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We obtain some integrability properties and some limit theorems for the exit time from a cone of a planar
Brownian motion, and we check that our computations are correct via Bougerol’s identity.
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1. Introduction

We consider a standard planar Brownian motion (Zt = Xt + iYt , t ≥ 0), starting from
x0 + i0, x0 > 0, where (Xt , t ≥ 0) and (Yt , t ≥ 0) are two independent linear Brownian mo-
tions, starting respectively, from x0 and 0 (when we simply write: Brownian motion, we always
mean real-valued Brownian motion, starting from 0; for 2-dimensional Brownian motion, we
indicate planar or complex BM).

As is well known Itô and McKean [10], since x0 �= 0, (Zt , t ≥ 0) does not visit a.s. the point
0 but keeps winding around 0 infinitely often. In particular, the continuous winding process
θt = Im(

∫ t

0
dZs

Zs
), t ≥ 0 is well defined. A scaling argument shows that we may assume x0 = 1,

without loss of generality, since, with obvious notation:

(
Z

(x0)
t , t ≥ 0

) (law)= (
x0Z

(1)

(t/x2
0 )

, t ≥ 0
)
. (1)

Thus, from now on, we shall take x0 = 1.
Furthermore, there is the skew product representation:

log |Zt | + iθt ≡
∫ t

0

dZs

Zs

= (βu + iγu)

∣∣∣∣
u=Ht=

∫ t
0

ds

|Zs |2
, (2)
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where (βu + iγu,u ≥ 0) is another planar Brownian motion starting from log 1 + i0 = 0. Thus,
the Bessel clock H plays a key role in many aspects of the study of the winding number process
(θt , t ≥ 0) (see, e.g., Yor [21]).

Rewriting (2) as:

log |Zt | = βHt ; θt = γHt , (3)

we easily obtain that the two σ -fields σ {|Zt |, t ≥ 0} and σ {βu,u ≥ 0} are identical, whereas
(γu,u ≥ 0) is independent from (|Zt |, t ≥ 0).

We shall also use Bougerol’s celebrated identity in law, see, for example, Bougerol [5], Alili,
Dufresne and Yor [1] and Yor [24] (page 200), which may be written as:

for fixed t sinh(βt )
(law)= β̂At (β), (4)

where (βu,u ≥ 0) is 1-dimensional BM, Au(β) = ∫ u

0 ds exp(2βs) and (β̂v, v ≥ 0) is another BM,

independent of (βu,u ≥ 0). For the random times T
|θ |
c ≡ inf{t : |θt | = c}, and T

|γ |
c ≡ inf{t : |γt | =

c}, (c > 0) by using the skew-product representation (3) of planar Brownian motion Revuz and
Yor [15], we obtain:

T |θ |
c = A

T
|γ |
c

(β) ≡
∫ T

|γ |
c

0
ds exp(2βs) = H−1

u

∣∣∣∣
u=T

|γ |
c

. (5)

Moreover, it has been recently shown that, Bougerol’s identity applied with the random time T
|θ |
c

instead of t in (4) yields the following Vakeroudis [18].

Proposition 1.1. The distribution of T
|θ |
c is characterized by its Gauss–Laplace transform:

E

[√
2c2

πT
|θ |
c

exp

(
− x

2T
|θ |
c

)]
= 1√

1 + x
ϕm(x) (6)

for every x ≥ 0, with m = π
2c

, and:

ϕm(x) = 2

(G+(x))m + (G−(x))m
, G±(x) = √

1 + x ± √
x. (7)

The remainder of this article is organized as follows: in Section 2, we study some integrability
properties for the exit times from a cone; more precisely, we obtain some new results concern-
ing the negative moments of T

|θ |
c and of T θ

c ≡ inf{t : θt = c}. In Section 3, we state and prove
some Limit theorems for these random times for c → 0 and for c → ∞ followed by several
generalizations (for extensions of these works to more general planar processes, see, e.g., Doney
and Vakeroudis [7]). We use these results in order to obtain (see Remark 3.4) a new simple
non-computational proof of Spitzer’s celebrated asymptotic theorem Spitzer [16], which states
that:

2

log t
θt

(law)−→
t→∞C1, (8)
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with C1 denoting a standard Cauchy variable (for other proofs, see, e.g., Williams [20], Durrett
[9], Messulam and Yor [13], Bertoin and Werner [2], Yor [23], Vakeroudis [18]). Finally, in
Section 4, we use the Gauss–Laplace transform (6) which is equivalent to Bougerol’s identity (4)
in order to check our results.

2. Integrability properties

Concerning the moments of T
|θ |
c , we have the following (a more extended discussion is found in,

e.g., Matsumoto and Yor [12]).

Theorem 2.1. For every c > 0, T
|θ |
c enjoys the following integrability properties:

(i) for p > 0, E[(T |θ |
c )p] < ∞, if and only if p < π

4c
,

(ii) for any p < 0, E[(T |θ |
c )p] < ∞.

Corollary 2.2. For 0 < c < d , the random times T θ−d,c ≡ inf{t : θt /∈ (−d, c)}, T |θ |
c and T θ

c satisfy
the inequality:

T θ
c ≥ T θ−d,c ≥ T |θ |

c . (9)

Thus, their negative moments satisfy:

for p > 0 E

[
1

(T θ
c )p

]
≤ E

[
1

(T θ−d,c)
p

]
≤ E

[
1

(T
|θ |
c )p

]
< ∞. (10)

Proofs of Theorem 2.1 and of Corollary 2.2.

(i) The original proof is given by Spitzer [16], followed later by many authors Williams [20],
Burkholder [6], Messulam and Yor [13], Durrett [9], Yor [22]. See also Revuz and Yor [15],
Ex. 2.21, page 196.

(ii) In order to obtain this result, we might use the representation T
|θ |
c = A

T
|γ |
c

together with a
recurrence formula for the negative moments of At [8], Theorem 4.2, page 417 (in fact, Dufresne
also considers A

(μ)
t = ∫ t

0 ds exp(2βs +2μs), but we only need to take μ = 0 for our purpose, and

we note At ≡ A
(0)
t ), [17]. However, we can also obtain this result by simply remarking that the

RHS of the Gauss–Laplace transform (6) in Proposition 1.1 is an infinitely differentiable function
in 0 (see also [19]), thus:

E

[
1

(T
|θ |
c )p

]
< ∞ for every p > 0. (11)

Now, Corollary 2.2 follows immediately from Theorem 2.1(ii). �
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3. Limit theorems for T
|θ |
c

3.1. Limit theorems for T
|θ |
c , as c → 0 and c → ∞

The skew-product representation of planar Brownian motion allows to prove the three following
asymptotic results for T

|θ |
c .

Proposition 3.1.

(a) For c → 0, we have:

1

c2
T |θ |

c

(law)−→
c→0

T
|γ |
1 . (12)

(b) For c → ∞, we have:

1

c
log

(
T |θ |

c

) (law)−→
c→∞ 2|β|

T
|γ |
1

. (13)

(c) For ε → 0, we have:

1

ε2

(
T

|θ |
c+ε − T |θ |

c

) (law)−→
ε→0

exp(2β
T

|γ |
c

)T
γ ′

1 , (14)

where γ ′ stands for a real Brownian motion, independent from γ , and T
γ ′
1 = inf{t : γ ′

t = 1}.
Proof. We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

T |θ |
c = A

T
|γ |
c

(β)
(law)= Au(β)|

u=c2T
|γ |
1

thus:

1

c2
T |θ |

c

(law)=
∫ T

|γ |
1

0
dv exp(2cβv). (15)

(a) For c → 0, the RHS of (15) converges to T
|γ |
1 , thus we obtain part (a) of the proposition.

(b) For c → ∞, taking logarithms on both sides of (15) and dividing by c, on the LHS we
obtain 1

c
log(T

|θ |
c ) − 2

c
log c and on the RHS:

1

c
log

(∫ T
|γ |
1

0
dv exp(2cβv)

)
= log

(∫ T
|γ |
1

0
dv exp(2cβv)

)1/c

,

which, from the classical Laplace argument: ‖f ‖p
p→∞−→ ‖f ‖∞, converges for c → ∞, towards:

2 sup
v≤T

|γ |
1

(βv)
(law)= 2|β|

T
|γ |
1

.
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This proves part (b) of the proposition.

(c)

T
|θ |
c+ε − T |θ |

c =
∫ T

|γ |
c+ε

T
|γ |
c

du exp(2βu)

=
∫ T

|γ |
c+ε−T

|γ |
c

0
dv exp(2β

T
|γ |
c

) exp
(
2(β

v+T
|γ |
c

− β
T

|γ |
c

)
)

(16)

= exp(2β
T

|γ |
c

)

∫ T
|γ |
c+ε−T

|γ |
c

0
dv exp(2Bv),

where (Bs ≡ β
s+T

|γ |
c

− β
T

|γ |
c

, s ≥ 0) is a BM independent of T
|γ |
c .

We study now T̃
|γ |
c,c+ε ≡ T

|γ |
c+ε − T

|γ |
c , the first hitting time of the level c + ε from |γ |, starting

from c. Thus, we define: ρu ≡ |γu|, starting also from c. Thus, ρu = c+δu+Lu, where (δs, s ≥ 0)

is a BM and (Ls, s ≥ 0) is the local time of ρ at 0. Thus,

T̃
|γ |
c,c+ε = inf{u ≥ 0: ρu = c + ε} ≡ inf{u ≥ 0: δu + Lu = ε}

(17)
u=ε2v= ε2 inf

{
v ≥ 0:

1

ε
δvε2 + 1

ε
Lvε2 = 1

}
.

From Skorokhod’s lemma Revuz and Yor [15]:

Lu = sup
y≤u

(
(−c − δy) ∨ 0

)

we deduce:

1

ε
Lvε2 = sup

y≤vε2

(
(−c − δy) ∨ 0

) y=ε2σ= sup
σ≤v

((
−c − ε

1

ε
δσε2

)
∨ 0

)
= 0. (18)

Hence, with γ ′ denoting a new BM independent from γ , (16) writes:

T
|θ |
c+ε − T |θ |

c = exp(2β
T

|γ |
c

)

∫ ε2T
γ ′
1

0
dv exp(2Bv). (19)

Thus, dividing both sides of (19) by ε2 and making ε → 0, we obtain part (c) of the proposi-
tion. �

Remark 3.2. The asymptotic result (c) in Proposition 3.1 may also be obtained in a straight-
forward manner from (16) by analytic computations. Indeed, using the Laplace transform
of the first hitting time of a fixed level by the absolute value of a linear Brownian motion
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E[e−(λ2/2)T
|γ |
b ] = 1

cosh(λb)
(see, e.g., Proposition 3.7, page 71 in Revuz and Yor [15]), we have

that for 0 < c < b, and λ ≥ 0:

E
[
e−(λ2/2)(T

|γ |
b −T

|γ |
c )

] = cosh(λc)

cosh(λb)
. (20)

Using now b = c + ε, for every ε > 0, the latter equals:

cosh(λc/ε)

cosh((λ/ε)(c + ε))

ε→0−→ e−λ.

The result follows now by remarking that e−λ is the Laplace transform (for the argument λ2/2)
of the first hitting time of 1 by a linear Brownian motion γ ′, independent from γ .

3.2. Generalizations

Obviously, we can obtain several variants of Proposition 3.1, by studying T θ−bc,ac , 0 < a,b ≤ ∞,
for c → 0 or c → ∞, and a, b fixed. We define T

γ

−d,c ≡ inf{t : γt /∈ (−d, c)} and we have:

• 1
c2 T θ−bc,ac

(law)−→
c→0

T
γ

−b,a .

• 1
c

log(T θ−bc,ac)
(law)−→
c→∞ 2|β|T γ

−b,a
.

In particular, we can take b = ∞, hence the following corollary.

Corollary 3.3.

(a) For c → 0, we have

1

c2
T θ

ac

(law)−→
c→0

T
γ
a . (21)

(b) For c → ∞, we have

1

c
log

(
T θ

ac

) (law)−→
c→∞ 2|β|T γ

a

(law)= 2|Ca|, (22)

where (Ca, a ≥ 0) is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer’s theorem). Taking a = 1, from Corollary 3.3(b), we
can obtain yet another proof of Spitzer’s celebrated asymptotic theorem stated in (8). Indeed,
(22) can be equivalently stated as:

P
(
logT θ

c < cx
) (law)−→

c→∞P
(
2|C1| < x

)
. (23)
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Now, the LHS of (23) equals:

P
(
logT θ

c < cx
) ≡ P

(
T θ

c < exp(cx)
) ≡ P

(
sup

u≤exp(cx)

θu > c
)

(24)

= P
(|θexp(cx)| > c

) = P

(
|θt | > log t

x

)
,

with t = exp(cx). Thus, because |C1| (law)= |C1|−1, (23) now writes:

for every x > 0 given P

(
|θt | > log t

x

)
(law)−→
t→∞P

(
|C1| > 2

x

)
, (25)

which yields precisely Spitzer’s theorem (8).

3.3. Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the distri-
bution of 1

c2 T
|θ |
c towards that of T

|γ |
1 , that is, the following proposition.

Proposition 3.5. For any function ϕ ∈ C 2, with compact support,

1

c2

(
E

[
ϕ

(
1

c2
T |θ |

c

)]
− E

[
ϕ
(
T

|γ |
1

)])
(26)

−→
c→0

E

[
ϕ′(T |γ |

1

)(
T

|γ |
1

)2 + 2

3
ϕ′′(T |γ |

1

)(
T

|γ |
1

)3
]
.

Proof. We develop exp(2cβv), for c → 0, up to the second order term, that is,

e2cβv = 1 + 2cβv + 2c2β2
v + · · · .

More precisely, we develop up to the second order term, and we obtain

E

[
ϕ

(
1

c2
T |θ |

c

)]
= E

[
ϕ

(∫ T
|γ |
1

0
dv exp(2cβv)

)]

= E

[
ϕ
(
T

|γ |
1

) + ϕ′(T |γ |
1

)∫ T
|γ |
1

0

(
2cβv + 2c2β2

v

)
dv

]

+ 1

2
E

[
ϕ′′(T |γ |

1

)
4c2

(∫ T
|γ |
1

0
βv dv

)2]
+ c2o(c).

We then remark that E[∫ t

0 βv dv] = 0, E[∫ t

0 β2
v dv] = t2/2 and E[(∫ t

0 βv dv)2] = t3/3, thus we
obtain (26). �
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4. Checks via Bougerol’s identity

So far, we have not made use of Bougerol’s identity (4), which helps us to characterize the
distribution of T

|θ |
c [18]. In this subsection, we verify that writing the Gauss–Laplace transform

in (6) as:

E

[√
2

π

1√
(1/c2)T

|θ |
c

exp

(
− xc2

2T
|θ |
c

)]
= 1√

1 + xc2
ϕm

(
xc2), (27)

with m = π/(2c), we find asymptotically for c → 0 the Gauss–Laplace transform of T
|γ |

1 . In-
deed, from (27), for c → 0, we obtain:

E

[√
2

π

1√
T

|γ |
1

exp

(
− x

2T
|γ |
1

)]
(28)

= lim
c→0

2

(
√

1 + xc2 + √
xc2)π/(2c) + (

√
1 + xc2 − √

xc2)π/(2c)
.

Let us now study:

(√
1 + xc2 +

√
xc2

)π/(2c) = exp

(
π

(2c)
log

[
1 + (√

1 + xc2 − 1
) +

√
xc2

])

∼ exp

(
π

2c

[
c
√

x + xc2

2

])
−→
c→0

exp

(
π

√
x

2

)
.

A similar calculation finally gives

E

[√
2

π

1√
T

|γ |
1

exp

(
− x

2T
|γ |
1

)]
= 1

cosh((π/2)
√

x)
, (29)

a result which is in agreement with the law of β
T

|γ |
1

, whose density is

E

[
1√

2πT
|γ |

1

exp

(
− y2

2T
|γ |
1

)]
= 1

2 cosh((π/2)y)
. (30)

Indeed, the law of β
T

|γ |
c

may be obtained from its characteristic function which is given by Revuz
and Yor [15], page 73:

E
[
exp(iλβ

T
|γ |
c

)
] = 1

cosh(λc)
.
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It is well known that Lévy [11], Biane and Yor [4]:

E
[
exp(iλβ

T
|γ |
c

)
] = 1

cosh(λc)
= 1

cosh(πλc/π)
=

∫ ∞

−∞
ei(λc/π)y 1

2π

1

cosh(y/2)
dy

(31)
x=cy/π=

∫ ∞

−∞
eiλx 1

2π

π/c

cosh(xπ/(2c))
dx =

∫ ∞

−∞
eiλx 1

2c

1

cosh(xπ/(2c))
dx.

So, the density h−c,c of β
T

|γ |
c

is:

h−c,c(y) =
(

1

2c

)
1

cosh(yπ/(2c))
=

(
1

c

)
1

eyπ/(2c) + e−yπ/(2c)

and for c = 1, we obtain (30).
We recall from Remark 3.2 that (see also Pitman and Yor [14], where further results concern-

ing the infinitely divisible distributions generated by some Lévy processes associated with the
hyperbolic functions cosh, sinh and tanh can also be found):

E

[
exp

(
−λ2

2
T

|γ |
c

)]
= 1

cosh(λc)
, (32)

thus, for c = 1 and λ = π
2

√
x, (29) now writes:

E

[√
2

π

1√
T

|γ |
1

exp

(
− x

2T
|γ |
1

)]
= E

[
exp

(
−xπ2

8
T

|γ |
1

)]
, (33)

a result which gives a probabilistic proof of the reciprocal relation that was obtained in Biane,
Pitman and Yor [3] (using the notation of this article, Table 1, page 442):

fC1(x) =
(

2

πx

)3/2

fC1

(
4

π2x

)
.
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