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In this paper we study the limiting distributions of the least-squares estimators for the non-stationary first-
order threshold autoregressive (TAR(1)) model. It is proved that the limiting behaviors of the TAR(1)

process are very different from those of the classical unit root model and the explosive AR(1).
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1. Introduction

Since [13], threshold autoregressive (TAR) models have been extensively investigated in the
literature. The standard TAR(1) model can be written as follows:

Yt =
{

γ + αYt−1 + εt , if Yt−1 > r,

δ + βYt−1 + εt , if Yt−1 ≤ r,
(1.1)

where {εn} is a sequence of i.i.d. random variables with zero mean and a finite variance σ 2 > 0.
Petrucceli and Woolford [10] and Chan et al. [4] showed that, if εn has a strictly positive density,
then the necessary and sufficient condition for the strictly stationary and geometrically ergodic
solution to model (1.1) when γ = δ = 0 is

α < 1, β < 1 and αβ < 1; (1.2)

see also [5,12]. The properties of the least-squares estimator (LSE) of model (1.1) were estab-
lished when {Yt } is stationary by Chan [3] and later by Chan and Tsay [5] for the continuous case
(i.e., γ + rα = δ + rβ). When (α,β) does not lie in the stationary region (1.2), the estimation
theory of the LSE of model (1.1) is challenging.

Pham, Chan and Tong [11] were the first to consider the non-stationary case of model (1.1).
They focus on the following case:

γ = δ and r = 0 (1.3)

and assume that δ is a known parameter. For the LSE of (α,β):

α̂n =
∑n−1

t=1 I (Yt > r)Yt (Yt+1 − γ )∑n−1
t=1 I (Yt > r)Y 2

t

, (1.4)
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β̂n =
∑n−1

t=1 I (Yt ≤ r)Yt (Yt+1 − γ )∑n−1
t=1 I (Yt ≤ r)Y 2

t

,

they show that

(α̂n, β̂n) → (α,β) a.s.

if and only if one of the following conditions holds:

α ≤ 1, β ≤ 1 and γ = 0,

α < 1, β ≤ 1 and γ > 0, (1.5)

α ≤ 1, β < 1 and γ < 0.

They also showed that, when αβ = 1, the estimator of α is strongly consistent. However, the rate
of convergence and the limiting distribution of LSE are two open questions when (α,β) lies in
the non-ergodic region.

Following [11], in this paper we study the limiting distribution of (α̂n, β̂n) for the following
cases:

Case I: γ = δ = 0, α = 1 and β < 1,

Case II: γ = δ = 0, α > 1 and β ≤ 1.

For each case, we partially derive the limiting distribution of (α̂n, β̂n) under some suitable condi-
tions. Case I is related to the unit root problem, which is particularly interesting in economics and
finance. One usually tests whether or not a market is efficient via testing a unit root in AR model.
Unit root tests have been extensively studied in the literature; see, for example, [6–8]. When Yt

denotes a market index, case I can describe the phenomena that the market moves from efficiency
to inefficiency when the index crosses the threshold r and |β| < 1. Our result may provide a way
to test this phenomena. The results for case II can help us to understand the limiting behaviors
of the LSE in this complicated and dynamic system. Our proof is based on the limiting behavior
of Yt as t → ∞. The method of the proof is non-standard and may provide some insights for
future research in this area.

The paper is organized as follows. The main results are stated in Section 2. The proofs of the
main results are given in Sections 3 and 4. This paper also includes consistency of the LSE when
αβ = 1 in Section 5, which is of independent interest. Throughout, we let C and C(·) denote
positive constants that may be different in every place, Ft = σ {Y0, ε1, . . . , εt }, and we assume
the initial value Y0 in model (1.1) is a random variable independent with n and {εt ; t ≥ 1}.

2. Main results

We consider two different cases.
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2.1. Case I

Assume r ≤ 0 or r > 0 with α = 1 and β = −1. The results are stated as follows.

Theorem 2.1. Assume γ = δ = 0 and EY 2
0 < ∞. If either

(i) α = 1, β < 1 and r ≤ 0; or
(ii) α = 1, β = −1 and r ∈ R; is satisfied, then we have

n(α̂n − 1) ⇒ B2(1) − 1

2
∫ 1

0 B2(t)dt
, (2.1)

where B(t) is a standard Brownian motion.

Remark 2.1. Unlike the stationary case in [3], the limiting distribution of α̂n is independent
of r and β . (2.1) could be used to test whether (α,β) lies on the boundary {α = 1, β < 1} if
we know r is zero or negative. We note that this test is the same as the Dickey–Fuller test. The
limiting distribution of β̂n is still unclear. But when α < 1, β = 1 and r ≥ 0, from the proof of
Theorem 2.1 and Remark 3.1, we have

n(β̂n − 1) ⇒ B2(1) − 1

2
∫ 1

0 B2(t)dt
. (2.2)

We should mention that Caner and Hansen [2] developed an asymptotic theory for a TAR model
with a unit root, but their model is not the same as model (1.1) since their threshold variable is
Yt−1 − Yt−2.

Remark 2.2. When α = 1, β < 1 and γ = δ < 0, Chan et al. [4] show that {Yt } is ergodic,
and hence is strictly stationary by assuming that Y0 has its distribution π(·) that is the invariant
probability distribution of {Yt }. For the case α = 1, β < 1, r ≤ 0 and γ = δ > 0, we have

Yn ≥ γ + εn + Yn−1 ≥ nγ +
n∑

k=1

εk + Y0.

Hence Yn → ∞ a.s. It follows that max1≤k≤n |Yk − kγ −∑k
i=1 εi | = O(1) a.s. By some standard

arguments using the martingale central limit theorem (CLT), it is not hard to see n3/2(α̂n − 1) ⇒
N(0,3σ 2/γ 2). In this case, β̂n is not a strongly consistent estimator.

2.2. Case II

By (1.5), (α̂n, β̂n) is not a consistent estimator of (α,β) in this case. However, the following
theorem shows that α̂n is a consistent estimator of α.

Theorem 2.2. Assume that γ = δ = 0 and one of the following conditions holds:
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(H1) α > 1, β ≤ 1, r = 0 and EY 2
0 < ∞;

(H2) α > 1, β ≤ 1, r �= 0, EY 2
0 < ∞ and P(ε1 ≤ x) < 1 for any x ∈ R.

Then we have

(α2 − 1)−1αn(α̂n − α) ⇒ η∗/ξ∗,

where η∗ and ξ∗ are independent random variables, η∗ d= ∑∞
t=1 α−t εt , ξ∗ d= ξ and

ξ =
∞∑

k=1

α−k+1
(

β

α

)mk

εk +
(

β

α

)m0

Y0 > 0 a.s. for β ≤ 1 and β �= 0; (2.3)

ξ =
∞∑

k=1

∏∞
t=k I {Yt > r}

αk
εk +

∞∏
t=0

I {Yt > r}Y0 > 0 a.s. for β = 0, (2.4)

where mk = ∑∞
t=k I {Yt ≤ r} is almost surely finite.

Remark 2.3. In the explosive AR(1) model, Yt = αYt−1 + εt , it is well known that the LSE of α

asymptotically follows a Cauchy distribution if εt is normal. By Theorem 2.2, this conclusion
does not hold any more for model (1.1).

3. Proof of Theorem 2.1

Before proving Theorem 2.1, we first establish the limiting distribution for {Yt } when t → ∞ as
follows.

Theorem 3.1. If either (i) or (ii) in Theorem 2.1 holds, then

Y[nt]√
n

⇒ σ |B(t)| on D[0,1], (3.1)

as n → ∞, where D[0,1] is the Skorokhod space.

Remark 3.1. It is interesting to see that the limiting distribution in (3.1) does not depend on β

and r . This means that the effect of β and r on Yt is ignorable when t is long enough. The pattern
of Yt is quite different from the unit root process in the AR(1) model in which X[nt]/

√
n ⇒

σB(t) on D[0,1], where Xt = Xt−1 + εt . If β = 1, α < 1 and r ≥ 0, then replacing Yt by −Yt ,
we can get Y[nt]/

√
n ⇒ −σ |B(t)| on D[0,1].

Proof of Theorem 3.1 under (ii). We first consider the case when α = 1 and β = −1. Denote Yn

by Y �
n in this case. If r ≥ 0, we have Y �

n = εn +|Y �
n−1|− 2Y �

n−1I {0 ≤ Y �
n−1 ≤ r}, and if r < 0, we

have Y �
n = εn + |Y �

n−1| + 2Y �
n−1I {r < Y�

n−1 ≤ 0}. Hence,

max
1≤k≤n

∣∣Y �
k − |Y �

k−1|
∣∣ ≤ max

1≤k≤n
|εk| + 2|r| = oP

(√
n
)
.
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So it is enough to show that |Y �[nt]|/
√

n ⇒ σ |B(t)| on D[0,1]. Note that

Y �
n =

n∑
k=1

n−1∏
j=k

Ij εk +
n−1∏
j=0

IjY
�
0 ,

where Ik = I {Y �
k > r} − I {Y �

k ≤ r}. It follows that

A−1
n Y �

n =
n∑

k=1

A−1
k εk + Y �

0 ,

where An = ∏n−1
k=0 Ik . Since E[A−2

k ε2
k |Fk−1] = 1, we have by the martingale CLT (cf. [1]) that

1√
n
A−1

[nt]Y
�[nt] ⇒ σB(t). (3.2)

Now, (3.1) follows from |Ak| = 1 and the continuous mapping theorem. �

Proof of Theorem 3.1 under (i). Recall the definition of {Y �
n } with the initial value Y �

0 = Y0.
For any p > 0, observe that

|Yn − Y �
n |p = |Yn−1 − Y �

n−1|pI {Yn−1 > r,Y �
n−1 > r}

+ |Yn−1 + Y �
n−1|pI {Yn−1 > r,Y �

n−1 ≤ r}
(3.3)

+ |βYn−1 − Y �
n−1|pI {Yn−1 ≤ r, Y �

n−1 > r}
+ |βYn−1 + Y �

n−1|pI {Yn−1 ≤ r, Y �
n−1 ≤ r}.

Since r ≤ 0, it follows that

|Yn−1 + Y �
n−1|pI {Yn−1 > r,Y �

n−1 ≤ r}
≤ |Yn−1 − Y �

n−1|pI {Yn−1 > 0, Y �
n−1 ≤ r} (3.4)

+ Cp|Y �
n−1|pI {Y �

n−1 ≤ r} + Cp,rI {Yn−1 ≤ 0}.
Furthermore, since β ≤ 1 and r ≤ 0, we have

|βYn−1 − Y �
n−1|pI {Yn−1 ≤ r, Y �

n−1 > r,Y �
n−1 ≥ βYn−1}

≤ |Yn−1 − Y �
n−1|pI {Yn−1 ≤ r, Y �

n−1 > r,Y �
n−1 ≥ βYn−1},

(3.5)
|βYn−1 − Y �

n−1|pI {Yn−1 ≤ r, Y �
n−1 > r,Y �

n−1 < βYn−1,β}
≤ 2p|βYn−1|pI {Yn−1 ≤ r} + Cp,β,r I {Yn−1 ≤ r}.

It follows from (3.3)–(3.5) that

|Yn − Y �
n |p ≤ |Yn−1 − Y �

n−1|p + qn ≤
n∑

k=1

qk, (3.6)
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where

qn = C|Yn−1|pI {Yn−1 ≤ r} + C|Y �
n−1|pI {Y �

n−1 ≤ r} + CI {Yn−1 ≤ 0}. (3.7)

We first have P(Yn ≤ r) → 0 by Lemma 3.2 below and P(Y �
n−1 ≤ r) → 0 by (3.1) under α = 1

and β = −1 as n → ∞. Furthermore, applying Lemma 3.1 below with p = 2 for Yt and Y �
t , we

have

Eqn ≤ C sup
k

E(ε2
k + Y 2

0 )I {Yn−1 ≤ r} + C sup
k

E(ε2
k + Y �2

0 )I {Y �
n−1 ≤ r}

+ CP(Yn−1 ≤ r) + CP(Y �
n−1 ≤ r)

→ 0.

Thus, by (3.3) with p = 2 and the previous inequality, we have

E max
1≤k≤n

|Yk − Y �
k |2/n ≤ 1

n

n∑
k=1

Eqk → 0

as n → ∞. By (i) of Theorem 3.1 and the previous inequality, (ii) of Theorem 3.1 holds. This
completes the proof. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we assume σ = 1. Note that

n(α̂n − 1) = n
∑n−1

t=1 I {Yt > r}Ytεt+1∑n−1
t=1 I {Yt > r}Y 2

t

and

1

n

n−1∑
t=1

I {Yt > r}Ytεt+1 = 1

2n

n−1∑
t=1

I {Yt > r}[(Y 2
t+1 − Y 2

t ) − ε2
t+1]

= 1

2n

n−1∑
t=1

(Y 2
t+1 − Y 2

t ) − 1

2n

n−1∑
t=1

I {Yt ≤ r}(Y 2
t+1 − Y 2

t )

− 1

2n

n−1∑
t=1

I {Yt > r}ε2
t+1.

Since P(yn ≤ r) → P(|B(1)| ≤ 0) = 0 as n → ∞, we have

1

n

n−1∑
t=1

EI {Yt ≤ r}ε2
t+1 = 1

n

n−1∑
t=1

P(Yt ≤ r) → 0,
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as n → ∞. Thus,

1

n

n−1∑
t=1

I {Yt > r}ε2
t+1 → 1 (3.8)

in probability. Furthermore, we have n−1 ∑n−1
t=1 EY 2

t I {Yt ≤ r} → 0 by Lemmas 3.1 and 3.2 be-
low, and hence

1

n

n−1∑
t=1

I {Yt ≤ r}(Y 2
t+1 − Y 2

t ) → 0 (3.9)

in probability. Thus, by (3.8) and (3.9), we have

1

n

n−1∑
t=1

I {Yt > r}Ytεt+1 = 1

2n
(Y 2

n − Y 2
1 ) − 1

2
+ oP(1) ⇒ 1

2
B2(1) − 1

2
.

Note that ∑n−1
t=1 I {Yt > r}Y 2

t

n2
=

∫ 1

0
I
{
Y[nt] > r

}Y 2[nt]
n

dt ⇒
∫ 1

0
B2(t)dt.

Theorem 2.1 follows from the continuous mapping theorem. �

We now prove Lemmas 3.1 and 3.2, which were used in the proof of Theorem 2.1.

Lemma 3.1. Suppose that E|Y0|p < ∞ and E|ε0|p < ∞ for some p > 0. Under the conditions
γ = δ = 0, α = 1 and β < 1, for any event A, it holds that

E|Yn|pI {Yn ≤ r,A} ≤ C
(

sup
k

E|εk|pI {A} + E|Y0|pI {A} + P(A)
)
.

Proof. Set Xn = Yn − r for n ≥ 0. We can see that Xn = en + X+
n−1 − βX−

n−1, where en =
εn + (β − 1)rI {Xn−1 ≤ 0}. Suppose β ≤ 0. The lemma follows from

E|Xn|pI {Xn ≤ 0,A}
= E|Xn|pI {en ≤ −(X+

n−1,−βX−
n−1),A}

(3.10)
≤ CpE|en|pI {A} + CpE|X+

n−1 − βX−
n−1|pI {|en| ≥ X+

n−1 − βX−
n−1,A}

≤ 2Cp sup
k

E|εk|pI {A} + Cp,β,rP(A).

Now we prove the lemma when 0 < β < 1. Set the events Ak = {Xk ≤ 0} for 1 ≤ k ≤ n. Note
that

E|Xn|pI {Xn ≤ 0,A} =
n−1∑
k=0

E|Xn|pI {An · · ·An−kA
c
n−k−1,A} + E|Xn|pI {An · · ·A0,A}. (3.11)
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We need to estimate E|Xn|pI {An · · ·An−kA
c
n−k−1}. In fact, on An · · ·An−kA

c
n−k−1, we have

Xn =
k−1∑
j=0

βjen−j + βkXn−k.

Set ξ = ∑n
j=0 βj |en−j |. It follows that

E|Xn|pI {An · · ·An−kA
c
n−k−1,A}

≤ Cβ,δE|ξ |pI {An · · ·An−kA
c
n−k−1,A}

+ CpβkpE|Xn−k|pI {An · · ·An−kA
c
n−k−1,A}

≤ Cp,βE|ξ |pI {An · · ·An−kA
c
n−k−1,A}

(3.12)
+ Cpβkp

(
sup
k

E|εk|pI {A} + Cp,β,rP(A)
)

+ CpβkpE|Xn−k−1|pI {|en−k| ≥ Xn−k−1,A
c
n−k−1,A}

≤ Cp,βE|ξ |pI {An · · ·An−kA
c
n−k−1,A}

+ 2Cpβkp
(

sup
k

E|εk|pI {A} + Cp,β,rP(A)
)
.

Clearly, on An · · ·A0, we have Xn = ∑n−1
j=0 βj en−j + βnX0 and hence by (3.11) and (3.12),

E|Xn|pI {Xn ≤ 0,A} ≤ C(supk E|εk|pI {A} + E|Y0|pI {A} + P(A)). The lemma is now
proved. �

Lemma 3.2. Suppose that EY 2
0 < ∞, Eε0 = 0 and Eε2

0 < ∞. Under the conditions γ = δ = 0,
α = 1, β < 1 and r ≤ 0, we have Yn/

√
n ⇒ σ |B(1)| as n → ∞.

Proof. For K > 0, set

ε̃k = εkI {|εk| ≤ K} − EεkI {|εk| ≤ K}, ε̂k = εk − ε̃k, k ≥ 1.

Ỹ0 = Y0I {|Y0| ≤ K}, Ŷ0 = Y0 − Ỹ0.

We now construct two TAR(1) processes {Ỹt } and {Ỹ �
t } as follows:

Ỹn = ε̃n + Ỹn−1I {Ỹn−1 > r} + βỸn−1I {Ỹn−1 ≤ r}, n ≥ 1; (3.13)

Ỹ �
n = ε̃n + Ỹ �

n−1I {Ỹ �
n−1 > r} − Ỹ �

n−1I {Ỹ �
n−1 ≤ r}, n ≥ 1. (3.14)

By Theorem 3.1, when α = 1 and β = −1, we can see that

Ỹ �[nt]/
√

n ⇒ σK |B(t)| on D[0,1], (3.15)
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with σ 2
K = Var(̃ε1). Let q ′

k , 1 ≤ k ≤ n, be defined as qk in (3.7) by replacing {Yn} and {Y �
n } with

{Ỹn} and {Ỹ �
n }, respectively. Taking p > 2, by virtue of (3.6), we have

E max
1≤k≤n

∣∣∣∣ Ỹk − Ỹ �
k√

n

∣∣∣∣p ≤
∑n

k=1 Eq ′
k

np/2
.

Furthermore, using Lemma 3.1 with Yt replaced by {Ỹn} and {Ỹ �
n }, respectively, we know that q ′

k

is uniformly bounded for all k ≥ 1. Thus, we have

E max
1≤k≤n

∣∣∣∣ Ỹk − Ỹ �
k√

n

∣∣∣∣p ≤ Cn−p/2+1.

By (3.15) and the previous inequality, we have

Ỹ[nt]/
√

n ⇒ σK |B(t)| on D[0,1]. (3.16)

Since σK → σ as K → ∞, it suffices to show that for any δ > 0,

lim
K→∞ lim sup

n→∞
P
(|Yn − Ỹn| ≥ δ

√
n
) = 0. (3.17)

By model (1.1) and model (3.13), we have

E(Yn − Ỹn)
2 = Eε̂2

n + E(Yn−1 − Ỹn−1)
2I {Yn−1 > r, Ỹn−1 > r}

+ E(Yn−1 − βỸn−1)
2I {Yn−1 > r, Ỹn−1 ≤ r}

+ E(βYn−1 − Ỹn−1)
2I {Yn−1 ≤ r, Ỹn−1 > r}

+ E(βYn−1 − βỸn−1)
2I {Yn−1 ≤ r, Ỹn−1 ≤ r}.

It can be verified that

E(Yn−1 − βỸn−1)
2I {Yn−1 > r, Ỹn−1 ≤ r}

≤ E(Yn−1 − Ỹn−1)
2I {Yn−1 > r, Ỹn−1 ≤ r, Yn−1 > βỸn−1}

+ CEỸ 2
n−1I {Ỹn−1 ≤ r} + CP(Ỹn−1 ≤ r).

Let M be any positive number. Then,

E(βYn−1 − Ỹn−1)
2I {Yn−1 ≤ r, Ỹn−1 > r}

≤ E(Yn−1 − Ỹn−1)
2I {Yn−1 ≤ r, Ỹn−1 > r, Ỹn−1 > βYn−1}

+ CEY 2
n−1I {Yn−1 < −M,βYn−1 ≥ Ỹn−1 > r} + Cβ,M,rP(Ỹn−1 ≤ r + |β|M).

Combining the above inequalities, we can see that

E(Yn − Ỹn)
2 ≤ Eε̂2

n + E(Yn−1 − Ỹn−1)
2 + q̃n,
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where

q̃n = CEY 2
n−1I {Yn−1 ≤ r, Ỹn−1 ≤ r} + CEỸ 2

n−1I {Ỹn−1 ≤ r}
+ CEY 2

n−1I {Yn−1 < −M,βYn−1 ≥ Ỹn−1 > r} + Cβ,M,rP(Ỹn−1 ≤ r + |β|M).

By induction we have

E(Yn − Ỹn)
2 ≤ nEε̂2

0 + EŶ 2
0 +

n∑
k=1

q̃k. (3.18)

Since Ỹn/
√

n ⇒ σK |B(1)|, we have P(Ỹn−1 ≤ r + |β|M) → 0 as n → ∞. Note that

I {yn−1 < −M,βYn−1 ≥ Ỹn−1 > r} ≤
{

I {εn−1 < −M + |r|}, if β ≤ 0,

I {Ỹn−1 ≤ −βM}, if 0 < β < 1.

By Lemma 3.1,

EY 2
n−1I {Yn−1 < −M,βYn−1 ≥ Ỹn−1 > r}
≤ C sup

k

E(ε2
k + Y 2

0 + 1)I {εn−1 < −M + |r|}
+ C sup

k

E(ε2
k + Y 2

0 + 1)I {Ỹn−1 ≤ −βM}

and

EY 2
n−1I {Yn−1 ≤ r, Ỹn−1 ≤ r} + EỸ 2

n−1I {Ỹn−1 ≤ r} ≤ C sup
k

E(ε2
k + Y 2

0 + 1)I {Ỹn−1 ≤ r}.

Since limn→∞ P(Ỹn ≤ x) = 0 for any x ∈ R, we have

lim
M→∞ lim sup

n→∞
n−1

n∑
k=1

q̃k = 0.

This, together with Eε̂2
1 → 0 as K → ∞ and (3.18), implies (3.17). �

4. Proof of Theorem 2.2

To prove Theorem 2.2, we need to establish the limiting distribution for {Yt } as t → ∞.

Theorem 4.1. Let γ = δ = 0. Suppose either (H1) or (H2) in Theorem 2.2 holds. Then we
have E|Yn| = O(αn),

∑∞
t=0 I {Yt ≤ r} < ∞ a.s. and Yn/α

n → ξ > 0 a.s., where ξ is defined in
Theorem 2.2.

From this theorem, we can see that β̂n − β → Z a.s. for some random variable Z. Thus, β̂n is
not a strongly consistent estimator for β . This explains why (1.5) is the necessary and sufficient
condition for consistency of (α̂n, β̂n). To prove Theorem 4.1, we need the following lemma.



On non-stationary threshold autoregressive models 979

Lemma 4.1. Under the conditions of Theorem 4.1, we have: (i) E|Yn| = O(αn); (ii) limn→∞ Yn/

n = ∞ a.s. if lim supn→∞ Yn = ∞ a.s.

Proof. (i) Following the proof of Lemma 3.1, we can prove that, under the conditions (H1)
or (H2) in Theorem 2.2, E|Yn|I {|Yn| ≤ r} = O(1) if β < 1 and E|Yn|I {|Yn| ≤ r} = O(n) if β = 1.
We next show that E|Yn| = O(αn). Since

E|Yn| = E|Yn|I {Yn ≤ r}

+
n−1∑
k=0

E|Yn|I {Yn > r,Yn−1 > r, . . . , Yk+1 > r,Yk ≤ r} (4.1)

+ E|Yn|I {Yn > r,Yn−1 > r, . . . , Y0 > r}

and E|Yn|I {Yn > r,Yn−1 > r, . . . , Y0 > r} = O(αn), we only need to estimate the second
term on the right-hand side of (4.1). Set Bk = {Yn > r,Yn−1 > r, . . . , Yk+1 > r,Yk ≤ r}.
On Bk , we have Yn = ∑n

j=k+2 αn−j εj + αn−k−1Yk+1. Thus by noting that E|Yn|I {Bk} ≤
E max0≤i≤n |∑n

j=i+2 αn−j εj |I {Bk} + αn−k−1E|Yk+1|I {Bk} and E|Yn|I {Yn ≤ r} = O(n), we
have

n−1∑
k=1

E|Yn|I {Bk} ≤ E max
0≤i≤n

∣∣∣∣∣
n∑

j=i+2

αn−j εj

∣∣∣∣∣ + O(1)

n−1∑
k=0

αn−k−1k = O(αn).

This together with (4.1) gives E|Yn| = O(αn).
(ii) For any M > 1, define An = ⋃∞

t=n{Yt ≤ t3/2}. Let δ > 0 and T > max(r,0) satisfy α >

1 + δ + 8T −1/8. Define τ = max{k :Y−1 ≤ T , . . . , Yk ≤ T ,Yk+1 > T,k ≥ −1}, Y−1 = 0. We
can see that τ < ∞ a.s. and {τ = k} = {Y−1 ≤ T , . . . , Yk ≤ T ,Yk+1 > T } is σ(Y0, ε1, . . . , εk+1)

measurable. For any n0 + 3 < n, M > 0, T > M

P(An) ≤ P(τ > n0) +
n0∑

k=−1

P(τ = k,An)

≤ P(τ > n0) +
n0∑

k=−1

P

(
τ = k,An,

∞⋂
j=k+2

{|εj | ≤ δ
(
(j − k − 2)2 + T

)})

+
n0∑

k=−1

P

(
τ = k,An,

∞⋃
j=k+2

{|εj | > δ
(
(j − k − 2)2 + T

)})
.

Note that on the event

B :=
{

τ = k,

∞⋂
j=k+2

{|εj | ≤ δ
(
(j − k − 2)2 + T

)}}
,
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since α > 1 + δ + 8T −1/8 and (t−k−1)2−(t−k−2)2

(t−k−2)2+T
< 8T −1/8 for t ≥ k + 3, we have

Yk+1 > T > r,

Yk+2 = αYk+1 + εk+2 ≥ αT − δT > T + 1,

Yk+3 = αYk+2 + εk+3 ≥ α(T + 1) − δ(1 + T ) > T + 22,

...

Yt = αYt−1 + εt > α
(
(t − k − 2)2 + T

) − δ
(
(t − k − 2)2 + T

)
> (t − k − 1)2 + T

for any t ≥ k + 1. That is, for any t satisfying t − n0 − 1 > t3/4 and k ≤ n0, we have Yt > t3/2

on event B. Thus, for n satisfying n − n0 − 1 > n3/4 and k ≤ n0, we have{
τ = k,An,

∞⋂
j=k+2

{|εj | ≤ δ
(
(j − k − 2)2 + T

)}} = ∅

and

P(An) ≤ P(τ > n0) +
n0∑

k=−1

P

(
τ = k,

∞⋃
j=k+2

{|εj | > δ
(
(j − k − 2)2 + T

)})

= P(τ > n0) +
n0∑

k=−1

P(τ = k)P

( ∞⋃
j=k+2

{|εj | > δ
(
(j − k − 2)2 + T

)})

≤ P(τ > n0) +
n0∑

k=−1

P(τ = k)

∞∑
j=k+2

P
(|εj | > δ

(
(j − k − 2)2 + T

))
.

Letting n → ∞ and then n0 → ∞ implies that for any M > 0,

P

( ∞⋂
n=1

An

)
≤ δ−2

∞∑
k=−1

P(τ = k)

∞∑
j=k+2

E|ε1|2
((j − k − 2)2 + T )2

≤ CT −1
∞∑

k=1

k−2 → 0 as T → ∞.

The lemma is proved. �

Proof of Theorem 4.1. E|Yn| = O(αn) follows from Lemma 4.1(i). We next give the proofs for
the other conclusions.

Proof under (H1). Define Xm by the equations Xn = εn + X+
n−1 − β+X−

n−1, X0 = Y0. Then
we have Yn ≥ Xn for any n ≥ 0. If β = 1, then Xn = ∑n

k=1 εk + X0 and lim supn→∞ Yn =
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lim supn→∞ Xn = ∞ a.s. If β < 1, then by Theorem 3.1, Xn → ∞ in probability. So Yn → ∞
in probability, which implies lim supn→∞ Yn = ∞ a.s. By Lemma 4.1 we have Yn/n → ∞ a.s.
Hence

∑∞
t=0 I {Yt ≤ 0} < ∞ a.s. Thus ξ in (2.3) or (2.4) is well defined and Yn/α

n → ξ a.s.
Now we prove ξ > 0 a.s. Let en = εn − βY−

n−1. We have E|en| = O(n) for β ≤ 1. Define
m = sup{n :αn/n < M}. Then m ∼ logM/ logα → ∞ as M → ∞. By the inequality (a+b)+ ≥
a − |b|, we have

Yn

αn
= en

αn
+ Y+

n−1

αn−1
≥ en

αn
− |en−1|

αn−1
+ Y+

n−2

αn−2
≥ · · · ≥ −

n∑
k=m+1

|ek|
αk

+ Y+
m

αm
. (4.2)

From (4.2) we can get ξ ≥ −∑∞
k=m+1

|ek |
αk + Y+

m

αm a.s. Since M(m + 1)/αm+1 ≤ 1, we have

∞∑
k=m+1

(Mα−k)E|ek| ≤ C

∞∑
k=m+1

Mk

αk
≤ C

∞∑
k=m+1

k − m

αk−m−1

Mk

αm+1(k − m)
≤ C

∞∑
k=0

k + 1

αk
,

where C does not depend on M . So we have

lim sup
M→∞

P

(
M

∞∑
k=m+1

|ek|
αk

≥ η

)
≤ Cη−1 → 0 (4.3)

as η → ∞. It is easy to see that MY+
m /αm ≥ Ym/m → ∞ a.s. as M → ∞. Hence, by (4.2)

and (4.3), P(ξ ≤ 0) = P(Mξ ≤ 0) ≤ P(Ym/m ≤ η) + P(M
∑∞

k=m+1
|ek |
αk ≥ η) → 0 by letting

M → ∞ first and then η → ∞. This proves ξ > 0 a.s.
Proof under (H2). We first assume that lim supn→∞ Yn = ∞ a.s. Then it follows from

Lemma 4.1 that Yn/n → ∞ a.s. and hence
∑∞

t=1 I {Yt ≤ r} < ∞ a.s., Yn/α
n → ξ a.s. By writing

Yn = en + αY+
n−1, where en = εn + βYn−1I {Yn−1 ≤ r} − αYn−1I {0 ≤ Yn−1 ≤ r} if r > 0, and

en = εn + βYn−1I {Yn−1 ≤ r} + αYn−1I {r < Yn−1 ≤ 0} if r ≤ 0, we can show that ξ > 0 a.s.
following the proof of Theorem 4.1 under (H1).

It remains to show that lim supn→∞ Yn = ∞ a.s. We claim that if, for all y ≤ r ,

P(Yt < r for all t ≥ 0|Y0 = y) = 0, (4.4)

then lim supn→∞ Yn = ∞ a.s. The proof is similar to that of [11]. Let c > |r|. Since for any
x > 0, P(ε1 ≤ x) < 1, we have for all r ≤ y ≤ c,

P(Y1 ≥ c|Y0 = y) = P(αy + ε1 ≥ c) ≥ P
(
ε1 ≥ c(1 + α)

)
> 0,

which yields that for any c > |r|
inf

r≤y≤c
P(Yt ≥ c for some t > 0|Y0 = y) > 0.

Then by Proposition 5.1 in [9], for any initial distribution on Y0,

{Yt ∈ [r, c) infinitely often} ⊆ {Yt ∈ [c,∞) infinitely often}. (4.5)
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Using similar arguments in [11], we can see that if for all y ∈ R

P(Yt ≥ r for some t |Y0 = y) = 1, (4.6)

then

P(Yt ≥ r infinitely often) = 1

and hence by (4.5) we have P(Yt ∈ [c,∞) infinitely often) = 1 for any c > 0. This yields
lim supn→∞ Yn = ∞ a.s.

Now it suffices to show that (4.6) or, equivalently, (4.4) holds. Note that (4.4) is a direct con-
sequence of the following results:

lim
n→∞ P

(
max

1≤k≤n

(
k∑

i=1

βk−iεi + βky

)
≤ r

)
= 0 for y ≤ r. (4.7)

If β = 1, then (4.7) holds by the law of iterated logarithm. If β ≤ 0, we have{
max

1≤k≤n

(
k∑

i=1

βk−iεi + βky

)
≤ r

}

⊆
{

k∑
i=1

βk−iεi + βky = εk + β

(
k−1∑
i=1

βk−1−iεi + βk−1y

)
≤ r,1 ≤ k ≤ n

}
⊆ {εk ≤ r + |βr|,1 ≤ k ≤ n}.

Therefore

P

(
max

1≤k≤n

(
k∑

i=1

βk−iεi + βky

)
≤ r

)
≤ P

(
max

1≤k≤n
εk ≤ r + |βr|

)
→ 0.

It remains to prove (4.7) for 0 < β < 1. Set kj = jn1/2 for 1 ≤ j ≤ n1/2. Then for any x > 0 we
have

P

(
max

1≤k≤n

(
k∑

i=1

βk−iεi

)
≤ x

)
≤ P

(
max

1≤j≤n1/2

( kj∑
i=1

βkj −iεi

)
≤ x

)

≤ P

(
max

1≤j≤n1/2

( kj∑
i=kj −n1/4

βkj −iεi

)
≤ 2x

)

+ P

(
max

1≤j≤n1/2

(kj −n1/4−1∑
i=1

βkj −iεi

)
≥ x

)
.
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Since E|ε1| < ∞, we have

P

(
max

1≤j≤n1/2

(kj −n1/4∑
i=1

βkj −iεi

)
≥ x

)
≤ Cn1/2

∞∑
j=n1/4

βj → 0.

By independence, we have

P

(
max

1≤j≤n1/2

( kj∑
i=kj −n1/4

βkj −iεi

)
≤ 2x

)
=

(
P

(
n1/4+1∑
j=1

βj−1εj ≤ 2x

))n1/2

.

Also

P

(
n1/4+1∑
j=1

βj−1εj ≤ 2x

)
≤ P

( ∞∑
j=1

βj−1εj ≤ 3x

)
+ n,

where n ≤ C
∑∞

j=n1/4 βj → 0 as n → ∞. So it suffices to show that for any x > 0,

P(
∑∞

j=1 βj−1εj ≤ x) < 1. In fact, if there exists some x > 0 such that

1 = P

( ∞∑
j=1

βj−1εj ≤ x

)
= EF

(
x −

∞∑
j=2

βj−1εj

)
,

where F(·) is the distribution function of ε1, then F(x − ∑∞
j=2 βj−1εj ) = 1 a.s. That is,∑∞

j=2 βj−1εj = −∞ a.s. This is impossible since 0 < β < 1 and E|ε1| < ∞. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Note that

αn(α̂n − α)

α2 − 1
= α−n

∑n−1
t=1 I (Yt > r)Yt εt+1

α−2n(α2 − 1)
∑n−1

t=1 I (Yt > r)Y 2
t

.

Since Yn/α
n → ξ > 0 a.s., we have (α2 − 1)α−2n

∑n−1
t=1 Y 2

t I {Yt > r} → ξ2 a.s. By the fact
E|Yn|I {Yn ≤ r} = O(n) for β ≤ 1, we have

α−n

(
n−1∑
t=1

Ytεt+1 −
n−1∑
t=1

Ytεt+1I {Yt > r}
)

→ 0 a.s.

We next prove that α−n(
∑n−1

t=1 Ytεt+1 − ξ
∑n−1

t=1 αtεt+1) → 0 in probability. For K > 0, let

ε̃t = εt I {|εt | ≤ K}, 1 ≤ t ≤ n.
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We have α−nE|∑n−1
t=1 Yt (εt+1 − ε̃t+1)| ≤ CE|ε0|I {|ε0| > K} → 0 as K → ∞. So it suffices

to prove that α−n(
∑n−1

t=1 Yt ε̃t+1 − ξ
∑n−1

t=1 αt ε̃t+1) → 0 in probability, which follows from
Yn/α

n → ξ a.s. and |̃εt | ≤ K . Hence

αn(α̂n − α)

α2 − 1
− α−n

∑n−1
t=1 αtεt+1

ξ
→ 0 in probability.

Note that Y[n/2]/α[n/2] → ξ a.s. and α−n(
∑n−1

t=1 αtεt+1 −∑n−1
t=[n/2]+1 αtεt+1) → 0 in probability.

We have

αn(α̂n − α)

α2 − 1
− α−n

∑n−1
t=[n/2]+1 αtεt+1

Y[n/2]/α[n/2] → 0 in probability.

By the independence between
∑n−1

t=[n/2]+1 αtεt+1 and Y[n/2], we see that(
α−n

n−1∑
t=[n/2]+1

αtεt+1, Y[n/2]/α[n/2]
)

⇒ (η∗, ξ∗),

which finishes the proof. �

5. A further result when αβ = 1

We next consider the LSE of (α,β) under the constraints αβ = 1. We estimate α by minimizing
Qn(x), where

Qn(x) =
n∑

t=2

(Yt − xYt−1I {Yt−1 < r} − x−1Yt−1I {Yt−1 ≥ r})2.

Pham, Chan and Tong [11] showed that the estimator α̂n, by minimizing Qn(x) under αβ = 1
and α < 0, is strongly consistent. The following theorem shows that α̂n is still strongly consistent
under αβ = 1 and α > 0.

Theorem 5.1. Let γ = δ = 0, αβ = 1 and 0 < α �= 1. Assume that P(ε1 ≤ x) < 1 and P(ε1 ≥
x) < 1 for any x ∈ R. Then α̂n obtained by minimizing Qn(x) is strongly consistent.

Proof. We only prove the theorem for α > 1. The proof for the other case 0 < α < 1 is similar.
We have

Qn(x) − Qn(α)

= (x − α)2
n∑

t=2

Y 2
t−1I {Yt−1 > r} − 2(x − α)

n∑
t=2

εtYt−1I {Yt−1 > r}
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+ (x−1 − α−1)2
n∑

t=2

Y 2
t−1I {Yt−1 ≤ r}

− 2(x−1 − α−1)

n∑
t=2

εtYt−1I {Yt−1 ≤ r}

≥ (x − α)2
n∑

t=2

Y 2
t−1I {Yt−1 > r} − 2(x − α)

n∑
t=2

εtYt−1I {Yt−1 > r} −
n∑

t=2

ε2
t .

By Theorem 4.1, we can see that

1

α2n

n∑
t=2

Y 2
t−1I {Yt−1 > r} → (α2 − 1)−1ξ a.s.;

n∑
t=2

εtYt−1I {Yt−1 > r} = O(α3n/2) a.s;

n∑
t=2

Y 2
t−1I {Yt−1 ≤ r} = O(1) a.s.;

n∑
t=2

εtYt−1I {Yt−1 ≤ r} = O(1) a.s.

Hence for any δ > 0, we have

lim
n→∞ inf

x:|x−α|>δ

(
Qn(x) − Qn(α)

) = ∞ a.s.

Since Qn(x) is continuous on [α − δ,α + δ], it always admits a minimum on this interval. This
shows that lim supn→∞ |α̂n − α| ≤ δ a.s. for any δ > 0 and completes the proof. �
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