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In this paper we introduce new estimators of the coefficient functions in the varying coefficient regres-
sion model. The proposed estimators are obtained by projecting the vector of the full-dimensional kernel-
weighted local polynomial estimators of the coefficient functions onto a Hilbert space with a suitable norm.
We provide a backfitting algorithm to compute the estimators. We show that the algorithm converges at a
geometric rate under weak conditions. We derive the asymptotic distributions of the estimators and show
that the estimators have the oracle properties. This is done for the general order of local polynomial fitting
and for the estimation of the derivatives of the coefficient functions, as well as the coefficient functions
themselves. The estimators turn out to have several theoretical and numerical advantages over the marginal
integration estimators studied by Yang, Park, Xue and Härdle [J. Amer. Statist. Assoc. 101 (2006) 1212–
1227].
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1. Introduction

In this paper we consider a varying coefficient regression model proposed by Hastie and Tib-
shirani [12] and studied by Yang, Park, Xue and Härdle [24]. The model takes the form
Y i = m(Xi ,Zi ) + σ(Xi ,Zi )εi , i = 1, . . . , n, where

m(X,Z) =
d∑

j=1

mj(Xj )Zj , (1.1)

mj are unknown coefficient functions, Xi = (Xi
1, . . . ,X

i
d)� and Zi = (Zi

1, . . . ,Z
i
d)� are ob-

served vectors of covariates, and εi are the error variables such that E(εi |Xi ,Zi ) = 0 and
var(εi |Xi ,Zi ) = 1. We assume that (Xi ,Zi , Y i) for 1 ≤ i ≤ n are independent and identically
distributed. The model is simple in structure and easily interpreted, yet flexible, since the de-
pendence of the response variable on the covariates is modeled in a nonparametric way. The
model is different from the functional coefficient model of Chen and Tsay [4], Fan and Zhang
[8], Cai, Fan and Li [2] and Cai, Fan and Yao [3], where mj are functions of a single variable,
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that is, m(Xi,Zi ) = ∑d
j=1 mj(X

i)Zi
j . Fitting the latter model is much simpler than the model

(1.1) since it involves only a univariate smoothing across the single variable X.
To fit the model (1.1), we may apply the idea of local polynomial smoothing. To illustrate the

difficulty in fitting the model, suppose that we employ local constant fitting so that we minimize

n∑
i=1

[
Y i −

d∑
j=1

θjZ
i
j

]2

Kh(x1,X
i
1) · · ·Kh(xd,Xi

d)

with respect to θj , 1 ≤ j ≤ d , to get estimators of mj(xj ), 1 ≤ j ≤ d , where Kh is a kernel
function. For each coefficient mj , this yields an estimator which is a function of not only xj

but also other variables xk , k �= j . The marginal integration method, proposed and studied by
Yang et al. [24], is simply to take the average of θ̂j (X

i
1, . . . ,X

i
j−1, xj ,X

i
j+1, . . . ,X

i
d) in order to

eliminate the dependence on the other variables.
In this paper we propose a new method for fitting the model (1.1). The proposed method is

to project the vector of the full-dimensional kernel-weighted local polynomial estimators (θ̂j ,
1 ≤ j ≤ d , in the above, in the case of local constant fitting) onto a space of vectors of functions
fj : R → R, 1 ≤ j ≤ d , with a suitable norm. Projection-type estimation has been studied in
other structured nonparametric regression models. For example, the smooth backfitting method
was proposed by Mammen, Linton and Nielsen [17] to fit additive regression models. The same
idea was applied to quasi-likelihood additive regression by Yu, Park and Mammen [25] and to
additive quantile regression by Lee, Mammen and Park [16]. Some nonparametric time series
models have been proposed with unobserved factors Zj that do not depend on the individual
but on time; see, for example, Connor, Linton and Hagmann [5], Fengler, Härdle and Mammen
[9] and Park, Mammen, Härdle and Borak [21]. In these papers it has been shown that one can
also proceed asymptotically in the models under consideration, as if the factors would have been
observed. We note that the current problem does not fit into the framework of the above papers but
requires a different treatment. In particular, in the model (1.1), the functions mj are not additive
components of the regression function, but they are the coefficients of Zj . For a treatment of our
model we have to exclude the case of constant Zj ≡ 1. In the case of constant Zj , model (1.1)
reduces to the additive model. The key element in the derivation of the theory for our model is
to embed the vector of the coefficient functions into an additive space of vectors of univariate
functions and then to endow the space with a norm where the covariates Zj enter with kernel
weights.

As far as we know, the marginal integration method has been the only method to fit the model
(1.1). It is widely accepted that the marginal integration method suffers from the curse of dimen-
sionality. Inspired by Fan, Härdle and Mammen [6] and others, Yang et al. [24] tried to avoid
the dimensionality problem by using two different types of kernels and bandwidths. To be more
specific, consider estimation of mj for a particular j . The method then uses a kernel, say L, and
bandwidths, say bk , for the directions of xk (k �= j), which are different from a kernel K and a
bandwidth hj for the direction of xj . By choosing bk � hj and taking a higher order kernel L,
we can achieve the univariate optimal rate of convergence for the resulting estimator of mj . One
of the main difficulties with the marginal integration method is that there is no formula available
for the optimal choice of the secondary bandwidths bk . Also, the performance of the method
depends crucially on the choice of the secondary bandwidths bk , as observed in our numerical
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study; see Section 5. Furthermore, the method involves estimation of a full-dimensional regres-
sion estimator, which requires inversion of a full-dimensional [(π +1)d]×[(π +1)d] smoothing
matrix, where π is the order of local polynomial fitting. This means that the method may break
down in practice in high dimension.

On the contrary, the proposed method may use bandwidths of the same order for all directions
to achieve the univariate optimal rate of convergence, and we derive formulas for the optimal
bandwidths. The method requires only one- and two-dimensional smoothing and inversion of a
(π + 1)× (π + 1) matrix which is computed by a single-dimensional local smoothing. Thus, the
proposed method does not suffer from the curse of dimensionality in practice as well as in theory.
We show that the method has the oracle properties, meaning that the proposed estimator of mj

for each j has the same first-order asymptotic properties as the oracle (infeasible) estimator of
mj that uses the knowledge of all other coefficient functions mk , k �= j . We develop the theory
for the method with local polynomial fitting of general order π ≥ 0. Thus, the theory gives the
asymptotic distributions of the estimators of mj , as well as their derivatives m

(k)
j , 1 ≤ k ≤ π .

There have been several works on a related varying coefficient model where the coefficients
are time-varying functions. These include Hoover, Rice, Wu and Yang [13], Huang, Wu and
Zhou [14,15], Wang, Li and Huang [23] and Noh and Park [19]. The kernel method of fitting this
model is quite different from, and simpler than, the method of fitting our model (1.1), since the
former involves only a univariate smoothing across time. Recently, Park, Hwang and Park [20]
considered a testing problem for the model (1.1) based on the marginal integration method.

This paper is organized as follows. In the next section, we describe the proposed method
with local constant fitting and then, in Section 3, we give its theoretical properties. Section 4 is
devoted to the extension of the method and theory to local polynomial fitting of general order.
In Section 5 we present the results of our numerical study. In Section 6 we apply the proposed
method to Boston Housing Data. Technical details are contained in the Appendix.

2. The method with local constant fitting

Although our main focus is to introduce the method with local polynomial fitting and to develop
its general theory, we start with local constant fitting since the method is better understood in the
latter setting. Let Y be the response variable, and X = (X1, . . . ,Xd)� and Z = (Z1, . . . ,Zd)�
be the covariate vectors of dimension d . Let {(Xi ,Zi , Y i)}ni=1 be a random sample drawn from
(X,Z, Y ). Assume that the density p of X is supported on [0,1]d . To estimate the coefficient
functions mj in the model (1.1), we consider a ‘smoothed’ squared error loss. Similar ideas
were adopted for additive regression by Mammen et al. [17] and for quasi-likelihood additive
regression by Yu et al. [25].

Let K be a nonnegative function, called a base kernel. To define a smoothed squared error
loss, we use a boundary corrected kernel, as in Mammen et al. [17] and Yu et al. [25], which is
defined by

Kg(u, v) =
[∫ 1

0
K

(
w − v

g

)
dw

]−1

K

(
u − v

g

)
I (u, v ∈ [0,1]).
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Suppose that we use different bandwidths for different directions. Let h = (h1, . . . , hd) be the
bandwidth vector. For simplicity, we focus on the case where we use a product kernel of the
form Kh(u,v) = ∏d

j=1 Khj
(uj , vj ). We may use a more general multivariate kernel, but this

would require more involved notation and technical arguments. The proposed estimator of m ≡
(m1, . . . ,md)� : Rd → R

d , where mj(x) = mj(xj ), is defined to be the minimizer of

L(f) =
∫

n−1
n∑

i=1

[
Y i −

d∑
j=1

fj (xj )Z
i
j

]2

Kh(x,Xi )dx

over f = (f1, . . . , fd)� with L(f) < ∞. Here and hereafter, integration over x is on [0,1]d . Define
M̂(x) = n−1 ∑n

i=1 Kh(x,Xi )ZiZi�. Then, L(f) < ∞ is equivalent to
∫

f(x)�M̂(x)f(x)dx < ∞.
The function space that arises in the minimization problem is

H(M̂) = {f ∈ L2(M̂) :fj (x) = gj (xj ) for a function gj : R → R,1 ≤ j ≤ d},
where L2(M̂) denotes a class of function vectors f defined by

L2(M̂) =
{

f : f(x) = (f1(x), . . . , fd(x))� for some functions fj : Rd → R

and
∫

f(x)�M̂(x)f(x)dx < ∞
}
.

The spaces L2(M̂) and H(M̂) are Hilbert spaces equipped with a (semi)norm ‖ · ‖M̂, defined
by

‖f‖2
M̂

=
∫

f(x)�M̂(x)f(x)dx.

Let M(x) = E(ZZ�|X = x)p(x). Since ‖f‖2
M̂

converges to

‖f‖2
M ≡

∫
f(x)�M(x)f(x)dx

in probability under certain conditions, the corresponding Hilbert spaces in the limit are L2(M)

and H(M), which are defined as L2(M̂) and H(M̂), respectively, with M̂ being replaced by M.
Here, we note that ‖ · ‖M becomes a norm if we assume that

f(X)�Z = 0 almost surely implies f = 0. (2.1)

In fact, the assumption (2.1) is known to be a sufficient condition for avoiding concurvity, as
termed by Hastie and Tibshirani [11], an analog of collinearity in linear models. If the assumption
does not hold, then the mj are not identifiable. This is because, for f such that f(X)�Z = 0 almost
surely, we have

E(Y |X,Z) = m(X)�Z = [m(X) + f(X)]�Z.

The assumption (2.1) is satisfied if we assume that the smallest eigenvalue of E(ZZ�|X = x) is
bounded away from zero on [0,1]d .
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For f ∈ H(M̂), we obtain

L(f) =
∫

n−1
n∑

i=1

[Y i − m̃(x)�Zi]2Kh(x,Xi )dx

+
∫

[m̃(x) − f(x)]�M̂(x)[m̃(x) − f(x)]dx,

where m̃ is the minimizer of L(f) over f ∈ L2(M̂). It is given explicitly as

m̃(x) = M̂(x)−1n−1
n∑

i=1

ZiY iKh(x,Xi ). (2.2)

Thus, the proposed estimator m̂ = (m̂1, . . . , m̂d)� can be defined equivalently as the projection
of m̃ onto H(M̂):

m̂ = argmin
f∈H(M̂)

‖m̃ − f‖2
M̂

. (2.3)

By considering the Gâteaux or Fréchet derivatives of the objective function with respect to f,
the solution m̂ of the minimization problem (2.3) satisfies the following system of integral equa-
tions:

0 =
∫

M̂j (x)�[m̃(x) − m̂(x)]dx−j , 1 ≤ j ≤ d, (2.4)

where M̂j are defined by M̂ = (M̂1, . . . ,M̂d)� and x−j = (x1, . . . , xj−1, xj+1, . . . , xd)�. In fact,
the system (2.4) turns out to be a backfitting system of equations. To see this, we define

m̃j (xj ) = q̂j (xj )
−1n−1

n∑
i=1

Khj
(xj ,X

i
j )Z

i
jY

i,

q̂j (xj ) = n−1
n∑

i=1

Khj
(xj ,X

i
j )(Z

i
j )

2,

q̂jk(xj , xk) = n−1
n∑

i=1

Khj
(xj ,X

i
j )Khk

(xk,X
i
k)Z

i
jZ

i
k, k �= j.

We note that, by definition, m̃j : R → R does not equal the j th component of m̃, which maps R
d

to R. We can then see that∫
M̂j (x)�m̃(x)dx−j = m̃j (xj )q̂j (xj ),

∫
M̂j (x)�m̂(x)dx−j = m̂j (xj )q̂j (xj ) +

d∑
k=1,�=j

∫
m̂k(xk)q̂jk(xj , xk)dxk.
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The second formula is obtained by using the following property of the boundary corrected kernel:∫
Khj

(uj , vj )duj = 1. Thus, the system of equations (2.4) is equivalent to

m̂j (xj ) = m̃j (xj ) −
d∑

k=1,�=j

∫
m̂k(xk)

q̂jk(xj , xk)

q̂j (xj )
dxk, 1 ≤ j ≤ d. (2.5)

We emphasize that the proposed method does not require computation of the full-dimensional
estimator m̃(x) at (2.2). It only requires one- and two-dimensional smoothing to compute m̃j ,
q̂j and q̂jk , and involves inversion of q̂j only. In contrast, the marginal integration method stud-
ied by Yang et al. [24] involves the computation of m̃(x), which requires inversion of the full-
dimensional smoothing matrix M̂. Thus, in practice, the marginal integration method may break
down in high dimensions where d is large.

We express the updating equations (2.5) in terms of projections onto suitable function spaces.
This representation is particularly useful in our theoretical development. We consider Hj (M̂),
1 ≤ j ≤ d , subspaces of H(M̂) defined by

Hj (M̂) = {f ∈ L2(M̂) :fj (x) = gj (xj ) for a function gj : R → R, fk ≡ 0 for k �= j}.
With this definition, we have

H(M̂) = H1(M̂) + · · · + Hd(M̂).

Also, denoting the projection operator onto a closed subspace H of H(M̂) by �(·|H) and its j th
element by �(·|H)j , we get, for f ∈ L2(M̂),

�(f|Hj (M̂))j = q̂j (xj )
−1

∫
M̂j (x)�f(x)dx−j ,

(2.6)
�(f|Hj (M̂))k = 0, k �= j.

In particular, for f ∈ H(M̂), we have

�(f|Hj (M̂))j = fj (xj ) +
d∑

k=1,�=j

∫
fk(xk)

q̂jk(xj , xk)

q̂j (xj )
dxk. (2.7)

Furthermore, for f ∈ Hk(M̂),

�(f|Hj (M̂))j =
∫

fk(xk)
q̂jk(xj , xk)

q̂j (xj )
dxk, j �= k. (2.8)

For m̂ ∈ H(M̂), let m̂j (x) = (0, . . . ,0, m̂j (xj ),0, . . . ,0)� denote the vector whose j th entry
equals m̂j (xj ), the rest being zero. We can then decompose m̂ as m̂ = m̂1 + · · · + m̂d . From
(2.5) and (2.8), we obtain

m̂j = �

(
m̃ −

d∑
k=1,�=j

m̂k

∣∣∣Hj (M̂)

)
, 1 ≤ j ≤ d. (2.9)
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The backfitting equations (2.5), or their equivalent forms (2.9), give the following backfitting
algorithm.

Backfitting algorithm. With a set of initial estimates m̂
[0]
j , iterate for r = 1,2, . . . the following

process: for 1 ≤ j ≤ d,

m̂
[r]
j (xj ) = m̃j (xj ) −

j−1∑
k=1

∫
m̂

[r]
k (xk)

q̂jk(xj , xk)

q̂j (xj )
dxk

−
d∑

k=j+1

∫
m̂

[r−1]
k (xk)

q̂jk(xj , xk)

q̂j (xj )
dxk

or, equivalently,

m̂[r]
j = �

(
m̃ −

j−1∑
k=1

m̂[r]
k −

d∑
k=j+1

m̂[r−1]
k

∣∣∣Hj (M̂)

)
. (2.10)

3. Theoretical properties of the local constant method

3.1. Convergence of the backfitting algorithm

The theoretical development for the backfitting algorithm (2.10) and for the solution of the back-
fitting equation (2.9) does not fit into the framework of an additive regression function as in
Mammen et al. [17]. Formally, we get their model by taking Zj ≡ 1 for all 1 ≤ j ≤ d in (1.1).
However, for identifiability of mj , we need the assumption that E(ZZ�|X = x) is invertible; see
the assumption (A1) below. Trivially, this assumption does not hold for the additive model with
Zj ≡ 1. For our model, we directly derive the theoretical properties of the algorithm and the
estimators by borrowing some relevant theory on projection operators.

Let �̂j denote the projection operator �(·|Hj (M̂)) and �j the projection operator �(·|
Hj (M)). Define Q̂j = I − �̂j and Qj = I − �j ; these are the projection operators onto
Hj (M̂))⊥ and Hj (M))⊥, respectively. From the backfitting algorithm (2.10), it follows that

m̃ −
j∑

k=1

m̂[r]
k −

d∑
k=j+1

m̂[r−1]
k = Q̂j

(
m̃ −

j−1∑
k=1

m̂[r]
k −

d∑
k=j+1

m̂[r−1]
k

)

(3.1)

= Q̂j

(
m̃ −

j−1∑
k=1

m̂[r]
k −

d∑
k=j

m̂[r−1]
k

)
.

Define Q̂ = Q̂d · · · Q̂1. Repeated application of (3.1) for j = d, d − 1, . . . ,1 gives

m̃ − m̂[r] = Q̂
(
m̃ − m̂[r−1]).
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This establishes that

m̂[r] = Q̂m̂[r−1] + r̂ =
r−1∑
s=0

Q̂s r̂ + Q̂rm̂[0], (3.2)

where r̂ = (I − Q̂)m̃. If we write m̃j (x) = (0, . . . ,0, m̃j (xj ),0, . . . ,0)�, then �̂j m̃ = m̃j so
that

r̂ = (�̂d + Q̂d�̂d−1 + · · · + Q̂d · · · Q̂2�̂1)m̃
(3.3)

= m̃d + Q̂dm̃d−1 + · · · + Q̂d · · · Q̂2m̃1.

Convergence of the backfitting algorithm (2.10) depends on the statistical properties of the
operator Q̂. Consider the event En, where r̂, m̂[0] ∈ H(M) and the norm of the operator Q̂ is
strictly less than one, that is, ‖Q̂‖ < 1. Here and below, for an operator F : H(M) → H(M),

‖F‖ = sup{‖F f‖M : f ∈ H(M),‖f‖M ≤ 1}.
Then, in that event,

∑∞
s=0 Q̂s r̂ is well defined in H(M) and, by (3.2), m̂[r] converges to∑∞

s=0 Q̂s r̂ as r tends to infinity. The limit is a solution of the backfitting equation (2.9) since
the latter is equivalent to m̂ = Q̂m̂ + r̂. Furthermore, the solution is unique since repeated appli-
cation of m̂ = Q̂m̂ + r̂ leads to m̂ = ∑∞

s=0 Q̂s r̂.
Below, we collect the assumptions that make the event En occur with probability tending to

one and state a theorem for the convergence of the backfitting algorithm (2.10).

Assumptions.

(A1) E(ZZ�|X = x) is continuous and its smallest eigenvalue is bounded away from zero on
[0,1]d .

(A2) supx∈[0,1]d E(Z4
j |X = x) < ∞ for all 1 ≤ j ≤ d .

(A3) The joint density p of X is bounded away from zero and is continuous on [0,1]d .
(A4) E|Y |α < ∞ for some α > 5/2.
(A5) K is a bounded and symmetric probability density function supported on [−1,1] and

is Lipschitz continuous. The bandwidths hj converge to zero and nhj/(logn) → ∞ as
n → ∞.

The assumption (A1) implies the concurvity condition (2.1) since it implies that there exists a
constant c > 0 such that for f ∈ H(M),

‖f‖2
M ≥ c

d∑
j=1

∫
fj (xj )

2pj (xj )dxj , (3.4)

where pj denotes the marginal density function of Xj . The inequality (3.4) also tells us that
the convergence of m̂ in H(M) implies the convergence of each component mj in the usual L2
norm.
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Theorem 1. Assume that (A1)–(A5) hold. Then, with probability tending to one, there exists a
solution {m̂j }dj=1 of the backfitting equation (2.5) or (2.9) that is unique. Furthermore, there exist
constants 0 < γ < 1 and 0 < C < ∞ such that, with probability tending to one,

d∑
j=1

∫ [
m̂

[r]
j (xj ) − m̂j (xj )

]2
pj (xj )dxj ≤ Cγ 2r

d∑
j=1

∫ [
m̃j (xj )

2 + m̂
[0]
j (xj )

2]pj (xj )dxj .

3.2. Asymptotic distribution of the backfitting estimators

Next, we present the asymptotic distributions of m̂j . Define

m̃A(x) = M̂(x)−1n−1
n∑

i=1

Zi[Y i − m(Xi ,Zi )]Kh(x,Xi ),

where m(X,Z) is as given in (1.1), and let m̃B = m̃ − m̃A. As in the proof of Theorem 1, we
can prove that, for s = A or B , there exists a unique solution m̂s ∈ H(M̂) of the corresponding
backfitting equation (2.9) where m̃ is replaced by m̃s . By the uniqueness of m̂, it follows that
m̂ = m̂A + m̂B .

Put m̂A = (m̂A
1 , . . . , m̂A

d )� ∈ H(M̂). In the proof of the following theorem, we will show that
m̂A

j are well approximated by m̃A
j ≡ (�̂j m̃A)j . Note that

(�̂j m̃A)j (xj ) = q̂j (xj )
−1n−1

n∑
i=1

Zi
j [Y i − m(Xi ,Zi )]Khj

(xj ,X
i
j ).

Assume that the bandwidths hj are asymptotic to cjn
−1/5 for some constants 0 < cj < ∞.

By the standard techniques of kernel smoothing, it can be proven that, for x in (0,1)d ,
(m̃A

1 (xj ), . . . , m̃
A
d (xd))�, and thus m̂A, is asymptotically normal with mean zero and variance

n−4/5 diag(vj (xj )), where

vj (xj ) = E[Z2
j σ

2(X,Z)|Xj = xj ]
cjpj (xj )[E(Z2

j |Xj = xj )]2

∫
K(u)2 du

and σ 2(X,Z) = var(Y |X,Z). Here, it is worth noting that the vector m̃A, which belongs to
L2(M̂), does not equal (m̃A

1 (xj ), . . . , m̃
A
d (xd))� ∈ H(M̂).

The bias of the estimator m̂ comes from m̂B , which is the projection of m̃B = (m̃B
1 , . . . , m̃B

d )�

onto H(M̂). Define η(x) = (c2
1m

′′
1(x1), . . . , c

2
dm′′

d(xd))� and β0(x) by

β0(x) =
[

d∑
k=1

c2
km

′
k(xk)p(x)−1E(ZZ�|X = x)−1 ∂

∂xk

(
E(ZZk|X = x)p(x)

) + 1

2
η(x)

]

×
∫

u2K(u)du.
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Note that m̃ and β0 do not belong to H(M). In the proof of the next theorem, we will show that
β0(x) is the asymptotic bias of m̃(x) as an estimator of m(x) and that the asymptotic bias of
m̂(x) equals β(x), where β is the projection of β0 onto H(M):

β ≡ �(β0|H(M)) = argmin
f∈H(M)

∫
[β0(x) − f(x)]�M(x)[β0(x) − f(x)]dx.

We write β(x) = (β1(x1), . . . , βd(xd))�.
The following theorem, which demonstrates the asymptotic joint distribution of m̂j , requires

an additional condition on mj .

(A6) E(ZZ�σ 2(X,Z)|X = x) is continuous on [0,1]d .
(A7) The coefficient functions mj are twice continuously differentiable on [0,1], and

E(ZjZk|X = x) is continuously partially differentiable on [0,1]d for all 1 ≤ j, k ≤ d .

Theorem 2. Assume that (A1)–(A7) hold and that the bandwidths hj are asymptotic to cjn
−1/5

for some constants 0 < cj < ∞. Then, for any x ∈ (0,1)d , n2/5[m̂j (xj ) − mj(xj )] for 1 ≤ j ≤ d

are jointly asymptotically normal with mean (β1(x1), . . . , βd(xd))� and variance diag(vj (xj )).

4. The method with local polynomial fitting

The method we studied in the previous two sections is based on local constant fitting, where we
approximate fj (X

i
j ) by fj (xj ) when Xi

j are near xj , in the least-squares criterion
∑n

i=1[Y i −∑d
j=1 fj (X

i
j )Z

i
j ]2. The method may be extended to local polynomial fitting, where we approx-

imate fj (X
i
j ) by fj (xj ) + (Xi

j − xj )f
(1)
j (xj ) + · · · + (Xi

j − xj )
πf

(π)
j (xj )/π ! for Xi

j near xj .

Here and below, g(k) denotes the kth derivative of a function g : R → R. Define

wj (xj , uj ) =
(

1,

(
uj − xj

hj

)
, . . . ,

(
uj − xj

hj

)π)�
.

We consider the following kernel-weighted least-squares criterion to estimate mj :

L(f) =
∫

n−1
n∑

i=1

[
Y i −

d∑
j=1

Zi
j wj (xj ,X

i
j )

�fj (xj )

]2

Kh(x,Xi )dx, (4.1)

where f� = (f�1 , . . . , f�d ) and fj (xj ) = (fj,0(xj ), . . . , fj,π (xj ))
� for functions fj,k : R → R. Let

m̂ be the minimizer of L(f). The proposed estimators of mj are then m̂j,0 in m̂, and m̂j,k in m̂
are estimators of hkm

(k)
j /k!. We thus define the proposed estimators of m

(k)
j by

m̂
(k)
j (xj ) = k!h−k

j m̂j,k(xj ), 0 ≤ k ≤ π, 1 ≤ j ≤ d.

The minimization of L(f) at (4.1) is done over f with L(f) < ∞. Define

v(u, z;x)� = (w1(x1, u1)
�z1, . . . ,wd(xd, ud)�zd).
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The expression in the bracket at (4.1) can then be written as Y i − v(Xi ,Zi;x)�f(x). We now
redefine M̂ used in the previous two sections as

M̂(x) = n−1
n∑

i=1

v(Xi ,Zi;x)v(Xi ,Zi;x)�Kh(x,Xi ). (4.2)

L(f) < ∞ is then equivalent to
∫

f(x)�M̂(x)f(x)dx < ∞ and minimizing L(f) is equivalent to
minimizing

∫ [m̃(x) − f(x)]�M̂(x)[m̃(x) − f(x)]dx, where m̃(x) is redefined as

m̃(x) = M̂(x)−1n−1
n∑

i=1

v(Xi ,Zi;x)Y iKh(x,Xi ). (4.3)

The function space that arises in this general problem is the class of (π + 1)d-vectors of func-
tions f = (fj,k) such that

∫
f(x)�M̂(x)f(x)dx < ∞ and fj,k(x) = gj,k(xj ) for some functions

gj,k : R → R, 1 ≤ j ≤ d and 0 ≤ k ≤ π . We continue to denote the function space by H(M̂), and
its norm by ‖ · ‖M̂. Thus,

m̂ = argmin
f∈H(M̂)

‖m̃ − f‖2
M̂

. (4.4)

By considering the Gâteaux or Fréchet derivatives of the objective function L(f) with respect
to f, the solution m̂ of the minimization problem (4.4) satisfies the following system of integral
equations:

0 =
∫

M̂j (x)�[m̃(x) − m̂(x)]dx−j , 1 ≤ j ≤ d, (4.5)

where 0 is the (π + 1)-dimensional zero vector and M̂j are (π + 1)d × (π + 1) matrices defined
by M̂ = M̂� = (M̂1, . . . ,M̂d). We write m̂� = (m̂�

1 , . . . , m̂�
d ). Define

m̃j (xj ) = �̂j (xj )
−1n−1

n∑
i=1

wj (xj ,X
i
j )Khj

(xj ,X
i
j )Z

i
jY

i,

�̂j (xj ) = n−1
n∑

i=1

wj (xj ,X
i
j )wj (xj ,X

i
j )

�Khj
(xj ,X

i
j )(Z

i
j )

2,

�̂jk(xj , xk) = n−1
n∑

i=1

wj (xj ,X
i
j )wk(xk,X

i
k)

�Khj
(xj ,X

i
j )Khk

(xk,X
i
k)Z

i
jZ

i
k

for k �= j . We then find that the system of (π + 1)-dimensional equations (4.5) is equivalent to
the following backfitting equations which update the estimators of mj and their derivatives up to
the π th order:

m̂j (xj ) = m̃j (xj ) −
d∑

k=1,�=j

∫
�̂j (xj )

−1�̂jk(xj , xk)m̂k(xk)dxk, 1 ≤ j ≤ d. (4.6)
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We want to emphasize again that the method with local polynomial fitting does not require
computation of the full-dimensional estimator m̃(x) at (4.3). It only requires one- and two-
dimensional smoothing to compute m̃j , �̂j and �̂jk , and involves inversion of �̂j only. Al-
though �̂j are (π +1)× (π +1) matrices, they are computed by means of one-dimensional local
smoothing so that they do not suffer from sparsity of data in high dimensions. The marginal inte-
gration method, in contrast, requires the computation of m̃(x) and thus, in practice, the marginal
integration method may break down in the case where d is large.

Backfitting algorithm. With a set of initial estimates m̂[0]
j = (m̂j,0, . . . , m̂j,π )�, we iterate for

r = 1,2, . . . the following process: for 1 ≤ j ≤ d ,

m̂[r]
j (xj ) = m̃j (xj ) −

j−1∑
k=1

∫
�̂j (xj )

−1�̂jk(xj , xk)m̂
[r]
k (xk)dxk

(4.7)

−
d∑

k=j+1

∫
�̂j (xj )

−1�̂jk(xj , xk)m̂
[r−1]
k (xk)dxk.

In the following two theorems, we show that the backfitting algorithm (4.7) converges to
m̂j ,1 ≤ j ≤ d, at a geometric rate and that m̂j ,1 ≤ j ≤ d, are jointly asymptotically normal.
We give the results for the case where π , the order of local polynomial fitting, is odd. It is
widely accepted that fitting odd orders of local polynomial is better than even orders. It also
gives simpler formulas in the asymptotic expansion and requires a weaker smoothness condition
on E(ZZ�|X = x). In fact, instead of (A6) in Section 3, we need the following assumption:

(A7′) The coefficient functions mj are (π +1)-times continuously differentiable on [0,1] and
E(ZjZk|X = x) is continuous on [0,1]d for all 1 ≤ j, k ≤ d .

To state the first theorem, we need to introduce the limit of the matrix M̂(x). Note that M̂(x)

consists of (π + 1) × (π + 1) blocks

M̂j,k(x) ≡ n−1
n∑

i=1

wj (xj ,X
i
j )wk(xk,X

i
k)

�Zi
jZ

i
kKh(x,Xi ), 1 ≤ j, k ≤ d.

For j �= k, the matrices M̂j,k(x) are approximated by

E[wj (xj ,Xj )wk(xk,Xk)
�Zi

jZ
i
kKh(x,X)] � μμ�E(ZjZk|X = x)p(x),

where μ = (μ�(K))� and μ�(K) = ∫
u�K(u)du. On the other hand, for j = k,

M̂j,j (x) � N1E(Z2
j |X = x)p(x),

where N1 is a (π +1)× (π +1) matrix defined by N1 = (μ�+�′(K)). Here, we adopt the conven-
tion that the indices of the matrix entries run from (0,0) to (π,π). Thus, M̂(x) is approximated
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by

M(x) ≡ p(x)
[
E(ZZ�|X = x) ⊗ (μμ�) + diag

(
E(Z2

j |X = x)
) ⊗ (N1 − μμ�)

]
, (4.8)

where ⊗ denotes the Kronecker product. The matrix M(x) is positive definite under the assump-
tion (A1). To see this, note first that by (A1), the matrix E(ZZ�|X = x) ⊗ (μμ�) is nonnegative
definite. Also, E(Z2

j |X = x) are bounded away from zero on [0,1]d for all 1 ≤ j ≤ d . Further-

more, N1 − μμ� is the variance–covariance matrix of (1,U, . . . ,Uπ)�, where U is a random
variable with density K . Since K is supported on a uncountable set, it follows that N1 − μμ� is
positive definite. The foregoing arguments show that the smallest eigenvalue of M(x) is bounded
away from zero on [0,1]d . Let H(M) be defined as H(M̂) with M̂ being replaced by M and
define its norm by ‖f‖2

M = ∫
f(x)�M(x)f(x)dx.

Theorem 3. Assume that (A1)–(A5) hold. Then, with probability tending to one, there exists
a solution {m̂j }dj=1 of the backfitting equation (4.6) that is unique. Furthermore, there exist
constants 0 < γ < 1 and 0 < C < ∞ such that, with probability tending to one,

d∑
j=1

∫ ∣∣m̂[r]
j (xj ) − m̂j (xj )

∣∣2
pj (xj )dxj

≤ Cγ 2r
d∑

j=1

∫ [|m̃j (xj )|2 + ∣∣m̂[0]
j (xj )

∣∣2]
pj (xj )dxj .

In the next theorem, we give the asymptotic distribution of the proposed estimators. We define
m(x)� = (m1(x1)

�, . . . ,md(xd)�), where

mj (xj ) = (
mj(xj ), hjm

(1)
j (xj )/1!, . . . , hπ

j m
(π)
j (xj )/π !)�

. (4.9)

For the bandwidths hj , we assume that hj is asymptotic to cjn
−1/(2π+3) for some constant

0 < cj < ∞. Define γ = (μπ+1(K), . . . ,μπ+1+π (K))� and a (π + 1) × (π + 1) matrix by

N2 = (μ�+�′(K2)). For 1 ≤ j ≤ d , define βj (xj ) = cπ+1
j N−1

1 γm
(π+1)
j (xj )/(π + 1)! and

Vj (xj ) = E[Z2
j σ

2(X,Z)|Xj = xj ]
cjpj (xj )[E(Z2

j |Xj = xj )]2
N−1

1 N2N−1
1 .

Theorem 4. Assume that (A1)–(A6) and (A7′) hold, and that the bandwidths hj are asymptotic
to cjn

−1/(2π+3) for some constants 0 < cj < ∞. Then, for any x ∈ (0,1)d , n(π+1)/(2π+3) ×
[m̂j (xj ) − mj (xj )], 1 ≤ j ≤ d , are asymptotically independent and

n(π+1)/(2π+3)[m̂j (xj ) − mj (xj )] d→ N(βj (xj ),Vj (xj )), 1 ≤ j ≤ d.

Theorem 4 not only gives the asymptotic distributions of the estimators of the coefficient
functions mj , but also those of their derivatives. Recall the definition of mj at (4.9) and
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that m̂j (xj ) = (m̂j (xj ), hj m̂
(1)
j (xj )/1!, . . . , hπ

j m̂
(π)
j (xj )/π !)�. Thus, the theorem implies that

n(π+1−k)/(2π+3)[m̂(k)
j (xj ) − m

(k)
j (xj )] is asymptotically normal with mean k!cπ+1−k

j (N−1
1 γ )k ×

m
(π+1)
j (xj )/(π + 1)! and variance

(k!)2(N−1
1 N2N−1

1 )kk

E[Z2
j σ

2(X,Z)|Xj = xj ]
c2k+1
j pj (xj )[E(Z2

j |Xj = xj )]2
,

where, for a vector a and a matrix B, ak denotes the kth entry of a and Bkk denotes the kth
diagonal entry of B. In the case of local linear fitting (π = 1), we have

(N−1
1 N2N−1

1 )00 =
∫

K2(u)du, (N−1
1 γ )0 =

∫
u2K(u)du.

Another implication of Theorem 4 is that the estimators m̂
(k)
j (xj ) for 0 ≤ k ≤ π have the

oracle properties. Suppose that we know all other coefficient functions except mj . In this case,
we would estimate mj and its derivatives up to order π by minimizing

n−1
n∑

i=1

[
Y i −

d∑
k=1,�=j

mk(X
i
k)Z

i
k − Zi

j wj (xj ,X
i
j )

�fj (xj )

]2

Khj
(xj ,X

i
j )

over fj . It can be shown that the resulting estimators of m
(k)
j (xj ) for 0 ≤ k ≤ π have the same

asymptotic distributions as m̂
(k)
j (xj ) for 0 ≤ k ≤ π .

The asymptotically optimal choices of the bandwidths hj may be derived from Theorem 4.
Let cπ+1

j bj (xj ) and c−1
j τj (xj ) denote the asymptotic mean and the asymptotic variance of

n(π+1)/(2π+3)[m̂j (xj ) − mj(xj )], respectively. That is,

bj (xj ) = (N−1
1 γ )0m

(π+1)
j (xj )/(π + 1)!,

τj (xj ) = E[Z2
j σ

2(X,Z)|Xj = xj ]
pj (xj )[E(Z2

j |Xj = xj )]2
(N−1

1 N2N−1
1 )00.

The optimal choice of cj which minimizes the asymptotic mean integrated squared error is then
given by

c
opt
j =

[ ∫
τj (xj )pj (xj )dxj

2(π + 1)
∫

bj (xj )2pj (xj )dxj

]1/(2π+3)

. (4.10)

This formula for the optimal bandwidth involves unknown quantities. We may get a rule-of-
thumb bandwidth selector by fitting polynomial regression models, as in Yang et al. [24], to
estimate the unknown quantities in the formula for c

opt
j ; see Section 6, where we employ this ap-

proach to analyze Boston Housing Data. Alternatively, we may adopt the approach of Mammen
and Park [18] to obtain more sophisticated bandwidth selectors.
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5. Numerical properties

We investigated the finite-sample properties of the proposed estimators in comparison with the
marginal integration method studied in Yang et al. [24]. We considered the case where local
linear smoothing (π = 1) is employed. The simulation study was done in two settings, one in a
low-dimensional case (d = 3) and the other in a high-dimensional case (d = 10).

In the first case, we generated the data (Xi ,Zi , Y i) from the model: Y = m1(X1)Z1 +
m2(X2)Z2 + m3(X3)Z3 + σ(X,Z)ε, where Z1 ≡ 1 and

σ(x, z) = 1

2
+ z2

2 + z2
3

1 + z2
2 + z2

3

exp

(
−2 + x1 + x2

2

)
. (5.1)

The vector X = (X1,X2,X3) was generated from the uniform distribution over the unit cube
(0,1)3, and the covariate vector (Z2,Z3) was generated from the bivariate normal with mean

(0,0) and covariance matrix
(

1
0.5

0.5
1

)
. The vectors X and Z were independent, and the error

term ε was generated from the standard normal distribution, independently of (X,Z). This model
was also considered in Yang et al. [24]. We took m1(x) = 1 + e2x−1, m2(x) = cos(2πx) and
m3(x) = x2.

In the second case, where d = 10, we took the same variance function σ 2(x, z) as in (5.1), for
the sake of simplicity. Thus, σ 2(x, z) did not depend on (xj , zj ) for 4 ≤ j ≤ 10. The extra covari-
ates Xj for 4 ≤ j ≤ 10 were generated from the uniform distribution over (0,1)7 independently
of (X1,X2,X3), and Zj for 4 ≤ j ≤ 10 were generated from the multivariate normal distribution
with mean 0 and covariance matrix I, the identity matrix, independently of (Z2,Z3) and of X.
We chose mj(x) = x2 for 4 ≤ j ≤ 10.

We used the Epanechnikov kernel K(u) = (3/4)(1 − u2)I [−1,1](u) and the optimal band-
widths hsbf

j = c
opt
j n−1/5, where c

opt
j are given at (4.10). This was for the proposed estimator. For

the marginal integration method, the estimator m̂mi
j of the j th coefficient function mj that we

investigated was

m̂mi
j (xj ) = n−1

n∑
i=1

θ̂j (X
i
1, . . . ,X

i
j−1, xj ,X

i
j+1, . . . ,X

n
j ),

where θ̂j (x) was the [(j − 1)(π + 1) + 1]st entry of m̃(x) defined at (4.3), but Khk
(for k �= j )

in the definition of m̃(x) was replaced by Lbk
. Note that, for the marginal integration method, in

the estimation of the j th coefficient function, we may choose another kernel L and need to use
other bandwidths bk , different from hj , for the directions of xk(k �= j) not of interest. We took
L = K and bk = c(logn)−1hmi

j for all directions k �= j , where hmi
j is the optimal bandwidth for

the marginal integration method, obtained similarly as the one for the proposed method at (4.10),
and c was a constant multiplier for which we tried four values, c = 1,3,5,10.
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We used m̃j defined in Section 4 as the initial estimates m̂[0]
j for the proposed method. The

backfitting algorithm converged very fast. We took√√√√√ d∑
j=1

∫ [
m̂

[r−1]
j (xj ) − m̂

[r]
j (xj )

]2 dxj ≤ 10−11

as a criterion for the convergence. With this criterion, the backfitting algorithm converged within
11 iterations in all cases. The average number of iterations was 6.5 from the 500 replications. In
a preliminary numerical study with the marginal integration method, we found that inverting the
matrix M̂(x) often caused numerical instability of the estimates, even for the low-dimensional
case where d = 3. This reflects the curse of dimensionality that the marginal integration suffers
from. Thus, we actually computed a ‘ridged’ version of m̂mi

j by adding n−2 to the diagonal entries

of the matrix M̂(x). The same modification was also made in the numerical study of Yang et al.
[24].

Table 1 shows the results for the case d = 3, based on 500 data sets with sizes n = 100 and
400. The table provides the mean integrated squared errors (MISE) of the estimators of each

Table 1. The mean integrated squared errors (MISE), the integrated squared biases (ISB) and the integrated
variances (IV) of the marginal integration estimators (MI) and the proposed estimators (SBF) when d = 3
(the constant c for MI is the multiplier c in the formula bk = c(logn)−1hmi

j
, where bk is the secondary

bandwidth applied to the direction of xk , k �= j , in the estimation of mj )

Sample
size

Coefficient
function

MI SBF

c = 1 c = 3 c = 5 c = 10

n = 100 m1 MISE 0.1190 0.1140 0.1158 0.1151 0.1496
ISB 0.0174 0.0150 0.0147 0.0145 0.0019
IV 0.1016 0.0990 0.1011 0.1006 0.1476

m2 MISE 0.6354 0.5738 0.5795 0.5826 0.3613
ISB 0.4089 0.3502 0.3465 0.3461 0.0484
IV 0.2265 0.2236 0.2330 0.2364 0.3129

m3 MISE 0.1873 0.2218 0.2255 0.2259 0.2512
ISB 0.0057 0.0056 0.0056 0.0056 0.0017
IV 0.1816 0.2163 0.2200 0.2203 0.2495

n = 400 m1 MISE 0.0347 0.0332 0.0365 0.0363 0.0415
ISB 0.0092 0.0087 0.0087 0.0086 0.0005
IV 0.0255 0.0245 0.0279 0.0277 0.0410

m2 MISE 0.2648 0.2815 0.2872 0.2894 0.1244
ISB 0.2126 0.2227 0.2248 0.2257 0.0199
IV 0.0521 0.0588 0.0624 0.0637 0.1045

m3 MISE 0.0478 0.0576 0.0610 0.0620 0.0810
ISB 0.0050 0.0046 0.0046 0.0047 0.0008
IV 0.0428 0.0529 0.0564 0.0573 0.0802
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coefficient function mj , defined by

MISEj (m̄j ) =
∫

E[m̄j (xj ) − mj(xj )]2 dxj

=
∫

[Em̄j (xj ) − mj(xj )]2 dxj +
∫

[m̄j (xj ) − Em̄j (xj )]2 dxj

let= ISBj (m̄j ) + IVj (m̄j )

for an estimator m̄j . It also gives the integrated squared bias (ISB) and the integrated vari-
ance (IV). The results suggest that the proposed method gives better performance in terms of
MISEtot = ∑3

j=1 MISEj . When n = 100, the sum of MISEj of m̂j equals 0.7621, while those of
the marginal integration method are 0.9417,0.9096,0.9208,0.9236 for c = 1,3,5,10, respec-
tively. In the case where n = 400, MISEtot = 0.2469 for the proposed method, while it equals
0.3473,0.3723,0.3847,0.3877 for the marginal integration method.

According to Table 1, the performance of the marginal integration method appears not to be
sensitive to the choice of the secondary bandwidth bk . However, this is true only when we use
the optimal bandwidth hmi

j . In fact, we found that the performance depended crucially on the
choice bk when other choices of hj were used. As an example, we report in Table 2 the results
when one uses hj = hmi

j /3 instead of hj = hmi
j . In the latter case, the sum of MISEj ranges from

0.8001 to 2.7453 when n = 100, and from 0.2291 to 2.1080 when n = 400, for those four values
of c. One interesting thing to note is that the ISB of the marginal integration increases drastically
as c decreases. The main lesson here is that the choice of the secondary bandwidths bk for the
marginal integration method is as important as the choice of hj .

The finite-sample results in Table 1 show some discrepancy with the asymptotics for the func-
tions m1 and m3. Asymptotically, if the optimal bandwidth is used, then the IV is four times as
large as the ISB. In general, finite-sample properties do not always match with asymptotics. One
possible reason for the discrepancy in this particular setting is that the coefficient functions m1
and m3 are far simpler than the complexity brought by the noise level, so the proposed method
easily catches the structure with less bias. This seems not to be the case with the marginal in-
tegration, however. For the marginal integration, the secondary bandwidths bk interact with the
primary bandwidth hj for the bias and variance performance, as discussed in the previous para-
graph.

Table 3 shows the results for the case d = 10. Here, for the marginal integration, we report
only the results when c = 5 which gave the best performance. In fact, the marginal integra-
tion got worse very quickly as c decreased from c = 5. For example, we found the total MISE,∑10

j=1 MISEj , was 3.4996 when c = 3 and was 6.1834 when c = 1, in the case where n = 400.
Note that the value equals 0.6440 when c = 5 and n = 400, as reported in Table 3. For the
proposed method, it equals 0.5136.

6. Analysis of Boston Housing Data

The data consist of fourteen variables, among which one is response and the other thirteen are
predictors. There are 506 observations from 506 tracts in the Boston area; see Harrison and Ru-
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Table 2. The mean integrated squared errors (MISE), the integrated squared biases (ISB) and the integrated
variances (IV) of MI when hj = hmi

j
/3 was used (the constant c is the multiplier c in the formula bk =

c(logn)−1hmi
j

, where bk is the secondary bandwidth applied to the direction of xk , k �= j , in the estimation
of mj )

Sample
size

Coefficient
function

MI

c = 1 c = 3 c = 5 c = 10

n = 100 m1 MISE 1.5109 0.2664 0.1822 0.1737
ISB 1.4327 0.0096 0.0011 0.0012
IV 0.0782 0.2568 0.1812 0.1725

m2 MISE 0.6611 0.4578 0.3459 0.3576
ISB 0.3095 0.0340 0.0338 0.0313
IV 0.3516 0.4238 0.3121 0.3263

m3 MISE 0.5733 0.2743 0.2720 0.3012
ISB 0.0217 0.0013 0.0014 0.0015
IV 0.5516 0.2730 0.2706 0.2997

n = 400 m1 MISE 1.4539 0.0891 0.0465 0.0465
ISB 1.4177 0.0032 0.0004 0.0003
IV 0.0362 0.0859 0.0461 0.0462

m2 MISE 0.3554 0.1596 0.1109 0.1129
ISB 0.2359 0.0139 0.0154 0.0160
IV 0.1195 0.1457 0.0955 0.0969

m3 MISE 0.2987 0.0702 0.0717 0.0856
ISB 0.0188 0.0005 0.0006 0.0007
IV 0.2799 0.0697 0.0711 0.0849

binfeld [10] for details about the data set. The data set has been analyzed by Fan and Huang [7]
and Wang and Yang [22], among others. The former fitted the data using a partially linear func-
tional coefficient model where all coefficient functions in the nonparametric part are functions of
a single variable. The latter considered an additive regression model. Here, we apply the varying
coefficient model (1.1) to fit the data using the proposed method. We take the variable MEDV
(median value of owner-occupied homes in $1000’s) as the response variable Y . We consider
five variables as covariates Xj or Zj . They are CRIM (per capita crime rate by town), RM (av-
erage number of rooms per dwelling), TAX (full-value property tax rate per $10 000), PTRATIO
(pupil–teacher ratio by town) and LSTAT (percentage of lower income status of the population).
As in Wang and Yang [22], we take logarithmic transformation for TAX and LSTAT to remove
sparse areas in the domains of these variables.

We want to find a varying coefficient model that fits the data set well. Since LSTAT can be
a good explanatory variable that determines the overall level of the housing price, we consider
models of the form

MEDV = m1(log(LSTAT)) + m2(X2)Z2 + m3(X3)Z3 + (noise). (6.1)



Varying coefficient models 195

Table 3. The mean integrated squared errors (MISE), the integrated squared biases (ISB) and the integrated
variances (IV) of the marginal integration estimators (MI) and the proposed estimators (SBF) when d = 10

Sample
size

Coefficient
function

MI SBF

MISE ISB IV MISE ISB IV

n = 100 m1 0.2533 0.1242 0.1291 0.1904 0.0046 0.1858
m2 0.7284 0.4353 0.2931 0.4357 0.0605 0.3752
m3 0.2622 0.0059 0.2563 0.3042 0.0024 0.3018
m4 0.1303 0.0054 0.1249 0.1404 0.0022 0.1382
m5 0.1351 0.0060 0.1291 0.1489 0.0011 0.1478
m6 0.1336 0.0055 0.1281 0.1509 0.0019 0.1490
m7 0.1345 0.0054 0.1291 0.1677 0.0019 0.1658
m8 0.1228 0.0053 0.1175 0.1482 0.0019 0.1463
m9 0.1428 0.0071 0.1357 0.1707 0.0009 0.1698
m10 0.1270 0.0059 0.1211 0.1528 0.0014 0.1514

n = 400 m1 0.0505 0.0115 0.0390 0.0457 0.0008 0.0449
m2 0.2999 0.2223 0.0776 0.1264 0.0196 0.1068
m3 0.0642 0.0054 0.0588 0.0893 0.0004 0.0889
m4 0.0324 0.0048 0.0276 0.0379 0.0005 0.0374
m5 0.0358 0.0054 0.0304 0.0355 0.0010 0.0345
m6 0.0369 0.0040 0.0329 0.0331 0.0004 0.0327
m7 0.0300 0.0044 0.0256 0.0370 0.0009 0.0361
m8 0.0319 0.0043 0.0276 0.0368 0.0006 0.0362
m9 0.0321 0.0052 0.0269 0.0364 0.0009 0.0355
m10 0.0303 0.0046 0.0257 0.0355 0.0006 0.0349

A general question is which variables should be the model covariates Zj and which should take
the role of Xj . This may be obvious for some data sets, but it is not so clear for the Boston
Housing Data. Thus, we fitted all possible models and chose the one that best fitted the data.
In general, we do not suggest employing the all-possible-models approach since it can get out
of control quickly as the number of variables increases, and it induces a certain arbitrariness in
the choice. For the Boston Housing Data, there are only twelve varying coefficient models of
the form (6.1), listed in Table 4, and all models are interpretable. If the number of variables is
large, then we suggest first choosing a set of model covariates Zj among all covariates by fitting
parametric linear models and using a variable selection technique, and then picking one as Xj

for each Zj from the remaining variables based on a criterion such as RSPE (which is defined
later).

We employed local linear smoothing in implementing the proposed method and used the
Epanechnikov kernel. For the bandwidths hj , we chose to use a rule-of-thumb method that we
describe below. Note that the unknowns in the expression of the optimal bandwidth at (4.10) are
Aj = ∫

m′′
j (xj )

2pj (xj )dxj , Bj (xj ) = E[Z2
j σ

2(X,Z)|Xj = xj ] and Cj(xj ) = E(Z2
j |Xj = xj ).

The second derivative of mj in Aj can be estimated by fitting a cubic polynomial regression
model. This gives Âj = n−1 ∑n

i=1(2α̂j,2 + 6α̂j,3X
i
j )

2, where α̂j,k are the least-squares estima-
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Table 4. Relative squared prediction errors obtained from fitting 12 varying coefficient models with the
Boston Housing Data

Model
no.

Covariates Relative squared
prediction error

X2 Z2 X3 Z3

1 CRIM RM TAX PTRATIO 0.3514
2 CRIM RM PTRATIO TAX N/A
3 CRIM TAX RM PTRATIO 0.2700
4 CRIM TAX PTRATIO RM 0.2688
5 CRIM PTRATIO RM TAX 0.4390
6 CRIM PTRATIO TAX RM 0.4757
7 RM CRIM TAX PTRATIO 0.3010
8 RM CRIM PTRATIO TAX 0.2412
9 RM TAX PTRATIO CRIM N/A

10 RM PTRATIO TAX CRIM N/A
11 TAX CRIM PTRATIO RM N/A
12 TAX RM PTRATIO CRIM N/A

tors that minimize

n∑
i=1

[
Y i −

d∑
j=1

(αj,0 + αj,1X
i
j + αj,2X

i2
j + αj,3X

i3
j )Zi

j

]2

.

Here, we take Zi
1 ≡ 1. The conditional means, Bj and Cj , can be estimated by fitting linear

regression models. Since E[Z2
j σ

2(X,Z)|Xj = xj ] = E[Z2
j (Y −m(X,Z))2|Xj = xj ], the condi-

tional mean Bj is estimated by B̂j (xj ) = β̂j,0 + β̂j,1xj , where β̂j,0 and β̂j,1 minimize

n∑
i=1

[
Zi2

j

(
Y i −

d∑
k=1

(α̂k,0 + α̂k,1X
i
k + α̂k,2X

i2
k + α̂k,3X

i3
k )Zi

k

)2

− βj,0 − βj,1X
i
j

]2

.

Similarly, Cj for j = 2,3 are estimated by Ĉj (xj ) = γ̂j,0 + γ̂j,1xj , where γ̂j,0 and γ̂j,1 minimize∑n
i=1(Z

i2
j − γj,0 − γj,1X

i
j )

2. Note that C1 ≡ 1.
We split the data set into two parts, one for estimation of the models and the other for as-

sessment of the estimated models. We selected 100 tracts for the model assessment out of 506
distributed in 92 towns. This was done in a manner that would lead to more selections in a town
with a larger number of tracts. We fitted the twelve varying coefficient models using the data for
the remaining 406 tracts and made out-of-sample predictions with the data for the selected 100
tracts. We calculated their relative squared prediction errors,

RSPE =
∑100

i=1[MEDVi −m̂1(log(LSTATi )) − m̂2(X
i
2)Z

i
2 − m̂3(X

i
3)Z

i
3]2∑100

i=1[MEDVi −MEDV]2
,
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where m̂j for j = 1,2,3 were constructed by using the data for the 406 remaining tracts.
Table 4 reports the results. In the table, we do not provide the values of RSPE for the models

numbered 2, 9, 10, 11 and 12. In the preliminary fitting of these models taking Xj and Zj as
specified, we found that they produced extremely large residuals for some of the observations that
corresponded to PTRATIO = 20.2 or TAX = 666. This resulted in a negative value of B̂j (xj ) for
a certain range of xj and, as a consequence, produced a negative estimate of

∫
τj (xj )pj (xj )dxj

in the bandwidth formula (4.10). Since these five models do not explain MEDV well as a function
of the covariates and would give a large value of RSPE when fitted, we excluded them from
further analysis.

According to the table, the model with the smallest RSPE is

MEDV = m1(log(LSTAT)) + m2(RM)CRIM + m3(PTRATIO) log(TAX) + (noise). (6.2)

Figure 1 depicts the estimated coefficient functions m̂1, m̂2 and m̂3. It also plots the actual values
of MEDV and their predicted values according to the estimated model from (6.2). The prediction
was made for those 100 tracts that were not used in estimating the model. The estimated curve
m̂1 indicates that a high percentage of lower income status decreases the prices of homes. The
estimated curve m̂2 suggests that for towns with higher or lower average numbers of rooms per
dwelling, the crime rate is less influential on the prices of homes. Finally, from the estimated
curve m̂3, we see that if the pupil–teacher ratio gets higher, then the prices of homes increase
less rapidly as the property tax rate increases. The curve m̂3 looks somewhat rigid. The reason
for this is that the variable PTRATIO does not really take values on a continuous scale since it
is the pupil–teacher ratio by town, so that all tracts in a town have the same value of PTRATIO.
Furthermore, some towns share the same value with others. For example, the 132 tracts (out of
506) associated with the 15 towns in the city of Boston have the same value, 20.2.

Appendix: Technical details

A.1. Proof of Theorem 1

We prove that there exists a constant 0 < γ < 1 such that ‖Q̂‖ < γ with probability tending to
one. Let Hj (M) be defined as Hj (M̂) with M̂ being replaced by M. Let pj and pjk denote the
marginal densities of Xj and (Xj ,Xk), respectively. Define

qj (xj ) = E(Z2
j |Xj = xj )pj (xj ), (A.1)

qjk(xj , xk) = E(ZjZk|Xj = xj ,Xk = xk)pjk(xj , xk), k �= j. (A.2)

For fj ∈ Hj (M),

‖fj‖2
M =

∫
fj (x)�M(x)fj (x)dx =

∫
fj (xj )

2qj (xj )dxj . (A.3)

The equality (A.3) follows from the identity∫
E(Z2

j |X = x)p(x)dx−j = E(Z2
j |Xj = xj )pj (xj ).
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Figure 1. For the final model (6.2), the upper-left, upper-right and lower-left panels depict the estimated
coefficient functions m̂1, m̂2 and m̂3, respectively, and the lower-right panel exhibits plots of the observed
values Y i versus their predicted values Ŷ i .

From (A.3) and Hölder’s inequality, it follows that, for f ∈ H(M),

‖(Q̂j − Qj)f‖M

=
[∫ ( ∑

k=1,�=j

∫ [
q̂jk(xj , xk)

q̂j (xj )
− qjk(xj , xk)

qj (xj )

]
fk(xk)dxk

)2

qj (xj )dxj

]1/2

≤
∑

k=1,�=j

[∫ (
q̂jk(xj , xk)

q̂j (xj )qk(xk)
− qjk(xj , xk)

qj (xj )qk(xk)

)2

qj (xj )qk(xk)dxj dxk

]1/2
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×
[∫

fk(xk)
2qk(xk)dxk

]1/2

≤ op(1)
∑

k=1,�=j

‖fk‖M.

Since ‖Qj‖ = 1, this proves that ‖Q̂j‖ ≤ C1 with probability tending to one for some constant
0 < C1 < ∞. Define Q = Qd · · ·Q1. Then,

‖Q̂ − Q‖ =
∥∥∥∥∥

d−1∑
k=0

Qd · · ·Qd−k+1(Q̂d−k − Qd−k)Q̂d−k−1 · · · Q̂1

∥∥∥∥∥ = op(1),

where we interpret both Qd+1 and Q̂0 as the zero operator. From (A1), (A3) and (A.3), the pro-
jection operators �j : Hk(M) → Hj (M) for all 1 ≤ j �= k ≤ d are Hilbert–Schmidt. By applying
parts B, C and D of Proposition A.4.2 of Bickel, Klaassen, Ritov and Wellner [1], we find that
‖Q‖ < 1. This shows that there exists a constant 0 < γ < 1 such that ‖Q̂‖ < γ with probability
tending to one.

To complete the proof of Theorem 1, it follows from (3.2) that with probability tending to one,

∥∥m̂[r] − m̂
∥∥

M =
∥∥∥∥∥

∞∑
s=r

Q̂s r̂ + Q̂rm̂[0]
∥∥∥∥∥

M

≤ γ r

(
‖r̂‖M

1

1 − γ
+ ∥∥m̂[0]∥∥

M

)
.

By (3.3) and the fact that ‖Q̂j‖ ≤ C1 with probability tending to one, there exists a constant
0 < C2 < ∞ such that with probability tending to one,

‖r̂‖M ≤ C2

d∑
j=1

[∫
m̃j (xj )

2qj (xj )dxj

]1/2

.

This completes the proof of Theorem 1.

A.2. Proof of Theorem 2

We will prove that for each x ∈ (0,1)d ,

m̂A
j (xj ) = m̃A

j (xj ) + op(n−2/5) for 1 ≤ j ≤ d, (A.4)

m̂B(x) = m(x) + β(x)n−2/5 + op(n−2/5). (A.5)

Proof of (A.4). Note that m̂A = ∑∞
s=0 Q̂s r̂A, where

r̂A = (I − Q̂)m̃A = m̃A
d + Q̂dm̃A

d−1 + · · · + Q̂d · · · Q̂2m̃A
1 (A.6)

and m̃A
j (x) = (0, . . . ,0, m̃A

j (xj ),0, . . . ,0)�. From formulas (2.6)–(2.8), it follows that

Q̂d · · · Q̂j+1m̃A
j (x) = (0, . . . ,0, m̃A

j (xj ), g̃j+1(xj+1), . . . , g̃d (xd))�, 2 ≤ j ≤ d,
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for some random functions g̃k : R → R, j + 1 ≤ k ≤ d , where the first j − 1 entries of the vector
on the right-hand side of the equation are zero. This implies that

r̂A(x) = (m̃A
1 (x1), ĝ2(x2), . . . , ĝd (xd))�, (A.7)

where ĝk for 2 ≤ k ≤ d are random functions from R to R. If we prove that

sup
x∈[0,1]d

∣∣∣∣∣
∞∑

s=1

Q̂s r̂A(x)

∣∣∣∣∣ = op(n−2/5), (A.8)

then (A.7) implies (A.4) for the case j = 1. By exchanging the entries of m̃A, we can see that
(A.4) also holds for j ≥ 2.

To prove (A.8), it suffices to show that

sup
x∈[0,1]d

|Q̂r̂A(x)| = op(n−2/5), (A.9)

∥∥∥∥∥
∞∑

s=1

Q̂s r̂A

∥∥∥∥∥
M

= op(n−2/5). (A.10)

To see this, note that from (2.6) and (2.7), we have, for f = (f1, . . . , fd)� ∈ H(M̂),

Q̂j f(x) = (f1(x1), . . . , fj−1(xj−1), f
∗
j (xj ), fj+1(xj+1), . . . , fd(xd))�, (A.11)

where f ∗
j (xj ) = −∑d

k=1,�=j

∫
fk(xk)

q̂jk(xj ,xk)

q̂j (xj )
dxk . Thus, there exists a constant 0 < C < ∞

such that with probability tending to one,

sup
x∈[0,1]d

∣∣∣∣∣
∞∑

s=2

Q̂s r̂A(x)

∣∣∣∣∣ = sup
x∈[0,1]d

∣∣∣∣∣Q̂
∞∑

s=1

Q̂s r̂A(x)

∣∣∣∣∣ ≤ C

∥∥∥∥∥
∞∑

s=1

Q̂s r̂A

∥∥∥∥∥
M

.

We prove (A.9) and (A.10). From standard kernel theory, we can prove that for all k �= j ,

sup
xk∈[0,1]

∣∣∣∣
∫

m̃A
j (xj )

q̂jk(xj , xk)

q̂k(xk)
dxj

∣∣∣∣ = op(n−2/5). (A.12)

The approximation (A.12), together with the expressions at (A.6) and (A.11), gives (A.9). Since
‖Q̂‖ < γ with probability tending to one for some 0 < γ < 1, we have∥∥∥∥∥

∞∑
s=1

Q̂s r̂A

∥∥∥∥∥
M

≤
∞∑

s=2

γ s‖Q̂r̂A‖M = op(n−2/5).

This completes the proof of (A.4). �

Proof of (A.5). Let l1(x,u) = ((u1 − x1)m
′
1(x1), . . . , (ud − xd)m′

d(xd))� and l2(x,u) = ((u1 −
x1)

2m′′
1(x1)/2, . . . , (ud − xd)2m′′

d(xd)/2)�. To get an idea of which terms in an expansion of
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m̃B(x) lead to the main terms in the expansion (A.5), we note from an expansion of m(Xi ) that
m̃B(x) is approximated by

m(x) + M̂(x)−1n−1
n∑

i=1

ZiZi�l1(x,Xi )Kh(x,Xi )

(A.13)

+ M̂(x)−1n−1
n∑

i=1

ZiZi�l2(x,Xi )Kh(x,Xi ).

Define m̃B,1(x) = M̂(x)−1
∫

M(x)l1(x,u)Kh(x,u)du. The second term of (A.13) is then approx-
imated by m̃B,1(x)+M(x)−1 ∑d

k=1[∂Mk(x)/∂xk]h2
km

′
k(xk)

∫
u2K(u)du. Also, the third term is

approximated by (h2
1m

′′
1(x1)/2, . . . , h2

dm′′
d(xd)/2)�

∫
u2K(u)du. Define

m̃B,2(x) =
[

M(x)−1
d∑

k=1

∂

∂xk

Mk(x)h2
km

′
k(xk) + 1

2
(h2

1m
′′
1(x1), . . . , h

2
dm′′

d(xd))�
]

×
∫

u2K(u)du

and let m̃B,3(x) = m̃B(x) − m(x) − m̃B,1(x) − m̃B,2(x).
For � = 1,2,3, define m̂B,� to be the solution of the backfitting equation at (2.9) with m̃ being

replaced by m̃B,�. By arguing as in the proof of (A.4), we can deduce that m̂
B,3
j (xj ) = op(n−2/5)

for all xj ∈ (0,1). The projection of m̃B,2 onto H(M̂) is well approximated by the projection
onto H(M) with a remainder δ such that δ(x) = op(n−2/5) for all x ∈ (0,1)d . This proves that
m̂B,2(x) = β(x)n−2/5 + op(n−2/5) for all x ∈ (0,1)d .

It thus remains to prove that m̂B,1(x) = op(n−2/5) for all x ∈ (0,1)d . For this bound, we
will show that m̂

B,1
j (xj ) = μj (xj ) + op(n−2/5), uniformly for all xj ∈ [0,1], 1 ≤ j ≤ d , where

μj (xj ) = aj (xj )/
∫

Khj
(xj , uj )duj and aj (xj ) = m′

j (xj )
∫
(uj − xj )Khj

(xj , uj )duj . For a
proof of this claim, it suffices to show that∫

M̂j (x)�[m̃B,1(x) − μ(x)]dx−j = op(n−2/5), (A.14)

uniformly for all xj ∈ [0,1], 1 ≤ j ≤ d . Here, μ(x) = (μ1(x1), . . . ,μd(xd))�.
We prove (A.14). Note that, uniformly for xj ∈ [0,1],∫

M̂j (x)�μ(x)dx−j

=
[∫

qj (uj )Khj
(xj , uj )duj

]
μj (xj )

+
∑

k=1,�=j

∫
μk(xk)

[∫
qjk(uj , uk)Khj

(xj , uj )Khk
(xk, uk)duj duk

]
dxk
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+ op(n−2/5)

= qj (xj )aj (xj ) +
∑

k=1,�=j

∫
ak(xk)qjk(xj , xk)dxk

∫
Khj

(xj , uj )duj + op(n−2/5).

Claim (A.14) now follows from the fact that∫
M̂j (x)�m̃B,1(x)dx−j

= qj (xj )aj (xj ) +
∑

k=1,�=j

∫
ak(xk)qjk(xj , xk)dxk

∫
Khj

(xj , uj )duj + op(n−2/5)

uniformly for xj ∈ [0,1]. �

A.3. Proofs of Theorems 3 and 4

Recall the definitions of M̂ and M at (4.2) and (4.8), respectively, in the case of local polynomial
fitting. Let Hj (M̂) denote the space of (π + 1)d-vectors of functions f = (fj,k) in L2(M̂) such
that fj,�(x) = gj,�(xj ), 0 ≤ � ≤ π, for some functions gj,� : R → R and fk ≡ (fk,0, . . . , fk,π )� =
0 for k �= j . As in the case of local constant fitting, we can write H(M̂) = H1(M̂)+· · ·+ Hd(M̂).
Define Hj (M) likewise. The vectors of functions that take the roles of qj and qjk , respectively,
are

�j (xj ) = N1E(Z2
j |Xj = xj )pj (xj ),

�jk(xj , xk) = μμ�E(ZjZk|Xj = xj ,Xk = xk)pjk(xj , xk), k �= j.

We then have projection formulas analogous to (2.6)–(2.8). For example, for f ∈ L2(M̂) and
g ∈ L2(M), we obtain

(�̂j f)j = �̂j (xj )
−1

∫
M̂j (x)�f(x)dx−j ,

(�j g)j = �j (xj )
−1

∫
Mj (x)�g(x)dx−j

and (�̂j f)k = 0 = (�j g)k for k �= j , where (�̂j f)k and (�j g)k denote the kth (π + 1)-vector
of the projection of f onto Hj (M̂) and of g onto Hj (M), respectively. We can proceed as in the
proof of Theorem 1 to prove Theorem 3.

We prove Theorem 4. Decompose m̃ at (4.3) as m̃A + m̃B , where

m̃A(x) = M̂(x)−1n−1
n∑

i=1

v(Xi ,Zi;x)[Y i − m(Xi ,Zi )]Kh(x,Xi ).
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Define m̂A and m̂B from m̃A and m̃B , respectively, to be the solutions of the backfitting equation
(4.6). It follows that (�̂j m̃A)j (xj ) = m̃A

j (xj ), where

m̃A
j (xj ) = �̂j (xj )

−1n−1
n∑

i=1

wj (xj ,X
i
j )Khj

(xj ,X
i
j )Z

i
j [Y i − m(Xi ,Zi )].

As in the proof of Theorem 2, we can prove that m̂A
j (xj ) = m̃A

j (xj ) + op(n−(π+1)/(2π+3)) for

all x ∈ (0,1)d . The stochastic term m̃A
j (xj ) has mean zero and is asymptotically normal. Since

�̂j (xj ) = �j (xj ) + op(1) and

n−1hj

n∑
i=1

var[wj (xj ,X
i
j )Khj

(xj ,X
i
j )Z

i
jY

i |Xi ,Zi]

= N2E[Z2
j σ

2(X,Z)|Xj = xj ]pj (xj ) + op(1),

we find that the asymptotic variance of m̃A
j (xj ) equals

n−1h−1
j (N−1

1 N2N−1
1 )

E[Z2
j σ

2(X,Z)|Xj = xj ]
pj (xj )[E(Z2

j |Xj = xj )]2
.

Next, we approximate m̂B(x). Define

m̃B,1(x) = 1

(π + 1)!M(x)−1n−1
n∑

i=1

v(Xi ,Zi;x)

×
[

d∑
j=1

Zi
j

(
Xi

j − xj

h

)π+1

m
(π+1)
j (xj )h

π+1
j

]
Kh(x,Xi )

and m̃B,2(x) = m̃B(x) − m(x) − m̃B,1(x). As in the proof of Theorem 2, we can show that
m̂B,2

j (xj ) = op(n−(π+1)/(2π+3)) for all xj ∈ (0,1). We compute m̂B,1(x). We can prove that, for
all xj ∈ (0,1),

∫
M̂j (x)�m̃B,1(x)dx−j

= 1

(π + 1)!
[
μμπ+1

∑
k=1,�=j

∫
qjk(xj , xk)h

π+1
k m

(π+1)
k (xk)dxk (A.15)

+ hπ+1
j γ qj (xj )m

(π+1)
j (xj )

]
+ op

(
n−(π+1)/(2π+3)

)
,
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where qj and qjk are as defined at (A.1) and (A.2), respectively, and μπ+1 = μπ+1(K). We also
have ∫

M̂j (x)�m̂B,1(x)dx−j = μμ� ∑
k=1,�=j

∫
qjk(xj , xk)m̂

B,1
k (xk)dxk

(A.16)
+ N1qj (xj )m̂

B,1
j (xj ) + op

(
n−(π+1)/(2π+3)

)
for all xj ∈ (0,1). Now, we observe that μ�N−1

1 = (1,0, . . . ,0) since μ is the first column of
N1. Thus,

μμ�N−1
1 γ = μ(1,0, . . . ,0)γ = μμπ+1.

Comparing the two systems of equations (A.15) and (A.16), and by the uniqueness of m̂B,1, we
conclude that

m̂B,1
j (xj ) = (N−1

1 γ )hπ+1
j m

(π+1)
j (xj )/(π + 1)! + op

(
n−(π+1)/(2π+3)

)
for all xj ∈ (0,1), 1 ≤ j ≤ d . This completes the proof of Theorem 4.
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