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Although unbiasedness is a basic property of a good test, many tests on vector parameters or scalar pa-
rameters against two-sided alternatives are not finite-sample unbiased. This was already noticed by Sugiura
[Ann. Inst. Statist. Math. 17 (1965) 261–263]; he found an alternative against which the Wilcoxon test is not
unbiased. The problem is even more serious in multivariate models. When testing the hypothesis against an
alternative which fits well with the experiment, it should be verified whether the power of the test under this
alternative cannot be smaller than the significance level. Surprisingly, this serious problem is not frequently
considered in the literature.

The present paper considers the two-sample multivariate testing problem. We construct several rank tests
which are finite-sample unbiased against a broad class of location/scale alternatives and are finite-sample
distribution-free under the hypothesis and alternatives. Each of them is locally most powerful against a
specific alternative of the Lehmann type. Their powers against some alternatives are numerically compared
with each other and with other rank and classical tests. The question of affine invariance of two-sample
multivariate tests is also discussed.

Keywords: affine invariance; contiguity; Kolmogorov–Smirnov test; Lehmann alternatives; Liu–Singh test;
Psi test; Savage test; two-sample multivariate model; unbiasedness; Wilcoxon test

1. Introduction

1.1. Two-sample multivariate tests

A frequent practical problem is that we have two data clouds of p-dimensional observations with
generally unknown distributions F and G, and we wish to test the hypothesis that they both
come from the same distribution F ≡ G, continuous but unknown. Desirable properties of a test
of such a hypothesis H are: (i) being distribution-free under H; (ii) being affine invariant with
respect to changes of coordinate system; (iii) being consistent against any fixed alternative; and
(iv) being finite-sample unbiased against a broad class of alternatives of interest. Unfortunately,
a test satisfying all these conditions does not exist in the multivariate setup.

Many authors have tried to attack this problem, emphasizing some of the above properties.
Their ideas were often concentrated either on some geometric entities of the data clouds or on
the affine invariance of the testing problem. Naturally, the ranks or the signed ranks of geometric
entities of data are invariant under many transformations and provide a useful and simple tool
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for testing. The papers extending methods based on ranks or other nonparametric methods to the
multivariate setup use data depths, Oja medians, multivariate sign functions and other tools. In
this context, we should mention the papers by Chaudhuri and Sengupta [5], Choi and Marden
[6,7], Hallin and Pandaveine [13], Hetmansperger et al. [17], Liu [21,23], Liu and Singh [24],
Oja and Randles [31], Oja et al. [30], Puri and Sen [33], Randles and Peters [34], Topchii et al.
[40], Tukey [41], Zuo and He [43] and a recent excellent review by Oja [29].

Other authors have constructed various permutation tests: Bickel [3], Brown [4], Hall and
Tajvidi [14], Neuhaus and Zhu [26], Oja [28], Wellner [42] and others. Tests based on distances
between observations were considered by Baringhaus and Franz [2], Friedman and Rafsky [8],
Henze [15], Maa et al. [25], Rosenbaum [35] and Schilling [37]; the latter also compared the
simulated powers of his test with that of the Kolmogorov–Smirnov two-sample test.

The proposed tests were typically consistent against distant alternatives and some of them were
affine invariant. The authors often derived the asymptotic null distributions of the test criteria and
some derived the asymptotic powers under contiguous alternatives. Many authors illustrated the
powers on the simulated data, often normal, and compared them with the power of the Hotelling
T 2 test. However, only in exceptional cases did they check whether the test was unbiased against
alternatives of interest.

1.2. Unbiased tests

Let � be a test of hypothesis {H : distribution F of random vector X belongs to the set H} against
the alternative {K : distribution of X belongs to the set K}. Consider the tests of size α,0 < α < 1,

where α is the chosen significance level, that is, the tests satisfying supF∈H EF [�(X)] ≤ α. The
test � is unbiased if it satisfies

sup
F∈H

EF [�(X)] ≤ α and inf
F∈K

EF [�(X)] ≥ α.

This is a natural property of a test; it means that the power of a test should not be smaller than
the permitted error of the first kind. If the test rejects the hypothesis with a probability less than
α under the alternative of interest, then we can hardly recommend the test to the experimenter.
Note that if there exists a uniformly most powerful test, then it is always unbiased. If the optimal
test of size α does not exist because the family of α-tests is too broad, then we should restrict
ourselves to a pertinent subfamily of tests, and the family of unbiased tests of size α is the most
natural subfamily. We refer to Lehmann’s monograph [22] for an excellent account of unbiased
tests.

Many tests criteria have asymptotic normal distributions under the hypothesis as well as under
the local alternatives – these are asymptotically locally unbiased. However, the practice always
works with a finite number of observations. The asymptotic distribution only approximates well
the central part of the finite-sample distribution; elsewhere, it can stretch the truth and sometimes
is only valid for a huge number of observations. To calculate the finite-sample power of a test
is sometimes difficult; in any case, as a first step, we should be sure that the test is unbiased
against the alternatives under consideration, at least locally in a neighborhood of the hypothesis.
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Unfortunately, many authors have not specified the alternatives against which their tests are (lo-
cally) unbiased. The alternative is typically more important for an experimenter than the hypoth-
esis because it describes his/her scientific conjecture. Some papers, for example, [18,19,38,39],
show that the tests are not automatically finite-sample unbiased. While the univariate two-sample
Wilcoxon test, for example, is always unbiased against one-sided alternatives, it is generally not
unbiased against two-sided alternatives, even not with equal sample sizes (see [38,39]). The test
is locally unbiased against two-sample alternatives only under some conditions on the hypotheti-
cal distribution of observations (e.g., when it is symmetric). Amrhein [1] demonstrated the same
phenomenon for the one-sample Wilcoxon test. Hence, the finite-sample unbiasedness of some
tests cited above, and others described in the literature, is still an open question.

To illustrate this problem more precisely, consider a random vector X = (X1, . . . ,Xn) with dis-
tribution function F(x, θ), θ ∈ � ⊂ R

p , and density f (x, θ) (not necessarily Lebesgue), which
has bounded third derivatives in components of θ in a neighborhood of θ0 and a positive definite
Fisher information matrix. We wish to test H0 : θ = θ0 against the alternative K : θ �= θ0 using
the test � of size α, that is, Eθ0[�(X)] = α. We then have the following expansion of the power
function of � around θ0 (see [19]):

Eθ0�(X) = α + (θ − θ0)
�

Eθ0

{
�(X)

(ḟ(X, θ0))

f (X, θ0)

}
(1.1)

+ 1

2
(θ − θ0)

�
Eθ0

{
�(X)

[f̈(X, θ0)]
f (X, θ0)

}
(θ − θ0) + O(‖θ − θ0‖3),

where

(ḟ(x, θ)) =
(

∂f (x, θ)

∂θ1
, . . . ,

∂f (x, θ)

∂θp

)�
, [f̈(x, θ)] =

[
∂2f (x, θ)

∂θj ∂θk

]p

j,k=1
.

The test � is locally unbiased if the second term on the right-hand side of (1.1) is nonnegative.
If θ is a scalar parameter and we consider the one-sided alternative K : θ > θ0, then there always
exists an unbiased test. However, the alternative for a vector θ is only two-sided and the local
unbiasedness of � is guaranteed only when

Eθ0

{
�(X)

(ḟ(X, θ0))

f (X, θ0)

}
= 0. (1.2)

However, (1.2) is generally true only for f satisfying special conditions, which cannot easily be
verified for unknown f. If the test � does not satisfy (1.2), then the second term in (1.1) can be
negative for some θ and hence the power of � can be less than α. We refer to Grose and King
[10], who imposed condition (1.2) when constructing a locally unbiased two-sided version of the
Durbin–Watson test.

1.3. Outline of the paper

We shall propose three classes of multivariate two-sample tests, based on the ranks of suitable
distances of multivariate observations. One test is based on the ranks of distances of observations
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from the origin, while the others are based on the ranks of their interpoint distances. The natural
alternatives state that either the distances of the second sample from the origin are stochastically
larger than those of the first sample, or that the distances of the Y’s from the X’s are stochas-
tically larger than those of the X’s from each other. The proposed tests are unbiased because
our natural alternatives are one-sided (in the distances). Moreover, the proposed rank tests are
distribution-free under the hypothesis as well as under alternatives of the Lehmann type, and
they are consistent against general alternatives (properties (i), (iii) and (iv)). The distribution-
free property is important because we need not determine the distribution of distances when
performing the test.

The tests are described in Section 2, which starts with some invariance considerations (cf.
desired property (ii) of the test). It is shown that the proposed tests based on the ranks of distances,
as well as the Liu–Singh [24] tests based on the ranks of depths, are distribution-free against
some monotone alternatives of the Lehmann type with respect to which they are finite-sample
unbiased. Section 3 describes the contiguity of these alternatives with respect to the hypothesis,
which enables us to derive the local asymptotic powers of the tests. The powers of tests are
compared numerically under finite N, as well as asymptotically under N → ∞. The proposed
tests are also compared with the tests of Liu and Singh, and of [17], using a reference to numerical
results of [43]. In Section 4 we compare the empirical powers of the proposed tests with those of
the Hotelling test under the bivariate normal and bivariate Cauchy distributions. The contiguity
of the Lehmann-type alternatives is proved in the Appendix.

2. Multivariate two-sample rank tests

2.1. Remarks to affine invariance

Consider two independent samples X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Yn) from two p-variate
populations with continuous distribution functions F (p) and G(p), respectively, with respec-
tive means and dispersion matrices μ1,μ2 and �1,�2. The problem is to test the hypothe-
sis H0 :F (p) ≡ G(p) (along with μ1 = μ2,�1 = �2) against an alternative H1, where either
(μ1,�1) �= (μ2,�2) or where F (p) and G(p) are not of the same functional form. We de-
note by (Z1, . . . ,ZN) the pooled sample with Zi = Xi , i = 1, . . . ,m, and Zm+j = Yj , j =
1, . . . , n,m + n = N. The hypothesis and the alternative are invariant under affine transforma-
tions:

G : {Z → a + BZ} with a ∈ R
pand B a nonsingular p × p matrix. (2.1)

More precisely, the hypothesis and alternative remain true even after the transformation g ∈ G
of the data, and we are looking for invariant tests whose criteria are invariant with respect to
g ∈ G. The invariant tests depend on the data only by means of a maximal invariant of G [22].
Obenchain [27] showed that the maximal invariant with respect to G is

T(Z1, . . . ,ZN) = [(Zi − Z̄N)�V−1
N (Zj − Z̄N)]Ni,j=1,

(2.2)

where Z̄N = 1

N

N∑
i=1

Zi ,VN =
N∑

i=1

(Zi − Z̄N)(Zi − Z̄N)�.
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Then, T(Z1, . . . ,ZN) is the projection matrix associated with the space spanned by the columns
of the matrix [Z1 − Z̄N, . . . ,ZN − Z̄N ]. In particular, under a ≡ 0, the maximal invariant of the
group

G0 : {Z → BZ} is equal to T0(Z1, . . . ,ZN) = [Z�
i (V0

N)−1Zj ]Ni,j=1,
(2.3)

where V0
N =

N∑
i=1

ZiZ�
i .

Moreover, one of the maximal invariants with respect to the group of shifts in location

G1 : Z −→ Z + a, a ∈ R
p, (2.4)

is T1(Z1, . . . ,ZN) = (Z2 − Z1, . . . ,ZN − Z1).

The well-known two-sample Hotelling T 2 test is based on the criterion

T 2
mn = (X̄m − Ȳn)

�V−1
N (X̄m − Ȳn). (2.5)

The test is invariant with respect to G and is optimal unbiased against two-sample normal alterna-
tives with μ1 �= μ2 and �1 = �2. Its asymptotic null distribution, when both sample sizes m,n

tend to infinity, does not depend on the normality. If m,n → ∞ and m
n

→ 1, then the asymptotic
distribution of T 2

mn does not change even when �1 �= �2, but only in this case (see [22]). Its
finite sample unbiasedness is not guaranteed under a nonnormal underlying distribution.

If we wish to construct a nonparametric two-sample test which is distribution-free and affine
invariant with respect to G, we expect it to be based on the ranks of some components of T
in (2.2) or on the relevant empirical Mahalanobis distances of points Zi ,Zj ,1 ≤ i, j ≤ N. The
ranks of distances are invariant with respect to continuous increasing functions of the distances;
however, in our case, the data themselves are transformed, rather than their distances. The proper
form of the rank test criterion based on the Mahalanobis distances and its unbiasedness against
alternatives of interest is the subject of a forthcoming study. The rank tests considered in the
present paper are easier but invariant only with respect to G1, not to the change of the origin. On
the other hand, the proposed tests enjoy the properties (i), (iii) and (iv) mentioned above.

2.2. Liu and Singh rank sum test

An interesting test of Wilcoxon type, based on the ranks of depths of the data, was proposed
by Liu and Singh [24]. Being of Wilcoxon type, this test is locally most powerful against some
alternatives of the Lehmann type. Its asymptotic distributions under the hypothesis and under
general alternative distributions F,G of depths was derived by Zuo and He [43].

Let D(y;H) denote a depth function of a distribution H evaluated at the point y ∈ R
p. Liu

and Singh [24] considered a parameter, called a quality index, defined as

Q
(
F (p),G(p)

) =
∫

R
(
y;F (p)

)
dG(p)(y)

= P
{
D

(
X;F (p)

) ≤ D
(
Y;F (p)

)|X ∼ F (p),Y ∼ G(p)
}
,
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where R(y;F (p)) = PF (D(X;F (p)) ≤ D(y;F (p)),y ∈ R
p, and showed that if D(X;F (p))

has a continuous distribution, then Q(F (p),F (p)) = 1
2 . They then tested the hypothesis

Q(F (p),G(p)) = 1
2 against the alternative Q(F (p),G(p)) �= 1

2 using the Wilcoxon-type crite-
rion based on the empirical distribution functions Fm and Gn of samples of sizes m and n

respectively:

Q(Fm,Gn) =
∫

R(y;Fm)dGn(y) = 1

n

n∑
j=1

R(Yj ;Fm).

If the distribution of depths is symmetric under F (p) ≡ G(p), then the test rejecting provided
|Q(Fm,Gn) − 1

2 | ≥ Cα/2 is locally unbiased against Q(F (p),G(p)) �= 1
2 . Under a general distri-

bution of depths, only the one-sided test with the critical region

Q(Fm,Gn) − 1
2 > Cα

is unbiased against the one-sided alternative Q(F (p),G(p)) > 1
2 ; however, this alternative, one-

sided in depths, has a difficult interpretation with respect to the distributions F (p) and G(p) of
original observations X and Y, respectively. Generally, the test is not finite-sample unbiased
against F �= G, not even locally. The unbiasedness can be guaranteed only in some cases, for
instance, if the hypothetical distribution of depths is symmetric.

2.3. Rank tests based on distances of observations

We shall test the hypothesis of equality of distributions of two samples against alternatives that
some distances are greater than others; because such alternatives are one-sided, they make the
tests unbiased.

Choose a distance L = L(·, ·) in R
p taking nonnegative real values. Let

Z = (Z1, . . . ,ZN) = (X1, . . . ,Xm,Y1, . . . ,Yn)

denote the pooled sample, where N = m + n, and consider the matrix of distances LN =
[�ik]Ni,k=1, where �ik = L(Zi ,Zk). We can construct simple rank tests based on LN in three
different ways:

(i) Simple rank test, but not invariant with respect to G or G1. Consider the vector

(�̃1, . . . , �̃N ), �̃k = L(0,Zk), k = 1, . . . ,N,

of distances of observations from the origin. The vector (�̃1, . . . , �̃m) is then a random
sample from a population with a distribution function F (say), while (�̃m+1, . . . , �̃N )

is a random sample from a population with a distribution function G. Assume that the
distribution functions F and G are absolutely continuous. Under hypothesis H0 :F (p) ≡
G(p), the distribution functions F and G coincide, that is, they satisfy the hypothesis
H̃0 :F ≡ G which states that {�̃k, k = 1, . . . ,N} satisfy the hypothesis of randomness. If
H̃0 is not true, then H0 is not true either.
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Denote by (R̃1, . . . , R̃N ) the respective ranks of {�̃k, k = 1, . . . ,N}. Under the hy-
pothesis, the vector of ranks has the uniform distribution on the set of permutations of
the numbers 1, . . . ,N. Because {�̃k, k = 1, . . . ,m} and {�̃k, k = m + 1, . . . ,N} are ran-
dom samples, under the hypothesis, as well as under the alternatives, every two-sample
rank test will depend only on the ordered ranks R(m+1) < · · · < R(N) of the second
sample. However, although invariant with respect to increasing continuous functions of
(�̃1, . . . , �̃N ), such a test would not be invariant with respect to the groups of transforma-
tions (2.1) or (2.3), even if �̃k = ‖Zk‖ is the Euclidean distance.

The linear rank test is based on the linear rank statistic

SN = N−1/2
N∑

k=m+1

aN(Rik) (2.6)

with the scores aN(1), . . . , aN(N) generated by a nondecreasing score function ϕ :
(0,1) 
→ R in either of the following two ways:

aN(k) = E(ϕ(UN :k)), k = 1, . . . ,N, (2.7)

or

aN(k) = ϕ

(
UN :k
N + 1

)
, k = 1, . . . ,N, (2.8)

with UN :1 ≤ · · · ≤ UN :N being the order statistics of the sample from the uniform R(0,1)

distribution. The test based on (2.6) is distribution-free, that is, the null distribution of SN

does not depend on the unknown F ≡ G under H̃0. Its asymptotic properties follow from
[11] or [12].

(ii) Conditional rank test, invariant with respect to G1. Assuming that m > p, choose a suit-
able basis (Xi1, . . . ,Xip ) = Xp of {Xi ,1 ≤ i ≤ m}; the choice of basis Xp can follow
various aspects. Consider the set of (m + n − p) × p distances

{�∗
ij ,k = L(Xij ,Zk), k = 1, . . . ,N, k �= i1, . . . , ip}, j = 1, . . . , p.

Then, for a fixed ij ,1 ≤ j ≤ p, and conditionally given Xp, the vector {�∗
ij ,k, k =

1, . . . ,m, k �= i1, . . . , ip} is a random sample from a population with a distribution func-
tion F(z|Xp) = F (say), while {�∗

ij ,k, k = m+ 1, . . . ,N} is a random sample from a pop-
ulation with a distribution function G(z|Xp) = G. Assume that the distribution functions
F and G are absolutely continuous. Let

Rij = (Rij ,k, k = 1, . . . ,N, k �= i1, . . . , ip)

denote the ranks of �∗
ij k, k = 1, . . . ,N, k �= ij ,∀j = 1, . . . , p. Every two-sample rank test

will depend only on the ordered ranks R
(m+1)
ij

< · · · < R
(N)
ij

of the second sample. In
particular, if L(Xij ,Zk) = ‖Xij − Zk‖, k = 1, . . . ,N, k �= i1, . . . , ip, where ‖ · ‖ is the
Euclidean distance, then the test based on their ranks will be invariant with respect to G1
in (2.4), but not with respect to G, G0.
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Similarly as in (i), the linear (conditional) rank test is based on the linear rank statistic

S∗
ij ,N = N−1/2

N∑
k=m+1

aN(Rij ,k)

with the scores aN(1), . . . , aN(N − p) generated by a nondecreasing score function ϕ

as in either (2.7) or (2.8). The criteria S∗
ij ,N are equally distributed for j = 1, . . . , p un-

der the hypothesis and under the alternatives, and are conditionally independent given
Xp. Using only a single S∗

ij ,N would be a loss of information, so we look for a conve-
nient combination of S∗

i1,N
, . . . , S∗

ip,N . Every convenient homogeneous combination of
S∗

i1,N
, . . . , S∗

ip,N leads to a rank test, conditional under given Xp, which is distribution-
free under the hypothesis. The problem would be to find its null distribution, and thus the
critical values, under a finite N. The test based on a single S∗

ij ,N is a standard rank test,
for example, Wilcoxon, conditionally given Xp, and is thus easy to perform. When we
look for a similarly simple test based on a combination of S∗

ij N ,1 ≤ j ≤ p, it seems that
the simplest possibility is a randomization of S∗

i1,N
, . . . , S∗

ip,N , leading to the following

criterion S̃(N):

P
(
S̃(N) = S∗

ij ,N

) = 1

p
, j = 1, . . . , p, (2.9)

where the randomization in (2.9) is independent of the set of observations Z. The follow-
ing identity is true for any C:

P
(
S̃(N) > C

) = 1

p

p∑
j=1

P(S∗
ij ,N > C)

and the test rejects H̃0 for α ∈ (0,1) if S̃(N) > Cα; eventually, it rejects with probability
γ ∈ (0,1) if S(N) = Cα, where

PH̃0

(
S̃(N) > Cα

) + γ PH̃0

(
S̃(N) = Cα

) = α.

(iii) Randomized rank test, invariant with respect to G1. Similarly, for every fixed i and under
fixed Xi ,1 ≤ i ≤ m, we can consider the distances {�∗

ik = L(Xi ,Zk), k = 1, . . . ,N, k �=
i}. Then, conditionally given Xi , the vector {�∗

ik, k = 1, . . . ,m, k �= i} is a random sample
from a population with a distribution function F(z|Xi ) = F (say), while {�∗

ik, k = m +
1, . . . ,N} is a random sample from a population with a distribution function G(z|Xi ) =
G. Assuming that the distribution functions F and G are absolutely continuous, we work
with

Ri = (Ri1, . . . ,Ri,i−1,Ri,i+1, . . . ,RiN),

the ranks of �∗
ik, k = 1, . . . ,N, k �= i.
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The linear (conditional) rank test is based on the linear rank statistic

SiN = N−1/2
N∑

k=m+1

aN(Rik) (2.10)

with the scores aN(1), . . . , aN(N − 1).

The criteria SiN are equally distributed for i = 1, . . . ,m under the hypothesis and un-
der the alternatives, although not independent. We look for a convenient combination of
S1N, . . . , SmN . Again, a randomization of S1N, . . . , SmN keeps the simple structure of the
test and is thus easy to perform. It leads to the following criterion, S(N):

P
(
S(N) = SiN

) = 1

m
, i = 1, . . . ,m, (2.11)

where the randomization in (2.11) is independent of the set of observations Z. Again, for
any C,

P
(
S(N) > C

) = 1

m

m∑
i=1

P(SiN > C),

and the test rejects H̃0 for α ∈ (0,1) if S(N) > Cα; eventually, it rejects with probability
γ ∈ (0,1) if S(N) = Cα. Again, with the Euclidean distance, the test will be invariant
with respect to G1 in (2.4), but not with respect to G, G0.

Remark 2.1. The Mahalanobis distances

Z�
k (V0

N)−1Zk, k = 1, . . . ,N, (2.12)

(Xi − Zk)
�V−1

N (Xi − Zk) or (Xi − Zk)
�(V0

N)−1(Xi − Zk), k �= i, (2.13)

are not independent, but under H0, they have exchangeable distributions; hence, under H0, the
distribution of their ranks is independent of the distribution of observations (is distribution-free).
Moreover, (2.13) are invariant with respect to G and G0, while (2.12) are invariant only with
respect to G0. The invariant tests based on the ranks of (2.12) or (2.13) will be the subject of a
further study. Their structure is more complex than that of tests based on simple distances.

3. Structure of the rank tests

Let X = (X1, . . . ,Xm) and Y = (Y1, . . . , Yn) be two independent samples from distributions
F and G, respectively. Consider the rank test with the criterion SN = N−1/2 ∑N

k=m+1 aN(Ri),

where R1, . . . ,RN are the ranks of the pooled sample Z = (X1, . . . ,Xm,Y1, . . . , Yn). The values
Xi,Yj are, for example, the distances of multivariate observations, either from a fixed point or
the interpoint distances considered conditionally given the original component. We want to test
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the hypothesis H0 :F ≡ G against a general alternative with the (m+n)-dimensional distribution
function of the form

K :
m∏

k=1

G
(1)
	 (zk)

N∏
k=m+1

G
(2)
	 (zk). (3.1)

Lehmann [20] showed that the Wilcoxon two-sample test with the score-generating function
ϕ(u) = 2u − 1,0 ≤ u ≤ 1, is the locally most powerful rank test of H0 against the class of
alternatives with

G
(1)
	 (z) = F(z) and G

(2)
	 (z) = G	(z), (3.2)

G	(z) =
{

(1 − 	)F(z) + 	F 2(z), z ≥ 0,
0, z < 0

(3.3)

with 0 < 	 < 1. The Y ’s are then stochastically larger than the X’s and F(z) − G	(z) ≡ 	 ·
F(z)(1 − F(z)); hence, the Kolmogorov distance of F and G	 is

dK(F,G	) = 	 · sup
z≥0

[
F(z)

(
1 − F(z)

)] = 	

4

and the point of maximum is z = F−1( 1
2 ).

Gibbons [9] proved that the Psi test with the scores

aN(i) =
i−1∑
j=0

1

N − j
−

N−i∑
j=0

1

N − j
, i = 1, . . . ,N,

is the locally most powerful rank test of H0 against the alternative (3.1) with

G
(1)
	 (z) = 1 − (

1 − F(z)
)1+	

,
(3.4)

G
(2)
	 (z) = (F (z))1+	, 	 > 0, z ≥ 0.

Obviously,

G
(1)
	 (z) ≥ F(z) ≥ G

(2)
	 (z)

= (F (z))1+	 ∀z ≥ 0 and 	 ≥ 0,

hence G
(1)
	 is stochastically smaller than G

(2)
	 for 	 > 0. The Kolmogorov distance of G

(1)
	 and

G
(2)
	 is

dK

(
G

(1)
	 ,G

(2)
	

) = sup
z≥0

[
1 − (F (z))1+	 − (

1 − F(z)
)1+	]

= 1 − 2−	



Nonparametric multivariate rank tests 239

and the maximum is attained at the point z = F−1( 1
2 ). The score generating function of the Psi

test is ϕ(u) = lnu − ln(1 − u),0 < u < 1.

Similarly, Savage [36] proved that the Savage test with the critical region

n∑
i=1

N∑
j=Rm+i

1

j
≤ Cα

is the locally most powerful rank test of H0 against the class of alternatives (3.1) with

G
(1)
	 (z) = F(z), G

(2)
	 (z) = F 1+	(z), z ≥ 0, 	 > 0. (3.5)

Again, the Y ’s are stochastically larger than the X’s, and the Kolmogorov distance of G
(1)
	 and

G
(2)
	 is equal to

dK

(
G

(1)
	 ,G

(2)
	

) = sup
z≥0

[
F(z)

(
1 − F	(z)

)]
= 	(1 + 	)−1−1/	,

whose maximum is attained at z = F−1((1 +	)−1/	). The score generating function of this test
is ϕ(u) = 1 + lnu,0 < u < 1.

Assume that F is increasing and let Uk = F(zk), k = 1, . . . ,N. Under the alternative (3.2),
the ranks R1, . . . ,RN are also the ranks of the variables U1, . . . ,Um,Vm+1, . . . , VN, where Vk =
(1−	)Uk +	U2

k , k = m+1, . . . ,N. An analogous consideration applies to the alternatives (3.4)
and (3.5). Hence, the distribution of the ranks R1, . . . ,RN is independent of F (is distribution-
free) under the hypothesis as well as under the alternatives, and thus the power functions of
all rank tests against the alternatives (3.2), (3.4) and (3.5) are distribution-free. The Lehmann
alternatives can be well interpreted, are flexible and can describe various experimental situations
well. Besides the linear rank tests, we can also consider the two-sample Kolmogorov–Smirnov
test based on the empirical distribution functions of the interpoint distances, for the purposes
of comparison. The randomized Kolmogorov–Smirnov test, following a similar structure as the
tests in Section 2, is also distribution-free. Instead of interpoint distances, we can consider the
rank tests based on the depths using similar ideas.

We shall concentrate on the two-sample Wilcoxon, Psi and Savage rank tests because they are
easy to perform, are locally most powerful and are locally unbiased against some alternatives of
Lehmann type. The ranks are distribution-free not only under the hypothesis, but also under the
Lehmann alternatives, hence the powers of the rank tests are independent of the distribution of the
data. This is an advantage because we do not need to calculate the distribution of the distances.
Several authors (e.g., [8,16,25,35,36]) considered various distances of two sets of multivariate
observations from some specified point, constructed the critical regions and verified their con-
sistencies against distant alternatives. However, the questions of the finite-sample behavior of
these tests, their unbiasedness and against which alternatives, and their efficiency against local
alternatives, remains open. If the test is not unbiased against some alternative of interest, then
its power can be less than the significance level, say less than α = 0.05, hence such a test is not
suitable for verifying the hypothesis against this specific alternative.
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The sequences of alternatives (3.1) corresponding to (3.3), (3.4) and (3.5) are contiguous with
respect to the sequence {∏N

i=1 F(zi)} provided that 	N = N−1/2	0 with 	0 fixed, 0 < 	0 < ∞,

as shown in the Appendix. Hence, we are able to evaluate the local asymptotic powers of the tests;
this is done in the next section, along with the numerical illustration and comparison of the tests.

3.1. Local asymptotic powers of the tests

We shall assume throughout that

lim
N→∞

mN

N
= λ ∈ (0,1).

Let Ui = F(Zi), i = 1, . . . ,N. The alternative (3.1) in the special cases (3.2), (3.4) and (3.5) can
then be rewritten as follows:

G̃
(1)
	 (u) = u, G̃

(2)
	 (u) = (1 − 	)u + 	u2, 0 ≤ u ≤ 1,

G̃
(1)
	 (u) = 1 − (1 − u)1+	, G̃

(2)
	 (u) = G̃(u,	) = u1+	,

(3.6)
G̃

(1)
	 (u) = u, G̃

(2)
	 (u) = G̃(u,	) = u1+	,

	 > 0, 0 ≤ u ≤ 1.

Because 	 is the parameter of interest and the alternatives (3.6) are contiguous with respect to
the sequence of hypotheses {∏N

i=1 uiI [0 ≤ ui ≤ 1]} under 	N = N−1/2	0 (see Appendix for
the proof), we can study the powers of the rank tests under alternatives (3.6) without loss of
generality.

Consider the centered test criterion

S∗
N = N−1/2

[
− n

N

m∑
i=1

aN(RNi) + m

N

N∑
i=m+1

aN(RNi)

]
. (3.7)

If the scores are generated by a nondecreasing score function ϕ : (0,1) 
→ R which is square-
integrable on (0,1), then the asymptotic distribution of (3.7) under contiguous alternatives fol-
lows from the LeCam theorems (see [11] or [12]). Namely, S∗

N will be asymptotically normally
distributed N (μ,σ 2) with

μ = λ(1 − λ)

∫ 1

0
ϕ(u)ϕ∗(u)du, ϕ∗(u) = ∂ ln g̃(u,	)

∂	

∣∣∣∣
	=0

,

g̃(u,	) = ∂G̃(u,	)

∂u
being the density of G̃(u,	),

σ 2 = λ(1 − λ)

∫ 1

0
ϕ2(u)du.
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The test rejects H on the significance level α provided S∗
N ≥ σ�−1(1 − α), where � is the

standard normal distribution function. Hence, the asymptotic power of the test under the alterna-
tive KN :	N = N−1/2	0 equals

lim
m,n→∞ PKN

(
S∗

N − μ

σ
≥ �−1(1 − α) − μ

σ

)
= 1 − �

(
�−1(1 − α) − μ

σ

)

= 1 − �

(
�−1(1 − α) −

√
λ(1 − λ)

A
	0

∫ 1

0
ϕ(u)ϕ∗(u)du

)
,

where A2 = ∫ 1
0 ϕ2(u)du. The relative asymptotic efficiency of a test S∗

N1 with respect to a dif-
ferent test S∗

N2 is given as the ratio (
μ(1)

σ1

/
μ(2)

σ2

)2

, (3.8)

where μ(1) and σ 2
1 are, respectively, the asymptotic mean and variance of the statistic S∗

N1 and
μ(2) and σ 2

2 are those of S∗
N2.

Table 1 summarizes the relative asymptotic efficiencies of the Wilcoxon, Psi and Savage tests
with respect to the locally most powerful rank test for specified Lehmann alternatives. These
values are computed with the aid of (3.8). For the purposes of illustration, we also add the van
der Waerden and median tests, and their relative asymptotic efficiencies with respect to the locally
most powerful rank tests.

For the next illustration, consider the Lehmann alternative (3.2) and compare the locally most
powerful Wilcoxon test (the score function ϕ(u) = 2u − 1,0 ≤ u ≤ 1) with the Kolmogorov–
Smirnov test. The asymptotic power of the Wilcoxon test against KN equals

lim
min(m,n)→∞ P

([
1

3
λ(1 − λ)

]−1/2

SN ≥ �−1(1 − α)
∣∣KN

)
(3.9)

= 1 − �

(
�−1(1 − α) − 	0

√
λ(1 − λ)

3

)
.

Table 1. Relative asymptotic efficiencies under various alternatives

Alternative Test

Wilcoxon Psi Savage van der Waerden Median

(3.2) 1.000 0.912 0.750 0.955 0.750
(3.4) 0.912 1.000 0.882 0.992 0.584
(3.5) 0.750 0.822 1.000 0.816 0.480
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For small values 	0, it can be further approximated in the following way:

P

([
1

3
λ(1 − λ)

]−1/2

SN ≥ �−1(1 − α)
∣∣KN

)
(3.10)

≈ α + 	0 · ��(
�−1(1 − α)

)√λ(1 − λ)

3
.

Let us now consider the Kolmogorov–Smirnov test against alternative (3.2). Let F̂m and Ĝn be
the respective empirical distribution functions of samples X1, . . . ,Xm and Y1, . . . , Yn. Then, by
Hájek et al. [12], Theorem VI.3.2, we have

lim
m,n→∞ P

(√
nm

n + m
sup
x∈R

(
Ĝn(x) − F̂m(x)

) ≥
√

−1

2
logα|KN

)

= P

(
sup

0≤u≤1

(
B(u) + 	0

√
λ(1 − λ)u(1 − u)

) ≥
√

−1

2
logα

)
,

where B(u) is a Brownian bridge. The last probability cannot easily be calculated analytically.
Hence, we resort to a linear approximation around the point 	0 = 0 and get

P

(
sup

0≤u≤1

(
B(u) + 	0

√
λ(1 − λ)u(1 − u)

) ≥
√

−1

2
logα

)
(3.11)

≈ α + 2	0

√
λ(1 − λ)α

√
−1

2
logα

∫ 1

0
(2u − 1)ψ(α,u)du,

where

ψ(α,u) = 2�

(
(2u − 1)

√−(1/2) logα√
u(1 − u)

)
− 1.

Table 2 gives the asymptotic powers (for α = 0.05) of the Wilcoxon test (As.W) and the
Kolmogorov–Smirnov test (As.KS) computed from (3.9) and (3.11); these powers are compared
with empirical powers (Obs.W, Obs.KS) obtained by simulations of 30, 100, 500 and 1000 obser-
vations in both samples. The simulations were carried out in the R programming language using
500 000 replications under the alternative (3.3), where F denotes the distribution function of the
uniform R(0,1) distribution. We recall that the powers of rank tests under Lehmann alternatives
are also distribution-free for finite samples.

The asymptotic approximation (3.9) of the power of the Wilcoxon test is already very good for
m = n = 100. Unfortunately, the linear approximation (3.11) of the power of the Kolmogorov–
Smirnov test only works in a local neighborhood of the null hypothesis as the power function
increases exponentially. Even for small values of 	0, the approximation (3.11) of the power of
the Kolmogorov–Smirnov test is very good only for large sample sizes.
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Table 2. Comparison of the empirical powers for various sample sizes and of the local asymptotic powers
of the Wilcoxon and Kolmogorov–Smirnov tests against the alternative (3.3)

	0 Obs.W, m = n = As.W Obs.KS, m = n = As.KS

30 100 500 1000 30 100 500 1000

0.0 0.050 0.050 0.050 0.050 0.050 0.036 0.039 0.048 0.048 0.050
0.1 0.052 0.053 0.053 0.053 0.053 0.038 0.040 0.050 0.052 0.053
0.2 0.056 0.056 0.056 0.056 0.056 0.040 0.043 0.053 0.054 0.055
0.3 0.059 0.059 0.059 0.059 0.060 0.042 0.046 0.056 0.057 0.058
0.4 0.063 0.064 0.063 0.063 0.063 0.044 0.050 0.059 0.060 0.061
0.5 0.067 0.066 0.067 0.066 0.067 0.047 0.052 0.063 0.063 0.063
0.6 0.069 0.069 0.071 0.071 0.071 0.049 0.055 0.066 0.067 0.066
0.7 0.076 0.074 0.074 0.075 0.075 0.053 0.057 0.069 0.070 0.069
0.8 0.077 0.079 0.079 0.080 0.079 0.054 0.061 0.073 0.074 0.072
0.9 0.081 0.083 0.083 0.082 0.083 0.057 0.063 0.076 0.077 0.074
1.0 0.085 0.088 0.087 0.088 0.088 0.060 0.067 0.080 0.081 0.077
2.0 0.141 0.142 0.141 0.143 0.143 0.100 0.107 0.126 0.131 0.104
3.0 0.214 0.217 0.215 0.218 0.218 0.155 0.165 0.185 0.193 0.131

Table 3 compares the slopes in linear approximations of asymptotic powers of the Kolmogo-
rov–Smirnov and Wilcoxon tests, given in (3.10) and (3.11), under various sizes of the tests. The
first column gives the size of the test, the second column the slope for the Kolmogorov–Smirnov
test (K–S), the third column gives the slope for the Wilcoxon test and the last column gives the
ratio of the two slopes.

4. Numerical comparison of Hotelling- and Wilcoxon-type tests

The empirical powers of the Hotelling T 2 and Wilcoxon two-sample tests are compared under
bivariate normal and Cauchy distributions with various parameters; the Wilcoxon test of type
(2.10), (2.11) is based on the ranks of the Euclidean interpoint distances. The Hotelling test dis-
tinguishes well two normal samples contrasting in locations, even if they also differ in scales.

Table 3. Slopes of the Kolmogorov–Smirnov and Wilcoxon
tests at various levels of significance

α K–S Wilcoxon Wilcoxon/K–S

0.001 0.001 0.002 2.070
0.010 0.009 0.015 1.680
0.025 0.022 0.034 1.500
0.050 0.044 0.059 1.350
0.100 0.086 0.101 1.180
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Table 4. Powers of two-sample Hotelling T 2 test (H) and of two-sample Wilcoxon test (W) based on
distances for various m = n and α = 0.05. The first sample always has N2(μ1,�1) distribution with μ1 =
(0,0)� and �1 = Diag{1,1}. The second sample has N2(μ2,�2) with various μ2,�2 specified in the first
column

Second sample Test m = n = 10 m = n = 100 m = n = 1000

μ2 = (0,0)T H 0.0471 0.0481 0.0493
�2 = Diag{1,1} W 0.0457 0.0505 0.0487

μ2 = (0.2,0.2)T H 0.0771 0.4115 1.0000
�2 = Diag{1,1} W 0.0520 0.1715 0.6458
μ2 = (0.5,0.5)T H 0.2318 0.9962 1.0000
�2 = Diag{1,1} W 0.1085 0.5701 0.8617

μ2 = (0,0)T H 0.0659 0.0561 0.0452
�2 = Diag{0.1,0.1} W 0.7994 0.9998 1.0000
μ2 = (0,0)T H 0.0653 0.0456 0.0530
�2 = Diag{0.2,0.2} W 0.4851 0.9932 1.0000
μ2 = (0,0)T H 0.0521 0.0521 0.0463
�2 = Diag{0.5,0.5} W 0.1182 0.7034 0.9968
μ2 = (0,0)T H 0.0531 0.0530 0.0514
�2 = Diag{1.5,1.5} W 0.0656 0.2881 0.8525
μ2 = (0,0)T H 0.0552 0.0518 0.0508
�2 = Diag{2,2} W 0.0999 0.5395 0.9670
μ2 = (0,0)T H 0.0572 0.0546 0.0521
�2 = Diag{1.0,0.2} W 0.1029 0.6568 0.9936

μ2 = (0.1,0.1)T H 0.0553 0.1266 0.7897
�2 = Diag{1.1,1.1} W 0.0491 0.0932 0.4232
μ2 = (0.1,0.1)T H 0.0601 0.1167 0.7183
�2 = Diag{1.5,1.5} W 0.0667 0.3182 0.7690
μ2 = (0.2,0.2)T H 0.0742 0.3656 1.0000
σ 2

1 = 1, σ 2
2 = 1.5 W 0.0548 0.2246 0.6907

μ2 = (0.2,0.2)T H 0.0710 0.3402 0.9994
�2 = Diag{1.5,1.5} W 0.0668 0.3551 0.7597

However, in some situations, the Wilcoxon test even competes well with the Hotelling test,
namely, when either the samples differ only moderately in locations or when they differ con-
siderably in scales. This is illustrated by Table 4, which provides empirical powers of Hotelling
and Wilcoxon tests for a comparison of two bivariate normal samples. The sample sizes are
m = n = 10,100,1000 and the simulations are based on 10 000 replications. The first sample
always has distribution N2(μ1,�1) with μ1 = (0,0)� and �1 = Diag{1,1}, while the second
sample has N2(μ2,�2) with various parameters.

We also refer to the simulation study of [43] which compared the empirical powers of the
Liu–Singh rank-sum test (Q) based on the depths, the Hotelling and the Hetmansperger et al.
[17] tests for two bivariate normal samples. Under normality, the Q-test mostly dominates the
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Table 5. Powers of two-sample Hotelling T 2 test (H) and two-sample Wilcoxon test (W) based on distances
for various m = n and α = 0.05. The first sample X always has the two-dimensional Cauchy distribution.
The second sample Y is obtained as Y = μ + σY∗, where Y∗ is generated as a two-dimensional Cauchy
distribution independent of X. Values of m,n,μ and σ are specified in the first column

Second sample Test m = n = 10 m = n = 25 m = n = 100 m = n = 1000

μ = (0,0)T H 0.0191 0.0156 0.0171 0.0217
σ = 1 W 0.0450 0.0478 0.0510 0.0442

μ = (0.2,0.2)T H 0.0227 0.0232 0.0227 0.0174
σ = 1 W 0.0468 0.0536 0.0874 0.3925
μ = (0.5,0.5)T H 0.0408 0.0404 0.0414 0.0361
σ = 1 W 0.0664 0.1115 0.2937 0.7470
μ = (1,1)T H 0.1038 0.1193 0.1260 0.1226
σ = 1 W 0.1219 0.2710 0.6235 0.8893
μ = (5,5)T H 0.7387 0.7535 0.7683 0.7772
σ = 1 W 0.7574 0.9441 0.9782 0.9944

μ = (0,0)T H 0.0200 0.0171 0.0193 0.0103
σ = 1.5 W 0.0664 0.1207 0.3419 0.8428
μ = (0,0)T H 0.0207 0.0168 0.0182 0.0172
σ = 2 W 0.1082 0.2439 0.6123 0.9135

μ = (0.2,0.2)T H 0.0189 0.0201 0.0196 0.0240
σ = 1.5 W 0.0710 0.1297 0.3495 0.8249
μ = (1,1)T H 0.0741 0.0814 0.0865 0.0943
σ = 1.5 W 0.1088 0.2188 0.4925 0.8462
μ = (2,2)T H 0.2356 0.2546 0.2690 0.2716
σ = 1.5 W 0.2092 0.4139 0.7395 0.9259

μ = (0.2,0.2)T H 0.0248 0.0186 0.0217 0.0158
σ = 2 W 0.1134 0.2401 0.5990 0.9151
μ = (1,1)T H 0.0575 0.0616 0.0623 0.0676
σ = 2 W 0.1330 0.2797 0.5619 0.8272
μ = (2,2)T H 0.1796 0.1936 0.2045 0.2164
σ = 2 W 0.1771 0.3513 0.6531 0.8981

other two tests, as well as the Wilcoxon test based on interpoint distances. However, the (local)
unbiasedness of the Q-test against two-sample alternatives is doubtful under asymmetric distri-
butions of the depths, while a one-sided alternative in depths has a difficult interpretation in the
original data.

Table 5 presents the empirical powers of the tests comparing two samples from the bivariate
Cauchy distributions. The first sample X has a two-dimensional Cauchy distribution with inde-
pendent components. The second sample Y is obtained as a random sample Y∗ from the two-
dimensional Cauchy distribution with independent components, independent of X, transformed
to Y = μ + σY∗ for certain shifts μ and scales σ. The results are based on 10 000 replications.
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The Wilcoxon test is far more powerful than the Hotelling test, already under a small shift. The
Hotelling test fails completely if μ = 0 but σ �= 1, while the Wilcoxon test still distinguishes
well the samples. The Wilcoxon test also dominates the Hotelling test in other situations.

The rank tests based on interpoint distances are distribution-free, both under the hypothesis and
under the Lehmann alternatives, while the exact distribution of the distances can remain unknown
when performing the tests. The tests are locally unbiased against one-sample alternatives. If
the interpoint distances are replaced with other scalar characteristics which are symmetrically
distributed under the hypothesis, then the tests are also locally unbiased against the two-sample
alternatives. The Lehmann alternatives reflect the practical situations well.

Appendix: Contiguity of Lehmann’s alternatives

Let {PN1, . . . ,PNN } and {QN1, . . . ,QNN } be two triangular arrays of probability measures de-
fined on the measurable space (X , A), and let P

(N)
N = ∏N

i=1 PNi and Q
(N)
N = ∏N

i=1 QNi de-
note the respective product measures, N = 1,2, . . . . Further, denote by pNi and qNi the re-
spective densities of PNi and QNi with respect to a σ -finite measure μi , which can also be
μi = PNi + QNi, i = 1, . . . ,N.

Oosterhoff and van Zwet [32] proved that {Q(N)
N } is contiguous with respect to {P (N)

N } if and
only if

lim sup
N→∞

N∑
k=1

H 2(PNk,QNk) < ∞ (A.1)

and

lim
N→∞

N∑
k=1

QNk

{
qNk(XNk)

pNk(XNk)
≥ cN

}
= 0 ∀cN → ∞, (A.2)

where

H(P,Q) =
[∫ (√

p − √
q
)2 dμ

]1/2

=
[

2
∫ (

1 − √
pq

)
dμ

]1/2

is the Hellinger distance of P,Q.

Put 	N = N−1/2	0 with 	0 > 0 fixed. Applying (A.1) and (A.2), we can verify the conti-
guity of the sequence {∏m

k=1 G
(1)
	N

(zk)
∏N

k=m+1 G
(2)
	N

(zk)} with respect to {∏N
k=1 F(zk)} for the

alternatives (3.3), (3.4) and (3.5).

Lemma A.1. (i) Let {
N∏

k=1

F(zk)

}∞

N=1

, z1, . . . , zN ≥ 0, N = 1,2, . . . , (A.3)
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and {
m∏

k=1

G
(1)
	N

(zk)

N∏
k=m+1

G
(2)
	N

(zk)

}∞

N=1

, z1, . . . , zN ≥ 0, N = 1,2, . . . , (A.4)

be two sequences of probability distributions satisfying

	N = N−1/2	0 > 0, lim
N→∞ min{m,n} = ∞,

lim
N→∞

m

N
= lim

N→∞
mN

N
= λ ∈ (0,1),

where G
(1)
	 ,G

(2)
	 are given by either (3.2), (3.4) or (3.5). The sequence (A.4) is then contiguous

with respect to the sequence (A.3).

Proof. (i) Let us first consider the Lehmann alternatives (3.2). Then,

N∑
k=m+1

H 2(F (zk),G	N
(zk))

= n ·
∫ ∞

0
f (z)

[√
1 + 	N

(
2F(z) − 1

) − 1
]2 dz

= n

∫ ∞

0
f (z)

[1 + 	N(2F(z) − 1) − 1]2

[√1 + 	N(2F(z) − 1) + 1]2
dz

≤ n	2
N

∫ ∞

0
f (z)

(
2F(z) − 1

)2 dz

= 4n	2
N

∫ 1

0

(
u − 1

2

)2

= 1

3
n	2

N = 1

3
λN	0 < ∞

and

lim
N→∞

N∑
k=1

QNk

{
qNk(XNk)

pNk(XNk)
≥ cN

}

= 0 + lim
N→∞

N∑
k=m+1

∫ ∞

0
I
[
1 + 	N

(
2F(zk) − 1

) ≥ cN

]
× [

1 + 	N

(
2F(zk) − 1

)]
f (zk)dzk = 0

because cN > 1 + N−1/2	0 for n > N0 whenever cN → ∞. The contiguity is thus verified.
(ii) Let

G	N
(zi) =

{
1 − (

1 − F(zi)
)1+	N , i ≤ m,

(F (zi))
1+	N , i ≥ m + 1.
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Then,

N∑
i=1

H 2(F (zi),G	N
(zi))

= m ·
∫ ∞

0
f (z)

[√
(1 + 	N)

(
1 − F(z)

)	N − 1
]2 dz

+ n ·
∫ ∞

0
f (z)

[√
(1 + 	N)(F (z))	N − 1

]2 dz

≤ m ·
∫ ∞

0
f (z)

[
(1 + 	N)

(
1 − F(z)

)	N − 1
]2 dz

+ n ·
∫ ∞

0
f (z)[(1 + 	N)(F (z))	N − 1]2 dz

= m ·
∫ 1

0
[(1 + 	N)(1 − u)	N − 1]2 dz + n ·

∫ 1

0
[(1 + 	N)u	N − 1]2 dz

= N ·
∫ 1

0
[(1 + 	N)u	N − 1]2 dz ≤ 	N < ∞

and hence (A.1) is proved for the alternative (3.4). Concerning (A.2), we have

lim
N→∞

N∑
i=1

QNi

{
qNi(XNi)

pNi(XNi)
≥ cN

}

= lim
N→∞

{
m ·

∫ ∞

0
I
[
(1 + 	N)

(
1 − F(z)

)	N ≥ cN

]
(1 + 	N)

(
1 − F(z)

)	N f (z)dz

+ n ·
∫ ∞

0
I [(1 + 	N)(F (z))	N ≥ cN ](1 + 	N)(F (z))	N f (z)dz

}

= lim
N→∞N ·

∫ 1

0
I [(1 + 	N)u	N ≥ cN ](1 + 	N)u	N du

= lim
N→∞N ·

∫ 1+	N

0
I [v ≥ cN ]v1/	N 	−1

N (1 + 	N)−1/	N dv = 0

because the set {v : cN ≤ v ≤ 1 + 	N } is empty for N > N0.

(iii) Similarly, for the alternative (3.5), we have

N∑
k=m+1

H 2(F (zk),G	N
(zk))

= n ·
∫ ∞

0
f (z)

[√
(1 + 	N)F	N (z) − 1

]2 dz
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= n

∫ ∞

0
f (z)

[(1 − 	N)F	N (z) − 1]2

[√(1 + 	N)F	N (z) + 1]2
dz

≤ n

∫ 1

0
[(1 + 	N)u	N − 1]2 du ≤ n

∫ 1

0
[	2

N + (u	N − 1)2]du

≤ n

{
	2

N +
[

u1+2	N

1 + 2	N

− 2u1+	N

1 + 	N

+ u

]1

0

}
= n

{
	2

N + 2	2
N

(1 + 2	N)(1 + 	n)

}
≤ 7n	2

N = 7λN	2
0 < ∞.

Condition (A.2) is verified analogously as for the alternative (3.2). �
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the grant IAA101120801 of the Academy of Science of Czech Republic, by the Czech Republic
Grant 201/09/0133 and by the research project MSM 0021620839 of the Ministry of Education,
Youth and Sports of Czech Republic.

References

[1] Amrhein, P. (1995). An example of a two-sided Wilcoxon signed rank test which is not unbiased. Ann.
Inst. Statist. Math. 47 167–170. MR1341213

[2] Baringhaus, L. and Franz, C. (2004). On a new multivariate two-sample test. J. Multivariate Anal. 88
190–206. MR2021870

[3] Bickel, P.J. (1969). A distribution free version of the Smirnov two sample test in the p-variate case.
Ann. Statist. 40 1–23. MR0256519

[4] Brown, B.M. (1982). Cramér–von Mises distributions and permutation tests. Biometrika 69 619–624.
MR0695207

[5] Chaudhuri, P. and Sengupta, D. (1993). Sign tests in multidimension: Inference based on the geometry
of the data cloud. J. Amer. Statist. Assoc. 88 1363–1370. MR1245371

[6] Choi, K. and Marden, J.I. (1997). An approach to multivariate rank tests in multivariate analysis of
variance. J. Amer. Statist. Assoc. 92 1581–1590. MR1615267

[7] Choi, K. and Marden, J.I. (2005). Tests of multivariate linear models using spatial concordances.
J. Nonparametr. Statist. 17 167–185. MR2112519

[8] Friedman, J.H. and Rafsky, L.C. (1979). Multivariate generalizations of the Wald–Wolfowitz and
Smirnov two-sample tests. Ann. Statist. 7 697–717. MR0532236

[9] Gibbons, J.D. (1964). A proposed two-sample test and its properties. J. Roy. Statist. Soc. Ser. B 26
305–312. MR0174121

http://www.ams.org/mathscinet-getitem?mr=1341213
http://www.ams.org/mathscinet-getitem?mr=2021870
http://www.ams.org/mathscinet-getitem?mr=0256519
http://www.ams.org/mathscinet-getitem?mr=0695207
http://www.ams.org/mathscinet-getitem?mr=1245371
http://www.ams.org/mathscinet-getitem?mr=1615267
http://www.ams.org/mathscinet-getitem?mr=2112519
http://www.ams.org/mathscinet-getitem?mr=0532236
http://www.ams.org/mathscinet-getitem?mr=0174121
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