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Let (Xt , t ≥ 0) be a Lévy process with compound Poisson process and τx be the first passage time of a
fixed level x > 0 by (Xt , t ≥ 0). We prove that the law of τx has a density (defective when E(X1) < 0) with
respect to the Lebesgue measure.

Keywords: first passage time law; jump process; Lévy process

1. Introduction

The main purpose of this paper is to show that the first passage time distribution associated
with a Lévy process with compound Poisson process has a density with respect to the Lebesgue
measure.

Let X be a cadlag process started at 0 and τx the first passage time of level x > 0 by X.
Lévy, in [15], computed the law of τx when X is a Brownian motion with drift. This result

is extended by Alili et al. [1] and Leblanc [12] to the case where X is an Ornstein–Uhlenbeck
process. The case where X is a Bessel process was studied by Borodin and Salminen in [4].

For the situation where the process X has jumps, the first results were obtained by Zolotarev
[22] and Borokov [5] for X a spectrally negative Lévy process. Moreover, if Xt has probability
density p(t, x) with respect to the Lebesgue measure, then the law of τx has density f (t, x) with
respect to the Lebesgue measure, where xf (t, x) = tp(t, x) and Xτx = x almost surely.

If X is a spectrally positive Lévy process, Doney [7] gives an explicit formula for the joint
Laplace transform of τx and the overshoot Xτx − x. When X is a stable Lévy process, Peskir
[16] and Bernyk et al. [2] obtain an explicit formula for the passage time density.

The case where X has signed jumps has been studied more recently. In [9], the authors give
the law of τx when X is the sum of a decreasing Lévy process and an independent compound
process with exponential jump sizes. This result is extended by Kou and Wang in [11] to the
case of a diffusion process with jumps where the jump sizes follow a double exponential law.
They compute the Laplace transform of τx and derive an expression for the density of τx . For
a more general jump-diffusion process, Roynette et al. [19] show that the Laplace transform of
(τx, x − Xτx− ,Xτx − x) is the solution of some kind of random integral.
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For a general Lévy processes, Doney and Kyprianou [8] give the quintuple law of (Ḡτx− , τx −
Ḡτx−,Xτx − x, x − Xτx−, x − X̄τx−) where X̄t = sups≤t Xs and Ḡt = sup{s < t, X̄s = Xs}.

Results are also available for some Lévy processes without Gaussian component; see Lefèvre
et al. [13,14,17,18]. Blanchet [3] considers a process satisfying the stochastic equation dXt =
Xt−(μdt + σ1φ̃(t)=0 dWt + φ1φ̃(t)=φ dÑt ), t ≤ T , where T is a finite horizon, μ ∈ R, σ > 0,

φ̃(·) is a function taking two values, 0 or φ, W is a Brownian motion, N is a Poisson process
with intensity 1

φ2 1φ̃(t)=φ and Ñ is the compensated Poisson process.
The aim of this paper is to add to these results the law of a first passage time by a Lévy process

with compound Poisson process.
The paper is organized as follows: Section 2 contains the main result (Theorem 2.1) which

gives the first passage time law by a jump Lévy process. We compute the derivative of the distri-
bution function of τx at t = 0 in Section 2.1 and at t > 0 in Section 2.2. Section 2.2 contains the
proofs of some useful results.

2. First passage time law

Let m ∈ R (Wt , t ≥ 0) be a standard Brownian motion (Nt , t ≥ 0) be a Poisson process with
constant positive intensity a and (Yi, i ∈ N

∗) be a sequence of independent identically distributed
random variables with distribution function FY defined on a probability space (�, F ,P). We
suppose that the σ -fields σ(Yi, i ∈ N

∗), σ(Nt , t ≥ 0) and σ(Wt , t ≥ 0) are independent. Let
(Tn,n ∈ N

∗) be the sequence of the jump times of the process N and (Si, i ∈ N
∗) be a sequence

of independent identically distributed random variables with exponential law of parameter a such
that Tn = ∑n

i=1 Si , n ∈ N
∗.

Let X̃ be the Brownian motion with drift m ∈ R and for z > 0, τ̃z = inf{t ≥ 0 :mt + Wt ≥
z}. By [10], formula (5.12), page 197, τ̃z has the following law on R+ : f̃ (u, z)du + P(τ̃z =
∞)δ∞(du), where

f̃ (u, z) = | z |√
2πu3

exp

[
− (z − mu)2

2u

]
1]0,∞[(u), u ∈ R, and

(1)
P(τ̃z = ∞) = 1 − emz−|mz|.

The function f̃ (·, z) and all its derivatives admit 0 as right limit at 0 and are C∞ on R.

Let X be the process defined by Xt = mt + Wt + ∑Nt

i=1 Yi, t ≥ 0, and τx be the first passage
time of level x > 0 by X : τx = inf{u > 0 :Xu ≥ x}. The main result of this paper is the following
theorem.

Theorem 2.1. The distribution function of τx has a right derivative at 0 and is differentiable at
every point of ]0,∞[. The derivative, denoted f (·, x), is equal to

f (0, x) = a

2

(
2 − FY (x) − FY (x−)

) + a

4

(
FY (x) − FY (x−)

)
and for every t > 0,

f (t, x) = aE
(
1{τx>t}(1 − FY )(x − Xt)

) + E
(
1{τx>TNt }f̃ (t − TNt , x − XTNt

)
)
.
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Furthermore, P(τx = ∞) = 0 if and only if m + aE(Y1) ≥ 0.

The proof of Theorem 2.1 is given in Sections 2.1 and 2.2.
Let (Ft )t≥0 be the completed natural filtration generated by the processes (Wt , t ≥ 0), (Nt , t ≥

0) and the random variables (Yi, i ∈ N
∗) : Ft = σ(Ws, s ≤ t) ∨ σ(Ns, s ≤ t, Y1, . . . , YNt ) ∨ N .

Here, N is the set of negligible sets of (F ,P).

Remark 2.2. This result is already known when X has no positive jumps (see [20], Theo-
rem 46.4, page 348), when X is a stable Lévy process with no negative jumps (see [2]) and
when X is a jump diffusion where the jump sizes follow a double exponential law (see [11]).

According to [14] and [21], for all x > 0, the passage time τx is finite almost surely if and
only if m + aE(Y1) ≥ 0.

2.1. Existence of the right derivative at t = 0

In this section, we show that the distribution function of τx has a right derivative at 0 and we
compute this derivative. For this purpose, we split the probability P(τx ≤ h) according to the
values of Nh : P(τx ≤ h) = P(τx ≤ h,Nh = 0) + P(τx ≤ h,Nh = 1) + P(τx ≤ h,Nh ≥ 2).

Note that P(τx ≤ h,Nh ≥ 2) ≤ 1 − e−ah − ahe−ah and thus limh→0
P(τx≤h,Nh≥2)

h
= 0.

It suffices to prove the following two properties:

P(τx ≤ h,Nh = 0)

h

h→0−→ 0; (2)

P(τx ≤ h,Nh = 1)

h

h→0−→ a

2

(
2 − FY (x) − FY (x−)

) + a

4

(
FY (x) − FY (x−)

)
. (3)

On the set {ω :Nh(ω) = 0}, the processes (Xt ,0 ≤ t ≤ h) and (X̃t ,0 ≤ t ≤ h) are equal and P-
a.s. τx ∧h = τ̃x ∧h. Since τ̃x is independent of N , we have P(τx ≤ h,Nh = 0) = e−ah

P(τ̃x ≤ h).

The law of τ̃x has a C∞ density (possibly defective) with respect to the Lebesgue measure, null
on ]–∞,0], Thus, (2) holds.

To prove (3), we use the same type of arguments as in [19] (for the proof of Theorem 2.4). We
split the probability P(τx ≤ h,Nh = 1) into three parts according to the relative positions of τx

and T1, the first jump time of the Poisson process N :

P(τx ≤ h,Nh = 1) = P(τx < T1,Nh = 1) + P(τx = T1,Nh = 1) + P(T1 < τx ≤ h,Nh = 1)

= A1(h) + A2(h) + A3(h).

Step 1: As for (2), we easily prove that A1(h)
h

h→0−→ 0.

Step 2: We prove that A2(h)
h

h→0−→ a
2 (2 − FY (x) − FY (x−)).

Note that A2(h) = P(τ̃x > T1, X̃T1 +Y1 ≥ x,T1 ≤ h < T2). Using the independence of (Si, i ≥
1) and (Y1, X̃, τ̃x), we get P(τx = T1,Nh = 1) = ae−ah

∫ h

0 E(1{τ̃x>s}1{Y1≥x−X̃s })ds.
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Integrating with respect to Y1, we obtain

P(τx = T1,Nh = 1)

ae−ah
=

∫ h

0
E

(
(1−FY )

(
(x − X̃s)−

))
ds −

∫ h

0
E

(
1{τ̃x≤s}(1−FY )

(
(x − X̃s)−

))
ds.

On the one hand, since FY is a cadlag bounded function and X̃s = ms + Ws , where W is
continuous and symmetric, we get lims→0 E(FY ((x−X̃s)−)) = FY (x)+FY (x−)

2 . On the other hand,
lims→0 E(1{τ̃x≤s}(1 − FY )((x − X̃s)−)) = 0.

We deduce that limh→0
A2(h)

h
= a

2 (2 − FY (x) − FY (x−)).

Step 3: We prove that A3(h)
h

h→0−→ a
4 (FY (x) − FY (x−)).

Note that P(T1 < τx ≤ h,Nh = 1) = P(T1 < τx ≤ h,T1 ≤ h < T2) and T2 = T1 + S2 ◦ θT1 ,
where θ is the translation operator.

Moreover, on {T1 < τx ≤ h < T2}, Xs = XT1 + X̃s−T1 ◦ θT1 , where T1 < s ≤ h and τx =
T1 + τ̃x−XT1

◦ θT1 . The strong Markov property gives, with E
T1(·) standing for E(· | FT1),

A3(h) = E
(
1{τx>T1}1{h≥T1}ET1

(
1{τ̃x−XT1

≤h−T1}1{h−T1<S2}
))

= E
(
1{τx>T1}1{h≥T1}e−a(h−T1)E

T1
(
1{τ̃x−XT1

≤h−T1}
))

= −E
(
1{τ̃x≤T1≤h}1{XT1<x}e−a(h−T1)E

T1
(
1{τ̃x−XT1

≤h−T1}
))

+ E
(
1{h≥T1}1{XT1<x}e−a(h−T1)E

T1
(
1{τ̃x−XT1

≤h−T1}
))

.

Since the distribution function of τ̃x has a null derivative at 0, we have

lim
h→0

1

h
E

(
1{τ̃x≤T1≤h}1{XT1<x}e−a(h−T1)E

T1
(
1{τ̃x−XT1

≤h−T1}
)) = 0.

It remains to show that limh↓0
G(h)

h
= a

4 [F(x) − F(x−)], where

G(h) = E
(
1{h≥T1}1{XT1<x}e−a(h−T1)E

T1
(
1{τ̃x−XT1

≤h−T1}
))

.

Integrating with respect to T1 and then using the fact that f̃ (·, z) is the derivative of the distri-
bution function of τ̃z, we get G(h) = ae−ah

∫ h

0

∫ h−s

0 E[1{X̃s+Y1<x}f̃ (u, x − X̃s − Y1)]duds.

We may apply Lemma A.1 to p = 1, μ = x − ms − Y1 and σ = √
s. Then,

E
[
f̃ (u,μ + σG)1{μ+σG>0}

] = 1√
2π

E

[
e−(μ−mu)2/(2(σ 2+u))

(
μ + σ 2m

(σ 2 + u)3/2
+ σG√

u(σ 2 + u)

)+]

with x+ = max{0, x} and G is a Gaussian N (0,1) variable and we have

G(h) = ae−ah

√
2π

∫ h

0

∫ h−s

0
E

[
e−(x−m(u+s)−Y1)

2/(2(u+s))

(
x − Y1

(u + s)3/2
+ G

√
s√

u(u + s)

)+]
duds.
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We make the changes of variables s = th, u = hv. Then,

G(h)

h
= ae−ah

√
2π

∫ 1

0

∫ 1−t

0
E

[
e−(x−mh(v+t)−Y1)

2/(2h(v+t))

(
x − Y1√

h(v + t)3/2
+ G

√
t√

v(v + t)

)+]
dt dv.

However,

lim
h→0+ e−(x−mh(T =v)−Y1)

2/(2h(t+v))

(
x − Y1√

h(t + v)3/2
+ G

√
t√

v(t + v)

)+
=

√
t√

v(t + v)
G+1{x=Y1}

and

sup
0≤h≤1

e−(x−mh(t+v)−Y1)
2/(2h(t+v))

(
x − Y1√

h(t + v)3/2
+ G

√
v√

1 − v

)+

≤ supz≥0 ze−z2/2 + |m|√
t + v

+
√

t√
v(t + v)

|G|.

From Lebesgue’s dominated convergence theorem, we then obtain

lim
h→0

G(h)

h
= 	FY (x)

E(G+)√
2π

∫ 1

0

∫ 1−t

0

√
t√

v(t + v)
dv dt = 1

4
	FY (x),

where 	FY (z) = FY (z) − FY (z−). This identity achieves the proof of step 3.

2.2. Existence of the derivative at t > 0

Our task now is to show that the distribution function of τx is differentiable on R
∗+ and to compute

its derivative. For this purpose we split the probability P(t < τx ≤ t +h), according to the values
of Nt+h − Nt , into three parts:

P(t < τx ≤ t + h,Nt+h − Nt = 0) + P(t < τx ≤ t + h,Nt+h − Nt = 1)

+ P(t < τx ≤ t + h,Nt+h − Nt ≥ 2)

= B1(h) + B2(h) + B3(h).

Since B3(h) ≤ P(Nt+h − Nt ≥ 2), we have limh→0
B3(h)

h
= 0.

By the Markov property at t , B2(h) = E(1{τx>t}Pt (τx−Xt ≤ h,Nh = 1)), where P
t (·) =

P(·|Ft ).

By (3), B2(h)
h

converges to a
2 [2 − FY (x − Xt) − FY ((x − Xt)−)] + a

4 [FY (x − Xt) − FY ((x −
Xt)−)] and is upper bounded by P(Nh=1)

h
= ae−ah ≤ a. The dominated convergence theorem

gives

lim
h→0

B2(h)

h
= aE

(
1{τx>t}(1 − FY )(x − Xt)

) + 3a

4
E

(
1{τx>t}	FY (x − Xt)

)
.
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However, the jumps set of FY is countable and X has a density (see [6], Proposition 3.12,
page 90). Thus, E(1{τx>t}	FY (x − Xt)) = 0 and limh→0

B2(h)
h

= aE(1{τx>t}(1 − FY )(x − Xt)).

It thus remain to prove that

B1(h)

h

h→0−→ E
(
1{τx>TNt }f̃ (t − TNt , x − XTNt

)
)
. (4)

Since TNt is not a stopping time, we cannot apply the strong Markov property. We split

B1(h) = P(t < τ̃x ≤ t + h < T1) +
∞∑

k=1

P(t < τx ≤ t + h,Tk < t < t + h < Tk+1).

On the set {Tk < t}, we have Xt = XTk
+ Xt−Tk

◦ θTk
, hence on the set {τx > Tk}, we have

τx = Tk + τx−XTk
◦ θTk

. Moreover, on the set {Tk < min(t, τx)},
1{t<τx≤t+h,Tk<t<t+h<Tk+1} = 1{Tk<t}1{t−Tk<τ̃x≤t+h−Tk<Sk+1} ◦ θTk

and the strong Markov property at Tk gives

B1(h) = e−a(t+h)
P(t < τ̃x ≤ t + h)

+
∞∑

k=1

E
(
1{Tk<t}1{τx>Tk}e−a(t+h−Tk)E

Tk
(
1{t−Tk<τ̃x−XTk

≤t+h−Tk}
))

.

The FTk
-conditional law of τ̃x−XTk

has the density (possibly defective) f̃ (·, x − XTk
), thus

since e−a(t−Tk) = E
Tk (1{Tk+1>t}), we have

B1(h) = e−ah

∫ t+h

t

E
(
1{0≤t<T1}

)
f̃ (u, x)du

+ e−ah
∞∑

k=1

∫ t+h

t

E
(
1{Tk≤t<Tk+1}1{τx>Tk}f̃ (u − Tk, x − XTk

)
)

du (5)

= e−ah

∫ t+h

t

E
(
1{TNt <τx }f̃ (u − TNt , x − XTNt

)
)

du.

Since f̃ is continuous with respect to u, for all t > 0, almost surely,

lim
h↓0

1

h

∫ t+h

t

1{TNt <τx }f̃ (u − TNt , x − XTNt
)du = 1{TNt <τx }f̃ (t − TNt , x − XTNt

).

According to Proposition A.2 in the Appendix, the family of random variables ( 1
h

∫ t+h

t
f̃ (u −

TN−t , x − XTNt
)du)0<h≤1 is uniformly integrable. We then obtain

lim
h→0

B1(h)

h
= E

(
1{τx>TNt }f̃ (t − TNt , x − XTNt

)
)
.
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Using (4), we deduce that

P(t < τx ≤ t + h)

h

h→0−→ aE
(
1{τx>t}(1 − FY )(x − Xt)

) + E
(
1{τx>TNt }f̃ (t − TNt , x − XTNt

)
)
.

The proof of Theorem 2.1 is thus complete.

Appendix

We prove the following on f̃ given in (1).

Lemma A.1. Let G be a Gaussian random variable N (0,1) and let μ ∈ R, σ ∈ R+, p ≥ 1 and
x+ = max{x,0}. Then, for every u ∈ R,

E
[
f̃ (u,μ + σG)p1{μ+σG>0}

]
= 1√

2pπp

u(1−2p)/2e−p(μ−mu)2/(2(pσ 2+u))

(pσ 2 + u)(p+1)/2

× E

[(
σG +

√
u

pσ 2 + u
(μ − mu) + m

√
u(pσ 2 + u)

)p

+

]
.

Proposition A.2. For every t > 0 and 1 ≤ p < 3/2,

sup
0<h≤1

E

[(
1

h

∫ t+h

t

1{TNt <τx }f̃ (u − TNt , x − XTNt
)du

)p]
< +∞.

Proof. Let I (h) be

I (h) = 1

h

∫ t+h

t

1{TNt <τx }f̃ (u − TNt , x − XTNt
)du.

Using Jensen’s inequality, the following estimate holds:

E(I (h)p) ≤ 1

h

∫ t+h

t

E
(
1{x−XTNt

>0}f̃ (u − TNt , x − XTNt
)p

)
du.

Conditioning by the filtration generated by N and Yi , i ∈ N, it becomes, where G is a standard
Gaussian random variable independent of N and Yi , i ∈ N,

E(I (h)p) ≤ 1

h

∫ t+h

t

E

(
1{x−mTNt −

∑Nt
i=1 Yi−

√
TNt G>0}

× f̃

(
u − TNt , x − mTNt −

Nt∑
i=1

Yi − √
TNt G

)p)
du.
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Note that for u ∈ [t, t + h], t − TNt ≤ u − TNt ≤ 1 + t − TNt , pTNt + t − TNt > t and if
Cp = supx∈R+

√
xpe−px/2, then, from Lemma A.1,

E(I (h)p) ≤ 3p−1

√
2pπp

E

(
T

p/2
Nt

(t − TNt )
p−1/2t (p+1)/2

E(|G|p) + 1

(t − TNt )
(p−1)/2t1/2+p

Cp

+ |m|p 1

t1/2(t − TNt )
(p−1)/2

)
.

Observe that for every t > 0 and (α, γ ) ∈]–1,0]× [0,+∞[, the random variables (t − TNt )
αT

γ

Nt

are integrable (see the details below), which completes the proof of Proposition A.2.
Note that

E
(
(t − TNt )

αT
γ

Nt

) ≤ tα +
∞∑
i=1

E
(
1t>Ti

(t − Ti)
αT

γ

i

)
< +∞. (A.6)

However, for i ≥ 1, Ti admits as density the function u 
→ ai

(i−1)!u
i−1e−au, thus

E
(
1{t>Ti }(t − Ti)

αT
γ

i

) = ai

(i − 1)!
∫ t

0
e−au(t − u)αuγ+i−1 du ≤ ai

(i − 1)!
∫ t

0
(t − u)αuγ+i−1 du

= ai

(i − 1)! t
γ+i+α �(γ + i)�(α + 1)

�(γ + i + α + 1)
.

Consequently, the sum in the right-hand term of inequality (A.6) is finite and the random
variable (t − TNt )

αT
γ

Nt
is integrable. �
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