
Bernoulli 18(2), 2012, 552–585
DOI: 10.3150/11-BEJ354

Degenerate U - and V -statistics under weak
dependence: Asymptotic theory and
bootstrap consistency
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We devise a general result on the consistency of model-based bootstrap methods for U - and V -statistics
under easily verifiable conditions. For that purpose, we derive the limit distributions of degree-2 degenerate
U - and V -statistics for weakly dependent Rd -valued random variables first. To this end, only some moment
conditions and smoothness assumptions concerning the kernel are required. Based on this result, we verify
that the bootstrap counterparts of these statistics have the same limit distributions. Finally, some applications
to hypothesis testing are presented.
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1. Introduction

Numerous test statistics can be formulated or approximated in terms of degenerate U - or V -type
statistics. Examples include the Cramér–von Mises statistic, the Anderson–Darling statistic or
the χ2-statistic. For i.i.d. random variables the limit distributions of U - and V -statistics can be
derived via a spectral decomposition of their kernel if the latter is squared integrable. To use
the same method for dependent data, often restrictive assumptions are required whose validity is
quite complicated or even impossible to verify in many cases. The first of our two main results
is the derivation of the asymptotic distributions of U - and V -statistics under assumptions that
are fairly easy to check. This approach is based on a wavelet decomposition instead of a spectral
decomposition of the kernel.

The limit distributions for both independent and dependent observations depend on certain
parameters which in turn depend on the underlying situation in a complicated way. Therefore,
problems arise as soon as critical values for test statistics of U - and V -type have to be determined.
The bootstrap offers a convenient way to circumvent these problems; see Arcones and Giné [2],
Dehling and Mikosch [10] or Leucht and Neumann [25] for the i.i.d. case. To our knowledge,
there are no results concerning bootstrapping general degenerate U -statistics of non-independent
observations. As a second main result of the paper, we establish consistency of model-based
bootstrap methods for U - and V -type statistics of weakly dependent data.

In order to describe the dependence structure of the sample, we do not invoke the concept
of mixing although a great variety of processes satisfy these constraints and various tools of
probability theory and statistics such as central limit theorems, probability and moment inequal-
ities can be carried over from the i.i.d. setting to mixing processes. However, these methods of
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measuring dependencies are inappropriate in the present context since not only the asymptotic
behaviour of U - and V -type statistics but also bootstrap consistency is focused. Model-based
bootstrap methods can yield samples that are no longer mixing even though the original sam-
ple satisfies some mixing condition. A simple example is presented in Section 4.2. There we
consider a model-specification test within the class of nonlinear AR(1) processes. Under H0,
Xk = g0(Xk−1) + εk , where g0 is Lipschitz contracting and (εk)k is a sequence of i.i.d. centered
innovations. It is most natural to draw the bootstrap innovations (ε∗

k )k via Efron’s bootstrap from
the recentered residuals first. Then the bootstrap counterpart of (Xk)k is generated iteratively by
choosing an initial variable X∗

0 independently of (ε∗
k )k and defining X∗

k = g0(X
∗
k−1) + ε∗

k . Due
to the discreteness of the bootstrap innovations, commonly used coupling techniques to prove
mixing properties for Markovian processes fail; see also Andrews [1]. It turns out that the char-
acterization of dependence structures introduced by Dedecker and Prieur [9] is exceptionally
suitable here. Based on their τ -dependence coefficient it is possible to construct an L1-coupling
in the following sense. Let M denote a σ -algebra generated by sample variables of the “past”
and let X be a random variable of a certain “future” time point. Then, the minimal L1-distance
between X and a random variable that has the same distribution as X but that is independent of
M is equivalent to the τ -dependence coefficient τ(M,X).

We exploit this coupling property in order to derive the asymptotic distribution for the original
as well as the bootstrap statistics of degenerate U -type. Basically, both proofs follow the same
lines. First, the (almost) Lipschitz continuous kernels of the U -statistics are approximated by a
finite wavelet series expansion. There are two crucial points that assure asymptotic negligibility
of the approximation error. On the one hand, the smoothness of the kernel function carries over
to its wavelet approximation uniformly in scale, cf. Lemma 5.2. On the other hand, Lipschitz
continuity of the kernel and the L1-coupling property of the underlying τ -dependent sample
perfectly fit together. A next step contains the application of a central limit theorem and the
continuous mapping theorem to determine the limits of the approximating statistics of U -type.
Based on these investigations, the asymptotic distribution of the U -statistic and its bootstrap
counterpart is then deduced via passage to the limit. It can be expressed as an infinite weighted
sum of normal variables.

Our paper is organized as follows. We start with an overview of asymptotic results on degener-
ate U -type statistics of dependent random variables. In Section 2.2, we introduce the underlying
concept of weak dependence and derive the asymptotic distributions of U - and V -statistics. On
the basis of these results, we deduce consistency of general bootstrap methods in Section 3. Some
applications of the theory to hypothesis testing are presented in Section 4. All proofs are deferred
to a final Section 5.

2. Asymptotic distributions of U - and V -statistics

2.1. Survey of literature

Let (Xn)n∈N be a sequence of R
d -valued random variables with common distribution PX . In the

case of i.i.d. random variables, the limit distributions of degenerate U - and V -type statistics, that
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is,

nUn = 1

n

n∑
j=1

∑
k �=j

h(Xj ,Xk) and nVn = 1

n

n∑
j,k=1

h(Xj ,Xk),

with h: R
d × R

d → R symmetric and
∫

Rd h(x, y)PX(dx) = 0,∀y ∈ R
d, can be derived by us-

ing a spectral decomposition of the kernel, h(x, y) = ∑∞
k=1 λk�k(x)�k(y), which holds true

in the L2-sense. Here, (�k)k denote orthonormal eigenfunctions and (λk)k the corresponding
eigenvalues of the integral equation∫

Rd

h(x, y)g(y)PX(dy) = λg(x). (2.1)

Approximate nUn by nU
(K)
n = ∑K

k=1 λk{(n−1/2 ∑n
i=1 �k(Xi))

2 −n−1 ∑n
i=1 �2

k(Xi)}. Then the
sum under the round brackets is asymptotically standard normal while the latter sum converges
in probability to 1. Finally, one obtains

nUn
d−→

∞∑
k=1

λk(Z
2
k − 1), (2.2)

where (Zk)k is a sequence of i.i.d. standard normal random variables; cf. Serfling [27]. If ad-
ditionally E|h(X1,X1)| < ∞, the weak law of large numbers and Slutsky’s theorem imply

Vn
d−→ ∑∞

k=1 λk(Z
2
k − 1) + Eh(X1,X1). (Here,

d−→ denotes convergence in distribution.)
So far, most previous attempts to derive the limit distributions of degenerate U - and V -

statistics of dependent random variables are based on the adoption of this method of proof.
Eagleson [15] developed the asymptotic theory in the case of a strictly stationary sequence
of φ-mixing, real-valued random variables under the assumption of absolutely summable
eigenvalues. This condition is satisfied if the kernel function is of the form h(x, y) =∫

R
h1(x, z)h1(z, y)PX(dz) and h1 is squared integrable w.r.t. PX . Using general heavy-tailed

weight functions instead of PX , the eigenvalues are not necessarily absolutely summable; see,
for example, de Wet [7]. Carlstein [5] analysed U -statistics of α-mixing, real-valued random vari-
ables in the case of finitely many eigenfunctions. He derived a limit distribution of the form (2.2),
where (Zk)k∈N is a sequence of centered normal random variables. Denker [11] considered sta-
tionary sequences (Xn = f (Yn,Yn+1, . . .))n of functionals of β-mixing random variables (Yn)n.
He assumed f and the cumulative distribution function of X1 to be Hölder continuous. Imposing
some smoothness condition on h, the limit distribution of nUn was derived under the additional
assumption ‖�k‖∞ < ∞,∀k ∈ N. The condition on (�k)k is difficult or even impossible to
check in a multitude of cases since this requires to solve the associated integral equation (2.1).
Similar difficulties occur if one wants to apply the results of Dewan and Prakasa Rao [12] or
Huang and Zhang [21]. They studied U -statistics of associated, real-valued random variables.
Besides the absolute summability of the eigenvalues, certain regularity conditions have to be
satisfied uniformly by the eigenfunctions in order to obtain the asymptotic distribution of nUn.

A different approach was used by Babbel [3] to determine the limit distribution of U -statistics
of φ- and β-mixing random variables. She deduced the limit distribution via a Haar wavelet de-
composition of the kernel and empirical process theory without imposing the critical conditions
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mentioned above. However, she presumed that
∫∫

h(x, y)PXk,Xk+n
(dx,dy) = 0,∀k ∈ Z, n ∈ N.

This assumption does in general not hold true within our applications in Section 3. Moreover,
this approach is not suitable when dealing with U -statistics of τ -dependent random variables
since Lipschitz continuity will be the crucial property of the (approximating) kernel in order to
exploit the underlying dependence structure.

2.2. Main results

Let (Xn)n∈N be a sequence of R
d -valued random variables on some probability space (�, A,P )

with common distribution PX . In this subsection, we derive the limit distributions of

nUn = 1

n

n∑
j=1

∑
k �=j

h(Xj ,Xk) and nVn = 1

n

n∑
j,k=1

h(Xj ,Xk),

where h : R
d × R

d → R is a symmetric function with
∫

Rd h(x, y)PX(dx) = 0,∀y ∈ R
d . In order

to describe the dependence structure of (Xn)n∈N, we recall the definition of the τ -dependence
coefficient for R

d -valued random variables of Dedecker and Prieur [9].

Definition 2.1. Let (�, A,P ) be a probability space, M a sub-σ -algebra of A and X an R
d -

valued random variable. Assume that E‖X‖l1 < ∞, where ‖x‖l1 = ∑d
i=1 |xi |, and define

τ(M,X) = E

(
sup

f ∈�1(R
d )

∣∣∣∣∫
Rd

f (x)PX|M(dx) −
∫

Rd

f (x)PX(dx)

∣∣∣∣).

Here, PX|M denotes the conditional distribution of X given M and �1(R
d) denotes the set of

1-Lipschitz functions from R
d to R.

We assume

(A1) (i) (Xn)n∈N is a (strictly) stationary sequence of R
d -valued random variables on some

probability space (�, A,P ) with common distribution PX and E‖X1‖l1 < ∞.
(ii) The sequence (τr )r∈N, defined by

τr = sup{τ(σ (Xs1, . . . ,Xsu), (X
′
t1
,X′

t2
,X′

t3
)′)|

u ∈ N, s1 ≤ · · · ≤ su < su + r ≤ t1 ≤ t2 ≤ t3 ∈ N},
satisfies

∑∞
r=1 rτ δ

r < ∞ for some δ ∈ (0,1). (Here, prime denotes the transposition.)

Remark 1. If � is rich enough, due to Dedecker and Prieur [8] the validity of (A1) allows

for the construction of a random vector (X̃′
t1
, X̃′

t2
, X̃′

t3
)′ d= (X′

t1
,X′

t2
,X′

t3
)′ that is independent of

Xs1, . . . ,Xsu and such that

3∑
i=1

E‖X̃ti − Xti ‖l1 ≤ τr . (2.3)
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The notion of τ -dependence is more general than mixing. If, for example, (Xn)n is β-
mixing, we obtain an upper bound for the dependence coefficient τr ≤ 6

∫ β(r)

0 Q|X1|(u)du, where
Q|X1|(u) = inf{t ∈ R|P(‖X1‖l1 > t) ≤ u}, u ∈ [0,1], and β(r) denotes the ordinary β-mixing
coefficient β(r) := E supB∈σ(Xs,s≥t+r),t∈Z |P(B|σ(Xs, s ≤ t)) − P(B)|. This is a consequence
of Remark 2 of Dedecker and Prieur [8]. Moreover, inequality (2.3) immediately implies

| cov(h(Xs1 , . . . ,Xsu), k(Xt1 , . . . ,Xtv ))| ≤ 2‖h‖∞ Lip(k)

⌈
v

3

⌉
τr (2.4)

for s1 ≤ · · · ≤ su < su + r ≤ t1 ≤ · · · ≤ tv ∈ N and for all functions h : Ru → R and k : Rv → R in
L := {f : Rp → R for some p ∈ N|Lipschitz continuous and bounded}. Therefore, a sequence of
random variables that satisfies (A1) is ((τr )r , L,ψ)-weakly dependent in the sense of Doukhan
and Louhichi [14] with ψ(h, k,u, v) = 2‖h‖∞ Lip(k)� v

3 
. (Here and in the sequel, Lip(g) de-
notes the Lipschitz constant of a generic function g.) A list of examples for τ -dependent pro-
cesses including causal linear and functional autoregressive processes is provided by Dedecker
and Prieur [9].

Besides the conditions on the dependence structure of (Xn)n∈N, we make the following as-
sumptions concerning the kernel:

(A2) (i) The kernel h : R
d × R

d → R is a symmetric, measurable function and degenerate
under PX , that is,

∫
Rd h(x, y)PX(dx) = 0,∀y ∈ R

d .
(ii) For a δ satisfying (A1)(ii), the following moment constraints hold true with some

ν > (2 − δ)/(1 − δ) and an independent copy X̃1 of X1:

sup
k∈N

E|h(X1,X1+k)|ν < ∞ and E|h(X1, X̃1)|ν < ∞.

(A3) The kernel h is Lipschitz continuous.

Using an appropriate kernel truncation, it is possible to reduce the problem of deriving the asymp-
totic distribution of nUn to statistics with bounded kernel functions.

Lemma 2.1. Suppose that (A1), (A2), and (A3) are fulfilled. Then there exists a family of
bounded functions (hc)c∈R+ satisfying (A2) and (A3) uniformly such that

lim
c→∞ sup

n∈N

n2
E(Un − Un,c)

2 = 0, (2.5)

where Un,c = n−2 ∑n
j=1

∑
k �=j hc(Xj ,Xk).

After this simplification of the problem, we intend to develop a decomposition of the kernel
that allows for the application of a central limit theorem (CLT) for weakly dependent random
variables. One could try to imitate the proof of the i.i.d. case. According to the discussion in the
previous subsection, this leads to prerequisites that can hardly be checked in numerous cases.
Therefore, we do not use a spectral decomposition of the kernel but a wavelet decomposition.
It turns out that Lipschitz continuity is the central property the kernel function should satisfy in
order to exploit (2.3). For this reason, the choice of Haar wavelets, as they were employed by
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Babbel [3], is inappropriate in the present situation. Instead, the application of Lipschitz contin-
uous scale and wavelet functions is more suitable.

In the sequel, let φ and ψ denote scale and wavelet functions associated with an one-
dimensional multiresolution analysis. As illustrated by Daubechies [6], Section 8, these functions
can be selected in such a manner that they possess the following properties:

(1) φ and ψ are Lipschitz continuous,
(2) φ and ψ have compact support,
(3)

∫ ∞
−∞ φ(x)dx = 1 and

∫ ∞
−∞ ψ(x)dx = 0.

It is well known that an orthonormal basis in L2(R
d) can be constructed from φ and ψ . For this

purpose, define E := {0,1}d \ {0d}, where 0d denotes the d-dimensional null vector. In addition,
set

ϕ(i) :=
{

φ for i = 0,

ψ for i = 1

and define functions �
(e)
j,k : Rd → R, j ∈ Z, k = (k1, . . . , kd)′ ∈ Z

d, by

�
(e)
j,k(x) := 2jd/2

d∏
i=1

ϕ(ei)(2j xi − ki) ∀e = (e1, . . . , ed)′ ∈ E,x = (x1, . . . , xd)′ ∈ R
d .

The system (�
(e)
j,k)e∈E,j∈Z,k∈Zd is an orthonormal basis of L2(R

d), see Wojtaszczyk [29],

Section 5. The same holds true for (�0,k)k∈Zd ∪ (�
(e)
j,k)j≥0,e∈E,k∈Zd , where the functions

�j,k : Rd → R are given by �j,k(x) := 2jd/2 ∏d
i=1 φ(2j xi − ki), j ∈ Z, k ∈ Z

d .
Now, an L2-approximation of nUn,c by a statistic based on a wavelet approximation of hc can

be established. To this end, we introduce h̃
(K,L)
c with

h̃(K,L)
c (x, y) :=

∑
k1,k2∈{−L,...,L}d

α
(c)
k1,k2

�0,k1(x)�0,k2(y)

(2.6)

+
J (K)−1∑

j=0

∑
k1,k2∈{−L,...,L}d

∑
e∈Ē

β
(c,e)
j ;k1,k2

�
(e)
j ;k1,k2

(x, y),

where Ē := (E × E) ∪ (E × {0d}) ∪ ({0d} × E),

�
(e)
j ;k1,k2

:=

⎧⎪⎪⎨⎪⎪⎩
�

(e1)
j,k1

�
(e2)
j,k2

for (e′
1, e

′
2)

′ ∈ E × E,

�
(e1)
j,k1

�j,k2 for (e′
1, e

′
2)

′ ∈ E × {0d},
�j,k1�

(e2)
j,k2

for (e′
1, e

′
2)

′ ∈ {0d} × E,
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α
(c)
k1,k2

= ∫∫
Rd×Rd hc(x, y)�0,k1(x)�0,k2(y)dx dy and β

(c,e)
j ;k1,k2

= ∫∫
Rd×Rd hc(x, y) ×

�
(e)
j ;k1,k2

(x, y)dx dy. We refer to the degenerate version of h̃
(K,L)
c as h

(K,L)
c , given by

h(K,L)
c (x, y) := h̃(K,L)

c (x, y) −
∫

Rd

h̃(K,L)
c (x, y)PX(dx) −

∫
Rd

h̃(K,L)
c (x, y)PX(dy)

+
∫ ∫

Rd×Rd

h̃(K,L)
c (x, y)PX(dx)PX(dy).

The associated U -type statistic will be denoted by U
(K,L)
n,c .

Lemma 2.2. Assume that (A1), (A2), and (A3) are fulfilled. Then the sequence of indices
(J (K))K∈N in (2.6) with J (K) −→K→∞ ∞ can be chosen such that

lim
K→∞ lim sup

L→∞
sup
n∈N

n2
E
(
Un,c − U(K,L)

n,c

)2 = 0.

Employing the CLT of Neumann and Paparoditis [26] and the continuous mapping theo-
rem, we obtain the limit distribution of nU

(K,L)
n,c . Finally, based on this result, the asymp-

totics of the U -type statistic nUn can be derived. Moreover, a weak law of large numbers
(Lemma 5.1 in Section 5.2) allows for deducing the limit distribution of nVn since nVn =
nUn + n−1 ∑n

k=1 h(Xk,Xk).
Before stating the main result of this section, we introduce constants Ak1,k2 := cov(�0,k1(X1),

�0,k2(X1)) and

B
(c,e)
j ;k1,k2

:=

⎧⎪⎪⎨⎪⎪⎩
cov

(
�

(e1)
j,k1

(X1),�
(e2)
j,k2

(X1)
)

for (e′
1, e

′
2)

′ ∈ E × E,

cov
(
�

(e1)
j,k1

(X1),�j,k2(X1)
)

for (e′
1, e

′
2)

′ ∈ E × {0d},
cov

(
�j,k1(X1),�

(e2)
j,k2

(X1)
)

for (e′
1, e

′
2)

′ ∈ {0d} × E,

j ∈ Z, k1, k2 ∈ Z
d .

Theorem 2.1. Suppose that the assumptions (A1), (A2), and (A3) are fulfilled. Then, as n → ∞,

nUn
d−→ Z

with

Z := lim
c→∞

( ∑
k1,k2∈Zd

α
(c)
k1,k2

[Zk1Zk2 − Ak1,k2]

+
∞∑

j=0

∑
k1,k2∈Zd

∑
e=(e′

1,e
′
2)

′∈Ē

β
(c,e)
j ;k1,k2

[
Z

(e1)
j ;k1

Z
(e2)
j ;k2

− B
(c,e)
j ;k1,k2

])
.

Here, (Zk)k∈Zd as well as (Z
(e)
j ;k)j≥0,k∈Zd ,e∈{0,1}d are centered and jointly normally distributed

random variables and the r.h.s. converges in the L2-sense. If additionally E|h(X1,X1)| < ∞,
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then

nVn
d−→ Z + Eh(X1,X1).

As in the case of i.i.d. random variables, the limit distributions of nUn and nVn are, up to a
constant, weighted sums of products of centered normal random variables. In contrast to many
other results in the literature, the prerequisites of this theorem, namely moment constraints and
Lipschitz continuity of the kernel, can be checked fairly easily in many cases. Nevertheless, the
asymptotic distribution has a complicated structure. Hence, quantiles can hardly be determined
on the basis of the previous result. However, we show in the following section that the conditional
distributions of the bootstrap counterparts of nUn and nVn, given X1, . . . ,Xn, converge to the
same limits in probability.

Of course, the assumption of Lipschitz continuous kernels is rather restrictive. Thus, we extend
our theory to a more general class of kernel functions. The costs for enlarging the class of feasible
kernels are additional moment constraints.

Besides (A1) and (A2), we assume

(A4) (i) The kernel function satisfies

|h(x, y) − h(x̄, ȳ)| ≤ f (x, x̄, y, ȳ)[‖x − x̄‖l1 + ‖y − ȳ‖l1] ∀x, x̄, y, ȳ ∈ R
d,

where f : R4d → R is continuous. Moreover,

sup
Y1,...,Y5∼PX

E

(
max

a1,a2∈[−A,A]d
[f (Y1, Y2 + a1, Y3, Y4 + a2)]η‖Y5‖l1

)
< ∞

for η := 1/(1 − δ) with δ satisfying (A2) and some A > 0.
(ii)

∑∞
r=1 r(τr )

δ2
< ∞.

Even though the assumption (A4)(i) has a rather technical structure, it is satisfied for exam-
ple, by polynomial kernel functions as long as the sample variables have sufficiently many finite
moments. Analogous to Lemma 2.1 and Lemma 2.2, the following assertion holds.

Lemma 2.3. Suppose that (A1), (A2), and (A4) are fulfilled. Then a family of bounded kernels
(hc)c satisfying (A2) and (A4) uniformly and the sequence of indices (J (K))K∈N in (2.6) with
J (K) −→K→∞ ∞ can be chosen such that

lim
c→∞ lim sup

K→∞
lim sup
L→∞

sup
n∈N

E
(
Un − U(K,L)

n,c

)2 = 0.

This auxiliary result implies the analogue of Theorem 2.1 for non-Lipschitz kernels.

Theorem 2.2. Assume that (A1), (A2), and (A4) are satisfied. Then, as n → ∞,

nUn
d−→ Z,
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where Z is defined as in Theorem 2.1. If additionally E|h(X1,X1)| < ∞, then

nVn
d−→ Z + Eh(X1,X1).

3. Consistency of general bootstrap methods

As we have seen in the previous section, the limit distributions of degenerate U - and V -statistics
have a rather complicated structure. Therefore, in the majority of cases it is quite difficult to
determine quantiles, which are required in order to derive asymptotic critical values of U - and
V -type test statistics. The bootstrap offers a suitable way of approximating these quantities.

Given X1, . . . ,Xn, let X∗ and Y ∗ denote vectors of bootstrap random variables with values in
R

d1 and R
d2 . In order to describe the dependence structure of the bootstrap sample, we introduce,

in analogy to Definition 2.1,

τ ∗(Y ∗,X∗, xn) := E

(
sup

f ∈�1(R
d1 )

∣∣∣∣∫
R

d1
f (x)PX∗|Y ∗(dx) −

∫
R

d1
f (x)PX∗(dx)

∣∣∣∣∣∣Xn = xn

)
provided that E(‖X∗‖l1 |Xn = xn) < ∞ with Xn := (X′

1, . . . ,X
′
n)

′. We make the following as-
sumptions:

(A1∗) (i) The sequence of bootstrap variables is stationary with probability tending to one.

Additionally, (X∗′
t1

,X∗′
t2

)′ d−→ (X′
t1
,X′

t2
)′,∀t1, t2 ∈ N, holds true in probability.

(ii) Conditionally on X1, . . . ,Xn, the random variables (X∗
k )k∈Z are τ -weakly depen-

dent, that is, there exist a sequence of coefficients (τ̄r )r∈N with
∑∞

r=1 r(τ̄r )
δ < ∞

for some δ ∈ (0,1), a constant C1 < ∞, and a sequence of sets (X
(1)
n )n∈N with

P(Xn ∈ X
(1)
n ) −→n→∞ 1 and the following property: For any sequence (xn)n∈N

with xn ∈ X
(1)
n , n ∈ N, supk∈N E(‖X∗

k‖l1 |Xn = xn) ≤ C1 and

τ ∗
r (xn) := sup{τ ∗((X∗′

s1
, . . . ,X∗′

su
)′, (X∗′

t1
,X∗′

t2
,X∗′

t3
)′, xn)|

u ∈ N, s1 ≤ · · · ≤ su < su + r ≤ t1 ≤ t2 ≤ t3 ∈ N}
can be bounded by τ̄r for all r ∈ N.

Remark 2.

(i) Neumann and Paparoditis [26] proved that in case of stationary Markov chains of finite
order, the key for convergence of the finite-dimensional distributions is convergence of the
conditional distributions, cf. their Lemma 4.2. In particular, they showed that AR(p) boot-
strap and ARCH(p) bootstrap yield samples that satisfy (A1∗)(i).

(ii) In Section 4.2, we present another example that satisfies (A1∗), namely a residual-based
bootstrap procedure for a Lipschitz contracting nonlinear AR(1) process, given by Xt =
g(Xt−1) + εt . In particular, note that the bootstrap process there cannot be proved to be
mixing according to the discreteness of the bootstrap innovations that are generated via
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Efron’s bootstrap from the empirical distribution of the recentered residuals of the original
process.

Lemma 3.1. Suppose that (A1) and (A1∗) hold true. Further let h : Rd ×R
d → R be a bounded,

symmetric, Lipschitz continuous function such that Eh(X1, y) = E(h(X∗
1, y)|X1, . . . ,Xn) =

0,∀y ∈ R
d . Then,

1

n

n∑
j=1

∑
k �=j

h(X∗
j ,X

∗
k )

d−→ Z and
1

n

n∑
j,k=1

h(X∗
j ,X

∗
k )

d−→ Z + Eh(X1,X1)

hold in probability as n → ∞. Here, Z is defined as in Theorem 2.1.

In order to deduce bootstrap consistency, additionally, convergence in a certain metric ρ is
required, that is,

ρ

(
P

(
1

n

n∑
j,k=1

h(X∗
j ,X

∗
k ) ≤ x|X1, . . . ,Xn

)
,P

(
1

n

n∑
j,k=1

h(Xj ,Xk) ≤ x

))
P−→ 0.

(Here,
P−→ denotes convergence in probability.) Convergence in the uniform metric follows from

Lemma 3.1 if the limit distribution has a continuous cumulative distribution function. The next
assertion gives a necessary and sufficient condition for this.

Lemma 3.2. The limit variable Z, derived in Theorem 2.1/Theorem 2.2 under (A1), (A2), and
(A3)/ (A4), has a continuous cumulative distribution function if var(Z) > 0.

Kernels of statistics emerging from goodness-of-fit tests for composite hypotheses often de-
pend on an unknown parameter. We establish bootstrap consistency for this setting, that is, when
parameters have to be estimated. Moreover, the class of feasible kernels is enlarged. For this
purpose, we additionally assume

(A2∗) (i) θ̂n
P−→ θ ∈ � ⊆ R

p.

(ii) E(h(X∗
1, y, θ̂n)|Xn) = 0,∀y ∈ R

d .
(iii) For some δ satisfying (A1∗)(ii), ν > (2 − δ)/(1 − δ), and a constant C2 < ∞,

there exists a sequence of sets (X
(2)
n )n∈N such that P(Xn ∈ X

(2)
n ) −→n→∞ 1 and

∀(xn)n∈N with xn ∈ X
(2)
n the following moment constraint holds true:

sup
1≤k<n

E
(|h(X∗

1,X∗
1+k, θ̂n)|ν + |h(X∗

1, X̃∗
1, θ̂n)|ν |Xn = xn

) ≤ C2,

where (conditionally on Xn) X̃∗
1 denotes an independent copy of X∗

1 .
(A3∗) (i) The kernel is continuous in its third argument in some neighbourhood U(θ) ⊆ �

of θ and satisfies

|h(x, y, θ̂n) − h(x̄, ȳ, θ̂n)| ≤ f (x, x̄, y, ȳ, θ̂n)[‖x − x̄‖l1 + ‖y − ȳ‖l1]
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for all x, x̄, y, ȳ ∈ R
d , where f : R4d × R

p → R is continuous on R
4d × U(θ).

Moreover, for η := 1/(1 − δ) and some constants A > 0,C3 < ∞ there exists a
sequence of sets (X

(3)
n )n∈N such that P(Xn ∈ X

(3)
n ) −→n→∞ 1 and ∀(xn)n∈N with

xn ∈ X
(3)
n the following moment constraint holds true:

E

(
max

a1,a2∈[−A,A]d
[f (Y ∗

1 , Y ∗
2 + a1, Y

∗
3 , Y ∗

4 + a2, θ̂n)]η‖Y ∗
5 ‖l1

∣∣Xn = xn

)
≤ C3

for all Y ∗
1 , . . . , Y ∗

5 with Y ∗
k

d= X∗
1 , k ∈ {1, . . . ,5} (conditionally on X1, . . . ,Xn).

(ii)
∑∞

r=1 r(τ̄r )
δ2

< ∞.

Under these assumptions a result concerning the asymptotic distributions of nU∗
n = n−1 ×∑n

j=1
∑

k �=j h(X∗
j ,X

∗
k , θ̂n) and nV ∗

n = n−1 ∑n
j,k=1 h(X∗

j ,X
∗
k , θ̂n) can be derived. To this end,

we denote the U - and V -statistics with kernel h(·, ·, θ) and arguments X1, . . . ,Xn by Un and Vn,
respectively.

Theorem 3.1. Suppose that the conditions (A1), (A2), and (A4) as well as (A1∗), (A2∗), and
(A3∗) are fulfilled.

(i) As n → ∞,

nU∗
n

d−→ Z, in probability,

where Z is defined as in Theorem 2.1. If furthermore var(Z) > 0, then

sup
−∞<x<∞

|P(nU∗
n ≤ x|X1, . . . ,Xn) − P(nUn ≤ x)| P−→ 0.

(ii) If additionally E|h(X1,X1, θ)| < ∞ and E(|h(X∗
1,X∗

1, θ̂n)||Xn)
P−→ E|h(X1,X1, θ)|,

then as n → ∞,

nV ∗
n

d−→ Z + Eh(X1,X1, θ), in probability.

Moreover, in case of var(Z) > 0,

sup
−∞<x<∞

|P(nV ∗
n ≤ x|X1, . . . ,Xn) − P(nVn ≤ x)| P−→ 0.

Remark 3. Theorem 3.1 implies that bootstrap-based tests of U - or V -type have asymptotically
a prescribed size α, that is, P(nUn > t∗u,α) −→n→∞ α and P(nVn > t∗v,α) −→n→∞ α, where
t∗u,α and t∗v,α denote the (1 − α)-quantiles of nU∗

n and nV ∗
n , respectively, given X1, . . . ,Xn.

4. L2-tests for weakly dependent observations

This section is dedicated to two applications in the field of hypothesis testing. For sake of sim-
plicity, we restrict ourselves to real-valued random variables and consider simple null hypotheses
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only. The test for symmetry as well as the model-specification test can be extended to problems
with composite hypotheses, cf. Leucht [23,24].

4.1. A test for symmetry

Answering the question whether a distribution is symmetric or not is interesting for several rea-
sons. Often robust estimators of and robust tests for location parameters assume the observa-
tions to arise from a symmetric distribution, see, for example, Staudte and Sheather [28]. Con-
sequently, it is important to check this assumption before applying those methods. Moreover,
symmetry plays a central role in analyzing and modeling real-life phenomena. For instance, it is
often presumed that an observed process can be described by an AR(p) process with Gaussian
innovations which in turn implies a Gaussian marginal distribution. Rejecting the hypothesis
of symmetry contradicts this type of marginal distribution. Furthermore, this result of the test
excludes any kind of symmetric innovations in that context.

Suppose that we observe X1, . . . ,Xn from a sequence of real-valued random variables with
common distribution PX and satisfying (A1). For some μ ∈ R, we are given the problem

H0: PX−μ = Pμ−X vs. H1: PX−μ �= Pμ−X.

Similar to Feuerverger and Mureika [18], who studied the problem for i.i.d. random variables,
we propose the following test statistic:

Sn = n

∫
R

[�(cn(t)e
−iμt

)]2
w(t)dt = 1

n

n∑
j,k=1

∫
R

sin
(
t (Xj − μ)

)
sin

(
t (Xk − μ)

)
w(t)dt

which makes use of the fact that symmetry of a distribution is equivalent to a vanishing imag-
inary part of the associated characteristic function. Here, �(z) denotes the imaginary part of
z ∈ C, cn denotes the empirical characteristic function and w is some positive measurable weight
function with

∫
R
(1 + |t |)w(t)dt < ∞. Obviously, Sn is a V -type statistic whose kernel satis-

fies (A2) and (A3). Thus, its limit distribution can be determined by Theorem 2.1. Assuming
that the observations come from a stationary AR(p) or ARCH(p) process, the validity of (A1∗)
is assured when the AR(p) or ARCH(p) bootstrap methods given by Neumann and Paparo-
ditis [26] are used in order to generate the bootstrap counterpart of the sample. Hence, in these
cases the prerequisites of Lemma 3.1 are satisfied excluding degeneracy. Inspired by Dehling and
Mikosch [10], who discussed this problem for Efron’s Bootstrap in the i.i.d. case, we propose a
bootstrap statistic with the kernel

h∗
n(x, y) = h(x, y) −

∫
R

h(x, y)P ∗
n (dx) −

∫
R

h(x, y)P ∗
n (dy) +

∫
R2

h(x, y)P ∗
n (dx)P ∗

n (dy).

Here, h denotes the kernel function of Sn and P ∗
n the distribution of X∗

1 conditionally on
X1, . . . ,Xn. Similar to the proof of Theorem 3.1, the desired convergence property of S∗

n can
be verified.
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4.2. A model-specification test

Let X0, . . . ,Xn be observations resulting from a stationary real-valued nonlinear autoregres-
sive process with centered i.i.d. innovations (εk)k∈Z, that is, Xk = g(Xk−1) + εk. Suppose
that E|ε0|4+δ < ∞ for some δ > 0 and that g ∈ G := {f : R → R|f Lipschitz continuous
with Lip(f ) < 1}. Thus, the process (Xk)k∈Z is τ -dependent with exponential rate, see Dedecker
and Prieur [9], Example 4.2. We will present a test for the problem

H0: P
(
E(X1|X0) = g0(X0)

) = 1 vs. H1: P
(
E(X1|X0) = g0(X0)

)
< 1

with g0 ∈ G. For sake of simplicity, we stick to these small classes of functions G and of pro-
cesses (Xk)k∈Z. An extension to a more comprehensive variety of model-specification tests is
investigated in a forthcoming paper, cf. Leucht [24].

Similar to Fan and Li [16], we propose the following test statistic:

Tn = 1

n
√

h

n∑
j=1

∑
k �=j

(
Xj − g0(Xj−1)

)(
Xk − g0(Xk−1)

)
K

(
Xj−1 − Xk−1

h

)

=: 1

n

n∑
j=1

∑
k �=j

H(Zj ,Zk),

that is, a kernel estimator (multiplied with n
√

h) of E([X1 − g(X0)]E(X1 − g(X0)|X0)p(X0))

that is equal to zero under H0. Here, Zk := (Xk,Xk−1)
′, k ∈ Z, and p denotes the density of

the distribution of X0. Fan and Li [16], who considered β-mixing processes, used a similar test
statistic with a vanishing bandwidth. In contrast, we consider the case of a fixed bandwidth. These
tests are more powerful against Pitman alternatives g1,n(x) = g0(x) + n−βw(x) + o(n−β),β >

0,w ∈ G. For a detailed discussion of this topic, see Fan and Li [17].
Obviously, Tn is degenerate under H0. If we assume K to be a bounded, even, and Lipschitz

continuous function, then there exists a function f : R8 → R with |H(z1, z2) − H(z̄1, z̄2)| ≤
f (z1, z̄1, z2, z̄2)(‖z1 − z̄1‖l1 + ‖z2 − z̄2‖l1) and such that (A4) is valid. Moreover, under these
conditions H satisfies (A2). Hence, the assertion of Theorem 2.2 holds true. In order to deter-
mine critical values of the test, we propose the bootstrap procedure given by Franke and Wen-
del [19] (without estimating the regression function). The bootstrap innovations (ε∗

t )t are drawn
with replacement from the set {ε̃t = εt − n−1 ∑n

k=1 εk}nt=1, where εt = Xt − g0(Xt−1), t =
1, . . . , n. After choosing a starting value X∗

0 independently of (ε∗
t )t≥1, the bootstrap sample

X∗
t = g(X∗

t−1) + ε∗
t as well as the bootstrap counterpart T ∗

n = n−1 ∑n
j=1

∑
k �=j H(Z∗

j ,Z∗
k ) of

the test statistic with Z∗
k = (X∗

k ,X
∗
k−1)

′, k = 1, . . . , n, can be computed. In contrast to the previ-
ous subsection, the proposed bootstrap method leads to a degenerate kernel function. Obviously,
the bootstrap sample is τ -dependent in the sense of (A1∗) and satisfies E(|X∗

k ||Z1, . . . ,Zn) < C

for some C < ∞ with probability tending to one. Theorem 1 of Diaconis and Freedman [13]
yields the existence of a stationary solution to X∗

t = g(X∗
t−1) + ε∗

t and that the distribution of
any “reasonably” started process converges to the stationary one with exponential rate. In or-
der to apply our theory, X∗

0 is assumed to be drawn from the stationary bootstrap distribution,



Bootstrap for U -statistics under weak dependence 565

conditionally on X1, . . . ,Xn. We employ Lemma 4.2 of Neumann and Paparoditis [26] to verify
convergence of the finite dimensional distributions. The application of this result requires the

convergence of the conditional distributions, that is, supx∈K d(P X∗
t |X∗

t−1=x,P Xt |Xt−1=x)
P−→ 0

for every compact K ⊂ R and d(P,Q) = infX∼P,Y∼Q E(|X − Y | ∧ 1). In the present context,
this can be confirmed similarly to the proof of Lemma 4.1 by Neumann and Paparoditis [26] if
the innovations of the original process have a bounded density. Summing up, all prerequisites of
Theorem 3.1 are satisfied. Hence, critical values of the above test can be determined using the
proposed model-based bootstrap procedure.

5. Proofs

5.1. Proofs of the main theorems

Throughout this section, C denotes a positive finite generic constant.

Proof of Theorem 2.1. First, we derive the limit distribution of nU
(K,L)
n,c , defined before

Lemma 2.2. Afterwards, the asymptotic distributions of nUn and nVn are deduced by means
of Lemma 2.1, Lemma 2.2, and a weak law of large numbers.

The following modified representation of h̃
(K,L)
c will be useful in the sequel:

h̃(K,L)
c (x, y) =

M(K,L)∑
k,l=1

γ
(c)
k,l q̃k(x)q̃l(y),

where (q̃l)
M(K,L)
l=1 is an ordering of

⋃
k∈{−L,...,L}d {{�j,k} ∪ {�(e)

j,k}e∈E,j∈{0,...,J (K)−1}} and γ
(c)
k,l =

γ
(c)
l,k , k, l ∈ {1, . . . ,M(K,L)}, are the associated coefficients. Moreover, the introduction of

qk(Xi) := q̃k(Xi)− Eq̃k(Xi), k ∈ {1, . . . ,M(K,L)}, i ∈ {1, . . . , n}, allows for the compact nota-
tion of nU

(K,L)
n,c ,

nU(K,L)
n,c =

M(K,L)∑
k,l=1

γ
(c)
k,l

([
1√
n

n∑
i=1

qk(Xi)

][
1√
n

n∑
j=1

ql(Xj )

]
− 1

n

n∑
i=1

qk(Xi)ql(Xi)

)
.

The latter summand in the round brackets converges to −Eqk(X1)ql(X1) in probability by
virtue of Lemma 5.1. In order to derive the limit distributions of the first summands, we
consider n−1/2 ∑n

i=1(q1(Xi), . . . , qM(K,L)(Xi))
′. Due to the Cramér–Wold device, it suffices

to investigate
∑M(K,L)

k=1 tkn
−1/2 ∑n

i=1 qk(Xi), ∀(t1, . . . , tM(K,L))
′ ∈ R

M(K,L). Asymptotic nor-
mality can be established by applying the CLT of Neumann and Paparoditis [26] to Qi :=∑M(K,L)

k=1 tkqk(Xi), i = 1, . . . , n. To this end, the prerequisites of this tool have to be checked.
Obviously, we are given a strictly stationary sequence of centered bounded random variables.
This implies in conjunction with the dominated convergence theorem that the Lindeberg condi-
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tion is fulfilled. In order to show

1

n
var(Q1 + · · · + Qn) −→

n→∞σ 2 := var(Q1) + 2
∞∑

k=2

cov(Q1,Qk),

the validity of (A1) can be employed which moreover assures the existence of the limit σ 2. Then,∣∣∣∣1

n
var(Q1 + · · · + Qn) − σ 2

∣∣∣∣ =
∣∣∣∣∣2

n

n∑
r=2

(n − [r − 1]) cov(Q1,Qr) − 2
∞∑

k=2

cov(Q1,Qk)

∣∣∣∣∣
≤ 2

∞∑
r=2

min

{
r − 1

n
,1

}
| cov(Q1,Qr)|

≤ 4‖Q1‖∞ Lip(Q1)

∞∑
r=2

min

{
r − 1

n
,1

}
τr−1,

where the latter inequality follows from (2.4). The summability condition of the dependence
coefficients in connection with Lebesgue’s dominated convergence theorem yields the desired
result. Since Qt1Qt2 forms a Lipschitz continuous function, inequality (6.4) of Neumann and
Paparoditis [26] holds true with θr = Lip(Qt1Qt2)τr . It is easy to convince oneself that their
condition (6.3) is not needed if the involved random variables are uniformly bounded. Finally,
we obtain

n−1/2(Q1 + · · · + Qn)
d−→ N(0, σ 2)

and hence,

nU(K,L)
n,c

d−→ Z(K,L)
c

:=
∑

k1,k2∈{−L,...,L}d
α

(c)
k1,k2

[Zk1Zk2 − Ak1,k2 ]

+
J (K)−1∑

j=0

∑
k1,k2∈{−L,...,L}d

∑
e=(e′

1,e
′
2)

′∈Ē

β
(c,e)
j ;k1,k2

[
Z

(e1)
j ;k1

Z
(e2)
j ;k2

− B
(e)
j ;k1,k2

]
.

Here, (Zk)k∈{−L,...,L}d and (Z
(e)
j ;k)j∈{0,...,J (K)−1},e∈{0,1}d ,k∈{−L,...,L}d , respectively, are centered

and jointly normally distributed random variables.
By Lemma 2.1 and Lemma 2.2, we have

lim
c→∞ lim sup

K→∞
lim sup
L→∞

sup
n∈N

n2
E
(
U(K,L)

n,c − Un

)2 = 0.

Since nU
(K,L)
n,c

d−→ Z
(K,L)
c , it remains to show

lim
c→∞ lim sup

K→∞
lim sup
L→∞

E
(
Z(K,L)

c − Z
)2 = 0 (5.1)
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in order to prove that nUn
d−→ Z due to Billingsley [4], Theorem 4.2. To this end, we first show

that (Z
(K,L)
c )L is a Cauchy sequence in L2. Note that n(U

(K,L1)
n,c − U

(K,L2)
n,c )

d−→ Z
(K,L1)
c −

Z
(K,L2)
c . According to Theorem 5.3 of Billingsley [4], we obtain E(Z

(K,L1)
c − Z

(K,L2)
c )2 ≤

lim infn→∞ n2
E(U

(K,L1)
n,c − U

(K,L2)
n,c )2. The r.h.s. converges to zero as L1,L2 → ∞ by virtue

of (5.10) in the proof of Lemma 2.2. Denoting the corresponding limit by Z
(K)
c similar argu-

ments yield

E
(
Z(K1)

c − Z(K2)
c

)2 ≤ 4 lim sup
L→∞

E
(
Z(K1,L)

c − Z(K2,L)
c

)2

≤ 4 lim sup
L→∞

lim inf
n→∞ n2

E
(
U(K1,L)

n,c − U(K2,L)
n,c

)2

≤ 16 lim inf
n→∞ n2

E
(
U(K1)

n,c − U(K2)
n,c

)2 −→
K1,K2→∞ 0

according to (5.9) of the proof of Lemma 2.2. In view of Lemma 2.1, we obtain (5.1) by applying
the above method once again. This in turn leads to the desired limit distribution of nUn.

Based on the result concerning U -type statistics, the limit distribution of nVn can be estab-

lished. Since Vn = Un +n−2 ∑n
k=1 h(Xk,Xk), it remains to verify that n−1 ∑n

k=1 h(Xk,Xk)
P−→

Eh(X1,X1). This in turn is a consequence of Lemma 5.1. �

Proof of Theorem 2.2. On the basis of Lemma 2.3 similar arguments as in the proof of Theo-

rem 2.1 yield nUn
d−→ Z. Moreover, Lemma 5.1 implies n−1 ∑n

k=1 h(Xk,Xk)
P−→ Eh(X1,X1).

Thus, nVn
d−→ Z + Eh(X1,X1). �

Proof of Theorem 3.1. Due to Lemma 3.2, it suffices to verify distributional convergence. To
this end, we introduce

Xθ
n ⊆ X(1)

n ∩ X(2)
n ∩ X(3)

n ∩ {Xn|‖θ̂n − θ‖l1 < δn}

such that

L
(
(X∗′

t1
, . . . ,X∗′

tk
)′|Xn = xn

) = L
(
(X∗′

t1+l , . . . ,X
∗′
tk+l )

′|Xn = xn

)
, (5.2)

L
(
(X∗′

t1
,X∗′

t2
)′|Xn = xn

) �⇒ L((X′
t1
,X′

t2
)′) (5.3)

uniformly for any sequence (xn)n∈N with xn ∈ Xθ
n and t1, . . . , tk, k, l ∈ N. Moreover, the null

sequence (δn)n∈N can be chosen such that on Xθ
n, θ̂n ∈ U(θ) and P(Xn ∈ Xθ

n) −→n→∞ 1 hold.

Hence, to prove nU∗
n

d−→ Z, in probability, it suffices to verify that nU∗
n converges to Z in

distribution conditionally on Xn = xn for any sequence (xn)n with xn ∈ Xθ
n. Now, we take an

arbitrary sequence (xn)n with xn ∈ Xθ
n, n ∈ N.
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In order to show that it suffices to investigate statistics with bounded kernels, we consider the
degenerate version h∗

c of

h̃∗
c (x, y, θ̂n) :=

⎧⎨⎩
h(x, y, θ̂n) for |h(x, y, θ̂n)| ≤ ch(θ̂n),

−ch(θ̂n) for h(x, y, θ̂n) < −ch(θ̂n),

ch(θ̂n) for h(x, y, θ̂n) > ch(θ̂n)

with ch(θ̂n) := maxx,y∈[−c,c]d |h(x, y, θ̂n)| ≤ maxx,y∈[−c,c]d ,‖θ̄‖l1 ≤δ1
|h(x, y, θ̄ )| < ∞. The asso-

ciated U -statistics are denoted by U∗
n,c . Now, imitating the proof of Lemma 2.1 results in

lim sup
n→∞

n2
E[(U∗

n − U∗
n,c)

2|Xn = xn] −→
c→∞ 0.

Within the calculations, the relation lim supn→∞ P(X∗
1 /∈ (−c, c)d |Xn = xn) ≤

P(X1 /∈ (−c, c)d) −→c→∞ 0 has to be invoked which follows from Portmanteau’s theorem
in conjunction with (5.3). Next, we approximate the bounded kernel by the degenerate version
of

h̃∗(K,L)
c :=

∑
k1,k2∈{−L,...,L}d

α̂
(c)
k1,k2

�0,k1�0,k2 +
J (K)−1∑

j=0

∑
k1,k2∈{−L,...,L}d

∑
e∈Ē

β̂
(c,e)
j ;k1,k2

�
(e)
j ;k1,k2

,

where α̂
(c)
k1,k2

= ∫∫
Rd×Rd h∗

c (x, y, θ̂n)�0,k1(x)�0,k2(y)dx dy and β̂
(c,e)
j ;k1,k2

= ∫∫
Rd×Rd h∗

c (x, y,

θ̂n)�
(e)
j ;k1,k2

(x, y)dx dy. Denoting the associated U -statistic by Û
∗(K,L)
n,c leads to

lim
K→∞ lim sup

L→∞
lim sup
n→∞

n2
E
[(

U∗
n,c − Û∗(K,L)

n,c

)2|Xn = xn

] = 0

which can be proved by following the lines of the proof of Lemma 2.3. Here, J (K) is chosen
as follows: We first select some b = b(K) < ∞ such that P(X1 /∈ (−b, b)d) ≤ 1/K . Afterwards,
we choose J (K) such that maxx,y∈[−b,b]d |hc(x, y, θ)−h̃

(K)
c (x, y, θ)| ≤ 1/K and Sφ/2J (K) < A,

where Sφ denotes the length of the support of the scale function φ. The index J (K) can be deter-
mined independently of n on (Xθ

n)n since maxx,y∈[−b,b]d |h∗
c (x, y, θ̂n) − hc(x, y, θ)| −→ 0 and

maxx,y∈[−b,b]d |̃h(K)
c (x, y, θ) − h̃

∗(K)
c (x, y, θ̂n)| −→ 0, as n → ∞, due to the continuity assump-

tions on f . Here, h̃
∗(K)
c is defined by the substitution of

∑
k1,k2∈{−L,...,L}d through

∑
k1,k2∈Zd in

the definition of h̃
∗(K,L)
c . Also note that

α̂
(c)
k1,k2

−→
n→∞ α

(c)
k1,k2

:=
∫ ∫

Rd×Rd

hc(x, y, θ)�0,k1(x)�0,k2(y)dx dy,

β̂
(c,e)
j ;k1,k2

−→
n→∞ β

(c,e)
j ;k1,k2

:=
∫ ∫

Rd×Rd

hc(x, y, θ)�
(e)
j ;k1,k2

(x, y)dx dy

on (Xθ
n)n. Hence, limn→∞ n2E[(Û∗(K,L)

n,c −U
∗(K,L)
n,c )2|Xn = xn] = 0, where the kernel of U

∗(K,L)
n,c

is obtained by substituting α̂
(c)
k1,k2

and β̂
(c,e)
j ;k1,k2

in the kernel of Û
∗(K,L)
n,c through α

(c)
k1,k2

and β
(c,e)
j ;k1,k2

,
respectively.
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Thus, the next step is the application of the CLT of Neumann and Paparoditis [26] to nU
∗(K,L)
n,c .

For this purpose, we introduce Q∗
i := ∑M(K,L)

k=1 tkq
∗
k (X∗

i ), t1, . . . , tM(K,L) ∈ R, where q∗
k denotes

the centered version (w.r.t. PX∗
1 |Xn=xn

) of q̃k and (̃qk)k is defined as in the proof of Theorem 2.1.
Obviously, given X1, . . . ,Xn, the sequence (Q∗

i )i is centered and has uniformly bounded second
moments. Due to (A1∗)(i), the Lindeberg condition is satisfied. In order to show that for arbitrary
ε > 0 the inequalities | 1

n
var(Q∗

1 + · · · + Q∗
n|Xn = xn) − σ 2| < ε,∀n ≥ n0(ε), hold true with

σ 2 as in the proof of Theorem 2.1, the abbreviations var∗(·) = var(·|Xn = xn) and cov∗(·) =
cov(·|Xn = xn) are used. Hence,∣∣∣∣1

n
var ∗[Q∗

1 + · · · + Q∗
n] − σ 2

∣∣∣∣
≤ 2

∞∑
r=2

min

{
r − 1

n
,1

}
| cov ∗(Q∗

1,Q
∗
r )| +

∣∣∣∣∣var ∗(Q∗
1) + 2

∞∑
r=2

cov ∗(Q∗
1,Q

∗
r ) − σ 2

∣∣∣∣∣
≤ 2

∞∑
r=2

min

{
r − 1

n
,1

}
| cov ∗(Q∗

1,Q
∗
r )| + 2

∣∣∣∣∣
R−1∑
r=2

[cov ∗(Q∗
1,Q

∗
r ) − cov(Q1,Qr)]

∣∣∣∣∣
+ |var ∗(Q∗

1) − var(Q1)| + 2

∣∣∣∣∑
r≥R

cov ∗(Q∗
1,Q

∗
r )

∣∣∣∣+ 2

∣∣∣∣∑
r≥R

cov(Q1,Qr)

∣∣∣∣.
By (A1) and (A1∗), R can be chosen such that |∑r≥R cov(Q1,Qr)| + |∑r≥R cov∗(Q∗

1,

Q∗
r )| ≤ ε/4. Moreover, (A1∗) implies that the first summand can be bounded from above by ε/4

as well if n ≥ n0(ε) for some n0(ε) ∈ N. According to the convergence of the two-dimensional
distributions and the uniform boundedness of (Q∗

k)k∈Z, it is possible to pick n0(ε) such that
additionally the two remaining summands are bounded by ε/8. For the validity of the CLT of
Neumann and Paparoditis [26] in probability, it remains to verify their inequality (6.4). By Lip-
schitz continuity of Q∗

t1
Q∗

t2
this holds with θ̄r = Lip(Q∗

t1
Q∗

t2
)τ̄r ≤ Cτ̄r . The application of the

continuous mapping theorem results in nU
∗(K,L)
n,c

d−→ Z
(K,L)
c , in probability. Invoking the same

arguments as in the proof of Theorem 2.1, this implies nU∗
n

d−→ Z, in probability.
In order to obtain the analogous result of convergence for nV ∗

n , we define X̃θ
n ⊆ Xθ

n, n ∈ N,

such that |E(|h(X∗
1,X∗

1, θ̂n)||Xn = xn) − E|h(X1,X1, θ)|| ≤ ηn,∀xn ∈ X̃θ
n. Here, the null se-

quence (ηn)n∈N is chosen in such a way that P(Xn ∈ X̃θ
n) −→n→∞ 1. Now, additionally to our

previous considerations,

P

(∣∣∣∣∣1

n

n∑
i=1

h(X∗
i ,X

∗
i , θ̂n) − Eh(X1,X1, θ)

∣∣∣∣∣ > ε

∣∣∣Xn = xn

)
−→
n→∞ 0

has to be proved for arbitrary ε > 0 and any sequence (xn)n∈N with xn ∈ X̃θ
n, n ∈ N. According

to the definition of the sets (X̃θ
n)n, we get E(h(X∗

1,X∗
1, θ̂n)|Xn = xn) −→n→∞ Eh(X1,X1, θ).
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Therefore, it suffices to prove

P

(∣∣∣∣∣1

n

n∑
k=1

[
h(X∗

k ,X
∗
k , θ̂n) − E

(
h(X∗

1,X∗
1, θ̂n)|Xn = xn

)]∣∣∣∣∣ > ε

2

∣∣∣Xn = xn

)
−→
n→∞ 0.

This in turn is a consequence of Lemma 5.1 since under the assumptions of the theorem the se-
quence of functions (gn)n∈N with g(n)(·) = h(·, ·, θ̂n) − E(h(X∗

1,X∗
1, θ̂n)|Xn = xn) is uniformly

integrable and satisfies the smoothness property presumed in Lemma 5.1. Finally, bootstrap con-
sistency follows from Lemma 3.2. �

5.2. Proofs of auxiliary results

First, we derive a weak law of large numbers for smooth functions of triangular arrays of τ -
dependent random variables.

Lemma 5.1 (Weak law of large numbers). Let (Xn,k)
n
k=1, n ∈ N, be a triangular scheme of

(row-wise) stationary, R
d -valued, integrable random variables such that limK→∞

supn∈N P(‖Xn,1‖l1 > K) = 0. Suppose that the coefficients τ̄r := supn>r τr,n satisfy τ̄r −→r→∞
0, where

τr,n := sup{τ(σ (Xn,s1 , . . . ,Xn,su), (X
′
n,t1

,X′
n,t2

,X′
n,t3

)′)|u ∈ N,

1 ≤ s1 ≤ · · · ≤ su < su + r ≤ t1 ≤ t2 ≤ t3 ≤ n}.

Moreover, suppose that the functions g(n) : Rd → R
p with Eg(n)(Xn,1) = 0p are uniformly Lip-

schitz continuous on any bounded interval. If additionally the sequence (g(n)(Xn,1))n∈N is uni-
formly integrable, then

1

n

n∑
k=1

g(n)(Xn,k)
P−→ 0p.

Proof. W.l.o.g. let p = 1. We prove that for arbitrary ε, η > 0 there exists an n0 such that for
all n > n0 the inequality P(|n−1 ∑n

k=1 g(n)(Xn,k)| > ε) ≤ η holds. To this end, a truncation
argument is invoked. Let wK denote a Lipschitz continuous, nonnegative function that is bounded
from above by one such that wK(x) = 1 for x ∈ [−K,K]d and wK(x) = 0 for x /∈ [−K −1,K +
1]d with K ∈ R+. For a finite constant M , that is specified later, define functions g

(n)
M,K : Rd → R

by

g
(n)
M,K(x) :=

⎧⎪⎨⎪⎩
g(n)(x)wK(x) for

∣∣g(n)(x)wK(x)
∣∣ ≤ M,

−M for g(n)(x)wK(x) < −M,

M for g(n)(x)wK(x) > M
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and g
(n,c)
M,K by g

(n,c)
M,K(x) = g

(n)
M,K(x) − Eg

(n)
M,K(Xn,1). This allows for the estimation

P

(∣∣∣∣∣1

n

n∑
k=1

g(n)(Xn,k)

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣1

n

n∑
k=1

g(n)(Xn,k) − g
(n)
M,K(Xn,k)

∣∣∣∣∣ > ε

3

)

+ P

(∣∣Eg
(n)
M,K(Xn,1)

∣∣ >
ε

3

)
+ P

(∣∣∣∣∣1

n

n∑
k=1

g
(n,c)
M,K(Xn,k)

∣∣∣∣∣ > ε

3

)
.

According to Markov’s inequality, the first summand on the r.h.s. can be bounded by

3

ε

[
sup
n∈N

E
∣∣g(n)(Xn,1)

∣∣1|g(n)(Xn,1)|>M + M sup
n∈N

P(‖Xn,1‖l1 > K)
]
.

Since the functions g(n), n ∈ N, are centered, we additionally obtain

P

(∣∣Eg
(n)
M,K(Xn,1)

∣∣ >
ε

3

)
≤ P

(
sup
n∈N

E
∣∣g(n)

M,K(Xn,1) − g(n)(Xn,1)
∣∣ >

ε

3

)
≤ P

(
sup
n∈N

E
∣∣g(n)(Xn,1)

∣∣1|g(n)(Xn,1)|>M + M sup
n∈N

P(‖Xn,1‖l1 > K) >
ε

3

)
.

Therefore, by choosing M and K = K(M) sufficiently large, we get

P

(∣∣∣∣∣1

n

n∑
k=1

g(n)(Xn,k) − g
(n)
M,K(Xn,k)

∣∣∣∣∣ >
ε

3

)
+ P

(∣∣Eg
(n)
M,K(Xn,1)

∣∣ > ε

3

)
≤ η

2
.

Concerning the remaining term, Chebyshev’s inequality leads to

P

(∣∣∣∣∣1

n

n∑
k=1

g
(n,c)
M,K(Xn,k)

∣∣∣∣∣ >
ε

3

)
≤ 9M2

ε2n
+ 18

ε2n2

∑
j<k

Eg
(n,c)
M,K(Xn,j )g

(n,c)
M,K(Xn,k).

Thus, it remains to derive an upper bound for n−2 ∑
j<k |Eg

(n,c)
M,K(Xn,j )g

(n,c)
M,K(Xn,k)| that vanishes

asymptotically. For this purpose, we introduce a copy X̃n,k of Xn,k , that is independent of Xn,j

and such that E‖Xn,k − X̃n,k‖l1 ≤ τk−j,n. Due to their construction, the functions g
(n,c)
M,K are

Lipschitz continuous uniformly in n and with a constant C(M,K). This implies

1

n2

∑
j<k

∣∣Eg
(n,c)
M,K(Xn,j )g

(n,c)
M,K(Xn,k)

∣∣ ≤ 2M

n2

∑
j<k

E
∣∣g(n,c)

M,K(Xn,k) − g
(n,c)
M,K(X̃n,k)

∣∣
≤ 2MC(M,K)

n

n∑
r=1

τ̄r ,
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where the remaining term converges to zero according to Cauchy’s limit theorem, cf.
Knopp [22]. �

In order to prove Lemma 2.1, Lemma 2.2, and Lemma 2.3, an approximation of terms of the
structure

Zn := 1

n2

n∑
i,j,k,l=1
i �=j ;k �=l

EH(Xi,Xj )H(Xk,Xl)

is required. Here, H denotes a symmetric, degenerate kernel function. Assuming that (Xn)n∈N

satisfies (A1), we obtain

Zn ≤ 8

n2

n∑
i<j ;k<l;i≤k

|EH(Xi,Xj )H(Xk,Xl)| ≤ 8 sup
1≤k<n

E|H(X1,X1+k)|2 + 8

n2

n−1∑
r=1

4∑
t=1

Z(t)
n,r

with

Z(1)
n,r :=

∑
1≤i<j ;k<l;j≤l≤n

r:=min{j,k}−i≥l−max{j,k}

∣∣EH(Xi,Xj )H(Xk,Xl) − EH
(
Xi, X̃

(r)
j

)
H
(
X̃

(r)
k , X̃

(r)
l

)∣∣,
Z(2)

n,r :=
∑

1≤i<j ;i≤k;k<l≤n

r:=l−max{j,k}>min{j,k}−i

∣∣EH(Xi,Xj )H(Xk,Xl) − EH(Xi,Xj )H
(
Xk, X̃

(r)
l

)∣∣,
Z(3)

n,r :=
∑

1≤i≤k<l<j≤n

r:=k−i≥j−l

∣∣EH(Xi,Xj )H(Xk,Xl) − EH
(
Xi, X̃

(r)
j

)
H
(
X̃

(r)
k , X̃

(r)
l

)∣∣,
Z(4)

n,r :=
∑

1≤i≤k<l<j≤n

r:=j−l>k−i

∣∣EH(Xi,Xj )H(Xk,Xl) − EH
(
Xi, X̃

(r)
j

)
H(Xk,Xl)

∣∣.

Here, in every summand of Z
(1)
n,r and Z

(3)
n,r the vector (X̃

(r)′
j , X̃

(r)′
k , X̃

(r)′
l )′ is chosen such that it

is independent of the random variable Xi , (X̃
(r)′
j , X̃

(r)′
k , X̃

(r)′
l )′ d= (X′

j ,X
′
k,X

′
l )

′, and (2.3) holds.

Within Z
(2)
n,r (resp., Z

(4)
n,r ), the random variable X̃

(r)
l (resp., X̃

(r)
j ) is chosen to be independent of

the vector (X′
i ,X

′
j ,X

′
k)

′ (resp., (X′
i ,X

′
k,X

′
l)

′) such that X̃
(r)
l

d= Xl (resp., X̃
(r)
j

d= Xj ) and (2.3)
holds. This may possibly require an enlargement of the underlying probability space. Moreover,
note that the subtrahends of these expressions vanish due to the degeneracy of H and that the
number of summands of Z

(t)
n,r , t = 1, . . . ,4, is bounded by (r + 1)n2. For sake of notational

simplicity, the upper index r is omitted in the sequel.
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Proof of Lemma 2.1. For c > 0, we define ch := maxx,y∈[−c,c]d |h(x, y)|,

h̃(c)(x, y) :=
⎧⎨⎩

h(x, y) for |h(x, y)| ≤ ch,

−ch for h(x, y) < −ch,

ch for h(x, y) > ch

and its degenerate version

hc(x, y) := h̃(c)(x, y) −
∫

Rd

h̃(c)(x, y)PX(dx) −
∫

Rd

h̃(c)(x, y)PX(dy)

+
∫ ∫

Rd×Rd

h̃(c)(x, y)PX(dx)PX(dy).

The approximation error n2
E(Un − Un,c)

2 can be reformulated in terms of Zn with ker-
nel H = H(c) := h − h(c). Hence, it remains to verify that supk∈N E|H(c)(H1,X1+k)|2 and
supn∈N n−2 ∑n−1

r=1
∑4

t=1 Z
(t)
n,r tend to zero as c → ∞. First, we consider supn∈N n−2 ∑n−1

r=1 Z
(1)
n,r ,

the remaining quantities can be treated similarly. The summands of Z
(1)
n,r are bounded as follows:∣∣EH(c)(Xi,Xj )H

(c)(Xk,Xl) − EH(c)(Xi, X̃j )H
(c)(X̃k, X̃l)

∣∣
≤ E

∣∣H(c)(Xk,Xl)
[
H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

]
1(X′

k,X
′
l )

′∈[−c,c]2d

∣∣
+ E

∣∣H(c)(Xk,Xl)
[
H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

]
1(X′

k,X
′
l )

′ /∈[−c,c]2d

∣∣
(5.4)

+ E
∣∣H(c)(Xi, X̃j )

[
H(c)(Xk,Xl) − H(c)(X̃k, X̃l)

]
1(X′

i ,X̃
′
j )′∈[−c,c]2d

∣∣
+ E

∣∣H(c)(Xi, X̃j )
[
H(c)(Xk,Xl) − H(c)(X̃k, X̃l)

]
1(X′

i ,X̃
′
j )′ /∈[−c,c]2d

∣∣
= E1 + E2 + E3 + E4.

The functions H(c) are obviously Lipschitz continuous uniformly in c. Therefore, an iterative
application of Hölder’s inequality to E2 yields

E2 ≤ (
E
∣∣H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

∣∣)δ
× (

E
∣∣H(c)(Xk,Xl)

∣∣1/(1−δ)∣∣H(c)(Xi,Xj ) − H(c)(Xi, X̃j )
∣∣1(X′

k,X
′
l )

′ /∈[−c,c]2d

)1−δ

≤ Cτδ
r

{(
E
∣∣H(c)(Xk,Xl)

∣∣(2−δ)/(1−δ)1(X′
k,X

′
l )

′ /∈[−c,c]2d

)1/(2−δ) (5.5)

× (
E
∣∣H(c)(Xi,Xj )

∣∣(2−δ)/(1−δ) + E
∣∣H(c)(Xi, X̃j )

∣∣(2−δ)/(1−δ))(1−δ)/(2−δ)}1−δ

≤ Cτδ
r

(
E
∣∣H(c)(Xk,Xl)

∣∣(2−δ)/(1−δ)1(X′
k,X

′
l )

′ /∈[−c,c]2d

)(1−δ)/(2−δ)
.

As supk∈N E|h(X1,X1+k)|ν < ∞ for ν > (2 − δ)/(1 − δ), we obtain E2 ≤ τ δ
r ε1(c) with

ε1(c) −→c→∞ 0 after employing Hölder’s inequality once again. Analogous calculations yield
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E4 ≤ τ δ
r ε2(c) with ε2(c) −→c→∞ 0. Likewise, the approximation methods for E1 and E3 are

equal. Therefore, only E1 is considered:

E1 ≤ E

∣∣∣∣∫
Rd

h̃(c)(Xk, y)PX(dy)
[
H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

]
1Xk∈[−c,c]d

∣∣∣∣
+ E

∣∣∣∣∫
Rd

h̃(c)(y,Xl)PX(dy)
[
H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

]
1Xl∈[−c,c]d

∣∣∣∣
+ E

∣∣∣∣∫ ∫
Rd×Rd

h̃(c)(x, y)PX(dx)PX(dy)
[
H(c)(Xi,Xj ) − H(c)(Xi, X̃j )

]∣∣∣∣
= E1,1 + E1,2 + E1,3.

Analogous to (5.5), we obtain

E1,1 ≤ Cτδ
r

{(
E

∣∣∣∣∫
Rd

h(Xk, y) − h̃(c)(Xk, y)PX(dy)

∣∣∣∣(2−δ)/(1−δ)

1Xk∈[−c,c]d
)1/(2−δ)

×
[
sup
k∈N

E
∣∣H(c)(X1,X1+k)

∣∣(2−δ)/(1−δ) + E
∣∣H(c)(Xi, X̃j )

∣∣(2−δ)/(1−δ)
](1−δ)/(2−δ)

}1−δ

≤ Cτδ
r

(∫
Rd

∫
Rd

∣∣h(x, y) − h̃(c)(x, y)
∣∣(2−δ)/(1−δ)

× PX(dy)1x∈[−c,c]d PX(dx)

)(1−δ)/(2−δ)

≤ τ δ
r ε3(c)

with ε3(c) −→c→∞ 0. The estimation of E1,2 coincides with the previous one. The expression
E1,3 can be bounded as follows:

E1,3 ≤ Cτr

∫ ∫
Rd×Rd

∣∣h(x, y) − h̃(c)(x, y)
∣∣PX(dx)PX(dy)

≤ Cτr

∫ ∫
Rd×Rd

|h(x, y)|1(x′,y′)′ /∈[−c,c]2d PX(dx)PX(dy)

≤ τrε4(c)

with ε4(c) −→c→∞ 0. To sum up, we have E1 +E2 +E3 +E4 ≤ ε5(c)τ
δ
r , where ε5(c) −→c→∞

0 uniformly in n. This leads to

lim
c→∞ sup

n∈N

1

n2

n−1∑
r=1

Z(1)
n,r ≤ lim

c→∞ sup
n∈N

1

n2

n−1∑
r=1

(r + 1)n2τ δ
r ε5(c) = 0.
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It remains to examine

sup
k∈N

E
[
H(c)(X1,X1+k)

]2 ≤ C
(

sup
k∈N

E
[
h(X1,X1+k) − h̃(c)(X1,X1+k)

]2

+ E
[
h(X1, X̃1) − h̃(c)(X1, X̃1)

]2
)
.

Here, X̃1 denotes an independent copy of X1. Similar arguments as before yield
limc→∞ supk∈N E[H(c)(X1,X1+k)]2 = 0. �

The characteristics stated in the following two lemmas will be essential for a wavelet approx-
imation of the kernel function h.

Lemma 5.2. Given a Lipschitz continuous function g : Rd → R, define a wavelet series approx-
imation gj by gj (x) := ∑

k∈Zd αj,k�j,k(x), j ∈ Z, where αj,k = ∫
Rd g(x)�j,k(x)dx. Then gj is

Lipschitz continuous with a constant that is independent of j .

Proof. In order to establish Lipschitz continuity, the function gj is decomposed into two parts

gj (x) =
∑
k∈Zd

[∫
Rd

�j,k(u)g(x)du

]
�j,k(x) +

∑
k∈Zd

[∫
Rd

�j,k(u)[g(u) − g(x)]du

]
�j,k(x)

= H1(x) + H2(x).

According to the above choice of the scale function (with characteristics (1)–(3) of Section 2.2),
the prerequisites of Corollary 8.1 of Härdle et al. [20] are fulfilled for N = 1. This implies that∫ ∞
−∞

∑
l∈Z

φ(y − l)φ(z − l)dz = 1,∀y ∈ R. Based on this result, we obtain

∑
k∈Zd

∫
Rd

�j,k(u)�j,k(x)du = 2jd
d∏

i=1

∫ ∞

−∞

∑
l∈Z

φ(2j ui − l)φ(2j xi − l)dui = 1 ∀x ∈ R
d,

by applying an appropriate variable substitution. To this end, note that for every fixed x, the
number of non-vanishing summands can be bounded by a finite constant uniformly in j because
of the finite support of φ. Therefore, the order of summation and integration is interchangeable.
Hence, H1 = g which in turn immediately implies the desired continuity property for H1.

In order to investigate H2, we define a sequence of functions (κk)k∈Z by

κk(x) =
∫

Rd

�j,k(u)[g(u) − g(x)]du.

These functions are Lipschitz continuous with a constant decreasing in j :

|κk(x) − κk(x̄)| ≤ Lip(g)O(2−jd/2)‖x − x̄‖l1 . (5.6)

Moreover, boundedness and Lipschitz continuity of φ yield

‖�j,k‖∞ = O(2jd/2) and |�j,k(x) − �j,k(x̄)| = O
(
2j (d/2+1)

)‖x − x̄‖l1 . (5.7)
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Thus,

|H2(x) − H2(x̄)| ≤
∑
k∈Zd

|�j,k(x)||κk(x) − κk(x̄)|

+
∑
k∈Zd

|κk(x̄)||�j,k(x) − �j,k(x̄)|

≤ C‖x − x̄‖l1 +
∑
k∈Zd

|κk(x̄)||�j,k(x) − �j,k(x̄)|.

Now, it has to be distinguished whether or not x̄ ∈ supp(�j,k) in order to approximate the second
summand. (Here, supp denotes the support of a function.) In the first case, it is helpful to illumi-
nate |κk(x̄)| = | ∫

Rd �j,k(u)[g(u)−g(x̄)]du|. The integrand is non-trivial only if u ∈ supp(�j,k).
In these situations, |g(u) − g(x̄)| = O(2−j ) by Lipschitz continuity. Consequently, we get

|κk(x̄)| ≤ O(2−j )

∫
Rd

|�j,k(u)|du = O
(
2−j (d/2+1)

)
which leads to ∑

k∈Zd

|κk(x̄)||�j,k(x) − �j,k(x̄)| ≤ C‖x − x̄‖l1

as the number of nonvanishing summands is finite, independently of the values of x and x̄.
Therefore, Lipschitz continuity of H2 is obtained as long as x̄ ∈ supp(�j,k).

In the opposite case, we only have to consider the situation of x ∈ supp(�j,k) since the set-
ting x̄, x /∈ supp(�j,k) is trivial. With the aid of (5.6) and (5.7), the first term of the r.h.s. of

|κk(x̄)[�j,k(x) − �j,k(x̄)]| ≤ |κk(x̄) − κk(x)||�j,k(x)| + |κk(x)||�j,k(x) − �j,k(x̄)| (5.8)

can be estimated from above by C‖x− x̄‖l1 . The investigation of the second summand is identical
to the analysis of the case x̄ ∈ supp(�j,k).

Finally, we obtain |H2(x)−H2(x̄)| ≤ C‖x − x̄‖l1 , where C < ∞ is a constant that is indepen-
dent of j . This yields the assertion of the lemma. �

Lemma 5.3. Let g : Rd → R be a function that is continuous on some interval (−c, c)d . For
arbitrary b ∈ (0, c) and K ∈ N there exists a J (K,b, c) ∈ N such that for g and its approxima-
tion gJ given by gJ (x) = ∑

k∈Zd αJ,k�J,k(x) it holds

max
x∈[−b,b]d

|g(x) − gJ (x)| ≤ 1/K ∀J ≥ J (K,b, c).

Proof. Given b ∈ (0, c), we define ḡ(b,c)(x) := g(x)wb,c(x), where wb,c is a Lipschitz contin-
uous and nonnegative weight function with compact support Sw ⊂ (−c, c)d . Moreover, wb,c is
assumed to be bounded from above by 1 and wb,c(x) := 1 for x ∈ (−b − δ, b + δ)d for some
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δ > 0 with b + δ < c. Additionally, we set α
(b,c)
J,k := ∫

Rd ḡ(b,c)(u)�J,k(u)du. Hence,

max
x∈[−b,b]d

|g(x) − gJ (x)|

≤ max
x∈[−b,b]d

∣∣∣∣ḡ(b,c)(x) −
∑
k∈Zd

α
(b,c)
J,k �J,k(x)

∣∣∣∣+ max
x∈[−b,b]d

∣∣∣∣∑
k∈Zd

α
(b,c)
J,k �J,k(x) − gJ (x)

∣∣∣∣
= max

x∈[−b,b]d
A(J )(x) + max

x∈[−b,b]d
B(J )(x).

Since ḡ(b,c) ∈ C0(R
d), Theorem 8.4 of Wojtaszczyk [29] implies that there exists a J0(K,b, c) ∈

N such that maxx∈[−b,b]d A(J )(x) ≤ 1/K for all J ≥ J0(K,b, c). Moreover, the introduction of
the finite set of indices

Z̄(J ) := {k ∈ Z
d |�J,k(x) �= 0 for some x ∈ [−b, b]d}

leads to

max
x∈[−b,b]d

B(J )(x) = max
x∈[−b,b]d

∣∣∣∣ ∑
k∈Z̄(J )

(
αJ,k − α

(b,c)
J,k

)
�J,k(x)

∣∣∣∣.
This term is equal to zero for all J ≥ J (K,b, c) and some J (K,b, c) ≥ J0(K,b, c) since the
definition of ḡ(b,c) implies αJ,k = α

(b,c)
J,k , ∀k ∈ Z̄, for all sufficiently large J . �

Proof of Lemma 2.2. The assertion of the lemma is verified in two steps. First, the bounded
kernel hc, constructed in the proof of Lemma 2.1, is approximated by h̃

(K)
c which is defined

by h̃
(K)
c (x, y) = ∑

k1,k2∈Zd α
(c)
J (K);k1,k2

�J(K),k1(x)�J(K),k2(y) with α
(c)
J (K);k1,k2

= ∫∫
Rd×Rd hc(x,

y)�J(K),k1(x)�J(K),k2(y)dx dy. Here, the indices (J (K))K∈N with J (K) −→K→∞ ∞ are cho-
sen such that the assertion of Lemma 5.3 holds true for b = b(K) ∈ R with P(X1 /∈ [−b, b]d) ≤
K−1 and c = 2b. Since the function h̃

(K)
c is not degenerate in general, we introduce its degenerate

counterpart

h(K)
c (x, y) = h̃(K)

c (x, y) −
∫

Rd

h̃(K)
c (x, y)PX(dx) −

∫
Rd

h̃(K)
c (x, y)PX(dy)

+
∫ ∫

Rd×Rd

h̃(K)
c (x, y)PX(dx)PX(dy)

and denote the corresponding U -statistic by U
(K)
n,c .

Now, the structure of the proof is as follows. First, we prove

sup
n∈N

n2
E
(
Un,c − U(K)

n,c

)2 −→
K→∞ 0. (5.9)

In a second step, it remains to show that for every fixed K

sup
n∈N

n2
E
(
U(K)

n,c − U(K,L)
n,c

)2 −→
L→∞ 0. (5.10)
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In order to verify (5.9), we rewrite n2
E(Un,c − U

(K)
n,c )2 in terms of Zn with kernel function

H := H(K) = hc − h
(K)
c . Hence, it remains to verify that supn∈N n−2 ∑n−1

r=1
∑4

t=1 Z
(t)
n,r and

supk∈N E|H(K)(H1,X1+k)|2 tend to zero as K → ∞. Exemplarily, we investigate
supn∈N n−2 ∑n−1

r=1 Z
(1)
n,r . The summands of Z

(1)
n,r can be bounded as follows:∣∣EH(K)(Xi,Xj )H

(K)(Xk,Xl) − H(K)(Xi, X̃j )H
(K)(X̃k, X̃l)

∣∣
≤ E

∣∣H(K)(Xk,Xl)
[
H(K)(Xi,Xj ) − H(K)(Xi, X̃j )

]∣∣
+ E

∣∣H(K)(Xi, X̃j )
[
H(K)(Xk,Xl) − H(K)(X̃k, X̃l)

]∣∣.
Since further approximations are similar for both summands, we concentrate on the first one.
Note that boundedness of hc implies uniform boundedness of (H (K))K due to the compact sup-
port of the function φ. Moreover, the constant Lip(H (K)) does not depend on K in consequence
of Lemma 5.2. Therefore, the application of Hölder’s inequality leads to

E
∣∣H(K)(Xk,Xl)

[
H(K)(Xi,Xj ) − H(K)(Xi, X̃j )

]∣∣ ≤ Cτδ
r

[
E
∣∣H(K)(Xk,Xl)

∣∣1/(1−δ)]1−δ
.

The construction of the sequence (b(K))K above allows for the following estimation:

E
∣∣H(K)(Xk,Xl)

∣∣1/(1−δ)

= E
∣∣H(K)(Xk,Xl)

∣∣1/(1−δ)1Xk,Xl∈[−b(K),b(K)]d + O
(
P
(
X1 /∈ [−b(K), b(K)]d))

≤ sup
x,y∈[−b(K),b(K)

]d
∣∣H(K)(x, y)

∣∣1/(1−δ) + C

K
.

According to Lemma 5.3 and the above choice of the sequence (b(K))K , we obtain

sup
x,y∈[−b(K),b(K)]d

∣∣H(K)(x, y)
∣∣

≤ 1

K
+ 2 sup

x,y∈[−b(K),b(K)]d
E
∣∣hc(x,X1) − h̃(K)

c (x,X1)
∣∣

+
∣∣∣∣∫ ∫

Rd×Rd

hc(x, y) − h̃(K)
c (x, y)PX(dx)PX(dy)

∣∣∣∣
≤ 4

K
+ 2 sup

x∈[−b(K),b(K)]d
E
∣∣hc(x,X1) − h̃(K)

c (x,X1)
∣∣1X1 /∈[−b(K),b(K)]d

+ 2
∫

Rd

∫
Rd\[−b(K),b(K)]d

∣∣hc(x, y) − h̃(K)
c (x, y)

∣∣PX(dx)PX(dy)

≤ C

K
.
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Consequently,∣∣EH(K)(Xi,Xj )H
(K)(Xk,Xl) − EH(K)(Xi, X̃j )H

(K)(X̃k, X̃l)
∣∣ ≤ CεKτδ

r

for some null sequence (εK)K . This implies that supn∈N n−2 ∑n
r=1 Z

(1)
n,r tends to zero as K in-

creases. Furthermore, one obtains supk∈N E[H(K)(X1,X1+k)]2 = O(K−1) similarly to the con-
sideration of E|H(K)(Xk,Xl)|1/(1−δ) above. Thus, we get supn n2

E(Un,c − U
(K)
n,c )2 −→K→∞ 0.

The main goal of the previous step was the multiplicative separation of the random variables
which are cumulated in hc. The aim of the second step is the approximation of h

(K)
c , whose rep-

resentation is given by an infinite sum, by a function consisting of only finitely many summands.
Similar to the foregoing part of the proof the approximation error n2

E(U
(K)
n,c − U

(K,L)
n,c )2 is re-

formulated in terms of Zn with kernel H := H(L) = h
(K)
c − h

(K,L)
c . As before, we exemplarily

take n−2 ∑n−1
r=1 Z

(1)
n,r and supk∈N E|H(L)(X1,X1+k)|2 into further consideration. Concerning the

summands of Z
(1)
n,r , we obtain∣∣EH(L)(Xi,Xj )H

(L)(Xk,Xl) − EH(L)(Xi, X̃j )H
(L)(X̃k, X̃l)

∣∣
≤ E

∣∣H(L)(Xk,Xl)
[
H(L)(Xi,Xj ) − H(L)(Xi, X̃j )

]
1(X′

k,X
′
l )

′∈[−B,B]2d

∣∣
+ E

∣∣H(L)(Xk,Xl)
[
H(L)(Xi,Xj ) − H(L)(Xi, X̃j )

]
1(X′

k,X
′
l )

′ /∈[−B,B]2d

∣∣
+ E

∣∣H(L)(Xi, X̃j )
[
H(L)(Xk,Xl) − H(L)(X̃k, X̃l)

]
1(X′

i ,X̃
′
j )′∈[−B,B]2d

∣∣
+ E

∣∣H(L)(Xi, X̃j )
[
H(L)(Xk,Xl) − H(L)(X̃k, X̃l)

]
1(X′

i ,X̃
′
j )′ /∈[−B,B]2d

∣∣
= E1 + E2 + E3 + E4

for arbitrary B > 0. Obviously, it suffices to take the first two summands into further consider-
ations. The both remaining terms can be treated similarly. First, note that (H (L))L is uniformly
bounded. Since φ and ψ have compact support, the number of overlapping functions within
(�0,k)k∈{−L,...,L}d and (�

(e)
j,k)k∈{−L,...,L}d ,0≤j<J (K),e∈E can be bounded by a constant that is in-

dependent of L. By Lipschitz continuity of φ and ψ , this leads to uniform Lipschitz continuity
of (h

(K,L)
c )L∈N. Due to the reformulation

h̃(K)
c (x, y) =

∑
k1,k2∈Zd

α
(c)
k1,k2

�0,k1(x)�0,k2(y) +
J (K)−1∑

j=0

∑
k1,k2∈Zd

∑
e∈Ē

β
(c,e)
j ;k1,k2

�
(e)
j ;k1,k2

(x, y)

one can choose (B = B(K,L))L∈N such that maxx,y∈[−B,B]d |̃h(K)
c (x, y)− h̃

(K,L)
c (x, y)| = 0 and

B(K,L) −→L→∞ ∞. This setting allows for the approximations

E1 ≤ Cτδ
r

[
E
∣∣H(L)(Xk,Xl)

∣∣1/(1−δ)1(X′
k,X

′
l )

′∈[−B,B]d
]1−δ ≤ Cτδ

r

[
P(X1 /∈ [−B,B]d)

]1−δ
,

E2 ≤ Cτδ
r

[
P(X1 /∈ [−B,B]2d)

]1−δ
.
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Analogously, it can be shown that supk∈N E[H(L)(X1,X1+k)]2 ≤ CP(X1 /∈ [−B,B]d). Finally,
we obtain

sup
n∈N

n2
E
(
U(K)

n,c − U(K,L)
n,c

)2 ≤ C
[
P(X1 /∈ [−B,B]d)

]1−δ

[
sup
n∈N

n−1∑
r=1

(r + 1)τ δ
r

]
−→
L→∞ 0.

Hence, the relations (5.9) and (5.10) hold. �

Proof of Lemma 2.3. In order to prove the assertion, we follow the lines of the proofs of
Lemma 2.1, Lemma 2.2, and Lemma 5.2 and carry out some modifications.

In a first step, we reduce the problem to statistics with bounded kernels hc defined in the proof
of Lemma 2.1. To this end, we use the modified approximation∣∣H(c)(x, y) − H(c)(x̄, ȳ)

∣∣ ≤ [2f (x, x̄, y, ȳ) + g(x, x̄) + g(y, ȳ)][‖x − x̄‖l1 + ‖y − ȳ‖l1]
=: f1(x, x̄, y, ȳ)[‖x − x̄‖l1 + ‖y − ȳ‖l1],

where g is given by g(x, x̄) := ∫
Rd f (x, x̄, z, z)PX(dz). Under (A4)(i) Hölder’s inequality yields

E
∣∣H(c)(Yk1 , Yk2) − H(c)(Yk3 , Yk4)

∣∣
≤

(
E[f1(Yk1 , Yk2 , Yk3 , Yk4)]1/(1−δ)

4∑
i=1

‖Yki
‖l1

)1−δ

(E‖Yk1 − Yk3‖l1 + E‖Yk2 − Yk4‖l1)
δ

for Yki
(ki = 1, . . . ,5, i = 1, . . . ,4), as defined in (A4). Plugging in this inequality into the calcu-

lations of the proof of Lemma 2.1 yields supn∈N n2
E(Un − U

(c)
n )2 −→c→∞ 0.

The next step contains the wavelet approximation of the bounded kernel hc. Defining h
(K)
c and

U
(K)
n,c as in the proof of Lemma 2.2, analogous to the proof of Lemma 5.2 there exists a C > 0

such that∣∣̃h(K)
c (x̄, ȳ) − h̃(K)

c (x, y)
∣∣

≤ f1(x, x̄, y, ȳ)[‖x − x̄‖l1 + ‖y − ȳ‖l1] + |H2(x̄, ȳ) − H2(x, y)|
(5.11)

≤ Cf1(x, x̄, y, ȳ)[‖x − x̄‖l1 + ‖y − ȳ‖l1]
+

∑
k1,k2∈Zd

(|κk1,k2(x̄, ȳ)|∣∣�J(K),k1(x)�J(K),k2(y) − �J(K),k1(x̄)�J(K),k2(ȳ)
∣∣),

where κk1,k2 is given by

κk1,k2(x, y) :=
∫

Rd

∫
Rd

�J(K),k1(u)�J(K),k2(v)[hc(u, v) − hc(x, y)]dudv

and H2 is defined as in the proof of Lemma 5.2. In order to approximate the last summand
of (5.11), we distinguish again between the cases whether or not (x̄′, ȳ′)′ ∈ supp(�J(K),k1 ×
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�J(K),k2). In the first case, an upper bound of order

O
(

max
a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d

f1(x̄, x̄ + a1, ȳ, ȳ + a2)
)
(‖x̄ − x‖l1 + ‖ȳ − y‖l1)

can be obtained since

|κk1,k2(x̄, ȳ)| ≤ Sφ

2J (K)
max

a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d
f1(x̄, x̄ + a1, ȳ, ȳ + a2)

×
∫ ∫

Rd×Rd

∣∣�J(K),k1(u)�J(K),k2(v)
∣∣dudv

≤ O
(
2−J (K)(d+1)

)
max

a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d
f1(x̄, x̄ + a1, ȳ, ȳ + a2).

Here, Sφ denotes the length of the support of φ. In the second case, a decomposition similar
to (5.8) can be employed which leads to the upper bound

O
(
f1(x, x̄, y, ȳ) + max

a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d
f1(x, x + a1, y, y + a2)

)
(‖x̄ − x‖l1 + ‖ȳ − y‖l1).

Consequently, we get∣∣̃h(K)
c (x̄, ȳ) − h̃(K)

c (x, y)
∣∣ ≤ O

(
max

a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d
f1(x, x + a1, y, y + a2)

+ max
a1,a2∈[−Sφ/2J (K),Sφ/2J (K)]d

f1(x̄, x̄ + a1, ȳ, ȳ + a2)

+ f1(x, x̄, y, ȳ)
)

× (‖x̄ − x‖l1 + ‖ȳ − y‖l1)

=: f2(x, x̄, y, ȳ)(‖x̄ − x‖l1 + ‖ȳ − y‖l1).

This yields |H(K)(x, y) − H(K)(x̄, ȳ)| ≤ f3(x, x̄, y, ȳ)(‖x − x̄‖l1 + ‖y − ȳ‖l1) with f3(x, x̄, y,

ȳ) = 2f2(x, x̄, y, ȳ) + ∫
Rd f2(x, x̄, z, z)PX(dz) + ∫

Rd f2(z, z, ȳ, y)PX(dz). Note that under
(A4)(i), E[f3(Yi, Yj , Yk, Yl)]η(‖Yi‖l1 + ‖Yj‖l1 + ‖Yk‖l1 + ‖Yl‖l1) < ∞ if J (K) is sufficiently
large. Thus, we have

E
∣∣H(K)(Yk1 , Yk2) − H(K)(Yk3 , Yk4)

∣∣ ≤ C(E‖Yk1 − Yk3‖l1 + E‖Yk2 − Yk4‖l1)
δ

for Yki
(ki = 1, . . . ,5, i = 1, . . . ,4), as defined in (A4). Moreover, Lemma 5.3 remains valid with

g = hc . Therefore, one can follow the lines of the proof of Lemma 2.3 and plug in the inequality
above. This procedure leads to supn∈N n2

E(Un,c − U
(K)
n,c )2 −→K→∞ 0.

In the third step of the proof, we verify supn∈N n2
E(U

(K)
n,c − U

(K,L)
n,c )2 −→L→∞ 0. For this

purpose, it suffices to plug in a modified approximation of H(L)(x, y) − H(L)(x̄, ȳ) into the
second part of the proof of Lemma 2.2. Lipschitz continuity of h

(K,L)
c implies∣∣H(L)(x, y) − H(L)(x̄, ȳ)

∣∣ ≤ f4(x, x̄, y, ȳ)[‖x − x̄‖l1 + ‖y − ȳ‖l1]
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with f4(x, x̄, y, ȳ) = C + f3(x, x̄, y, ȳ). Since, f4 satisfies the moment assumption of (A4)(i)
with A = 0 for sufficiently large J (K), we obtain

E
∣∣H(L)(Yk1 , Yk2) − H(L)(Yk3 , Yk4)

∣∣ ≤ C[E(‖Yk1 − Yk3‖l1 + ‖Yk2 − Yk4‖l1)]δ.

Hence, supn∈N n2
E(U

(K)
n,c − U

(K,L)
n,c )2 −→L→∞ 0. Summing up the three steps yields

lim
c→∞ lim sup

K→∞
lim sup
L→∞

sup
n∈N

n2
E
(
Un − U(K,L)

n,c

)2 = 0. �

Proof of Lemma 3.2. A positive variance of Z implies the existence of constants V > 0 and
c0 > 0 such that for every c ≥ c0 we can find a K0 ∈ N such that for every K ≥ K0 there is an L0

with var(Z(K,L)
c ) ≥ V,∀L ≥ L0. Moreover, uniform equicontinuity of the distribution functions

of (((Z
(K,L)
c )L)K)c yields the desired property of Z. By matrices-based notation of Z

(K,L)
c , we

obtain

Z(K,L)
c = C(K,L) +

M(K,L)∑
k1,k2=1

γ
(c,K,L)
k1,k2

Z
(K,L)
k1

Z
(K,L)
k2

= C(K,L) + [
Z̄(K,L)

]′
�(K,L)

c Z̄(K,L),

with a constant C(K,L), a symmetric matrix of coefficients �
(K,L)
c , and a normal vector Z̄(K,L) =

(Z
(K,L)
1 , . . . ,Z

(K,L)
M(K,L))

′. Hence, Z
(K,L)
c − C(K,L) can be rewritten as follows:

Z(K,L)
c − C(K,L) d= Ȳ ′[U(K,L)

c

]′
�(K,L)

c U(K,L)
c Ȳ = Y ′�(K,L)

c Y

=
M(K,L)∑

k=1

λ
(c,K,L)
k Y 2

k .

Here U
(K,L)
c is a certain orthogonal matrix, �

(K,L)
c := diag(λ

(c,K,L)
1 , . . . , λ

(c,K,L)
M(K,L)) with

|λ(c,K,L)
1 | ≥ · · · ≥ |λ(c,K,L)

M(K,L)|, and Ȳ as well as Y are multivariate standard normally distributed
random vectors. For notational simplicity, we suppress the upper index (c,K,L) in the sequel.
Due to the above choice of the triple (c,K,L), either

∑4
k=1(λk)

2 or
∑M(K,L)

k=5 (λk)
2 is bounded

from below by V/4. In the first case, λ1 ≥ √
V/16 holds true which implies

P
(
Z(K,L)

c ∈ [x − ε, x + ε]) ≤
∫ 2ε

0
fλ1Y

2
1
(t)dt ≤ P(Y 2

1 ≤ 2ε)max

{
1,

4√
V

}
∀x ∈ R.

Here, the first inequality results from the fact that convolution preserves the continuity properties
of the smoother function. In the opposite case, that is,

∑M(K,L)
k=5 (λk)

2 ≥ V/4, it is possible to

bound the uniform norm of the density function of Z
(K,L)
c by means of its variance. To this end,

we first consider the characteristic function ϕ
Z

(K,L)
c

of Z
(K,L)
c and assume w.l.o.g. that M(K,L)

is divisible by 4. Defining a sequence (μk)
M(K,L)/4
k=1 by μk = λ4k for k ∈ {1, . . . ,M(K,L)/4}
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allows for the approximation:

∣∣ϕ
Z

(K,L)
c

(t)
∣∣ =

{
M(K,L)∏

j=1

(1 + [2λj t]2)

}−1/4

≤
{

M(K,L)/4∏
j=1

(1 + [2μj t]2)

}−1

≤ 1

1 + 4(μ2
1 + · · · + μ2

M(K,L)/4)t
2
.

By inverse Fourier transform, we obtain the following result concerning the density function of
Z

(K,L)
c : ∥∥f

Z
(K,L)
c

∥∥∞ ≤ 1

2π
‖ϕ

Z
(K,L)
c

‖1 ≤ 1

2π

∫ ∞

−∞
1

1 + (2
√

μ2
1 + · · · + μ2

M(K,L)/4t)
2

dt

= 1√
μ2

1 + · · · + μ2
M(K,L)/4

1

2π

∫ ∞

0

1

1 + u2
du

≤ 1

2
√

4(μ2
1 + · · · + μ2

M(K,L)/4−1)

≤ 1

2
√

λ2
5 + · · · + λ2

M(K,L)

≤ 1√
V

.

Thus, P(Z
(K,L)
c ∈ [x − ε, x + ε]) ≤ 2ε/

√
V which completes the studies of the case∑M(K,L)

k=5 (λk)
2 > V/4 and finally yields the assertion. �

Proof of Lemma 3.1. This result is an immediate consequence of Theorem 3.1. �
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