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We consider data-adaptive wavelet estimation of a trend function in a time series model with strongly
dependent Gaussian residuals. Asymptotic expressions for the optimal mean integrated squared error and
corresponding optimal smoothing and resolution parameters are derived. Due to adaptation to the proper-
ties of the underlying trend function, the approach shows very good performance for smooth trend functions
while remaining competitive with minimax wavelet estimation for functions with discontinuities. Simula-
tions illustrate the asymptotic results and finite-sample behavior.
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1. Introduction

Suppose that we observe time series data of the form

Yi = g(ti) + ξi, i = 1,2, . . . , n, (1)

with ti = i/n, g ∈ L2([0,1]) and ξi a Gaussian zero-mean second order stationary process with
long-range dependence. Here, long-range dependence is characterized by

γ (k) = E(ξiξi+k) ∼
k→∞Cγ |k|−α (2)

for some constants α ∈ (0,1) and Cγ > 0, where ‘∼’ means that the ratio of the two sides
converges to 1. For the spectral density f (λ) = (2π)−1 ∑

γ (k) exp(−ikλ), this corresponds to a
pole at the origin of the form Cf |λ|α−1 for a suitable constant Cf .

Nonparametric estimation of g in this context has been studied extensively in the last two
decades, including kernel smoothing (Hall and Hart [28], Csörgö and Mielniczuk [14,15], Ray
and Tsay [37], Robinson [38], Beran and Feng [7,8]), local polynomial estimation (Beran and
Feng [9], Beran et al. [10]) and wavelet thresholding (Wang [43], Johnstone and Silverman [33]).
For nonparametric quantile estimation in long-memory processes, see also Ghosh et al. [24] and
Ghosh and Draghicescu [25,26]. In this paper, we take a closer look at optimal wavelet estima-
tion of g. Wang [43] and Johnstone and Silverman [33] derived optimal minimax rates within
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general function spaces and Gaussian long-memory residuals. In particular, the minimax thresh-
old σ

√
2 logn turns out to achieve the minimax rate even under long memory. However, for

some practical applications, the minimax approach may be too pessimistic. It may, for instance,
be known a priori that g or some derivatives of g are piecewise continuous. Li and Xiao [34]
therefore considered data-adaptive selection of resolution levels. They derived an asymptotic ex-
pansion for the mean integrated squared error (MISE) under the assumptions that g is piecewise
smooth and the resolution levels used for the estimation are chosen according to certain asymp-
totic rules (formulated in terms of the parameters J and q , as defined below). The rate of the
MISE achieved this way turns out to be the same as for minimax rules. No further justification
for the specific choice of J and q is given, however, and no optimality result is derived. We refer
to Remark 2 below for further discussion on Li and Xiao [34].

In this paper, the aim is to obtain concrete data-adaptive rules for optimal estimation of g. In a
first step, it is shown that for functions with continuous derivatives, the rate given in Li and Xiao
[34] can be achieved without thresholding by choosing optimal values of J and q. In a second
step, exact constants for the MISE and asymptotic formulas for the optimal choice of J and q

are derived. These results are comparable to results on optimal bandwidth selection in kernel
smoothing (Gasser and Müller [23], Hall and Hart [28], Beran and Feng [7,9]). In a third step,
additional higher resolution levels combined with thresholding are added in order to include the
possibility of discontinuities. The resulting estimator shows very good performance for smooth
trend functions (comparable to optimal kernel estimators) while remaining competitive with (and
even superior to) minimax wavelet estimation for functions with discontinuous derivatives.

For literature on trend estimation by wavelet thresholding in the case of i.i.d. or weakly de-
pendent residuals, see, for example, Donoho and Johnstone [18,19,21], Donoho et al. [20],
Daubechies [17], Brillinger [11,12], Abramovich et al. [1], Nason [35], Johnstone and Silver-
man [33], Johnstone [32], Percival and Walden [36], Vidakovic [42], Hall and Patil [29–31],
Sachs and Macgibbon [40] and Truong and Patil [39]. Apart from Johnstone and Silverman [33]
and Wang [43], wavelet trend estimation in the long-memory case has also been considered by
Yang [45] for random design models.

The paper is organized as follows. Basic definitions are introduced in Section 2. The main
results are given in Section 3. A simulation study in Section 4 illustrates the results. Concluding
remarks are given in Section 5. Proofs can be found in the Appendix.

2. Basic definitions

Let φ(t) and ψ(t) be the father and mother wavelets, respectively, with compact support [0,N ]
for some N ∈ N and such that∫ N

0
φ(t)dt =

∫ N

0
φ2(t)dt =

∫ N

0
ψ2(t)dt = 1, (3)

ψ(0) = ψ(N) = 0 (4)

and, for any J ≥ 0, the system {φJk,ψjk, k ∈ Z, j ≥ 0} with

ψjk(t) = N1/22(J+j)/2ψ(N2J+j t − k), φJk(t) = N1/22J/2φ(N2J t − k)
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is an orthonormal basis in L2(R). Note that for the sake of generality, the support of φ and ψ is
chosen to be [0,N ] instead of [0,1]. This way, it is possible to choose from a larger variety of
wavelet generating functions satisfying (3) (see Daubechies [17], Cohen et al. [13]). Throughout
the paper, mψ ∈ N will denote the number of vanishing moments of ψ , that is,

∫ N

0
tkψ(t)dt = 0, k = 0,1, . . . ,mψ − 1, (5)

and ∫ N

0
tmψ ψ(t)dt = νmψ �= 0. (6)

For every function g ∈ L2([0,1]) and every J ≥ 0, we have the orthogonal wavelet expansion

g(t) =
N2J −1∑

k=−N+1

sJkφJk(t) +
∞∑

j=0

N2J+j −1∑
k=−N+1

djkψjk(t), (7)

where

sJk =
∫ 1

0
g(t)φJk(t)dt, djk =

∫ 1

0
g(t)ψjk(t)dt

are the wavelet coefficients of the function g. A (hard) thresholding wavelet estimator of g is
defined by

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t) +
q∑

j=0

N2J+j −1∑
k=−N+1

d̂jkI (|d̂jk| > δj )ψjk(t), (8)

where J , q and δj denote the decomposition level, smoothing parameter and threshold, respec-
tively, and the wavelet coefficients ŝJ k and d̂jk are given by

ŝJ k = 1

n

n∑
i=1

YiφJk(ti) and d̂jk = 1

n

n∑
i=1

Yiψjk(ti);

see, for example, Donoho and Johnstone [18,19], Abramovich et al. [1]. For estimates without
thresholding (i.e., δj ≡ 0), see also Johnstone and Silverman [33] and Nason [35], Brillinger [11,
12], among others.

3. Main results

In the context of long-memory errors, an explicit asymptotic expansion for the MISE is given
in Li and Xiao [34] under specific assumptions on the decomposition level J and the smoothing
parameter q . The question of how to choose J and q optimally is not investigated. The following
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theorem establishes the optimal convergence rate of the MISE when minimizing with respect to
J , q and {δj }.

In what follows, φ and ψ will be assumed either to be piecewise differentiable or to satisfy a
uniform Hölder condition with exponent 1/2, that is,

|ψ(x) − ψ(y)| ≤ C|x − y|1/2 ∀x, y ∈ [0,N ]. (9)

Daubechies ([17], Chapter 6) provides examples of wavelets satisfying these conditions. More-
over, throughout this paper, 2J = o(n) to ensure that ĝ includes resolution levels lower than the
distance between successive time points. This assumption is needed for the consistency of ĝ, as
discussed below.

Theorem 1. Suppose that g ∈ Cr [0,1], the support supp(g(r)) = {t ∈ [0,1] :g(r)(t) �= 0} has
positive Lebesgue measure, the process ξi is Gaussian with covariance structure (2) and ψ is
such that mψ = r . Then, minimizing the MISE with respect to J , q and {δj } yields the optimal
order

MISEopt = O
(
n−2rα/(2r+α)

)
. (10)

Theorem 1 is of limited practical use since only rate optimality is established. Theorem 2
will show that the rate obtained in Li and Xiao [34] can be achieved without thresholding by
minimizing the MISE with respect to J and q . In order to apply the result to observed data,
optimal constants need to be derived. This question is addressed in Theorems 2 and 3 below. The
following constants will be needed:

C2
φ = Cγ

∫ N

0

∫ N

0
|x − y|−αφ(x)φ(y)dx dy, (11)

C2
ψ = Cγ

∫ N

0

∫ N

0
|x − y|−αψ(x)ψ(y)dx dy, (12)

C∗(r,α,ψ,g(r)
) = 1

2r + α
log2

[∫ N

0 ν2
r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N,

�n(g,Cψ) = α

2r + α
log2 n + C∗(r,α,ψ,g(r)

)
(13)

−
⌊

α

2r + α
log2 n + C∗(r,α,ψ,g(r)

)⌋
,

where 
x� denotes the largest integer less than or equal to x,

A1(r,α,ψ) =
(

22r�n(g,Cψ)

22r − 1
+ 2α(1−�n(g,Cψ))

2α − 1

)
(C2

ψ)2r/(2r+α),

A2
(
r,α,ψ,g(r)

) =
(

ν2
r

(r!)2

∫ 1

0

(
g(r)(t)

)2 dt

)α/(2r+α)

,
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νr =
∫

t rψ(t)dt,

C∗(r,α,φ,g(r)
) = 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
φ(2α − 1)(r!)2

]
− log2 N,

�n(g,Cφ) = α

2r + α
log2 n + C∗(r,α,φ,g(r)

)
(14)

−
⌊

α

2r + α
log2 n + C∗(r,α,φ,g(r)

)⌋
,

A3(r,α,φ) =
(

22r�n(g,Cφ)

22r − 1
+ 2α(1−�n(g,Cψ))

2α − 1

)(
C2

φ(2α − 1)
)2r/(2r+α)

.

For the case where no thresholding is used, exact asymptotic expressions for the MISE and an
optimal solution can be given as follows.

Theorem 2. Under the assumptions of Theorem 1 and thresholds

δj = 0 (0 ≤ j ≤ q),

the following holds.

(i) If (2α − 1)C2
φ > C2

ψ , then the asymptotic MISE is minimized by the smoothing parameter

q∗ =
⌊

α

2r + α
log2 n + C∗(r,α,ψ,g(r)

)⌋ − J ∗ (15)

with decomposition levels J ∗ satisfying 2J ∗ = o(nα/(2r+α)). The optimal MISE is of the
form

MISE = A1(r,α,ψ)A2
(
r,α,ψ,g(r)

) · n−2rα/(2r+α) + o
(
n−2rα/(2r+α)

)
. (16)

Moreover, if �n(g,Cψ) = 0, then

q∗ =
⌊

α

2r + α
log2 n + C∗(r,α,ψ,g(r)

)⌋ − J ∗ − 1

(with J ∗ as before) also minimizes the MISE.
(ii) If (2α − 1)C2

φ < C2
ψ , then minimizing the asymptotic MISE with respect to J and q yields

J ∗ =
⌊

α

2r + α
log2 n + C∗(r,α,φ,g(r)

)⌋ + 1 (17)

and

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t) (18)



142 J. Beran and Y. Shumeyko

with J = J ∗. The optimal MISE is of the form

MISE = A3(r,α,φ)A2
(
r,α,ψ,g(r)

) · n−2rα/(2r+α) + o
(
n−2rα/(2r+α)

)
. (19)

Moreover, if �n(g,Cφ) = 0, then

J ∗ =
⌊

α

2r + α
log2 n + C∗(r,α,φ,g(r)

)⌋

also minimizes the MISE.

If higher resolution levels beyond those used in Theorem 2 are included together with thresh-
olding, then the values of the MISE given in (16) and (19) can be attained even if g(r) does not
exist everywhere and is only piecewise continuous.

Theorem 3. Suppose that g(r)exists on [0,1] except for at most a finite number of points and,
where it exists, it is piecewise continuous and bounded. Furthermore, assume that supp(g(r)) has
positive Lebesgue measure, mψ = r and the process ξi is Gaussian and such that (2) holds. The
following then hold:

(i) if (2α − 1)C2
φ > C2

ψ , J is such that 2J = o(nα/(2r+α)), q = 
log2 n� − J , q∗ is defined by
(15) and δj is such that for 0 ≤ j ≤ q∗,

δj = 0, (20)

and for q∗ < j ≤ q,

2J+j δ2
j → 0, 2(J+j)(2r+1)δ2

j → ∞, δ2
j ≥ 4eC2

ψN−1+α(lnn)2

nα2(J+j)(1−α)
, (21)

then equation (16) holds;
(ii) if (2α − 1)C2

φ < C2
ψ , J = J ∗ with J ∗ defined by (17), q = 
log2 n�−J and δj is such that

2J+j δ2
j → 0, 2(J+j)(2r+1)δ2

j → ∞,
(22)

δ2
j ≥ 4eC2

ψN−1+α(lnn)2

nα2(J+j)(1−α)
(0 ≤ j ≤ q),

then equation (19) holds.

Remark 1. Li and Xiao [34] derived an asymptotic expansion for the MISE under the assump-
tions that J,q → ∞, 2J+j δ2

j → 0, 2(2r+1)(J+j)δ2
j → ∞ and δ2

j are above a certain bound that
depends on j, n, g, α and J. The question of how to choose J , q and δj optimally is not con-
sidered. Here, a partial solution to the optimality problem is given. Theorem 2 provides optimal
values of q and J , and a corresponding formula for the optimal MISE, for estimators with no
thresholding (i.e., δj ≡ 0). This result is obtained for r-times continuously differentiable trend
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functions. Thus, jumps and other irregularities in g are excluded. In a second step, we therefore
ask the question whether the asymptotic formula for the optimal MISE can be extended to more
general functions. Theorem 3 shows that this is indeed the case, in the sense that (essentially)
g does not need to be differentiable everywhere. This includes, for instance, the possibility of
isolated jumps. Note that for a given n, q = 
log2 n� − J is the highest available resolution. By
adding all available higher resolution levels combined with thresholding, the same formula for
the MISE applies as in Theorem 2. The intuitive reason for this is that isolated discontinuities
are ‘infinitesimally local’ and can therefore be characterized best when the finest possible levels
of resolution are included. At very high resolution, however, non-zero thresholds are needed in
order to distinguish deterministic jumps from noise. For functions where Theorem 2 applies, the
optimal MISE in Theorem 2 and the MISE obtained in Theorem 3 are the same.

Remark 2. The only quantity in (15) and (17) that depends on n is α(2r +α)−1 log2 n. The con-
stants C∗(r,α,ψ,g(r)) and C∗(r,α,φ,g(r)) provide data-adaptive adjustments to optimize the
multiplicative constant in the MISE. They can be decomposed into several terms with different
meanings. For instance,

C∗(r,α,φ,g(r)
) = C∗

1 + C∗
2 + C∗

3

2r + α
+ C∗

4

with

C∗
1 = log2

∫ 1

0

(
g(r)(t)

)2 dt

reflecting the properties of g,

C∗
2 = log2

(
νr

r!
)2

depending on the basis function ψ ,

C∗
3 = − log2[C2

φ(2α − 1)]
characterized by the basis function φ and the asymptotic covariance structure (2) of ξi , and

C∗
4 = − log2 N

defined by the length of the support of ψ and φ. Note that for N = 1, C∗
4 = 0.

Remark 3. The question of how far the MISE can be optimized further with respect to freely
adjustable thresholds is more difficult and is the subject of current research. The same comment
applies to the possibility of soft thresholding. It is worth mentioning here, however, that for some
classes of functions, δj = 0 is indeed the best threshold. For instance, it can be shown that if
g ∈ L2[0,1] and C < |g(r)(·)| ≤ C2r+α/2 (almost everywhere) for some finite constant C, then
δj = 0 is asymptotically optimal. This includes, for example, functions that can be represented
(or approximated in an appropriate sense) by piecewise r th order polynomials.
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Remark 4. The results in Li and Xiao [34] are derived for residuals of the form ξi = G(Zi),

where Zi is a stationary Gaussian long-memory process and the transformation G has Hermite
rank mG. For simplicity of presentation, the results given here are only derived for Gaussian
processes. An extension to ξi = G(Zi) would be possible along the same lines.

Remark 5. Asymptotic expressions for the MISE and formulas for optimal bandwidth selection
in kernel regression with long memory are given in Hall and Hart [28], Csörgö and Mielniczuk
[14] and Beran and Feng [7,9], among others. Note, however, that there, g(r) has to be assumed
to be continuous instead of only piecewise continuous, and r ≥ 2. In that sense, the applicability
of kernel estimators (and also of local polynomials) is more limited. This is illustrated in the
simulation study in the next section.

Remark 6. In analogy to kernel estimation, the optimal rate of convergence of wavelet estimates
becomes faster the more derivatives of g that exist. However, the optimal MISE can only be
achieved if the number of vanishing moments of the mother wavelet ψ is equal to r . In other
words, the choice of an appropriate wavelet basis is essential. This is analogous to kernel es-
timation where a kernel of the appropriate order should be used (see, e.g., Gasser and Müller
[23]). Consider, for instance, the case where only the first derivative of g exists (and is piecewise
continuous), that is, r = 1. Then, for the wavelets estimator, the optimal order of the MISE is
O(n−2α/(2+α)). In this case, we may use Haar wavelets (for which mψ = 1). In contrast to the
wavelet estimator, the usual asymptotic expansion for the MISE of kernel estimators does not
hold in this case. On the other hand, if g is twice continuously differentiable, then the optimal
rate achieved by kernel estimators is at least O(n−4α/(4+α)). If Haar wavelets are used, then,
in spite of r being equal to 2, the optimal rate of the wavelet estimator cannot be better than
O(n−2α/(2+α)) and is thus slower than the rate achieved by kernel estimators. In order to match
the rate of kernel estimators, a wavelet basis with mψ = 2 vanishing moments has to be used.

Remark 7. The optimal rate of convergence of the MISE is the same as the minimax rate ob-
tained by Wang [43] and Johnstone and Silverman [33]. However, for a given function, the mul-
tiplicative constant in the asymptotic expression of the MISE is essential. This is achieved here
by data-adaptive choices of q and J . The simulations in the next section illustrate that the data-
adaptive method tends to outperform the minimax solution, provided that the assumptions of
Theorems 2 or 3 hold.

Remark 8. The best smoothing parameter and decomposition level depend on the unknown pa-
rameters α, Cγ and the unknown r th derivative of g. Based on Theorems 2 and 3, an iterative
data-adaptive algorithm along the lines of Beran and Feng [8] can be designed. Essentially, the
iteration consists of a step where g is estimated (using the best estimates of relevant parameters
available at that stage) and a step where α, Cγ and other quantities in the asymptotic MISE for-
mula are estimated. For the estimation of Cγ and α, see, for instance, Yajima [44], Fox and Taqqu
[22], Dahlhaus [16], Giraitis and Surgailis [27], Beran [4,5], Beran et al. [6], Abry and Veitch
[2]. A detailed iterative algorithm is currently being developed and will be presented elsewhere.
An obvious choice for estimating α is to use an appropriate wavelet-based method such as that
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described in Bardet et al. [3]. Note that while the idea of the iteration is simple, a concrete imple-
mentation is far from trivial (see Beran and Feng [8]). In particular, in the presence of long-range
dependence, small changes in the smoothing parameters can lead to considerable changes in the
estimate of the long-memory parameter α, and vice versa.

4. Simulations

To study the potential benefits of data-adaptive wavelet estimation as outlined above, a sim-
ulation study was carried out with four different test functions g (Figure 1) and a Gaussian
FARIMA(0, d,0) residual process ξi . Note that α = 1 − 2d . The test functions are:

• sine function: g1(t) = 10 sin(4πt);
• JumpSine function: g2(t) = 10 sin(4πt) + � · I { 5

8 < t < 7
8 } (� > 0);

• “sharp” function: g3(t) = 10[exp(tI {t < 0.5} + (1 − t)I {t > 0.5}) − 1];
• Doppler function: g4(t) = 10[t (1 − t)]1/2 sin[2π(1 + 0.05)/(t + 0.05)].
The following methods are compared:

• Wavelet estimator with hard thresholding, q , J as in Theorem 3 and

δ2
j = 4eC2

ψN−1+α(lnn)2

nα2(J+j)(1−α)
(q∗ < j ≤ q).

Figure 1. Trend functions used in the simulations: sine, JumpSine, “sharp” and Doppler.
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Note that for the first three functions, Theorem 3(ii) applies, whereas for the Doppler func-
tion, derivatives are not bounded. Nevertheless, we carried out the simulations using a mod-
ified version of C∗ (see the remarks at the end of this section).

• Wavelet estimator with soft thresholding defined by

sign(d̂jk)(|d̂jk| − λn)I {|d̂jk| > λn}
and minimax thresholds

λn = (2 logn)1/2

(Johnstone and Silverman [33]).
• Kernel estimator with rectangular kernel K(x) = 1

2I {x ∈ [−1,1]} and asymptotically opti-
mal bandwidth

bopt = Coptn
(2d−1)/(5−2d),

where

Copt =
(

9(1 − 2d)β(d)Cf

I (g′′)

)1/(5−2d)

,

β(d) = 22d
(1 − 2d) sin(πd)

d(2d + 1)

(see, e.g., Hall and Hart [28], Beran and Feng [7]).

Sine: Figure 2 shows reasonably good agreement between the simulated and theoretical MISE of
the adaptive wavelet estimator with basis s4. Here, s4, s6, . . . denote Daubechies’ wavelets with
2,3, . . . vanishing moments, respectively (see Daubechies [17]). Table 1 illustrates the effect of

Figure 2. Simulated values of the mean integrated squared error, MISEsim, for different values of the
fractional parameter d , plotted against the sample size (n = 27,28, . . . ,213) on log–log scale (base 2
logarithms). The results are based on 400 simulations of model (1) with the sine trend function and
FARIMA(0, d,0) residuals with d = 0.1,0.2,0.3,0.4. The estimates are based on Theorem 3 and wavelet
basis s4.
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Table 1. Logarithms (base 2) of simulated values of the mean integrated squared error, log2 MISEsim,

as a function of n and the wavelet bases s4, s6, s8 and s10, respectively. For comparison, log2 MISEtheor
obtained from the asymptotic formulas in Theorem 3 is also given. The results are based on 400 simulations
of a FARIMA(0,0.2,0) model with trend function g1(t) = 10 sin(4πt)

n Simulation ‘s4’ Theor. ‘s4’ Simulation ‘s6’ Theor. ‘s6’

128 0.516420047 0.408553554 0.251744659 0.332459614
256 0.263441364 0.294451230 0.214928924 0.222321976
512 0.217604044 0.219171771 0.112951872 0.149658234

1024 0.150284851 0.150545678 0.110547951 0.101718042
2048 0.109213215 0.100879757 0.079795806 0.070089311
4096 0.061483507 0.068112469 0.049441935 0.049222131
8192 0.050871673 0.046494121 0.030814609 0.035454926

16 384 0.040330363 0.032231330 0.020141994 0.026371959

n Simulation ‘s8’ Theor. ‘s8’ Simulation ‘s10’ Theor. ‘s10’

128 0.251744659 0.290131091 0.348379471 0.251989178
256 0.214928924 0.193352318 0.20541786 0.174618829
512 0.112951872 0.129502140 0.158692616 0.123573436

1024 0.110547951 0.087376732 0.074319167 0.089896035
2048 0.079795806 0.059584328 0.061712354 0.065326166
4096 0.049441935 0.041248179 0.030175723 0.043107368
8192 0.030814609 0.029150833 0.027662929 0.028448428

16 384 0.020141994 0.021169561 0.020361623 0.018777135

using different basis functions for the case d = 0.2. Irrespective of the wavelet basis (s4, s6, s8
or s10), the agreement between the simulated MISE and the theoretical formula is already very
good for n = 256. However, since g is infinitely continuously differentiable, the MISE can be
reduced by using very smooth basis functions. This explains why the performance of s4 is con-
siderably worse compared with s6, s8 and s10. Table 2 shows that, as expected, the mean squared
error increases with increasing long memory (see also Figure 2). A comparison between mini-
max wavelet thresholding, the data-adaptive wavelet estimator and kernel smoothing is given in
Figures 3 and 4. Since the sine function is well behaved, optimal kernel estimation is expected to
perform well. The kernel estimator does indeed outperform the minimax procedure. In contrast,
the MISE of the data-adaptive wavelet method is comparable to optimal kernel estimation. A
typical sample path and the corresponding estimated trend functions are plotted in Figure 5. The
minimax rule leads to a rather erratic function near local minima and maxima, whereas this is
not the case for the other two methods.

Jumpsine: The simulated and asymptotic MISE for the Jumpsine function are compared in
Table 3 for d = 0.2 and jump sizes � = 0.1,0.5,1,10,20 and 50. The agreement between the
asymptotic and simulated MISE is reasonably good, in particular for small and very large values
of �. Figure 6a shows a typical sample path with d = 0.3 and fits obtained by the three methods.
Figure 6b shows that, as expected from Theorem 3(ii), almost all non-zero coefficients belong to
the father wavelet. The mother wavelet functions are useful for modeling the two jumps. Due to
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Table 2. Simulated values of the MISE for different sample sizes and values of d . The results are based on
400 simulations of model (1) with FARIMA(0, d,0) residuals, the sine trend function g1 and the wavelet
estimator based on Theorem 3 with wavelet basis s4

n d = 0.1 d = 0.2 d = 0.3 d = 0.4

128 0.284521469 0.516420047 0.661787865 1.104194018
256 0.210694474 0.263441364 0.537558642 1.42979724
512 0.110584545 0.217604044 0.403889173 0.927229839

1024 0.078905169 0.150284851 0.29832426 0.717419015
2048 0.041133887 0.109213215 0.228981208 0.64283222
4096 0.037871696 0.061483507 0.165045782 0.818104781
8192 0.021438157 0.050871673 0.1444763 0.505236717

16 384 0.012234701 0.040330363 0.11107171 0.351823994

thresholding, almost all coefficients are eliminated except those near t = 5/8 and 7/8. Similar
results were obtained for other values of d. In comparison, the data-adaptive wavelet method
shows the best performance (Figures 7 and 8), although the difference between the two wavelet
methods is smaller under strong long memory. As expected, kernel estimation cannot compete
with the wavelet approach.

Sharp: In distinct contrast to the JumpSine function, for the sharp function, the performance
of the kernel estimator is comparable to the data-adaptive wavelet method (Figures 9 and 10), at
least when the criterion is the MISE. With respect to the visual fit, as exemplified by Figure 11,
the kernel method leads to oversmoothing of the edge in the middle.

Doppler: For the Doppler function, Theorem 3 is not applicable and J ∗ in equation (17) is not
well defined. Nevertheless, it is interesting to see how well hard thresholding may work with a

Figure 3. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the sine trend function and FARIMA(0,0.2,0) residuals.
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Figure 4. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the sine trend function and FARIMA(0,0.4,0) residuals.

slight modification of (17). Specifically, consider

J̃ ∗ =
⌊

α

2r + α
log2 n + C̃∗(r,α,ψ,φ,g(r)

)⌋ + 1,

where

C̃∗(r,α,ψ,φ,g(r)
) = 1

2r + α
log2

[∫ 0.95
0.1 ν2

r (g(r)(t))2 dt

C2
φ(2α − 1)(r!)2

]
− log2 N.

Note that the only change compared to C∗ consists of bounding the integration limits away from
0 and 1. For moderate long memory with d = 0.2, the data-adaptive wavelet estimator still turns
out to be the best (Figure 12). For strong long memory with d = 0.4, the minimax approach
appears to be slightly better for very long series (Figure 13). The relatively good performance of

Figure 5. Simulated data with sine function plus FARIMA(0,0.3,0) process, and trend estimates obtained
by optimal kernel smoothing, minimax soft thresholding wavelet estimation and data-adaptive hard thresh-
old wavelet estimation according to Theorem 3 (both with basis s4).
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Table 3. MISEsim/MISEtheor for the JumpSine function and FARIMA(0, 0.2, 0)
residuals, in dependence on the jump size �. The results are based on 400 simula-
tions and a thresholding estimate according to Theorem 3, with wavelet basis s4

� n = 2048 n = 4096 n = 8192

0.1 1.02984365 1.000066053 0.996328962
0.5 1.044736472 1.007194657 1.004583086
1 1.10352021 1.120497921 1.096100157

10 1.635074083 1.690840646 1.563330038
20 1.301618649 1.234763386 1.207770083
50 1.222581848 1.21888936 1.115174282

the minimax approach is expected because, in contrast to the data-adaptive estimator, the coarser
levels of resolution are not favored a priori. This way, it is easier to catch the increasingly fast
oscillations toward the left of the timescale. As expected, the kernel method does not work well.
A typical example is shown in Figure 14.

5. Concluding remarks

In this paper, an approach to data-adaptive wavelet estimation of trend functions for long-memory
time series models is proposed. The estimator can be understood as a combination of two com-
ponents: a smoothing component consisting of a certain number of lower resolution levels where
no thresholding is applied and a higher resolution component filtered by thresholding. The first

Figure 6. Simulated data (a) with JumpSine function plus FARIMA(0,0.3,0) process, and trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard thresh-
old wavelet estimation obtained from Theorem 3 (both with basis s4); (b) shows the coefficients of the
data-adaptive wavelet estimate.
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Figure 7. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the JumpSine trend function and FARIMA(0,0.2,0) residuals.

component leads to good performance for smooth functions, whereas the second component is
useful for modeling discontinuities. An open problem worth pursuing in future research is the
question of how much more may be gained by further optimization with respect to fully flexible
thresholds δj .

Appendix: Proofs

In the proofs of Theorems 1, 2 and 3, φ and ψ will be assumed to be piecewise differentiable.
Analogous results (apart from some expressions in the remainder terms) can be obtained even if
φ′ and ψ ′ do not exist anywhere, provided that both functions φ and ψ satisfy a uniform Hölder

Figure 8. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the JumpSine trend function and FARIMA(0,0.4,0) residuals.
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Figure 9. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the “sharp” trend function and FARIMA(0,0.2,0) residuals.

condition with exponent 1/2 (see (9)). The proofs are analogous, with the difference that instead
of the rectangle rule (25), the mean value theorem is applied.

Proof of Theorem 1. Let

MISE = E

[∫ 1

0

(
g(t) − ĝ(t)

)2 dt

]
(23)

Figure 10. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4). The results are based on 400 simulations
of model (1) with the “sharp” trend function and FARIMA(0,0.4,0) residuals.
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Figure 11. Simulated data with “sharp” function plus FARIMA(0,0.3,0) process, and trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation obtained from Theorem 3 (both with basis s4).

denote the mean integrated square error. Combining (23) with (7) and (8), we have

MISE = E

{∫ 1

0

[
N2J −1∑

k=−N+1

(sJk − ŝJ k)φJk(t)

+
q∑

j=0

N2J+j −1∑
k=−N+1

(
djk − d̂jkI (|d̂jk| > δj )

)
ψjk(t)

+
∞∑

j=q+1

N2J+j −1∑
k=−N+1

djkψjk

]2

dt

}
.

Figure 12. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation with J = J̃ ∗ and thresholds δi as in Theorem 3(ii) (both with basis s4). The results are
based on 400 simulations of model (1) with the Doppler trend function and FARIMA(0,0.2,0) residuals.
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Figure 13. Simulated values of log2 MISEsim plotted against logn (n = 27,28, . . . ,213) for trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation with J = J̃ ∗ and thresholds δi as in Theorem 3(ii) (both with basis s4). The results are
based on 400 simulations of model (1) with the Doppler trend function and FARIMA(0,0.4,0) residuals.

Orthonormality of the basis in L2(R) implies that

MISE = E

{
N2J −1∑

k=−N+1

[ŝJ k − sJk]2

}

+ E

{
q∑

j=0

N2J+j −1∑
k=−N+1

[d̂jkI (|d̂jk| > δj ) − djk]2

}
+

∞∑
j=q+1

N2J+j −1∑
k=−N+1

d2
jk

Figure 14. Simulated data with the Doppler function plus FARIMA(0,0.3,0) process, and trend estimates
obtained by kernel smoothing, minimax soft threshold wavelet estimation and data-adaptive hard threshold
wavelet estimation with J = J̃ ∗ and thresholds δi as in Theorem 3(ii) (both with basis s4).
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=
N2J −1∑

k=−N+1

[E(ŝJk) − sJk]2 +
N2J −1∑

k=−N+1

E{[ŝJ k − E(ŝJk)]2} (24)

+
q∑

j=0

N2J+j −1∑
k=−N+1

{E[(d̂jk − djk)
2I (|d̂jk| > δj )] + E[d2

jkI (|d̂jk| ≤ δj )]}

+
∞∑

j=q+1

N2J+j −1∑
k=−N+1

d2
jk = �1 + �2 + �3 + �4.

The proof then follows from Lemmas 1–6, given below. �

Lemma 1. Suppose that the first derivatives of g and φ exist except for a finite number of points.
Moreover, assume that g′ and φ′ (where they exist) are piecewise continuous and bounded. Then,

�1 =
N2J −1∑

k=−N+1

[E(ŝJk) − sJk]2 = O(n−222J ).

Proof. For the expected value, we have

E(ŝJk) = E

(
1

n

n∑
i=1

YiφJk(ti)

)
= N1/22J/2

n

n∑
i=1

g

(
i

n

)
φ

(
N2J i

n
− k

)

= N1/22J/2
n∑

i=1

1

n
g

(
i

n

)
φ

(
N2J i

n
− k

)
.

First, assume that g and φ are continuously differentiable and recall the rectangle rule

∫ b

a

f (t)dt = b − a

n

n−1∑
i=0

f

(
a + i

(b − a)

n

)
+ O

(
n−1∑
i=0

sup
t∈Ii

|f ′(t)| · (b − a)2

n2

)
(25)

with Ii = [a + i
(b−a)

n
, a + (i + 1)

(b−a)
n

]. Noting that the support of φ(N2J t − k) (as a function
of t ) is [kN−12−J , (kN−1 + 1)2−J ], we obtain

E(ŝJk) = N1/22J/2
i2(k)∑

i=i1(k)

1

n
g

(
i

n

)
φ

(
N2J i

n
− k

)

with

i1(k) = nkN−12−J

and

i2(k) = n(kN−1 + 1)2−J .
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Thus, the number of non-zero terms in the sum is n2−J + 1. This, together with the rectangle
rule for f (i/n) = g(i/n)φ(N2J i/n − k) (and integration limits a = 0, b = 1), implies that

E(ŝJk) = N1/22J/2
∫ 1

0
g(t)φ(N2J t − k)dt + O(n−12J/2) = sJk + O(n−12J/2).

Note that, here, the factor 2J from the derivative of φ(N2J t − k) is compensated by the fact that
the number of non-zero terms in the sum is proportional to 2−J .

Now, assume, more generally, that g′ and φ′ exist except for a finite number of points and,
where they exist, that they are piecewise continuous and bounded. The result then follows by a
piecewise application of the rectangle rule.

In summary, we have

E(ŝJk) − sJk = O(n−12J/2).

This implies that

�1 =
N2J −1∑

k=−N+1

[E(ŝJk) − sJk]2 = O

(
N2J −1∑

k=−N+1

n−22J

)
= O(n−222J ),

which completes the proof. �

Lemma 2. Suppose that the first derivative of φ exists on [0,N ] except for a finite number of
points and, where φ′ exists, it is piecewise continuous and bounded. Let J ≥ 0 and −N + 1 ≤
k ≤ N2J − 1. Then,

E{[ŝJ k − E(ŝJk)]2} = C2
φN−1+αn−α2−J (1−α) + O(n−1)

and

�2 =
N2J −1∑

k=−N+1

E{[ŝJ k − E(ŝJk)]2} = C2
φn−αNα2αJ + O(n−12J ) + O

(
n−α2−J (1−α)

)
,

where Cφ is the constant in (11).

Proof. First, assume that φ is continuously differentiable. Note that Cφ is a positive finite con-
stant (see Li and Xiao [34]). We now consider the behavior of E{[ŝJ k − E(ŝJk)]2}. We have

E{[ŝJ k − E(ŝJk)]2}

= E

{[
1

n

n∑
i=1

(
Yi − E(Yi)

)
φJk(ti)

]2}

= E

[(
N1/22J/2

n

n∑
i=1

ξiφ

(
N2J i

n
− k

))2]
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= Nn−22J
n∑

i=1

n∑
l=1

E(ξiξl)φ

(
N2J i

n
− k

)
φ

(
N2J l

n
− k

)

= Nn−22J

(1+kN−1)n2−J∑
i=nkN−12−J

(1+kN−1)n2−J∑
l=nkN−12−J

γ (l − i)φ

(
N2J i

n
− k

)
φ

(
N2J l

n
− k

)

= Nn−22J

(1+kN−1)n2−J∑
i,l=nkN−12−J

i �=l

γ (l − i)φ

(
N2J i

n
− k

)
φ

(
N2J l

n
− k

)

+ Nn−22J γ (0)

(1+kN−1)n2−J∑
i=nkN−12−J

φ2
(

N2J i

n
− k

)
.

Equation (25) implies that

Nn−22J γ (0)

(1+kN−1)n2−J∑
i=nkN−12−J

φ2
(

N2J i

n
− k

)

= n−1γ (0)

(
N

n2−J

(1+kN−1)n2−J∑
i=nkN−12−J

φ2
(

N2J i

n
− k

))

= n−1γ (0)

∫ N

0
φ2(t)dt + o(n−1).

Due to (3), this is equal to

n−1γ (0) + o(n−1) = O(n−1).

Hence,

E{[ŝJ k − E(ŝJk)]2}

= Nn−22J

(1+kN−1)n2−J∑
i,l=nkN−12−J

i �=l

γ (l − i)φ

(
N2J i

n
− k

)
φ

(
N2J l

n
− k

)
+ O(n−1).

Again using formula (2), we obtain, by arguments analogous to those in, for example, Taqqu [41],

E{[ŝJ k − E(ŝJk)]2}

∼ Cγ Nn−22J

(1+kN−1)n2−J∑
i,l=nkN−12−J

i �=l

|l − i|−αφ

(
N2J i

n
− k

)
φ

(
N2J l

n
− k

)
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= Cγ Nαn−1−α2αJ

(1+kN−1)n2−J∑
i=nkN−12−J

φ

(
N2J i

n
− k

)
N2J

n

×
(1+kN−1)n2−J∑
l=nkN−12−J

l �=i

∣∣∣∣N2J l

n
− N2J i

n

∣∣∣∣
−α

φ

(
N2J l

n
− k

)
.

The function f (x) = |x −(N2J i
n
−k)|−αφ(x) is differentiable on [0,N2J i−1

n
−k]∪[N2J i+1

n
−

k,N] for all fixed i and n. Therefore, the rectangle rule implies that

N

n2−J

(1+kN−1)n2−J∑
l=nkN−12−J

l �=i

∣∣∣∣N2J l

n
− N2J i

n

∣∣∣∣
−α

φ

(
N2J l

n
− k

)

= N

n2−J

i−1∑
l=nkN−12−J

∣∣∣∣
(

N2J l

n
− k

)
−

(
N2J i

n
− k

)∣∣∣∣
−α

φ

(
N2J l

n
− k

)

+ N

n2−J

(1+kN−1)n2−J∑
l=i+1

∣∣∣∣
(

N2J l

n
− k

)
−

(
N2J i

n
− k

)∣∣∣∣
−α

φ

(
N2J l

n
− k

)

=
∫ N2J ((i−1)/n)−k

0

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx

+
∫ N

N2J ((i+1)/n)−k

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx + K1,n + K2,n,

where

K1,n = O

((
N

n2−J

)2 i−2∑
l=nkN−12−J

sup
x∈Il (k)

∣∣∣∣ d

dx

(∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)

)∣∣∣∣
)

with Il(k) = [N2J l/n − k,N2J (l + 1)/n − k] and

K2,n = O

((
N

n2−J

)2

×
(1+kN−1)n2−J −1∑

l=i+1

sup
x∈Il (k)

∣∣∣∣ d

dx

(∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)

)∣∣∣∣
)

.
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Now,

∣∣∣∣∣
(

N

n2−J

)2 i−2∑
l=nkN−12−J

sup
x∈Il (k)

∣∣∣∣ d

dx

(∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)

)∣∣∣∣
∣∣∣∣∣

≤ αN2 max
x∈[0,1]

φ(x) ·
∣∣∣∣∣n−222J

i−2∑
l=nkN−12−J

((
N2J i

n
− k

)
−

(
N2J l + 1

n
− k

))−1−α
∣∣∣∣∣

+ N2 max
x∈[0,1]

φ′(x) ·
∣∣∣∣∣n−222J

i−2∑
l=nkN−12−J

((
N2J i

n
− k

)
−

(
N2J l + 1

n
− k

))−α
∣∣∣∣∣

≤ C1n
−(1−α)2J (1−α)

i−1−nkN−12−J∑
j=1

j−1−α + C2n
−(2−α)2J (2−α)

i−1−nkN−12−J∑
j=1

j−α

≤ C1n
−(1−α)2J (1−α)

∞∑
j=1

j−1−α + C2n
−(2−α)2J (2−α)

n2−J∑
j=1

j−α

≤ C1n
−(1−α)2J (1−α)

∞∑
j=1

j−1−α + C∗
2n−12J .

Thus,

K1,n = O
(
n−(1−α)2J (1−α)

)
.

By analogous arguments, we obtain

K2,n = O
(
n−(1−α)2J (1−α)

)
.

This implies that

E{[ŝJ k − E(ŝJk)]2}
= Cγ Nαn−1−α2αJ

×
(1+kN−1)n2−J∑
i=nkN−12−J

φ

(
N2J i

n
− k

)(∫ N2J ((i−1)/n)−k

0

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx

+
∫ N

N2J ((i+1)/n)−k

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx

+ O
(
n−(1−α)2J (1−α)

)) + O(n−1)



160 J. Beran and Y. Shumeyko

= Cγ Nαn−1−α2αJ

(1+kN−1)n2−J∑
i=nkN−12−J

φ

(
N2J i

n
− k

)

×
∫ N2J ((i−1)/n)−k

0

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx

+ Cγ Nαn−1−α2αJ

(1+kN−1)n2−J∑
i=nkN−12−J

φ

(
N2J i

n
− k

)

×
∫ N

N2J ((i+1)/n)−k

∣∣∣∣x −
(

N2J i

n
− k

)∣∣∣∣
−α

φ(x)dx

+ O(n−1) = A1 + A2 + O(n−1).

Again using (25), we obtain, by arguments analogous to those used above,

A1 = Cγ N−1+αn−α2−J (1−α)

∫ N

0

∫ y−N2J (1/n)

0
|x − y|−αφ(x)φ(y)dx dy + O(n−1)

and

A2 = Cγ N−1+αn−α2−J (1−α)

∫ N

0

∫ N

y+N2J (1/n)

|x − y|−αφ(x)φ(y)dx dy + O(n−1).

Noting that

∫ y+N2J (1/n)

y−N2J (1/n)

|x −y|−αφ(x)φ(y)dx ≤ 2 max
x∈[0,N ]

(φ2(x)) ·
∫ N2J n−1

0
z−α dy = O

(
n−(1−α)2J (1−α)

)
,

we obtain ∫ N

0

∫ y+N2J (1/n)

y−N2J (1/n)

|x − y|−αφ(x)φ(y)dx dy = O
(
n−(1−α)2J (1−α)

)
and

E{[ŝJ k − E(ŝJk)]2} = Cγ N−1+αn−α2−J (1−α)

∫ N

0

∫ N

0
|x − y|−αφ(x)φ(y)dx dy + O(n−1)

= C2
φN−1+αn−α2−J (1−α) + O(n−1),

where Cφ is the constant in (11). Hence,

�2 =
N2J −1∑

k=−N+1

E{[ŝJ k − E(ŝJk)]2} =
N2J −1∑

k=−N+1

(
C2

φN−1+αn−α2−J (1−α) + O(n−1)
)

= C2
φn−αNα2αJ + O(n−12J ) + O

(
n−α2−J (1−α)

)
.
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In the general case where φ′ exists except for a finite number of points and, where it exists, it is
piecewise continuous and bounded, the result follows by a piecewise application of the rectangle
rule. �

Lemma 3. Suppose that the first derivative of ψ exists on [0,N ] except for a finite number
of points and, where ψ ′ exists, it is piecewise continuous and bounded. Let J ≥ 0, j ≥ 0 and
−N + 1 ≤ k ≤ N2J+j − 1. Then

σ 2
j = E{[d̂jk − E(d̂jk)]2}

= C2
ψN−1+αn−α2−(J+j)(1−α) + O(n−1),

where Cψ is the constant in (12).

Proof. Noting that

E{[d̂jk − E(d̂jk)]2} = E

{[
N1/22(J+j)/2

n

n∑
i=1

ξiψ

(
N2J+j i

n
− k

)]2}
,

the proof is analogous to the proof of Lemma 2, with the difference being that ψ is used instead
of φ and J is replaced by J + j . �

Lemma 4. Suppose that the first r derivatives of g exist and are continuous on [0,1]. Then, for
all j ≥ 0 and 0 ≤ k ≤ N2J+j − 1,

djk = νr

r! g
(r)

(
kN−12−(J+j)

)
N−(2r+1)/22−((2r+1)/2)(J+j)

(26)
+ o

(
2−((2r+1)/2)(J+j)

)
,

where νr is the r th moment of ψ (see (6)). Together with the assumptions of Lemma 3, this yields
that

E(d̂jk) − djk = O
(
n−12(J+j)/2).

Proof. Note that

djk = N1/22(J+j)/2
∫ 1

0
g(t)ψ(N2J+j t − k)dt

= N1/22(J+j)/2
∫ (1+kN−1)2−(J+j)

kN−12−(J+j)

g
(
N−12−(J+j)[N2J+j t − k + k])ψ(N2J+j t − k)dt

= N−1/22−(J+j)/2
∫ N

0
g
(
N−12−(J+j)(y + k)

)
ψ(y)dy.
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Since g is r-times continuously differentiable, the local Taylor expansion (see, e.g., Zorich [46],
pages 225–226) of g yields

djk = N−1/22−(J+j)/2
∫ N

0
ψ(y)

[
g
(
kN−12−(J+j)

) + N−12−(J+j)g′(kN−12−(J+j)
)
y

+ · · · + N−r2−r(J+j)

r! g(r)
(
kN−12−(J+j)

)
yr

]
dy

+ o
(
2−((2r+1)/2)(J+j)

)
.

The moment conditions (5) and (6) then imply that

djk = 1

r!g
(r)

(
kN−12−(J+j)

)
N−(2r+1)/22−((2r+1)/2)(J+j)

∫ N

0
yrψ(y)dy + o

(
2−((2r+1)/2)(J+j)

)
= νr

r! g
(r)

(
kN−12−(J+j)

)
N−(2r+1)/22−((2r+1)/2)(J+j) + o

(
2−((2r+1)/2)(J+j)

)
.

For E(d̂jk), we have

E(d̂jk) = 1

n

n∑
i=1

E[Yiψjk(ti)]

= N1/22(J+j)/2
n∑

i=1

n−1g

(
i

n

)
ψ

(
N2J+j i

n
− k

)
.

Again using the same arguments as in Lemma 1 for E(ŝJk), we obtain that

E(d̂jk) = djk + O
(
n−12(J+j)/2). �

Lemma 5. Under the assumptions of Lemma 4,

�4 = 1

(r!)2

1

22r − 1
N−2r2−2r(J+q)

∫ 1

0
ν2
r

(
g(r)(t)

)2 dt + o
(
2−2r(J+q)

)
.

Proof. Using (24), we have

�4 =
∞∑

j=q+1

N2J+j −1∑
k=−N+1

d2
jk

=
∞∑

j=q+1

N2J+j −1∑
k=−N+1

[
νr

r! g
(r)

(
kN−12−(J+j)

)]2

N−(2r+1)2−(2r+1)(J+j) + o
(
2−(2r+1)(J+j)

)
.
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Note that the continuity of g(r) implies convergence of the Riemann sum. Hence, �4 is equal to

1

(r!)2

∞∑
j=q+1

N−2r2−2r(J+j)

{∫ 1

0
ν2
r

(
g(r)(t)

)2 dt + o(1)

}
+ o

(
2−2r(J+q)

)

= 1

(r!)2

1

22r − 1
N−2r2−2r(J+q)

∫ 1

0
ν2
r

(
g(r)(t)

)2 dt + o
(
2−2r(J+q)

)
. �

Lemma 6. Let

q̂ = log2 nα/(2r+α) + 1

2r + α
log2

(
ν2
r

(r!)2C2
ψN2r+α

max
t∈[0,1]

[
g(r)(t)

]2
)

− J + 1 (27)

and

λjk = E[(d̂jk − djk)
2I (|d̂jk| > δj )] + E[d2

jkI (|d̂jk| ≤ δj )].
Under the assumptions of Lemmas 3 and 4, the following then holds: If q > q̂ , then for all j with
q̂ < j < 2+α

4r+2+α
log2 n − J , we have

min
δj

λjk = d2
jk + O

(
2α(J+j)/2n−(1+α/2)

)
.

Proof. Defining S0 = 2−(2r+α)C2
ψN−1+αn−α2−(J+j)(1−α) and taking into account Lemma 3,

we have S1,j = 2−(2r+α)σ 2
j S−1

0 = 1 + r1,j with |r1,j | ≤ r1 = o(1) for all j ≥ q̂ . Moreover,
Lemma 4 implies that

S2,jk = d2
jkS

−1
0 = ν2

r

(r!)2C2
ψN2r+α

[
g(r)

(
kN−12−(J+j)

)]22−(2r+α)(J+j−1)nα + r2,jk

≤ ν2
r

(r!)2C2
ψN2r+α

max
t∈[0,1]

[
g(r)(t)

]2
nα max

j>q̂

{
2−(2r+α)(J+j−1)

} + r2

with r2 = o(1) independent of j and k. Using (27), we obtain

S2,jk ≤ 2−(2r+α) + r2 ≤ 1 + r1 = S1,j

for j > q̂ and n large enough, which implies that

σj ≥ 2r+α/2 max
k

|djk|. (28)

The mean squared error λjk can be written as

λjk = E[(d̂jk − djk)
2I (|d̂jk| > δj )] + E[d2

jkI (|d̂jk| ≤ δj )]

= 1√
2πσj

∫
|t |>δj

(t − djk)
2e−(1/(2σ 2

j ))(t−E(d̂jk))
2

dt + d2
jk

1√
2πσj

∫
|t |<δj

e−(t−E(d̂jk))
2/(2σ 2

j ) dt

= A1 + A2.



164 J. Beran and Y. Shumeyko

We approximate A1 and A2 separately. Taylor expansion of A1 with respect to E(d̂jk) in the
neighborhood of djk yields

A1 = 1√
2πσj

∫
|t |>δj

(t − djk)
2e−(1/(2σ 2

j ))(t−E(d̂jk))
2

dt

= 1√
2πσj

∫
|t |>δj

(t − djk)
2e−(1/(2σ 2

j ))(t−djk)
2

dt

+ E(d̂jk) − djk√
2πσj

∫
|t |>δj

(t − djk)
3

σ 2
j

e−(1/(2σ 2
j ))(t−djk)

2
dt

+ O

( [E(d̂jk) − djk]2

σj

∫
|t |>δj

(
(t − djk)

4

σ 4
j

− (t − djk)
2

σ 2
j

)
e−(1/(2σ 2

j ))(t−djk)
2

dt

)
.

If djk �= 0, then Lemmas 3 and 4 imply that

E(d̂jk) − djk

σj

∫
|t |>δj

(t − djk)
3

σ 2
j

e−(1/(2σ 2
j ))(t−djk)

2
dt

= σj [E(d̂jk) − djk]
∫

|t |>δj /σj

(
t − djk

σj

)3

e−1/2(t−djk/σj )2
dt (29)

= O
(
n−α/22−(J+j)(1−α)/2 · n−12(J+j)/2) = O

(
2α(J+j)/2n−(1+α/2)

)
.

If djk = 0, then

E(d̂jk) − djk

σj

∫
|t |>δj

(t − djk)
3

σ 2
j

e−(1/(2σ 2
j ))(t−djk)

2
dt = 0

and

[E(d̂jk) − djk]2

σj

∫
|t |>δj

(
(t − djk)

4

σ 4
j

− (t − djk)
2

σ 2
j

)
e−(1/(2σ 2

j ))(t−djk)
2

dt

= [E(d̂jk) − djk]2
∫

|t |>δj /σj

((
t − djk

σj

)4

−
(

t − djk

σj

)2)
e−(1/2)(t−djk/σj )2

dt (30)

= O(n−22J+j ).

The condition j + J < 2+α
4r+2+α

log2 n implies that n−22J+j = o(2(α/2)(J+j)n−(1+α/2)) so that

A1 = 1√
2πσj

∫
|t |>δj

(t − djk)
2e(−1/(2σ 2

j ))(t−djk)
2

dt + O
(
2α(J+j)/2n−(1+α/2)

)
. (31)
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By analogous arguments, we have, for djk �= 0,

A2 = d2
jk

1√
2πσj

∫
|t |<δj

e−(t−E(d̂jk))
2/(2σ 2

j ) dt

= d2
jk

1√
2πσj

∫
|t |<δj

e−(t−djk)
2/(2σ 2

j ) dt

+ O

(
d2
jk[E(d̂jk) − djk]

σj

∫
|t |<δj

(t − djk)

σ 2
j

e−(t−djk)
2/(2σ 2

j ) dt

)

with

d2
jk[E(d̂jk) − djk]

σj

∫
|t |<δj

(t − djk)

σ 2
j

e−(t−djk)
2/(2σ 2

j ) dt

= d2
jk[E(d̂jk) − djk]

σj

∫
|t |<δj /σj

(
t − djk

σj

)
e−(1/2)(t−djk/σj )2

dt

(32)
= O

(
2−(2r+1)(J+j) · n−12(J+j)/2 · nα/22(J+j)(1−α)/2)

= O
(
n−(1−α/2)2−(2r+α/2)(J+j)

)
.

For djk = 0, we have

A2 = d2
jk

1√
2πσj

∫
|t |<δj

e−(t−E(d̂jk))
2/(2σ 2

j ) dt = 0.

In summary, we have derived the approximation,

λjk = A1 + A2

= σ 2
j

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

(33)

+ d2
jk

1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt

+ O
(
2α(J+j)/2n−(1+α/2)

) + O
(
n−(1−α/2)2−(2r+α/2)(J+j)

)
with uniformly bounded error terms (see (29), (30) and (32)). It is then sufficient to show that for
all k and all j with q̂ < j < 2+α

4r+2+α
log2 n − J, we have

min
δj

λ̂jk = d2
jk,
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where

λ̂jk = σ 2
j

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

(34)

+ d2
jk

1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt.

In the following, we distinguish two cases: δj ≤ σj and δj > σj .
At first, let δj ≤ σj . Recall that σj ≥ 2r+α/2djk for all k (see (28)). Then,

1√
2π

∫
|t |≥δj /σj

(
t − djk/σj

)2

e−(1/2)(t−djk/σj )2
dt

≥ min
0≤x≤2−(r+α/2)

1√
2π

∫
|t |≥1

(t − x)2e−(1/2)(t−x)2
dt

≥ min
0≤x≤2−1

1√
2π

∫
|t |≥1

(t − x)2e−(1/2)(t−x)2
dt > 0.57.

Also, note that

1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt ≥ 0.

These two inequalities and (34) imply that for all j > q̂ ,

inf
δj ≤σj

λ̂jk = inf
δj ≤σj

{
σ 2

j

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

+ d2
jk

1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt

}

≥ inf
δj ≤σj

{
σ 2

j

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

}
≥ 0.57σ 2

j .

For the case where δj > σj , we need some auxiliary results. Without loss of generality, we let

djk ≥ 0. First, note that if δj /σj > (1 + djk

σj
), then

1√
2π

∫
|t |<δj /σj

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt

≤ 1√
2π

∫ ∞

−∞

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt = 0
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so that

1√
2π

∫
|t |<δj /σj

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt ≤ 0

and

1√
2π

∫
|t |<δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt ≤ 1√

2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt.

Similarly, if 1 ≤ δj /σj ≤ (1 + djk/σj ), then

1√
2π

∫
|t |<δj /σj

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt

≤ 1√
2π

∫ δj /σj

−∞

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt.

Moreover, since (28), we have djk/σj < 1 ≤ δj /σj so that an upper bound is given by

1√
2π

∫ djk/σj

−∞

[(
t − djk

σj

)2

− 1

]
e−(1/2)(t−djk/σj )2

dt

= 1√
2π

∫ 0

−∞
[t2 − 1]e−(1/2)t2

dt = 0.

Hence, if δj > σj , we also have the inequality

1√
2π

∫
|t |<δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt ≤ 1√

2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt.

In summary, we obtain

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

= 1 − 1√
2π

∫
|t |<δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

≥ 1 − 1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt.

Defining

γ = 1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt ∈ [0,1],
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this inequality, together with (34), implies that for all j ≥ q̂ , and all k and n large enough,
infδj >σj

λ̂jk is equal to

inf
δj >σj

{
σ 2

j

1√
2π

∫
|t |>δj /σj

(
t − djk

σj

)2

e−(1/2)(t−djk/σj )2
dt

+ d2
jk

1√
2π

∫
|t |<δj /σj

e−(1/2)(t−djk/σj )2
dt

}

so that

inf
δj >σj

λ̂jk ≥ inf
γ∈[0,1]{(1 − γ )σ 2

j + γ d2
jk} = d2

jk.

Moreover, note that the minimum is attained at the border. Now,

inf
δj

λ̂jk = min
{

inf
δj ≤σj

λ̂jk, inf
δj >σj

λ̂jk

}
≥ min{0.57σ 2

j , d2
jk}

≥ min{0.57 · 22r+α · maxd2
jk, d

2
jk} = d2

jk,

where the last inequality follows from (28). Clearly, the value of d2
jk is attained if and only if

δj = ∞.
Finally, we obtain

min
δj

λjk = min
δj

λ̂jk + O
(
2α(J+j)/2n−(1+α/2)

) + O
(
n−(1−α/2)2−(2r+α/2)(J+j)

)
= d2

jk + O
(
2α(J+j)/2n−(1+α/2)

) + O
(
n−(1−α/2)2−(2r+α/2)(J+j)

)
.

Now, djk = O(2−((2r+1)/2)(J+j)) and the assumption

q̂ < j <
2 + α

4r + 2 + α
log2 n − J

implies that

2−(2r+1)(J+j) > 2α(J+j)/2n−(1+α/2)

and

2α(J+j)/2n−(1+α/2) > n−(1−α/2)2−(2r+α/2)(J+j).

Therefore, the remainder term 2α(J+j)/2n−(1+α/2) is of smaller order than d2
jk , and O(2α(J+j)/2×

n−(1+α/2)) dominates O(n−(1−α/2)2−(2r+α/2)(J+j)). This completes the proof of Lemma 6.
We now come back to the proof of Theorem 1. Suppose that φ and ψ are piecewise differen-

tiable. We define

Ĵ = log2 nα/(2r+α) + 1

2r + α
log2

(
ν2
r

(r!)2C2
ψN2r+α

max
t∈[0,1]

[
g(r)(t)

]2
)

+ 1
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and let J ≥ Ĵ . Noting that �i ≥ 0 (i = 1,2,3,4) and taking into account Lemma 2, we obtain,
for all q ≥ 0,

E

∫ 1

0

(
g(t) − ĝ(t)

)2 dt = �1 + �2 + �3 + �4 ≥ �2

≥ C2
φn−αNα2αJ + O(n−12J ) + O

(
n−α2−J (1−α)

) ≥ C1n
−2rα/(2r+α).

Now, consider J < Ĵ and let q ≤ q̂ , where q̂ is defined as in Lemma 6. Lemmas 4 and 5 imply
that

∞∑
j=q̂+1

N2J+j −1∑
k=−N+1

d2
jk ≥ C2n

−2rα/(2r+α).

Since q ≤ q̂ , we have

E

∫ 1

0

(
g(t) − ĝ(t)

)2 dt = �1 + �2 + �3 + �4 ≥ �4 =
∞∑

j=q+1

N2J+j −1∑
k=−N+1

d2
jk ≥

∞∑
j=q̂+1

N2J+j −1∑
k=−N+1

d2
jk

≥ C2n
−2rα/(2r+α).

For the other case, where q > q̂ , taking into account �3 in (24) and Lemma 6 leads to

E

∫ 1

0

(
g(t) − ĝ(t)

)2 dt

≥ �3 =
q∑

j=0

N2J+j −1∑
k=−N+1

{E[(d̂jk − djk)
2I (|d̂jk| > δj )] + E[d2

jkI (|d̂jk| ≤ δj )]}

=
q∑

j=0

N2J+j −1∑
k=−N+1

λjk ≥
q̂∑

j=0

N2J+j −1∑
k=−N+1

λjk +
q∑

j=q̂+1

N2J+j −1∑
k=−N+1

min
δj

λjk

≥
q̂+1∑

j=q̂+1

N2J+j −1∑
k=−N+1

min
δj

λjk =
q̂+1∑

j=q̂+1

N2J+j −1∑
k=−N+1

d2
jk + O

(
2(1+α/2)(J+q̂)n−(1+α/2)

)

≥ C3n
−2rα/(2r+α).

In summary, we have obtained a lower bound:

min{δj },q,J
E

∫ 1

0

(
g(t) − ĝ(t)

)2 dt = min{δj },q,J
(�1 + �2 + �3 + �4) ≥ Cn−2rα/(2r+α).

It is shown in the proof of Theorem 2 that equality can indeed be achieved, by using a specific
choice of δj , q , J and C. This completes the proof of Theorem 1. �
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Proof of Theorem 2. Under the conditions of Theorem 2, and taking into account Lemmas 3
and 4, we obtain that

�3 =
q∑

j=0

N2J+j −1∑
k=−N+1

E{[d̂jk − djk]2} =
q∑

j=0

N2J+j −1∑
k=−N+1

(
σ 2

j + (
E(d̂jk) − djk

)2)

= C2
ψ

2α − 1

(
2α(q+1) − 1

)
Nαn−α2αJ + O(n−12J+q) + O

(
n−α2−J (1−α)

) + O
(
n−222(J+q)

)
.

This, together with Lemmas 1, 2 and 5, implies that the expression in (24) will take the following
form:

MISEg(q, J ) = �1 + �2 + �3 + �4

=
(

C2
φ − C2

ψ

2α − 1

)
Nαn−α2αJ + 2αC2

ψ

2α − 1
Nαn−α2α(J+q)

(35)

+ 1

(r!)2

1

22r − 1
N−2r2−2r(J+q)

∫ 1

0
ν2
r

(
g(r)(t)

)2 dt

+ o
(
2−2r(J+q)

) + O(n−12J+q) + O
(
n−α2−J (1−α)

)
.

Now, let q and J be such that MISE is minimal. Then, by (24), δj = 0 and

MISEg(q, J ) − MISEg(q + 1, J ) < 0

imply that

MISEg(q, J ) − MISEg(q + 1, J ) =
N2J+q+1−1∑
k=−N+1

d2
q+1,k −

N2J+q+1−1∑
k=−N+1

σ 2
q+1 < 0.

By an argument analogous to the one used in the proof of (28), the last inequality, together with
Lemmas 3 and 4, implies that for n large enough, we have

C2
ψn−αNα2α(J+q+1) ≥ 1

(r!)2
N−2r2−2r(J+q+1)

∫ 1

0
ν2
r

(
g(r)(t)

)2 dt

and

q ≥ log2 nα/(2r+α) − J − 1 + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N. (36)

On the other hand,

MISEg(q, J ) − MISEg(q − 1, J ) < 0
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implies the second necessary condition

C2
ψn−αNα2α(J+q) ≤ 1

(r!)2
N−2r2−2r(J+q)

∫ 1

0
ν2
r

(
g(r)(t)

)2
dt

so that

q ≤ log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N − J. (37)

Note that q and J are integers. The inequalities (36) and (37) then imply that the value

q∗ =
⌊

log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N

⌋
− J (38)

asymptotically minimizes the MISE. Using the definition of �n(g,Cψ) in (13), we conclude that

q∗ = log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N − J − �n(g,Cψ).

Note that if �n(g,Cψ) �= 0, then for every fixed J, there exists a unique q∗ such that (36) and
(37) hold.

Combining these results with (35) yields

MISEg(q
∗, J ) = 2−α�n(g,Cψ)

(
C2

φ − C2
ψ

2α − 1

)
Nαn−α2αJ

+
(

22r�n(g,Cψ)

22r − 1
+ 2α(1−�n(g,Cψ))

2α − 1

)
(39)

× C
4r/(2r+α)
ψ

(
ν2
r

(r!)2

∫ 1

0

(
g(r)(t)

)2 dt

)α/(2r+α)

n−2rα/(2r+α)

+ O(n−12J ) + o
(
n−2rα/(2r+α)

) + O
(
n−α2−J (1−α)

)
.

The first term is monotonically decreasing in J if (2α − 1)C2
φ < C2

ψ , and monotonically increas-

ing if (2α − 1)C2
φ > C2

ψ . The second term does not depend of J . Hence, if (2α − 1)C2
φ > C2

ψ ,
then the optimal decomposition level J is equal to zero. Note that the optimal decomposition
level is not unique since the same asymptotic expressions will be achieved for all integers J such
that 2J = o(nα/(2r+α)). Combining this with the previous formulas implies that MISEg(q, J ) is
equal to

(
22r�n(g,Cψ)

22r − 1
+ 2α(1−�n(g,Cψ))

2α − 1

)
C

4r/(2r+α)
ψ

(
ν2
r

(r!)2

∫ 1

0

(
g(r)(t)

)2 dt

)α/(2r+α)

n−2rα/(2r+α)

(40)
+ o

(
n−2rα/(2r+α)

)
.
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On the other hand, suppose that (2α − 1)C2
φ < C2

ψ . Taking into account (38) and q ≥ 0 (see
(8)), we then have

0 ≤ J ≤
⌊

log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N

⌋
.

Hence, the optimal choice of J is

J =
⌊

log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
ψ(r!)2

]
− log2 N

⌋
. (41)

Due to (38), this also implies that q∗ = 0.
Note that (8) with q ≥ 0 and δj = 0 always includes at least one level of mother wavelets. The

case where the estimate includes father wavelets only is automatically considered in Theorem 1,
namely, if q = 0 and δ0 = ∞. To complete the proof, we also need to compare with the estimate
that only includes father wavelets. Thus, we consider

g̃(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t)

and denote the corresponding mean integrated square error by MISEg(−1, J ). Then,

MISEg(−1, J ) =
N2J −1∑

k=−N+1

[E(ŝJk) − sJk]2 +
N2J −1∑

k=−N+1

E{[ŝJ k − E(ŝJk)]2}

+
∞∑

j=0

N2J+j −1∑
k=−N+1

d2
jk.

Let J ∗ be such that MISEg(−1, J ∗) is minimal. Then,

MISEg(−1, J ∗) − MISEg(−1, J ∗ + 1) < 0

and

MISEg(−1, J ∗) − MISEg(−1, J ∗ − 1) < 0.

Suppose that n is large enough. Elementary calculations similar to those above then show that
the optimal decomposition level J ∗ is given by

J ∗ =
⌊

log2 nα/(2r+α) + 1

2r + α
log2

[∫ 1
0 ν2

r (g(r)(t))2 dt

C2
φ(2α − 1)(r!)2

]
− log2 N

⌋
+ 1. (42)



On wavelet trend estimation under long-range dependence 173

Defining �n(g,Cφ) as in (14), the corresponding MISE is equal to

(
22r�n(g,Cφ)

22r − 1
+ 2α(1−�n(g,Cφ))

2α − 1

)(
C2

φ(2α − 1)
)2r/(2r+α)

×
(

ν2
r

(r!)2

∫ 1

0

(
g(r)(t)

)2 dt

)α/(2r+α)

n−2rα/(2r+α) + o
(
n−2rα/(2r+α)

)
.

Now, let (2α − 1)C2
φ > C2

ψ . Suppose that J defined by (42) and the estimator consisting of only
father wavelets minimizes the MISE. Now,

MISEg(0, J ) − MISEg(−1, J + 1)

= n−αNα2αJ
(
C2

ψ − C2
φ(2α − 1)

) + o
(
n−2rα/(2r+α)

)
so that, for n large enough,

MISEg(0, J ) − MISEg(−1, J + 1) < 0,

which is a contradiction. It thus follows that the best J is equal to zero, q is defined by (38) and
the MISE is as in (40).

Now, suppose that

C2
φ(2α − 1) < C2

ψ,

q = 0 and J given by (41) minimizes the MISE. Consider

MISEg(−1, J + 1) − MISEg(0, J )

= n−αNα2αJ
(
C2

φ(2α − 1) − C2
ψ

) + o
(
n−2rα/(2r+α)

)
.

Using the same argument as before, MISEg(−1, J + 1) − MISEg(0, J ) < 0 for n large enough.
Thus, the best estimator includes only father wavelets and the optimal decomposition level is
defined by (42).

In conclusion, we consider the case �n(g,Cψ) = 0. Suppose that

(2α − 1)C2
φ > C2

ψ,

J = 0 and q as in (38) minimizes the MISE. Now,

MISEg(q,0) − MISEg(q − 1,0)

=
(

1

22r − 1
+ 2α

2α − 1
− 22r

22r − 1
− 1

2α − 1

)

× C
4r/(2r+α)
ψ

(
ν2
r

(r!)2

∫ 1

0

(
g(r)(t)

)2 dt

)α/(2r+α)

n−2rα/(2r+α)

+ o
(
n−2rα/(2r+α)

) = o
(
n−2rα/(2r+α)

)
.
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Then, for every fixed J, there exist two smoothing parameters that minimize the MISE asymptot-
ically. The same also follows for the case (2α − 1)C2

φ < C2
ψ and �n(g,Cφ) = 0. This completes

the proof. �

Proof of Theorem 3. The extension to functions with piecewise continuous r th derivatives fol-
lows from the following lemma, which can be proven in a similar manner as Lemmas 4.5 and
4.6 in Li and Xiao [34]. �

Lemma 7. Suppose that the assumptions of Theorem 3 hold. Then:

(i) if (2α − 1)C2
φ > C2

ψ , then

q∑
j=q∗+1

N2J+j −1∑
k=−N+1

λjk +
∞∑

j=q+1

N2J+j −1∑
k=−N+1

d2
jk

= ν2
r

(r!)2

1

22r − 1
N−2r2−2r(J+q∗)

∫ 1

0

(
g(r)(t)

)2 dt + o
(
2−2r(J+q)

);
(ii) if (2α − 1)C2

φ < C2
ψ , then

q∑
j=0

N2J+j −1∑
k=−N+1

λjk +
∞∑

j=q+1

N2J+j −1∑
k=−N+1

d2
jk

= ν2
r

(r!)2

1

22r − 1
N−2r2−2r(J−1)

∫ 1

0

(
g(r)(t)

)2 dt + o(2−2rJ ).
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