c as be-
fore. Define residuals ε̂i,j = Yj − r̂i (Xj ) for i = 1,2 and j = 1, . . . , n, and kernel density esti-
mators

f̂1(z) = 1

m

m∑
j=1

κa(z − ε̂1,j ), f̂2(z) = 1

n − m

n∑
j=m+1

κa(z − ε̂2,j )

and

f̂3(z) = 1

n

m∑
j=1

κa(z − ε̂2,j ) + 1

n

n∑
j=m+1

κa(z − ε̂1,j ),
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where κa(x) = κ(x/a)/a for some bandwidth a and a density κ fulfilling Condition K of Schick
[16], such as the logistic kernel. Then we can estimate �(z) by

�̂1(z) = − f̂ ′
1(z)

a + f̂1(z)
and �̂2(z) = − f̂ ′

2(z)

a + f̂2(z)
,

the Fisher information J by

Ĵ = 1

n

m∑
j=1

�̂2
2(ε̂1,j ) + 1

n

n∑
j=m+1

�̂2
1(ε̂2,j ),

and λ(z) by

λ̂i (z) = �̂i (z)

Ĵ
− z, i = 1,2.

Finally, we take Ĉ(y) = Ĉ1(y) + Ĉ2(y) with

Ĉ1(y) = 1

n

m∑
j=1

(
f̂ ′

3

(
y − r̂2(Xj )

) − 1

m

m∑
i=1

f̂ ′
3

(
y − r̂2(Xi)

))
λ̂2(ε̂1,j )

and

Ĉ2(y) = 1

n

n∑
j=m+1

(
f̂ ′

3

(
y − r̂1(Xj )

) − 1

n − m

n∑
i=m+1

f̂ ′
3

(
y − r̂1(Xi)

))
λ̂1(ε̂2,j ).

We have the following result, which is proved in Section 10.

Theorem 3. Suppose (F), (G) and (R) hold, f has finite Fisher information J , and the bandwidth
a satisfies a → 0 and a8n → ∞. Then we have the stochastic expansion ‖Ĉ − C‖ = op(n−1/2).

Theorems 2 and 3 imply that the improved estimator ĥ − Ĉ has the uniform stochastic expan-
sion

sup
y∈R

∣∣∣∣∣ĥ(y) − Ĉ(y) − h(y) − 1

n

n∑
j=1

I ∗
y (Yj ,Xj )

∣∣∣∣∣ = op

(
n−1/2)

and is efficient. As mentioned above, if the errors happen to be normally distributed, then λ = 0.
Therefore, C = 0 so that Ĉ collapses in the sense that ‖Ĉ‖ = op(n−1/2).

5. Properties of the local quadratic smoother

The weighted least squares estimator β̂(x) satisfies the normal equation

W̄ (x)β̂(x) = V̄ (x)



Convolution estimators in regression 2261

with

W̄ (x) = 1

nc

n∑
j=1

w

(
Xj − x

c

)
ψ

(
Xj − x

c

)
ψ�

(
Xj − x

c

)
,

V̄ (x) = 1

nc

n∑
j=1

w

(
Xj − x

c

)
Yjψ

(
Xj − x

c

)
.

Subtracting from both sides of the normal equation the term W̄ (x)β(x) with

β(x) = (
r(x), cr ′(x), c2r ′′(x)/2

)�
,

we arrive at the equality

W̄ (x)
(
β̂(x) − β(x)

) = A(x) + B(x),

where

A(x) = 1

nc

n∑
j=1

w

(
Xj − x

c

)
εjψ

(
Xj − x

c

)
,

B(x) = 1

nc

n∑
j=1

w

(
Xj − x

c

)
R(Xj , x)ψ

(
Xj − x

c

)
,

and

R(Xj , x) = r(Xj ) − r(x) − r ′(x)(Xj − x) − 1

2
r ′′(x)(Xj − x)2

=
∫ 1

0
(Xj − x)2(r ′′(x + s(Xj − x)

) − r ′′(x)
)
(1 − s)ds.

Since r ′′ is uniformly continuous on [0,1], we see that

sup
0≤x≤1

∣∣B(x)
∣∣ = op

(
c2) = op

(
n−1/2).

It follows from the proof of Lemma 1 in Müller et al. [10] that

sup
0≤x≤1

∣∣A(x)
∣∣2 = Op

(
logn

nc

)

and

sup
0≤x≤1

∣∣W̄ (x) − W(x)
∣∣2 = Op

(
logn

nc

)



2262 A. Schick and W. Wefelmeyer

with

W(x) = E
[
W̄ (x)

] =
∫

g(x + cu)ψ(u)ψ�(u)w(u)du.

Since g is quasi-uniform on [0,1], there is an η with 0 < η < 1 for which

η < inf|v|=1
v�W(x)v ≤ sup

|v|=1
v�W(x)v <

1

η
(5.1)

holds for all x in [0,1] and all c < 1/2. From this we obtain the expansion

sup
0≤x≤1

∣∣W̄−1(x) − W−1(x)
∣∣2 = Op

(
logn

nc

)
,

where M−1 denotes a generalized inverse of a matrix M if its inverse does not exist. Combining
the above, we obtain that

sup
0≤x≤1

∣∣r̂(x) − r(x) − D(x)
(
A(x) + B(x)

)∣∣ = Op

(
logn

nc

)
, (5.2)

where D(x) is the first row of W−1(x). For later use, we note that |D(x)|2 ≤ 3/η2 for all x in
[0,1] and c ≤ 1/2. We also have

sup
0≤x≤1

∣∣r̂(x) − r(x) − �̂(x)
∣∣ = op

(
n−1/2), (5.3)

where

�̂(x) = D(x)A(x) = 1

nc

n∑
j=1

w

(
Xj − x

c

)
εjD(x)ψ

(
Xj − x

c

)
.

It is easy to check that ∫
�̂2(x)g(x)dx = Op

(
1

nc

)
,

1

n

n∑
j=1

�̂2(Xj ) = Op

(
1

nc

)
,

sup
0≤x≤1

∣∣�̂(x)
∣∣2 = Op

(
logn

nc

)
.

Thus, we obtain

1

n

n∑
j=1

(
r̂(Xj ) − r(Xj )

)2 = Op

(
1

nc

)
, (5.4)

∫ (
r̂(x) − r(x)

)4
g(x)dx = Op

(
logn

n2c2

)
. (5.5)
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Let χ be a square-integrable function. Then the function γ defined by

γ (t) =
∫ (

χ(x − t) − χ(x)
)2 dx =

∫ (
χ(x + t) − χ(x)

)2 dx, t ∈ R,

is bounded by 4‖χ‖2
2 and satisfies γ (t) → 0 as t → 0. Using this and the fact that w has support

[−1,1], we derive

E

[(∫ (
χ(X ± cu) − χ(X)

)
uiw(u)du

)2]
≤ E

[∫ (
χ(X ± cu) − χ(X)

)2
w(u)du

]

≤ ‖g‖
∫

γ (cu)w(u)du

→ 0.

Applying this with χ = g, we can conclude

E
[∣∣W(X) − g(X)�

∣∣2] → 0,

where � = ∫
ψ(u)ψ�(u)w(u)du. From this and (5.1), we derive that

E
[∣∣g(X)W−1(X) − �−1

∣∣2] → 0.

In particular, with e = (1,0,0)�,

E
[∣∣g(X)D(X) − e��−1

∣∣2] → 0.

Let us set

t (X) =
∫

g(X − cu)D(X − cu)ψ(u)w(u)du

=
∫ (

g(X − cu)D(X − cu) − g(X)D(X)
)
ψ(u)w(u)du

+ (
g(X)D(X) − e��−1)�e + 1.

Then we have

E
[(

t (X) − 1
)2] ≤ 6E

[∫ ∣∣g(X − cu)D(x − cu) − g(X)D(X)
∣∣2

w(u)du

]

+ 2E
[∣∣g(X)D(X) − e��−1

∣∣2]|�e|2
→ 0,
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since |gD| is square-integrable. This can be used to show that

∫
�̂(x)g(x)dx = 1

n

n∑
j=1

εj t (Xj ) = ε̄ + op

(
n−1/2).

In view of (5.3), this yields∫ (
r̂(x) − r(x)

)
g(x)dx = ε̄ + op

(
n−1/2). (5.6)

6. Proof of (3.1)

Since q is of bounded variation, we can write qb ∗ (f̂ − f̃ ) = Ĥ2 ∗ Kb , where

Ĥ2(y) = 1

n

n∑
j=1

∫ (
F̂(y − z) − F(y − z)

)
φ(z)ν(z), y ∈ R,

with F̂ denoting the empirical distribution function based on the residuals ε̂1, . . . , ε̂n,

F̂(t) = 1

n

n∑
j=1

1[ε̂j ≤ t], t ∈ R.

It was shown in Müller et al. [10] that

‖F̂ − F − ε̄f ‖ = op

(
n−1/2).

From this and the representation (2.1) of h′, we immediately derive the expansion∥∥Ĥ2 − ε̄h′∥∥ = op

(
n−1/2).

This lets us conclude that ∥∥qb ∗ (f̂ − f̃ ) − ε̄h′∥∥ = op

(
n−1/2).

7. Proof of (3.2)

Since f ′ and f ′′ are bounded, a Taylor expansion and the bounds (5.3) and (5.4) yield the uniform
expansion

sup
y∈R

∣∣∣∣∣1

n

n∑
j=1

(
f

(
y − r̂(Xj )

) − f
(
y − r(Xj )

) + f ′(y − r(Xj )
)
�̂(Xj )

)∣∣∣∣∣ = op

(
n−1/2).
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Now set

S1(y) = 1

n

n∑
j=1

f ′(y − r(Xj )
)
�̂(Xj ),

S2(y) =
∫

f ′(y − r(x)
)
�̂(x)g(x)dx,

S3(y) = 1

n(n − 1)

∑
i �=j

f ′(y − r(Xj )
)
εiD(Xj )vc(Xi − Xj),

S = 1

n(n − 1)

∑
i �=j

εi

(
D(Xj )vc(Xi − Xj) −

∫
D(x)vc(Xi − x)g(x)dx

)

with

vc(z) = w(z/c)ψ(z/c)/c.

Then we have ∥∥∥∥S1 − n − 1

n
S3

∥∥∥∥ ≤ ∥∥f ′∥∥ 1

n2

n∑
j=1

∣∣εjD(Xj )vc(0)
∣∣ = Op

(
1

nc

)
.

In view of h′ = f ′′ ∗ Q, we have the identity

S3(y) − S2(y) − h′(y)S =
∫

f ′′(z)U(y − z)dz

with

U(z) = 1

n(n − 1)

∑
i �=j

εi

((
1
[
r(Xj ) ≤ z

] − Q(z)
)
D(Xj )vc(Xi − Xj)

−
∫ (

1
[
r(x) ≤ z

] − Q(z)
)
D(x)vc(Xi − x)g(x)dx

)
.

The terms in the sum have mean zero and are uncorrelated, with second moments bounded by
σ 21[r(0) ≤ z ≤ r(1)]E[|D(X2)vc(X1 − X2)|2]. Thus, we have

n(n − 1)

∫
E

[
U2(z)

]
dz ≤ σ 2(r(1) − r(0)

)
E

[∣∣D(X2)vc(X1 − X2)
∣∣2] = O(1/c),

from which we derive ∥∥S3 − S2 − h′S
∥∥ ≤ ∥∥f ′′∥∥

2‖U‖2 = op

(
n−1/2).

Similarly, one has cn(n − 1)E[S2] = O(1) and obtains∥∥h′S
∥∥ = op

(
n−1/2).
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Next we have S2 = N ∗ f ′′, where

N(z) = 1

n

n∑
j=1

εj

∫
1
[
r(x) ≤ z

]
D(x)vc(Xj − x)g(x)dx

= 1

n

n∑
j=1

εj

∫
1
[
r(Xj − cu) ≤ z

]
g(Xj − cu)D(Xj − cu)ψ(u)w(u)du

= N1(z) + N2(z) + N3(z) + Q(z)N

with

N1(z) =
∫

1

n

n∑
j=1

εj

(
1
[
r(Xj − cu) ≤ z

] − 1
[
r(Xj ) ≤ z

])
× g(Xj − cu)D(Xj − cu)ψ(u)w(u)du,

N2(z) = 1

n

n∑
j=1

εj 1
[
r(Xj ) ≤ z

]
,

N3(z) = 1

n

n∑
j=1

εj

(
t (Xj ) − 1

)(
1
[
r(Xj ) ≤ z

] − Q(z)
)
,

N = 1

n

n∑
j=1

εj

(
t (Xj ) − 1

)
.

It is easy to check that N2 ∗f ′′ = ε̄h′+H3. Recall the identity Q∗f ′′ = h′. Using these identities,
we see that ∥∥S2 − ε̄h′ − H3

∥∥ ≤ ∥∥h′∥∥|N | + ∥∥f ′′∥∥
2

(‖N1‖2 + ‖N3‖2
)
.

We show now that the right-hand side is of order op(n−1/2). First, we calculate

nE
[
N2] = σ 2E

[(
t (X) − 1

)2] → 0.

Second, using the abbreviation T (u, z) = 1[r(X − cu) ≤ z] − 1[r(X) ≤ z], we have

n

∫
E

[
N2

1 (z)
]

dz = σ 2
∫

E

[(∫
T (u, z)g(X − cu)D(X − cu)ψ(u)w(u)du

)2]
dz

≤ σ 2
∫

E

[∫ (
T (u, z)g(X − cu)D(X − cu)ψ(u)

)2
w(u)du

]
dz

≤ σ 2
∫

E

[∫
T 2(u, z)dz

(
g(X − cu)D(X − cu)ψ(u)

)2
]
w(u)du
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≤ σ 2
∫

E
[∣∣r(X − cu) − r(X)

∣∣(g(X − cu)D(X − cu)ψ(u)
)2]

w(u)du

→ 0.

Third, we derive

n

∫
E

[
N2

3 (z)
]

dz = σ 2
∫

E
[(

t (X) − 1
)2(1

[
r(X) ≤ z

] − Q(z)
)2]

dz

= σ 2E

[(
t (X) − 1

)2
∫ (

1
[
r(X) ≤ z

] − Q(z)
)2 dz

]

≤ σ 2(r(1) − r(0)
)
E

[(
t (X) − 1

)2]
→ 0.

We can now conclude that ‖S2 − ε̄h′ − H3‖ = op(n−1/2).
The above relations show that ‖R + ε̄h′ + H3‖ = op(n−1/2), where

R(y) = 1

n

n∑
j=1

(
f

(
y − r̂(Xj )

) − f
(
y − r(Xj )

))
.

Note that fb ∗ (q̂ − q̃) = R ∗ Kb . Thus, the desired (3.2) follows from the bound∥∥fb ∗ (q̂ − q̃) + ε̄h′ + H3
∥∥

≤ ∥∥(
R + ε̄h′ + H3

) ∗ Kb

∥∥ + ∥∥(
ε̄h′ + H3

) ∗ Kb − ε̄h′ − H3
∥∥

≤ ∥∥R + ε̄h′ + H3
∥∥‖K‖1 + ∥∥(

ε̄h′ + H3
) ∗ Kb − ε̄h′ − H3

∥∥
and the tightness of n1/2(ε̄h′ + H3) in C0(R).

8. Proof of (3.3)

Without loss of generality, we assume that c < 1/2. Then we have the inequality

∣∣D(x)vc(X − x)
∣∣ ≤ 3

ηc
w

(
X − x

c

)
, 0 ≤ x ≤ 1. (8.1)

Let us set â = r̂ − r , and, for a subset C of {1, . . . , n},

âC(x) = 1

n

n∑
j=1

1[j /∈ C](εj + R(Xj , x)
)
D(x)vc(Xj − x).

Note that â∅(x) = D(x)(A(x) + B(x)). For l = 1, . . . , n with l �= C we have

∣∣âC∪l(x) − âC(x)
∣∣ ≤ 1

n

∣∣εl + R(Xl, x)
∣∣∣∣D(x)

∣∣∣∣vc(Xl − x)
∣∣ ≤ 3

η

|εl | + c2ω(c)

nc
w

(
Xl − x

c

)
,
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where

ω(c) = sup
{∣∣r ′′(x) − r ′′(y)

∣∣: x, y ∈ [0,1], |x − y| ≤ c
}
.

We abbreviate â{i} by âi and â{i,j} by âi,j . The above inequality and (5.2) yield the rates

1

n

n∑
j=1

(
â(Xj ) − âj (Xj )

)2 = Op

(
log2 n

n2c2

)
, (8.2)

1

n

n∑
j=1

∫ (
â(x) − âj (x)

)2
g(x)dx = Op

(
log2 n

n2c2

)
, (8.3)

E
[(

â1(X1) − â1,2(X1)
)2] = Op

(
1

n2c

)
. (8.4)

Let us now set

T̄ (z) = 1

n

n∑
j=1

Tj (z, â) and T̄∗(z) = 1

n

n∑
j=1

Tj (z, âj ),

where

Tj (z, a) = kb

(
z − εj + a(Xj )

) −
∫ ∫

kb

(
z − y + a(x)

)
f (y)g(x)dy dx

for a continuous function a. It follows from the properties of k that

∫ (
1

m

m∑
i=1

(
kb(x − xi) − kb(x − yi)

))2

dx ≤ b−3
∥∥k′∥∥2

2

1

m

m∑
i=1

(xi − yi)
2 (8.5)

for real numbers x1, . . . , xm and y1, . . . , ym. This inequality and statements (8.2) and (8.3) yield
the rate ∫ (

T̄ (z) − T̄∗(z)
)2 dz = Op

(
log2 n

b3n2c2

)
= op

(
1

nb

)
.

The last step used the fact that nc2b2/ log2 n is of order n1/2b2/ log2 n and tends to infinity. In
addition, we have

nE
[
T̄ 2∗ (z)

] = E
[
T 2

1 (z, â1)
] + (n − 1)E

[
T1(z, â1)T2(z, â2)

]
.

Conditioning on ξ = (ε2,X2, . . . , εn,Xn), we see that

E
[
T1(z, â1)T2(z, â1,2)

] = E
[
T2(z, â1,2)E

(
T1(z, â1)|ξ

)] = 0.

Similarly one verifies that E[T1(z, â1,2)T2(z, â2)] and E[T1(z, â1,2)T2(z, â1,2)] are zero. An ap-
plication of the Cauchy–Schwarz inequality shows that

E
[
T1(z, â1)T2(z, â2)

] = E
[(

T1(z, â1) − T1(z, â1,2)
)(

T2(z, â2) − T2(z, â1,2)
)]
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is bounded by E[(T1(z, â1) − T1(z, â1,2))
2] which in turn is bounded by

E
[(

kb

(
z − ε1 − â1(X1)

) − kb

(
z − ε1 − â1,2(X1)

))2]
.

With the help of (8.4) and (8.5), we thus obtain the bound

∫
E

[
T̄ 2∗ (z)

]
dz ≤ ‖k‖2

2

nb
+ (n − 1)

nb3

∥∥k′∥∥2
2E

[(
â1(X1) − â1,2(X1)

)2] = O

(
1

nb

)
.

It follows that we have the rate nb‖T̄ ‖2
2 = Op(1).

Now we set

f̂∗(z) =
∫ ∫

kb

(
z − y + â(x)

)
f (y)dyg(x)dx =

∫
fb

(
z + â(x)

)
g(x)dx.

Since f̂ − f̂∗ equals T̄ , we have

‖f̂ − f̂∗‖2
2 = Op

(
1

nb

)
. (8.6)

A Taylor expansion yields the bound

∫ (
f̂∗(z) − fb(z) − f ′

b(z)

∫
â(x)g(x)dx

)2

dz ≤ ∥∥f ′′
b

∥∥2
2

∫
â4(x)g(x)dx.

We have ‖f ′
b‖2 = ‖f ′ ∗ kb‖2 ≤ ‖f ′‖2‖kb‖1 = ‖f ′‖2‖k‖1 and ‖f ′′

b ‖2 ≤ ‖f ′′‖2‖k‖1. Using these
bounds, (5.5) and (5.6), we obtain the rate

‖f̂∗ − fb‖2
2 = Op

(
1

n

)
. (8.7)

The desired result (3.3) follows from (8.6) and (8.7).

9. Proof of (3.4)

We assume again that c < 1/2 and set

q̂∗(z) =
∫

kb

(
z − r(x) − â(x)

)
g(x)dx, T ′(z, a) =

∫
k′
b

(
z − r(x)

)
a(x)g(x)dx.

An argument similar to the one leading to (8.6) yields

‖q̂ − q̂∗‖2
2 = Op

(
1

nb

)
. (9.1)
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Note that ‖k′
b‖2

2 = O(b−3) and ‖k′′
b‖2

2 = O(b−5). A Taylor expansion and (5.5) yield

∫ (
q̂∗(z) − qb(z) − T ′(z, â)

)2 dz ≤ ∥∥k′′
b

∥∥2
2

∫
â4(x)g(x)dx = Op

(
logn

b5n2c2

)
= op

(
1

nb3

)
.

In view of (5.3), we find∫ (
T ′(z, â) − T ′(z, �̂)

)2 dz ≤ ∥∥k′
b

∥∥2
2

∫ (
â(x) − �̂(x)

)2
g(x)dx = op

(
1

nb3

)
.

Finally, we write

T ′(z, �̂) = 1

n

n∑
j=1

εj

∫
k′
b

(
z − r(x)

)
D(x)vc(Xj − x)g(x)dx

= 1

n

n∑
j=1

εj

∫ (
k′
b

(
z − r(x)

) − k′
b

(
z − r(Xj )

))
D(x)vc(Xj − x)g(x)dx

+ 1

n

n∑
j=1

εj k
′
b

(
z − r(Xj )

)
t (Xj ).

In view of (8.1), we have the bound∫ ∣∣D(x)vc(X − x)
∣∣g(x)dx ≤ 3

η
‖g‖.

This inequality and an application of the Cauchy–Schwarz inequality yield the bound

n

∫
E

[(
T ′(z, �̂)

)2]dz ≤ 2σ 2
(

3‖g‖
η

E[U ] + ∥∥k′
b

∥∥2
2E

[
t2(X)

])

with

U =
∫ ∫ (

k′
b

(
z − r(x)

) − k′
b

(
z − r(X)

))2∣∣D(x)vc(X − x)
∣∣g(x)dx dz

≤ ∥∥k′′
b

∥∥2
2

3

η

∫ (
r(X) − r(x)

)2 1

c
w

(
X − x

c

)
g(x)dx.

In the last step we used (8.1) and the analog of (8.5) with k′
b in place of kb . Since r is Lipschitz

on [0,1], we obtain E[U ] = O(b−5c2) = o(b−3). The above relations show that

‖q̂∗ − qb‖2
2 = Op

(
1

nb3

)
= op(b). (9.2)

The desired (3.4) follows from (9.1) and (9.2).
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10. Proof of Theorem 3

It suffices to show that n1/2‖Ĉi − Ci‖ = op(1) for i = 1,2, with

C1(y) = 1

n

m∑
j=1

(
f ′(y − r(Xj )

) − h′(y)
)
λ(εj )

and C2 = C − C1. Since the two cases are similar, we prove only the case i = 1.
We begin by writing n1/2C1 = N ∗ f ′′ and n1/2Ĉ1 = N̂ ∗ f̂ ′′

3 where

N(z) = N(z,λ) = 1√
n

m∑
j=1

λ(εj )
(
1
[
r(Xj ) ≤ z

] − Q(z)
)

and

N̂(z) = N̂(z, λ̂2) = 1√
n

m∑
j=1

λ̂2(ε̂2,j )
(
1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2)
)

with

Q̂(z, ρ) = 1

m

m∑
j=1

1
[
ρ(Xj ) ≤ z

]
.

In view of E[∫ N2(z)dz] = E[λ2(ε)] ∫ Q(z)(1 − Q(z))dz < ∞ and the bound

n1/2‖Ĉ1 − C1‖ ≤ ‖N̂ − N‖2
∥∥f̂ ′′

3

∥∥
2 + ‖N‖2

∥∥f̂ ′′
3 − f ′′∥∥

2

it suffices to show

‖N̂ − N‖2 = op(1) (10.1)

and ∥∥f̂ ′′
3 − f ′′∥∥

2 = op(1). (10.2)

Let us first prove (10.2). With �̂i = r̂i − r , we have ε̂i,j = εj − �̂i(Xj ) for i = 1,2 and
j = 1, . . . , n. Then we can write

f̂ ′′
3 (z) − f ′′(z) = (m/n)D1(z) + (

1 − (m/n)
)
D2(z)

with

D1(z) = 1

m

m∑
j=1

(
κ ′′
a

(
z − εj + �̂2(Xj )

) − f ′′(z)
)
,

D2(z) = 1

n − m

n∑
j=m+1

(
κ ′′
a

(
z − εj + �̂1(Xj )

) − f ′′(z)
)
.
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Let E2 denote the conditional expectation given Xm+1, Ym+1, . . . ,Xn,Yn. Using the square-
integrability of f ′′ and a standard argument, we find that

E2

[∫
D2

1(z)dz

]
≤ m−1

∫ (
κ ′′
a (z)

)2 dz

+
∫ ∫ ∫ (

f ′′(z − �̂2(x) − au
) − f ′′(z)

)2
κ(u)dug(x)dx dz

= O
(
m−1a−5) + op(1).

Thus, ‖D1‖2 = op(1). Similarly, one verifies ‖D2‖2 = op(1), and we obtain (10.2).
To prove (10.1), we set

N̄(z) = N̄(z, λ̂2) = 1√
n

m∑
j=1

∫
λ̂2

(
y − �̂2(Xj )

)
f (y)dy

(
1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2)
)

and shall verify

‖N̂ − N̄ − N‖2 = op(1) and ‖N̄‖2 = op(1).

We can write

N̂ − N̄ − N = L̂ − L̄ − L

Ĵ
+

(
1

Ĵ
− 1

J

)
L − (M̂ − M̄ − M)

with L̂(z) = N̂(z, �̂2), L̄(z) = N̄(z, �̂2), L(z) = N(z, �), M̂(z) = N̂(z, id), M̄(z) = N̄(z, id) and
M(z) = N(z, id) where id denotes the identity map on R. Now let E denote the conditional
expectation given X1, . . . ,Xn,Ym+1, . . . , Yn. Then we find

E
(‖L̂ − L̄ − L‖2

2

) ≤ 1

n

m∑
j=1

(
2�(Xj )R1,j + 2JR2,j

)
(10.3)

with

�(x) =
∫ (

�̂2
(
y − �̂2(x)

) − �(y)
)2

f (y)dy,

R1,j =
∫ (

1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2)
)2 dz,

R2,j =
∫ (

1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2) − 1
[
r(Xj ) ≤ z

] + Q(z)
)2 dz.

By the properties of the quadratic smoother, we have

1

n

n∑
j=1

�̂2
2(Xj ) = Op

(
n−3/4) and thus

1

n

n∑
j=1

∣∣�̂2(Xj )
∣∣ = Op

(
n−3/8). (10.4)
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Several applications of the Cauchy–Schwarz inequality yield the bound

1

n

m∑
j=1

R2,j ≤
(

3

n
+ 3

m

) m∑
j=1

∫ (
1
[
r̂2(Xj ) ≤ z

] − 1
[
r(Xj ) ≤ z

])2 dz

+ 3
∫ (

Q̂(z, r) − Q(z)
)2 dz.

Now we use the identity (1[u ≤ z] − 1[v ≤ z])2 = 1[u < z ≤ v], valid for u ≤ v, and (10.4), to
conclude

1

n

m∑
j=1

R2,j ≤ 6

m

m∑
j=1

∣∣�̂2(Xj )
∣∣ + Op

(
n−1/2) = Op

(
n−3/8). (10.5)

Using the above identity and the uniform consistency of r̂2, we obtain

max
1≤j≤m

R1,j ≤ max
1≤j≤m

1

m

m∑
i=1

∫ (
1
[
r̂2(Xj ) ≤ z

] − 1
[
r̂2(Xi) ≤ z

])2 dz = Op(1). (10.6)

By Lemma 10.1 in Schick [16] there is a constant c∗ so that

1

n

m∑
j=1

∫ (
�̂2

(
y − �̂2(Xj )

) − �̂2(y)
)2

f (y)dy ≤ c∗
a4n

m∑
j=1

�̂2
2(Xj ), (10.7)

∫ (
�̂2(y) − �(y)

)2
f (y)dy ≤ c∗

a6m

n∑
j=m+1

�̂2
2(Xj )

(10.8)

+ Op

(
1

a6m

)
+ op(1).

From (10.3)–(10.8) and a8n → ∞, we obtain ‖L̂− L̄− L‖2 = op(1). A similar argument yields
‖M̂ − M̄ − M‖2 = op(1). Using (10.7), (10.8) and the operator E, we obtain

1

n

m∑
j=1

(
�̂2(ε̂2,j ) − �(εj )

)2 = op(1).

It is now easy to see that Ĵ is a consistent estimator of J . This completes the proof of ‖N̂ − N̄ −
N‖2 = op(1).

We are left to verify ‖N̄‖2 = op(1). Using the definition of Q̂(z, r̂2), we can write

N̄(z) = 1√
n

m∑
j=1

(
1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2)
)(

�̂2(Xj ) + 1

Ĵ
ω̂(Xj )

)
,
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where

ω̂(Xj ) =
∫ (

�̂2
(
y − �̂2(Xj )

) − �̂2(y)
)
f (y)dy =

∫
�̂2(y)

(
f

(
y + �̂2(Xj )

) − f (y)
)

dy.

A Taylor expansion yields

f
(
y + �̂2(Xj )

) − f (y) − �̂2(Xj )f
′(y) = �̂2

2(Xj )

∫ 1

0
(1 − s)f ′′(y + s�̂2(Xj )

)
ds.

Since �̂2 is bounded by c∗/a, we obtain

∣∣ω̂(Xj ) + �̂2(Xj )Ĵ2
∣∣ ≤ c∗

a
�̂2

2(Xj )

∫ ∣∣f ′′(y)
∣∣dy

with Ĵ2 = ∫
�̂2(y)�(y)f (y)dy = J + op(1). Now set

ϒ̂(z) = 1√
n

m∑
j=1

(
1
[
r̂2(Xj ) ≤ z

] − Q̂(z, r̂2)
)
�̂2(Xj ),

ϒ(z) = 1√
n

m∑
j=1

(
1
[
r(Xj ) ≤ z

] − Q(z)
)
�̂2(Xj ).

Using the Minkowski inequality and the statements (10.4)–(10.6), we derive

∥∥N̄ − (1 − Ĵ2/Ĵ )ϒ̂
∥∥

2 ≤ c∗‖f ′′‖1

a
√

n

m∑
j=1

R
1/2
1,j �̂2

2(Xj ) = Op

(
a−1n−1/4) = op(1),

‖ϒ̂ − ϒ‖2 ≤ 1√
n

m∑
j=1

R
1/2
2,j

∣∣�̂2(Xj )
∣∣ ≤ n1/2

(
1

n

m∑
j=1

R2,j

1

n

m∑
j=1

�̂2
2(Xj )

)1/2

= op(1).

Using the inequality |1[r(x) ≤ z]−Q(z)| ≤ 1[r(0) ≤ z ≤ r(1)], valid for all 0 ≤ x ≤ 1 and z ∈ R,
we obtain

E2
[∥∥ϒ − E2[ϒ]∥∥2

2

] ≤ m

n

∫ ∫ (
1
[
r(x) ≤ z

] − Q(z)
)2

�̂2
2(x)g(x)dx dz

≤ (
r(1) − r(0)

) ∫
�̂2

2(x)g(x)dx = op(1).

Now introduce

I (z, ρ) =
∫ (

1
[
r(x) ≤ z

] − Q(z)
)
ρ(x)g(x)dx.

Then we have E2[ϒ(z)] = n−1/2mI (z, �̂2). In view of the above and 1 − Ĵ2/Ĵ = op(1), the
desired property ‖N̄‖2 = op(1) will follow if we show ‖I (·, �̂2)‖2 = Op(n−1/2). The latter is
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equivalent to showing ‖I (·, r̂ − r)‖2 = Op(n−1/2). In view of (5.3), we have

∥∥I (·, r̂ − r) − I (·, �̂)
∥∥

2 = ∥∥I (·, r̂ − r − �̂)
∥∥

2 = op

(
n−1/2).

We can express I (z, �̂) as the average

1

n

n∑
j=1

εj τ (z,Xj )

with

τ(z,Xj ) =
∫ (

1
[
r(x) ≤ z

] − Q(z)
)1

c
w

(
Xj − x

c

)
D(x)ψ

(
Xj − x

c

)
g(x)dx

=
∫ (

1
[
r(Xj − cu) ≤ z

] − Q(z)
)
w(u)D(Xj − cu)ψ(u)g(Xj − cu)du.

Since |τ(z,Xj )| is bounded by a constant times 1[r(0) ≤ z ≤ r(1)], we conclude

nE
[∥∥I (·, �̂)

∥∥2
2

] =
∫

σ 2E
[
τ 2(z,X)

]
dz = O(1).

The above shows that ‖I (·, r̂ − r)‖2 = Op(n−1/2), and the proof is finished.
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