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Let X = {X(t), t ∈ R
N } be a random field with values in Rd . For any finite Borel measure μ and analytic

set E ⊂ R
N , the Hausdorff and packing dimensions of the image measure μX and image set X(E) are

determined under certain mild conditions. These results are applicable to Gaussian random fields, self-
similar stable random fields with stationary increments, real harmonizable fractional Lévy fields and the
Rosenblatt process.
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1. Introduction

Fractal dimensions such as Hausdorff dimension, box-counting dimension and packing dimen-
sion are very useful in characterizing roughness or irregularity of stochastic processes and ran-
dom fields which, in turn, serve as stochastic models in various scientific areas including im-
age processing, hydrology, geostatistics and spatial statistics. Many authors have studied the
Hausdorff dimension and exact Hausdorff measure of the image sets of Markov processes and
Gaussian random fields. We refer to Taylor (1986) and Xiao (2004) for extensive surveys on
results and techniques for Markov processes, and to Adler (1981) and Kahane (1985) for results
on Gaussian random fields.

Let X = {X(t), t ∈ R
N } be a random field with values in R

d , which will simply be called
an (N,d)-random field. For any finite Borel measure μ on R

N , the image measure of μ under
X is defined by μX := μ ◦ X−1. Similarly, for every E ⊂ R

N , the image set is denoted by
X(E) = {X(t), t ∈ E} ⊂ R

d . This paper is concerned with the Hausdorff and packing dimensions
of the image measures and image sets of random fields which are, in a certain sense, comparable
to a self-similar process. Recall that X = {X(t), t ∈ R

N } is said to be H -self-similar if, for every
constant c > 0, we have

{X(ct), t ∈ R
N } d= {cH X(t), t ∈ R

N } (1.1)

and X is said to have stationary increments if, for every h ∈ R
N ,

{X(t + h) − X(h), t ∈ R
N } d= {X(t) − X(0), t ∈ R

N }, (1.2)
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where
d= denotes equality of all finite-dimensional distributions. If X satisfies both (1.1) and

(1.2), then it is called an H -SSSI random field. Samorodnitsky and Taqqu (1994) give a sys-
tematic account of self-similar stable processes. The main results of this paper show that the
Hausdorff and packing dimensions of the images of an H -SSSI random field X are determined
by the self-similarity index H and essentially do not depend on the distributions of X.

An important example of an H -SSSI (N,d)-random field is fractional Brownian motion X =
{X(t), t ∈ R

N } of index H (0 < H < 1), which is a centered Gaussian random field with the
covariance function E[Xi(t)Xj (s)] = 1

2δi,j (‖s‖2H +‖t‖2H −‖t −s‖2H ) for all s, t ∈ R
N , where

δi,j = 1 if i = j and δi,j = 0 otherwise. It is well known (see Kahane (1985), Chapter 18) that
for every Borel set E ⊂ R

N ,

dimH X(E) = min

{
d,

1

H
dimH E

}
a.s., (1.3)

where dimH denotes the Hausdorff dimension. On the other hand, Talagrand and Xiao (1996)
proved that, when N > Hd , the packing dimension analog of (1.3) fails in general. Xiao (1997)
proved that

dimP X(E) = 1

H
DimHd E a.s., (1.4)

where dimP denotes packing dimension and Dims E is the packing dimension profile of E de-
fined by Falconer and Howroyd (1997) (see Section 2 for its definition). Results (1.3) and (1.4)
show that there are significant differences between Hausdorff dimension and packing dimension,
and both dimensions are needed for characterizing the fractal structures of X(E).

There have been various efforts to extend (1.3) to other non-Markovian processes or random
fields, but with only partial success; see Kôno (1986), Lin and Xiao (1994), Benassi, Cohen and
Istas (2003) and Xiao (2007). In order to establish a Hausdorff dimension result similar to (1.3)
for a random field X, it is standard to determine upper and lower bounds for dimH X(E) sep-
arately. While the capacity argument (based on Frostman’s theorem) is useful for determining
lower bounds, the methods based on the classical covering argument for establishing an upper
bound for dimH X(E) are quite restrictive and usually require strong conditions to be imposed
on X. As such, the aforementioned authors have only considered random fields which either sat-
isfy a uniform Hölder condition of appropriate order on compact sets or have at least the first mo-
ment. In particular, the existing methods are not enough, even for determining dimH X([0,1]N),

when X = {X(t), t ∈ R
N } is a general stable random field.

Given a random field X = {X(t), t ∈ R
N } and a Borel set E ⊂ R

N , it is usually more difficult
to determine the packing dimension of the image set X(E). Recently, Khoshnevisan and Xiao
(2008a) and Khoshnevisan, Schilling and Xiao (2009) have solved the above problem when
X = {X(t), t ≥ 0} is a Lévy process in R

d . However, their method depends crucially on the
strong Markov property of Lévy processes and cannot be applied directly to random fields.

This paper is motivated by the need to develop methods for determining the Hausdorff and
packing dimensions of the image measure μX and image set X(E) under minimal conditions on
the random field X. By applying measure-theoretic methods and the theory of packing dimension
profiles, we are able to solve the problems for the Hausdorff and packing dimensions of the image
measure μX under mild conditions (namely, (C1) and (C2) in Section 3). The main results are
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Theorem 3.8 and Theorem 3.12. When X satisfies certain uniform Hölder conditions, Theorems
3.8 and 3.12 can be applied directly to compute the Hausdorff and packing dimensions of X(E).
More generally, we also provide a method for determining the Hausdorff dimension of X(E)

under conditions (C1) and (C2) (see Theorem 4.9). However, we have not been able to solve the
problem of determining dimP X(E) in general.

The rest of this paper is organized as follows. In Section 2, we recall the definitions and some
basic properties of Hausdorff dimension, packing dimension and packing dimension profiles of
sets and Borel measures. In Section 3, we determine the Hausdorff and packing dimensions of the
image measure μX under general conditions (C1) and (C2). In Section 4, we study the Hausdorff
and packing dimensions of the image set X(E), where E ⊂ R

N is an analytic set (i.e., E is a
continuous image of the Baire space N

N or, equivalently, E is a continuous image of a Borel set).
Section 5 contains applications of the theorems in Sections 3 and 4 to SSSI stable random fields,
real harmonizable fractional Lévy fields and the Rosenblatt process.

Throughout this paper, we will use 〈x, y〉 to denote the inner product and ‖ · ‖ to denote the
Euclidean norm in R

n, no matter what the value of n is. For any s, t ∈ R
n such that sj < tj

(j = 1, . . . , n), [s, t] = ∏n
j=1[sj , tj ] is called a closed interval. We will use K to denote an

unspecified positive constant which may differ from line to line. Specific constants in Section i

will be denoted by Ki,1,Ki,2, . . . .

2. Preliminaries

In this section, we recall briefly the definitions and some basic properties of Hausdorff dimension,
packing dimension and packing dimension profiles. More information on Hausdorff and packing
dimensions can be found in Falconer (1990) and Mattila (1995).

2.1. Hausdorff dimension of sets and measures

For any α > 0, the α-dimensional Hausdorff measure of E ⊂ R
N is defined by

sα-m(E) = lim
ε→0

inf

{ ∞∑
i=1

(2ri)
α: E ⊂

∞⋃
i=1

B(xi, ri), ri < ε

}
, (2.1)

where B(x, r) = {y ∈ R
N : |y − x| < r}. The Hausdorff dimension of E is defined as dimH E =

inf{α > 0: sα-m(E) = 0}. For a finite Borel measure μ on R
N , its Hausdorff dimension is de-

fined by dimH μ = inf{dimH E: μ(E) > 0 and E ⊂ R
N is a Borel set} and its upper Hausdorff

dimension is defined by dim∗
H μ = inf{dimH E: μ(RN\E) = 0 and E ⊂ R

N is a Borel set}. Hu
and Taylor (1994) proved that

dimH μ = sup

{
β > 0: lim sup

r→0

μ(B(x, r))

rβ
= 0 for μ-a.a. x ∈ R

N

}
, (2.2)

dim∗
H μ = inf

{
β > 0: lim sup

r→0

μ(B(x, r))

rβ
> 0 for μ-a.a. x ∈ R

N

}
. (2.3)
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The Hausdorff dimensions of an analytic set E ⊂ R
N and finite Borel measures on E are

related by the following identity (which can be verified by (2.2) and Frostman’s lemma):

dimH E = sup{dimH μ: μ ∈ M+
c (E)}, (2.4)

where M+
c (E) denotes the family of all finite Borel measures with compact support in E.

2.2. Packing dimension of sets and measures

Packing dimension was introduced by Tricot (1982) as a dual concept to Hausdorff dimension
and has become a useful tool for analyzing fractal sets and sample paths of stochastic processes;
see Taylor and Tricot (1985), Taylor (1986), Talagrand and Xiao (1996), Falconer and Howroyd
(1997), Howroyd (2001), Xiao (1997, 2004, 2009), Khoshnevisan and Xiao (2008a, 2008b),
Khoshnevisan, Schilling and Xiao (2009) and the references therein for more information.

For any α > 0, the α-dimensional packing measure of E ⊂ R
N is defined as

sα-p(E) = inf

{∑
n

φ-P (En): E ⊂
⋃
n

En

}
,

where sα-P is the set function on subsets of R
N defined by

sα-P (E) = lim
ε→0

sup

{∑
i

(2ri)
α: B(xi, ri) are disjoint, xi ∈ E, ri < ε

}
.

The packing dimension of E is defined by dimP E = inf{α > 0: sα-p(E) = 0}. It is well known
that 0 ≤ dimH E ≤ dimP E ≤ N for every set E ⊂ R

N .
The packing dimension of a finite Borel measure μ on R

N is defined by dimP μ =
inf{dimP E: μ(E) > 0 and E ⊂ R

N is a Borel set} and the upper packing dimension of μ is de-
fined by dim∗

P μ = inf{dimP E: μ(RN\E) = 0 and E ⊂ R
N is a Borel set}. In analogy to (2.4),

Falconer and Howroyd (1997) proved, for every analytic set E ⊂ R
N , that

dimP E = sup{dimP μ: μ ∈ M+
c (E)}. (2.5)

2.3. Packing dimension profiles

Next, we recall some aspects of the packing dimension profiles of Falconer and Howroyd (1997)
and Howroyd (2001). For a finite Borel measure μ on R

N and for any s > 0, let

Fμ
s (x, r) =

∫
RN

ψs

(
x − y

r

)
dμ(y)

be the potential with respect to the kernel ψs(x) = min{1,‖x‖−s},∀x ∈ R
N.
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Falconer and Howroyd (1997) defined the packing dimension profile and the upper packing
dimension profile of μ as

Dims μ = sup

{
β ≥ 0: lim inf

r→0

F
μ
s (x, r)

rβ
= 0 for μ-a.a. x ∈ R

N

}
(2.6)

and

Dim∗
s μ = inf

{
β > 0: lim inf

r→0

F
μ
s (x, r)

rβ
> 0 for μ-a.a. x ∈ R

N

}
, (2.7)

respectively. Further, they showed that 0 ≤ Dims μ ≤ Dim∗
s μ ≤ s and, if s ≥ N , then

Dims μ = dimP μ, Dim∗
s μ = dim∗

P μ. (2.8)

Motivated by (2.5), Falconer and Howroyd (1997) defined the s-dimensional packing dimen-
sion profile of E ⊂ R

N by

Dims E = sup{Dims μ: μ ∈ M+
c (E)}. (2.9)

It follows that

0 ≤ Dims E ≤ s and Dims E = dimP E if s ≥ N. (2.10)

By the above definition, it can be verified (see Falconer and Howroyd (1997), page 286) that for
every Borel set E ⊂ R

N with dimH E = dimP E, we have

Dims E = min{s,dimP E}. (2.11)

The following lemma is a consequence of Proposition 18 in Falconer and Howroyd (1997).

Lemma 2.1. Let μ be a finite Borel measure on R
N and E ⊂ R

N be bounded and non-empty.
Let σ : R+ → [0,N ] be any one of the functions Dims μ, Dim∗

s μ or Dims E in s. Then σ(s) is
non-decreasing and continuous.

3. Hausdorff and packing dimensions of the image measures

Let X = {X(t), t ∈ R
N } be an (N,d)-random field defined on some probability space (	, F ,P).

We assume throughout this paper that X is separable (i.e., there exists a countable and dense set
T ∗ ⊂ R

N and a zero probability event ϒ0 such that for every open set F ⊂ R
N and closed set

G ⊂ R
d , the two events {ω: X(t,ω) ∈ G for all t ∈ F ∩ T ∗} and {ω: X(t,ω) ∈ G for all t ∈ F }

differ from each other only by a subset of ϒ0; in this case, T ∗ is called a separant for X) and
(t,ω) �→ X(t,ω) is B(RN) × F -measurable, where B(RN) is the Borel σ -algebra of R

N .
For any Borel measure μ on RN , the image measure μX of μ under t �→ X(t) is

μX(B) := μ
{
t ∈ R

N : X(t) ∈ B
}

for all Borel sets B ⊂ R
d .
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In this section, we derive upper and lower bounds for the Hausdorff and packing dimensions of
the image measures of X, which rely, respectively, on the following conditions (C1) and (C2).
Analogous problems for the image set X(E) will be considered in Section 4.

(C1) There exist positive and finite constants H1 and β such that

P

{
sup

‖s−t‖≤h

‖X(s) − X(t)‖ ≥ hH1u
}

≤ K3,1u
−β (3.1)

for all t ∈ RN , h ∈ (0, h0) and u ≥ u0, where h0, u0 and K3,1 are positive constants.
(C2) There exists a positive constant H2 such that for all s, t ∈ R

N and r > 0,

P
{‖X(s) − X(t)‖ ≤ ‖s − t‖H2r

}≤ K3,2 min{1, rd}, (3.2)

where K3,2 > 0 is a finite constant.

Remark 3.1. Since (C1) and (C2) play essential roles in this paper, we will now make some
relevant remarks about them.

• Condition (C1) is a type of local maximal inequality and is easier to verify when the random
field X has a certain approximate self-similarity. For example, if X is H1-self-similar, then
condition (C1) is satisfied whenever the tail probability of sup‖s−t‖≤1 ‖X(s)−X(t)‖ decays
no slower than a polynomial rate; see Proposition 3.2 below and Section 5. It can also
be verified directly for Gaussian or more general infinitely random fields by using large
deviations techniques without appealing to self-similarity.

• There may be different pairs of (H1, β) for which (C1) is satisfied. We note that the formulae
for Hausdorff and packing dimensions of the images do not depend on the constant β > 0,
it is sup{H1: (C1) holds for some (H1, β)} that determines the best upper bounds for the
Hausdorff and packing dimensions of the image measures.

• For every point t ∈ R
N , the local Hölder exponent of X at t is defined as

αX(t) = sup

{
γ > 0: lim‖s−t‖→0

‖X(s) − X(t)‖
‖s − t‖γ

= 0

}
.

Condition (C1) and the Borel–Cantelli lemma imply that αX(t) ≥ H1 almost surely (see
(3.9) below). However, (C1) does not even imply sample path continuity of X.

• In Section 4, the following, slightly weaker, form of condition (C2) will be sufficient:

(C2′) There exist positive constants H2 and K3,2 such that (3.2) holds for all s, t ∈ RN

satisfying ‖t − s‖ ≤ 1 and r > 0.

• Condition (C2) (or (C2′)) is satisfied if, for all s, t ∈ R
N (or those satisfying ‖s− t‖ ≤ 1), the

random vector (X(s)−X(t))/‖s − t‖H2 has a density function which is uniformly bounded
in s and t . As shown by Proposition 3.3 below, (C2) is significantly weaker than the latter.

The following proposition gives a simple sufficient condition for an SSSI process X =
{X(t), t ∈ R} to satisfy condition (C1). More precise information can be obtained if further dis-
tributional properties of X are known; see Section 5.
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Proposition 3.2. Let X = {X(t), t ∈ R} be a separable, H -SSSI process with values in R
d . If

there exist positive constants β > 0 and K3,3 such that Hβ > 1 and

P{‖X(1)‖ ≥ u} ≤ K3,3u
−β ∀u ≥ 1, (3.3)

then there exists a positive constant K3,4 such that for all u ≥ 1,

P

{
sup

t∈[0,1]
‖X(t)‖ ≥ u

}
≤ K3,4u

−β. (3.4)

In particular, condition (C1) is satisfied with H1 = H and the same β as in (3.3).

Proof. Without loss of generality, we can assume d = 1. Since the self-similarity index H > 0,
we have X(0) = 0 a.s. Let T ∗ = {tn, n ≥ 0} be a separant for X = {X(t), t ∈ [0,1]}. We assume
that 0 = t0 < t1 < t2 < · · · < tn < · · ·. For any n ≥ 2, consider the random variables Yk (1 ≤ k ≤
n) defined by Yk = X(tk) − X(tk−1). For 1 ≤ i < j ≤ n, let Si,j = ∑j

k=i Yk . By the stationarity
of increments and self-similarity of X and (3.3), we derive that for any u ≥ 1,

P

{∣∣∣∣∣
j∑

k=i

Yk

∣∣∣∣∣≥ u

}
= P

{
|X(1)| ≥ u

(tj − ti−1)H

}
≤ K3,3u

−β(tj − ti−1)
Hβ. (3.5)

Thus, condition (3.4) of Theorem 3.2 of Moricz, Serfling and Stout (1982) is satisfied with
g(i, j) = tj − ti−1, α = Hβ and φ(t) = tβ . It is easy to see that the non-negative function g(i, j)

satisfies their condition (1.2) (i.e., g(i, j) ≤ g(i, j + 1) and g(i, j) + g(j + 1, k) ≤ Qg(i, k) for
1 ≤ i ≤ j < k ≤ n) with Q = 1. It therefore follows from Theorem 3.2 of Moricz, Serfling and
Stout (1982) that there exists a constant K3,4 (independent of n) such that for all u ≥ 1,

P

{
max

1≤j≤n
|X(tj )| ≥ u

}
= P

{
max

1≤j≤n

∣∣∣∣∣
j∑

k=1

Yk

∣∣∣∣∣≥ u

}
≤ K3,4u

−β. (3.6)

Letting n → ∞ yields (3.4), which, in turn, implies that (C1) holds for H1 = H . �

Next, we provide a necessary and sufficient condition for an (N,d)-random field X =
{X(t), t ∈ R

N } to satisfy condition (C2) (or (C2′)). For any r > 0, let

φr(x) =
d∏

j=1

1 − cos(2rxj )

2πrx2
j

, x ∈ R
d .

Proposition 3.3. Let X = {X(t), t ∈ R
N } be a random field with values in R

d . Condition (C2)
(or (C2′)) then holds if and only if there exists a positive constant K3,5 such that for all r > 0
and all s, t ∈ R

N (or for those satisfying ‖t − s‖ ≤ 1),∫
Rd

φr (x)E
(
ei〈x,X(t)−X(s)〉/‖t−s‖H2 )dx ≤ K3,5 min{1, rd}. (3.7)
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Remark 3.4. Since φr(x) = O(‖x‖−2) as ‖x‖ → ∞, condition (3.7) is significantly weaker than
assuming that (X(t) − X(s))/‖t − s‖H2 has a bounded density and can be applied conveniently
to SSSI processes. We mention that (3.7) is also weaker than the integrability condition in As-
sumption 1 on page 269 of Benassi, Cohen and Istas (2003). It can be shown that Theorem 2.1
in Benassi, Cohen and Istas (2003) still holds under (3.7) and their Assumption 2.

Proof of Proposition 3.3. Note that for every r > 0, the function φr(x) is non-negative and is in
L1(Rd). The Fourier transform of φr is

φ̂r (z) =
d∏

j=1

(
1 − |zj |

2r

)+
∀z ∈ R

d .

In the above, a+ := max(a,0) for all a ∈ R. Since z ∈ B(0, r) implies that 1 − (2r)−1|zj | ≥ 1
2 ,

we have 1B(0,r)(z) ≤ 2d φ̂r (z) for all z ∈ R
d . Here, and in the sequel, 1A denotes the indicator

function (or random variable) of the set (or event) A. By Fubini’s theorem, we obtain

P{‖X(s) − X(t)‖ ≤ ‖s − t‖H2r} ≤ 2d
E

[
φ̂r

(
X(t) − X(s)

‖t − s‖H2

)]
= 2d

∫
Rd

φr(x)E
(
ei〈x,X(t)−X(s)〉/‖t−s‖H2 )dx.

Hence, (3.7) implies condition (C2). On the other hand, we have φ̂r (z) ≤ 1B(0,2
√

dr)(z) for all

z ∈ R
d . Consequently,

E

[
φ̂r

(
X(t) − X(s)

‖t − s‖H2

)]
≤ P

{‖X(s) − X(t)‖ ≤ 2
√

d‖s − t‖H2r
}
.

Therefore, condition (C2) implies (3.7). This completes the proof. �

3.1. Hausdorff dimensions of the image measures

First, we consider the upper bounds for the Hausdorff dimensions of the image measure μX .

Proposition 3.5. Let X = {X(t), t ∈ RN } be a random field with values in Rd . If condition (C1)
is satisfied, then for every finite Borel measure μ on R

N ,

dimH μX ≤ min

{
d,

1

H1
dimH μ

}
and

(3.8)

dim∗
H μX ≤ min

{
d,

1

H1
dim∗

H μ

}
a.s.
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Proof. Let λ > 1/β be a constant. For any fixed s ∈ R
N and the sequence hn = 2−n (n ≥ 1), it

follows from condition (C1) that for all integers n ≥ max{log(1/h0),
1

log 2u
1/λ

0 },

P

{
sup

‖t−s‖≤2−n

‖X(t) − X(s)‖ ≥ 2−H1n(log 2n)λ
}

≤ Kn−βλ.

Since
∑∞

n=1 n−βλ < ∞, the Borel–Cantelli lemma implies that almost surely

sup
‖t−s‖≤2−n

‖X(t) − X(s)‖ ≤ (log 2)λ2−H1nnλ ∀n ≥ n0, (3.9)

where n0 = n0(ω, s) depends on ω and s. By Fubini’s theorem, we derive that, for any finite
Borel measure μ on R

N , almost surely (3.9) holds for μ-a.a. s ∈ R
N .

We now fix an ω ∈ 	 such that (3.9) is valid for μ-a.a. s ∈ R
N and prove that both inequalities

in (3.8) hold. In the sequel, ω will be suppressed.
To prove the first inequality in (3.8), since dimH μX ≤ d holds trivially, we only need to prove

that dimH μX ≤ 1
H1

dimH μ. Without loss of generality, we assume dimH μX > 0 and take any
γ ∈ (0,dimH μX). Then, by (2.2), we have

lim sup
r→0

r−γ

∫
Rd

1{‖y−x‖≤r} dμX(y) = 0 for μX-a.a. x ∈ R
d . (3.10)

Equivalently to (3.10), we have

lim sup
r→0

r−γ

∫
RN

1{‖X(t)−X(s)‖≤r} dμ(t) = 0 for μ-a.a. s ∈ R
N. (3.11)

Let us fix s ∈ R
N such that both (3.9) and (3.11) hold. For any ε > 0, we choose n1 ≥ n0 such

that nλ ≤ 2εn for all n ≥ n1. By (3.9), we can write∫
RN

1{‖X(t)−X(s)‖≤r} dμ(t) ≥
∞∑

n=n1

∫
2−n−1≤‖t−s‖<2−n

1{‖X(t)−X(s)‖≤r} dμ(t)

(3.12)

≥
∫

‖t−s‖<2−n1
1{‖t−s‖≤r1/(H1−ε)} dμ(t).

Hence, we have∫
RN

1{‖t−s‖≤r1/(H1−ε)} dμ(t) ≤
∫

RN

1{‖X(t)−X(s)‖≤r} dμ(t)

(3.13)

+
∫

‖t−s‖≥2−n1
1{‖t−s‖≤r1/(H1−ε)} dμ(t).

For the last integral, we have

lim
r→0

r−γ

∫
‖t−s‖≥2−n1

1{‖t−s‖≤r1/(H1−ε)} dμ(t) = 0 (3.14)
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because the indicator function takes the value 0 when r > 0 is sufficiently small.
It follows from (3.11), (3.13) and (3.14) that with r = ρH1−ε ,

lim sup
ρ→0

ρ−(H1−ε)γ

∫
RN

1{‖t−s‖≤ρ} dμ(t) = lim sup
r→0

r−γ

∫
RN

1{‖t−s‖≤r1/(H1−ε)} dμ(t)

(3.15)

≤ lim sup
r→0

r−γ

∫
RN

1{‖X(t)−X(s)‖≤r} dμ(t) = 0.

We have thus proven that (3.15) holds almost surely for μ-a.a. s ∈ R
N . This implies that

dimH μ ≥ (H1 − ε)γ almost surely. Since ε > 0 and γ < dimH μX are arbitrary, (3.8) follows.
To prove the second inequality in (3.8), it is sufficient to show that dim∗

H μX ≤ 1
H1

dim∗
H μ a.s.

Let ω ∈ 	 be fixed as above. We take an arbitrary β > dim∗
H μ. By (2.3), we have

lim sup
ρ→0

ρ−β

∫
RN

1{‖t−s‖≤ρ} dμ(t) > 0 for μ-a.a. s ∈ RN . (3.16)

By using (3.12), we derive that for x = X(s),∫
Rd

1{‖y−x‖≤r} dμX(y) ≥
∫

RN

1{‖t−s‖≤r1/(H1−ε)} dμ(t)

(3.17)

−
∫

‖t−s‖≥2−n1
1{‖t−s‖≤r1/(H1−ε)} dμ(t).

It follows from (3.17), (3.14) and (3.16) that

lim sup
r→0

∫
Rd 1{‖y−x‖≤r} dμX(y)

rβ/(H1−ε)
≥ lim sup

r→0

∫
RN 1{‖t−s‖≤r1/(H1−ε)} dμ(t)

rβ/(H1−ε)
> 0 (3.18)

for all s ∈ R
N that satisfy (3.16). This implies that dim∗

H μX ≤ β/(H1 − ε) a.s. Letting ε ↓ 0
and β ↓ dim∗

H μ yields the second inequality in (3.8). This completes the proof of Proposi-
tion 3.5. �

Remark 3.6. Note that in (3.8), the exceptional null probability events depend on μ. For several
purposes, it is more useful to have a single exceptional null probability event 	0 such that, for
all ω /∈ 	0, both inequalities in (3.8) hold simultaneously for all finite Borel measures μ on R

N .
By slightly modifying the proof of Proposition 3.5 (see (3.12)), one can show that this is indeed
true if, for every ε > 0 and every compact interval I , the sample function X(t) satisfies almost
surely a uniform Hölder condition of order H1 − ε on I .

Next, we show that condition (C2) determines lower bounds for the Hausdorff dimensions of
the image measures of the random field X.
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Proposition 3.7. Let X = {X(t), t ∈ R
N } be an (N,d)-random field satisfying condition (C2).

Then, for every finite Borel measure μ on R
N ,

dimH μX ≥ min

{
d,

1

H2
dimH μ

}
and dim∗

H μX ≥ min

{
d,

1

H2
dim∗

H μ

}
a.s. (3.19)

Proof. In order to prove the first inequality in (3.19), we fix any constants 0 < γ < γ ′ <

min{d, 1
H2

dimH μ}. Since dimH μ > γ ′H2, it follows from (2.2) that

lim sup
r→0

μ(B(s, r))

rγ ′H2
= 0 for μ-a.a. s ∈ R

N . (3.20)

Let s ∈ R
N be a fixed point such that (3.20) holds. By (C2), we derive

EμX(B(X(s), r)) =
∫

RN

P
(‖X(t) − X(s)‖ ≤ r

)
μ(dt)

(3.21)

≤ K3,2μ(B(s, r1/H2)) + K3,2

∫
‖t−s‖>r1/H2

(
r

‖t − s‖H2

)d

μ(dt).

Let κ be the image measure of μ under the mapping t �→ ‖t − s‖ from R
N to R+. Then, by using

an integration-by-parts formula and (3.20), we have∫
‖t−s‖>r1/H2

(
r

‖t − s‖H2

)d

μ(dt) =
∫ ∞

r1/H2

rd

ρH2d
κ(dρ)

≤ H2d

∫ ∞

r1/H2

rd

ρH2d+1
μ(B(s,ρ))dρ (3.22)

≤ Krγ ′

for all r > 0 small enough, where the last inequality follows from (3.20) and the fact that γ ′ < d .
Combining (3.21) and (3.22), we see that EμX(B(X(s), r)) ≤ Krγ ′

for r > 0 small. This, and
the Markov inequality, imply that for all n large enough,

P
(
μX(B(X(s),2−n)) ≥ 2−nγ

)≤ K2−n(γ ′−γ ).

It follows from the Borel–Cantelli lemma that a.s. μX(B(X(s),2−n)) < 2−nγ for all n large
enough. It should be clear the above implies that for all 0 < γ < min{d, 1

H2
dimH μ},

lim sup
r→0

μX(B(x, r))

rγ
= 0 for μX-a.a. x ∈ R

d

almost surely. Thus, dimH μX ≥ γ a.s., and (3.19) follows from the arbitrariness of γ .
To prove the second inequality in (3.19), let 0 < γ < γ ′ < min{d, 1

H2
dim∗

H μ}. By (2.3), there

exists a Borel set A ⊂ R
N such that μ(A) > 0 and lim supr→0 r−γ ′H2μ(B(s, r)) = 0 for all
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s ∈ A. The proof above shows that a.s. lim supr→0 r−γ μX(B(x, r)) = 0 for all x ∈ X(A). Since
μX(X(A)) > 0 a.s., we derive dim∗

H μX ≥ γ a.s. and the proof is completed. �

Combining Propositions 3.5 and 3.7, we have the following theorem, whose proof is omitted.

Theorem 3.8. Let X = {X(t), t ∈ R
N } be an (N,d)-random field and let H be a positive con-

stant. If, for every ε > 0, X satisfies condition (C1) with H1 = H − ε, some β = β(ε) > 0 and
(C2) with H2 = H + ε, then for every finite Borel measure μ on R

N ,

dimH μX = min

{
d,

1

H
dimH μ

}
and dim∗

H μX = min

{
d,

1

H
dim∗

H μ

}
a.s. (3.23)

3.2. Packing dimensions of the image measures

We now study the problem of determining the packing dimensions dimP μX and dim∗
P μX . The

following upper bounds for the image measures are proved by Schilling and Xiao (2009).

Proposition 3.9. Let X = {X(t), t ∈ R
N } be a random field with values in R

d . If condition (C1)
is satisfied, then for every finite Borel measure μ on R

N ,

dimP μX ≤ 1

H1
DimH1d μ and dim∗

P μX ≤ 1

H1
Dim∗

H1d
μ a.s. (3.24)

Similarly to Remark 3.6, we have the following.

Remark 3.10. If, for every ε > 0 and every compact interval I ⊂ R
N , X(t) satisfies almost

surely a uniform Hölder condition of order H1 − ε on I , then almost surely both inequalities in
(3.24) hold for all finite Borel measures μ on R

N .

For the lower bounds of packing dimensions, we have the following proposition.

Proposition 3.11. Let X = {X(t), t ∈ R
N } be an (N,d)-random field satisfying condition (C2).

Then, for every finite Borel measure μ on R
N ,

dimP μX ≥ 1

H2
DimH2d μ and dim∗

P μX ≥ 1

H2
Dim∗

H2d
μ a.s. (3.25)

Proof. We only prove the first inequality in (3.25); the proof of the second one is similar. We
may, and will, assume that DimH2d μ > 0. For fixed s ∈ R

N , Fubini’s theorem implies that

EF
μX

d (X(s), r) =
∫

RN

E min{1, rd‖X(t) − X(s)‖−d}dμ(t). (3.26)
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The integrand in (3.26) can be written as

E min{1, rd‖X(t) − X(s)‖−d}
(3.27)

= P{‖X(t) − X(s)‖ ≤ r} + E
{
rd‖X(t) − X(s)‖−d · 1{‖X(t)−X(s)‖≥r}

}
.

By condition (C2), we obtain that for all s, t ∈ R
N and r > 0,

P{‖X(t) − X(s)‖ ≤ r} ≤ K3,2 min

{
1,

rd

‖t − s‖H2d

}
. (3.28)

Denote the distribution of X(t) − X(s) by �s,t (·). Let ν be the image measure of �s,t (·) under
the mapping T : z �→ ‖z‖ from R

d to R+. The last term in (3.27) can then be written as∫
Rd

rd

‖z‖d
1{‖z‖≥r}�s,t (dz) =

∫ ∞

r

rd

ρd
ν(dρ)

(3.29)

≤ d

∫ ∞

r

rd

ρd+1
P{‖X(t) − X(s)‖ ≤ ρ}dρ,

where the last inequality follows from an integration-by-parts formula.
By (3.28) and (3.29), we derive that the last term in (3.27) can be bounded by a constant

multiple of ∫ ∞

r

rd

ρd+1
min

{
1,

ρd

‖t − s‖H2d

}
dρ

(3.30)

≤
⎧⎨⎩

K, if r ≥ ‖t − s‖H2 ,
Krd

‖t − s‖H2d
log

(‖t − s‖H2

r

)
, if r < ‖t − s‖H2 .

It follows from (3.27), (3.28), (3.29) and (3.30) that for any 0 < ε < 1 and s, t ∈ R
N ,

E min{1, rd‖X(t) − X(s)‖−d} ≤ K3,6 min

{
1,

rd−ε

‖t − s‖H2(d−ε)

}
. (3.31)

For any γ ∈ (0,DimH2d μ), by Lemma 2.1, there exists ε > 0 such that γ < DimH2(d−ε) μ. It
follows from (2.6) that

lim inf
r→0

r−γ /H2

∫
R+

min

{
1,

rd−ε

‖t − s‖H2(d−ε)

}
dμ(t) = 0 for μ-a.a. s ∈ R

N . (3.32)

By (3.26), (3.31), (3.32) and Fatou’s lemma, we have that for μ-a.a. s ∈ R
N ,

E

(
lim inf
r→0

r−γ /H2F
μX

d (X(s), r)
)

(3.33)

≤ K3,6 lim inf
r→0

r−γ /H2

∫
RN

min

{
1,

rd−ε

‖t − s‖H2(d−ε)

}
dμ(t) = 0.
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By using Fubini’s theorem again, we see that almost surely

lim inf
r→0

r−γ /H2F
μX

d (X(s), r) = 0 for μ-a.a. s ∈ R
N .

Hence, dimP μX ≥ γ
H2

a.s. Since γ can be arbitrarily close to DimH2d μ, we obtain (3.25). �

The following is a direct consequence of Propositions 3.9 and 3.11.

Theorem 3.12. Let X = {X(t), t ∈ R
N } be an (N,d)-random field and let H be a positive

constant. If, for every ε > 0, X satisfies condition (C1) with H1 = H − ε, some β = β(ε) > 0
and (C2) with H2 = H + ε, then for every finite Borel measure μ on R

N ,

dimP μX = 1

H
DimHd μ and dim∗

P μX = 1

H
Dim∗

Hd μ a.s. (3.34)

4. Hausdorff and packing dimensions of the image sets

We now consider the Hausdorff and packing dimensions of the image set X(E). We will see
that general lower bounds for dimH X(E) and dimP X(E) can be derived from the results in
Section 3 by using a measure theoretic method. For random fields which satisfy uniform Hölder
conditions on compact intervals, the upper bounds for dimH X(E) and dimP X(E) can also be
easily obtained. However, it is difficult to obtain upper bounds for dimH X(E) and dimP X(E)

under condition (C1) alone. We have only been able to provide a partial result on determining
the upper bound for dimH X(E). The analogous problem for dimP X(E) remains open.

We will need the following lemmas. Lemma 4.1 is from Lubin (1974), which is more general
than Theorem 1.20 in Mattila (1995).

Lemma 4.1. Let E ⊂ R
N be an analytic set and let f : RN → R

d be a Borel function. If ν is a
finite Borel measure on R

d with support in f (E), then ν = μf for some μ ∈ M+
c (E).

Lemma 4.2. Let E ⊂ R
N be an analytic set. Then, for all Borel measurable functions f : R

N →
R

d , we have

dimH f (E) = sup{dimH μf :μ ∈ M+
c (E)}, (4.1)

dimP f (E) = sup{dimP μf :μ ∈ M+
c (E)}. (4.2)

Proof. Denote the right-hand side of (4.1) by γE . By (2.4), we get dimH f (E) ≥ γE . Next,
for any ν ∈ M+

c (f (E)), Lemma 4.1 implies that ν = μf for some μ ∈ M+
c (E). This and (2.4)

together imply dimH f (E) ≤ γE . Hence, (4.1) is proved. The proof of (4.2) is similar and is
therefore omitted. �

We first consider the lower bounds for the Hausdorff and packing dimensions of X(E).
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Proposition 4.3. Let X = {X(t), t ∈ R
N } be an (N,d)-random field that satisfies condition

(C2′). Then, for every analytic set E ⊂ R
N ,

dimH X(E) ≥ min

{
d,

1

H2
dimH E

}
and dimP X(E) ≥ 1

H2
DimH2d E a.s. (4.3)

Proof. Since both dimH and dimP are σ -stable (see Falconer (1990)), we may, and will, assume
that the diameter of E is at most 1. Hence, condition (C2′) will be enough to prove (4.3).

Let us prove the first inequality in (4.3). It follows from (2.4) that for any 0 < γ < dimH E,
there exists a μ ∈ M+

c (E) such that dimH μ ≥ γ . By Proposition 3.7 (which holds for any finite
Borel measure whose support has diameter ≤ 1), we have dimH μX ≥ min{d, 1

H2
dimH μ} a.s.

This and (4.1) together imply that dimH X(E) ≥ min{d, 1
H2

γ } a.s. Since γ < dimH E is arbitrary,
the desired inequality follows.

Next, we prove the second inequality in (4.3). Note that for any 0 < γ < 1
H2

DimH2d E, by
(2.9), there exists a Borel measure μ ∈ M+

c (E) such that H2γ < DimH2d μ. It follows from
(3.25) that dimP μX > γ a.s. Hence, by Lemma 4.2, we have dimP X(E) > γ a.s., which, in turn,
implies that dimP X(E) ≥ 1

H2
DimH2d E a.s. The proof is therefore completed. �

The following proposition gives upper bounds for dimH X(E) and dimP X(E).

Proposition 4.4. Let X = {X(t), t ∈ R
N } be an (N,d)-random field. If for every ε > 0, X sat-

isfies a uniform Hölder condition of order H1 − ε on all compact intervals of RN almost surely,
then, for all analytic sets E ⊂ R

N ,

dimH X(E) ≤ min

{
d,

1

H1
dimE

}
and dimP X(E) ≤ 1

H1
DimH1d E a.s. (4.4)

Proof. Both inequalities in (4.4) follow from Remarks 3.6, 3.10 and Lemma 4.2. �

Combining Propositions 4.3 and 4.4 yields the following theorem.

Theorem 4.5. Let X = {X(t), t ∈ R
N } be an (N,d)-random field and let H ∈ (0,1] be a con-

stant. If, for every ε > 0, X satisfies a uniform Hölder condition of order H − ε on all compact
intervals of R

N and condition (C2′) with H2 = H + ε, then, for all analytic sets E ⊂ R
N ,

dimH X(E) = min

{
d,

1

H
dimH E

}
and dimP X(E) = 1

H
DimHd E a.s. (4.5)

It is often desirable to compute dimP X(E) in terms of dimP E. The following is the packing
dimension analog of (1.3). Note that if N > Hd , then the conclusion of Corollary 4.6 does not
hold in general; see Talagrand and Xiao (1996). In this sense, it is the best possible result of this
kind.

Corollary 4.6. Let X = {X(t), t ∈ R
N } and E ⊂ R

N be as in Theorem 4.5. If either N ≤ Hd or
E satisfies dimH E = dimP E, then dimP X(E) = min{d, 1

H
dimP E} a.s.
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Proof. If N ≤ Hd , then (2.10) implies that for every analytic set E ⊂ R
N , DimHd E = dimP E.

Hence, Theorem 4.5 yields dimP X(E) = 1
H

dimP E a.s., as desired. On the other hand, if
an analytic set E ⊂ R

N satisfies dimH E = dimP E, then (2.11) implies that DimHd E =
min{Hd,dimP E}. Hence, again, the conclusion follows from Theorem 4.5. �

Since many random fields do not have continuous sample functions and, even if they do, it
is known that dimH X(E) is not determined by the exponent of uniform modulus of continu-
ity (a typical example being linear fractional stable motion – see Example 5.4 below), there
have been various efforts to remove the uniform Hölder condition. However, except for Markov
processes or random fields with certain Markov structure, no satisfactory method has been de-
veloped. The main difficulty lies in deriving a sharp upper bound for dimH X(E).

In the following, we derive an upper bound for dimH X(E) under condition (C1). This method
is partially motivated by an argument in Schilling (1998) for Feller processes generated by
pseudo-differential operators and, as far as we know, is more general than the existing meth-
ods in the literature.

Lemma 4.7. Let X = {X(t), t ∈ R
N } be a random field with values in R

d . If condition (C1)
holds for H1 > 0 and β > 0, then, for all t ∈ R

N , h > 0 and γ > 0,

E
(
D(t,h)γ e−D(t,h)

)≤ K4,1h
H1(γ∧β), (4.6)

where D(t,h) = sup‖s−t‖≤h ‖X(s) − X(t)‖ and K4,1 is a constant independent of t and h.

Proof. We write

E
(
D(t,h)γ e−D(t,h)

) =
∫ ∞

0
uγ−1e−u(γ − u)P{D(t,h) > u}du

(4.7)

≤ K

∫ γ

0
uγ−1e−u(γ − u)min{1, (h−H1u)−β}du,

where the inequality follows from (C1). It is elementary to verify that, up to a constant, the last
integral is bounded by∫ hH1

0
uγ−1 du + hH1β

∫ γ

hH1
uγ−β−1(γ − u)du ≤ K4,1h

H1(γ∧β). (4.8)

This proves (4.6). �

Proposition 4.8. Let X = {X(t), t ∈ R
N } be a random field with values in R

d . Suppose that the
sample function of X is a.s. bounded on all compact subsets of R

N . If condition (C1) holds for
H1 > 0 and β > 0, then, for every analytic set E ⊂ R

N that satisfies dimH E < βH1,

dimH X(E) ≤ min

{
d,

1

H1
dimH E

}
a.s. (4.9)
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Proof. Without loss of generality, we assume that E ⊂ [0,1]N . For any constant γ ∈ (dimH E,

βH1), there exists a sequence of balls {B(tk, hk), k ≥ 1} such that

E ⊂ lim sup
k→∞

B(tk, hk) and
∞∑

k=1

(2hk)
γ < ∞. (4.10)

For a constant M > 0, let 	M = {ω: supt∈[0,1]N ‖X(t)‖ ≤ M}. Since the sample function of
X(t) is almost surely bounded on [0,1]N , we have limM→∞ P(	M) = 1. Note that X(E) ⊂
lim supk→∞ B(X(tk),D(tk, hk)) and, by Lemma 4.7, (4.10) and the fact that γ < βH1, we have

∞∑
k=1

E(D(tk, hk)
γ /H11	M

) ≤ e2M

∞∑
k=1

E
(
D(tk, hk)

γ /H1 e−D(tk,hk)
)

(4.11)

≤ e2MK4,1

∞∑
k=1

h
γ

k < ∞.

It follows from (4.11) that
∑∞

k=1 D(tk, hk)
γ /H1 < ∞ almost surely on 	M. This implies that

dimH X(E) ≤ γ /H1 almost surely on 	M . Letting M → ∞ first and then γ ↓ dimH E along the
rational numbers proves (4.9). �

Putting Proposition 4.3 and Proposition 4.8 together, we derive the following theorem.

Theorem 4.9. Let X = {X(t), t ∈ RN } be a random field with values in Rd whose sample func-
tion is a.s. bounded on all compact subsets of RN . If there is a constant H > 0 such that for
every ε > 0, X satisfies conditions (C1) with H1 = H − ε and (C2′) with H2 = H + ε, then for
every analytic set E ⊂ RN that satisfies dimH E < βH ,

dimH X(E) = min

{
d,

1

H
dimH E

}
a.s. (4.12)

5. Applications

The general results in Sections 3 and 4 can be applied to wide classes of Gaussian or non-
Gaussian random fields. Since the applications to Gaussian random fields can be carried out by
extending Xiao (2007, 2009), we will focus on non-Gaussian random fields in this section.

5.1. Self-similar stable random fields

If X = {X(t), t ∈ R+} is a stable Lévy process in R
d , the Hausdorff dimensions of its image sets

have been well studied; see Taylor (1986) and Xiao (2004) for historical accounts. The packing
dimension results similar to those in Sections 3 and 4 have also been obtained by Khoshnevisan,
Schilling and Xiao (2009) for Lévy processes. In this subsection, we will only consider non-
Markov stable processes and stable random fields.
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Let X0 = {X0(t), t ∈ R
N } be an α-stable random field in R with the representation

X0(t) =
∫

F

f (t, x)M(dx), (5.1)

where M is a symmetric α-stable (SαS) random measure on a measurable space (F, F ) with
control measure m and f (t, ·) :F → R (t ∈ R

N ) is a family of functions on F satisfying∫
F

|f (t, x)|αm(dx) < ∞ ∀t ∈ R
N.

For any integer n ≥ 1 and t1, . . . , tn ∈ R
N , the characteristic function of the joint distribution of

X0(t1), . . . ,X0(tn) is given by

E exp

(
i

n∑
j=1

ξjX0(tj )

)
= exp

(
−
∥∥∥∥∥

n∑
j=1

ξjf (tj , ·)
∥∥∥∥∥

α

α,m

)
,

where ξj ∈ R (1 ≤ j ≤ n) and ‖ · ‖α,m is the Lα(F, F ,m)-norm (or quasi-norm if α < 1).
The class of α-stable random fields with representation (5.1) is broad. In particular, if a random

field X0 = {X0(t), t ∈ R
N } is α-stable with α �= 1 or symmetric α-stable, and is separable in

probability (i.e., there is a countable subset T0 ⊂ R
N such that for every t ∈ R

N , there exists a
sequence {tk} ⊂ T0 such that X0(tk) → X0(t) in probability), then X0 has a representation (5.1);
see Theorems 13.2.1 and 13.2.2 in Samorodnitsky and Taqqu (1994).

For a separable α-stable random field in R given by (5.1), Rosinski and Samorodnitsky (1993)
investigated the asymptotic behavior of P{supt∈[0,1]N |X0(t)| ≥ u} as u → ∞ (see also Samorod-
nitsky and Taqqu (1994)). The following lemma is a consequence of their result.

Lemma 5.1. Let X0 = {X0(t), t ∈ R
N } be a separable α-stable random field in R given in the

form (5.1). Assume that X0 has a.s. bounded sample paths on [0,1]N . There then exists a positive
and finite constant K5,1, depending on α, f and m only, such that for all u > 0,

lim
u→∞uα

P

{
sup

t∈[0,1]N
|X0(t)| ≥ u

}
= K5,1. (5.2)

Remark 5.2. In the above lemma, it is crucial to assume that X0 has bounded sample paths on
[0,1]N almost surely. Otherwise, (5.2) may not hold, as shown by the linear fractional stable
motion X0 with 0 < α < 1 (see Example 5.4 below).

We define an α-stable random field X = {X(t), t ∈ R
N } with values in R

d by

X(t) = (X1(t), . . . ,Xd(t)), (5.3)

where X1, . . . ,Xd are independent copies of X0.
The following result gives the Hausdorff and packing dimensions of the image measures of

self-similar stable random fields.
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Theorem 5.3. Let X = {X(t), t ∈ R
N } be a separable α-stable field with values in R

d defined
by (5.3), where X0 is given in the form (5.1). Suppose that X0 is H -SSSI and its sample path is
a.s. bounded on all compact subsets of R

N . Then, for every finite Borel measure μ on R
N ,

dimH μX = min

{
d,

1

H
dimH μ

}
and dimP μX = 1

H
DimHd μ a.s. (5.4)

Moreover, for every analytic set E ⊂ R
N that satisfies dimH E < αH , we have

dimH X(E) = min

{
d,

1

H
dimH E

}
a.s.

Proof. It follows from the self-similarity and Lemma 5.1 that X satisfies condition (C1) with
H1 = H and β = α. On the other hand, condition (C2) with H2 = H is satisfied because X is
H -self-similar and has stationary increments, and the α-stable variable X(1) has a bounded con-
tinuous density function. Therefore, both equalities in (5.4) follow from Theorems 3.8 and 3.12.
Finally, the last conclusion follows from Theorem 4.9. �

Next, we consider two important types of SSSI stable processes.

Example 5.4 (Linear fractional stable motion). Let 0 < α < 2 and H ∈ (0,1) be given con-
stants. We define an α-stable process X0 = {X0(t), t ∈ R+} with values in R by

X0(t) =
∫

R

hH (t, s)Mα(ds), (5.5)

where Mα is a symmetric α-stable random measure on R with Lebesgue measure as its control
measure and where

hH (t, s) = a{(t − s)
H−1/α
+ − (−s)

H−1/α
+ } + b{(t − s)

H−1/α
− − (−s)

H−1/α
− }.

In the above, a, b ∈ R are constants with |a|+ |b| �= 0, t+ = max{t,0} and t− = max{−t,0}. The
α-stable process X0 is then H -self-similar with stationary increments, which is called an (α,H)-
linear fractional stable motion. If H = 1

α
, then the integral in (5.5) is understood as aM([0, t])

if t ≥ 0 and as bM([t,0]) if t < 0. Hence, X0 is an α-stable Lévy process.
Maejima (1983) proved that if αH < 1, then X0 is a.s. unbounded on any interval of positive

length. On the other hand, if αH > 1 (i.e., 1 < α < 2 and 1/α < H < 1), then Kolmogorov’s
continuity theorem implies that X0 is a.s. continuous. In the latter case, Takashima (1989) further
studied the local and uniform Hölder continuity of X0. His Theorems 3.1 and 3.4 showed that the
local Hölder exponent of X0 equals H . However, the exponent of the uniform Hölder continuity
cannot be bigger than H − 1

α
.

Now, let X = {X(t), t ∈ R+} be the (α,H)-linear fractional stable motion with values in R
d

defined by (5.3). It follows from Theorem 5.3 that if αH > 1, then for every finite Borel measure
μ on R+,

dimH μX = min

{
d,

1

H
dimH μ

}
and dimP μX = 1

H
DimHd μ a.s.,
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and for every analytic set E ⊂ R+, dimH X(E) = min{d, 1
H

dimH E} a.s. Note that the above
dimension results do not depend on the uniform Hölder exponent of X.

There are several ways to define linear fractional α-stable random fields; see Kokoszka and
Taqqu (1994). For example, for H ∈ (0,1) and α ∈ (0,2), define

ZH (t) =
∫

RN

(‖t − s‖H−N/α − ‖s‖H−N/α)Mα(ds) ∀t ∈ R
N, (5.6)

where Mα is an SαS random measure on R
N with the N -dimensional Lebesgue measure as

its control measure. This is the stable analog of the N -parameter fractional Brownian motion.
However, it follows from Theorem 10.2.3 in Samorodnitsky and Taqqu (1994) that, whenever
N ≥ 2, the sample paths of ZH are a.s. unbounded on any interval in R

N . Thus, the results of
this paper do not apply to ZH when N ≥ 2. In general, little is known about the sample path
properties of ZH .

Example 5.5 (Harmonizable fractional stable motion). Given 0 < α < 2 and H ∈ (0,1), the
harmonizable fractional stable field Z̃H = {Z̃H (t), t ∈ RN } with values in R is defined by

Z̃H (t) = Re
∫

RN

ei〈t,λ〉 − 1

‖λ‖H+N/α
M̃α(dλ), (5.7)

where M̃α is a complex-valued, rotationally invariant α-stable random measure on R
N with the

N -dimensional Lebesgue measure as its control measure. It is easy to verify that the α-stable
random field Z̃H is H -self-similar with stationary increments.

It follows from Theorem 10.4.2 in Samorodnitsky and Taqqu (1994) (which covers the case
0 < α < 1) and Theorem 3 of Nolan (1989) (which covers 1 ≤ α < 2) that Z̃H has continuous
sample paths almost surely. Moreover, it can be proven that Z̃H satisfies the following uniform
Hölder continuity: for any compact interval I = [a, b] ⊂ R

N and any ε > 0,

lim
h→0

sup
s,t∈I

‖s−t‖≤h

|Z̃H (t) − Z̃H (s)|
‖t − s‖H | log‖t − s‖|1/2+1/α+ε

= 0 a.s. (5.8)

When N = 1, (5.8) is due to Kôno and Maejima (1991). In general, (5.8) follows from the results
in Biermé and Lacaux (2009) or Xiao (2010). Note that the Hölder continuity of Z̃H is different
from that of the linear fractional stable motions.

Applying Theorem 4.5 to the harmonizable fractional stable motion in R
d defined as in (5.3),

still denoted by Z̃H , we derive that for every analytic set E ⊂ R
N ,

dimH Z̃H (E) = min

{
d,

1

H
dimH E

}
and dimP Z̃H (E) = 1

H
DimHd E a.s. (5.9)

Remark 5.6. The results in this section are applicable to other self-similar stable random fields,
including the Telecom process (Lévy and Taqqu (2000), Pipiras and Taqqu (2000)), self-similar
fields of Lévy–Chentsov type (Samorodnitsky and Taqqu (1994), Shieh (1996)) and the stable
sheet (Ehm (1981)). We leave the details to interested readers.
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5.2. Real harmonizable fractional Lévy motion

We show that the results in Sections 3 and 4 can be applied to the real harmonizable fractional
Lévy motion (RHFLM) introduced by Benassi, Cohen and Istas (2002). To recall their definition,
let ν be a Borel measure on C which satisfies

∫
C

|z|pν(dz) < ∞ for all p ≥ 2. We assume that
ν is rotationally invariant. Hence, if P is the map z = ρeiθ �→ (θ, ρ) ∈ [0,2π) × R+, then the
image measure of ν under P can be written as νP (dθ,dρ) = dθνρ(dρ), where dθ is the uniform
measure on [0,2π) and νρ is a Borel measure on R+.

Let N(dξ,dz) be a Poisson random measure on R
d × C with mean measure n(dξ,dz) =

E(N(dξ,dz)) = dξ ν(dz) and let Ñ(dξ,dz) = N(dξ,dz) − n(dξ,dz) be the compensated Pois-
son measure. Then, according to Definition 2.3 in Benassi, Cohen and Istas (2002), a real harmo-
nizable fractional Lévy motion (without the Gaussian part) XH

0 = {XH
0 (t), t ∈ R

N } with index
H ∈ (0,1) is defined by

XH
0 (t) =

∫
RN×C

2 Re

(
e−i〈t,ξ〉 − 1

‖ξ‖H+N/2
z

)
Ñ(dξ,dz) for all t ∈ R

N. (5.10)

As shown by Benassi, Cohen and Istas (2002), XH
0 has stationary increments, as well as mo-

ments of all orders; it behaves locally like fractional Brownian motion, but at the large scale,
it behaves like harmonizable fractional stable motion Z̃H in (5.7). Because of these multiscale
properties, RHFLM’s form a class of flexible stochastic models.

The following equation on characteristic functions of XH
0 was given by Benassi, Cohen and

Istas (2002): for all integers n ≥ 2, all t1, . . . , tn ∈ R
N and all u1, . . . , un ∈ R,

E exp

(
i

n∑
j=1

ujXH
0 (tj )

)
= exp

(∫
RN×C

[
efn(ξ,z) − 1 − fn(ξ, z)

]
dξ ν(dz)

)
, (5.11)

where

fn(ξ, z) = i2 Re

(
z

n∑
j=1

uj e−i〈tj ,ξ〉 − 1

‖ξ‖H+N/2

)
.

In particular, for any s, t ∈ R
N and u ∈ R, (5.11) gives that

E exp

(
iu

XH
0 (t) − XH

0 (s)

‖t − s‖H

)
= exp

(
−2π

∫
RN

ψ

(
2u(1 − cos〈t − s, ξ 〉)
‖t − s‖H ‖ξ‖H+N/2

)
dξ

)
, (5.12)

where, for every x ∈ R, ψ(x) is defined by ψ(x) = ∫∞
0 (1 − cos(xρ))νρ(dρ). Note that the func-

tion ψ is non-negative and continuous. Moreover, up to a constant, it is the characteristic expo-
nent of the infinitely divisible law in C with Lévy measure ν. For the proof of Theorem 5.7, we
will make use of the following fact: there exists a positive constant K such that

ψ(x) ≥ K−1x2
∫ x−1

0
ρ2νρ(dρ) for all x ∈ [0,1]. (5.13)
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This is verified by using the inequality 1 − cosx ≥ K−1x2 for all x ∈ [0,1].

Theorem 5.7. Let XH = {XH (t), t ∈ R
N } be a separable real harmonizable fractional Lévy

field in R
d defined by (5.3), where XH

0 is defined as in (5.10). Assume that ψ satisfies the follow-
ing condition: there exists a constant δ ∈ (0,1] such that

ψ(ax)

ψ(x)
≥ aδ for all a ≥ 1 and x ∈ R. (5.14)

Then, for every analytic set E ⊂ R
N ,

dimH XH (E) = min

{
d,

1

H
dimH E

}
and dimP XH (E) = 1

H
DimHd E a.s. (5.15)

Proof. It follows from Proposition 3.3 in Benassi, Cohen and Istas (2002) that for every ε > 0,
XH satisfies almost surely a uniform Hölder condition of order H − ε on all compact sets of RN .
Hence, the upper bounds in (5.15) follow from Proposition 4.4.

In order to prove the desired lower bounds in (5.15), by Proposition 4.3, it suffices to show that
XH satisfies condition (C2′) with H2 = H . This is done by showing that there exists a positive
function g ∈ L1(Rd) such that for all s, t ∈ R

N satisfying ‖s − t‖ ≤ 1, we have∣∣E(ei〈u,X(t)−X(s)〉/‖t−s‖H )∣∣≤ g(u) for all u ∈ R
d . (5.16)

This and the Fourier inversion formula together imply that the density functions of X(t) −
X(s)/‖t − s‖H are uniformly bounded for all s, t ∈ R

N satisfying ‖s − t‖ ≤ 1.
Since the coordinate processes XH

1 , . . . ,XH
d are independent copies of XH

0 , it is sufficient to
prove (5.16) for d = 1. Note that, by (5.16), we can take g(u) = 1 for all |u| ≤ 1. For any u such
that |u| > 1, condition (5.14) implies that∫

RN

ψ

(
2u(1 − cos〈t − s, ξ 〉)
‖t − s‖H ‖ξ‖H+N/2

)
dξ ≥ K|u|δ

∫
RN

ψ

(
1 − cos〈t − s, ξ 〉

‖t − s‖H ‖ξ‖H+N/2

)
dξ

(5.17)

≥ K|u|δ
∫

‖ξ‖≥γ ‖t−s‖−1
ψ

(
1 − cos〈t − s, ξ 〉

‖t − s‖H ‖ξ‖H+N/2

)
dξ,

where γ > 1 is a constant whose value will be chosen later.
By a change of variable ξ �→ η‖t − s‖−1, we see that the last integral becomes∫

‖η‖≥γ

ψ

(‖t − s‖N/2(1 − cos〈(t − s)/‖t − s‖, η〉)
‖η‖H+N/2

)
dη

‖t − s‖N

(5.18)

≥ K

∫
‖η‖≥γ

(1 − cos〈(t − s)/‖t − s‖, η〉)2

‖η‖2H+N
dη,

where the inequality follows from (5.13), and we have used the fact that ‖t − s‖ ≤ 1 and taken
γ large. The last integral is a constant because the Lebesgue measure is rotationally invariant.
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Thus, we have proven that for |u| > 1,

E exp

(
iu

XH
0 (t) − XH

0 (s)

‖t − s‖H

)
≤ exp(−K5,2|u|δ). (5.19)

Therefore, when d = 1, (5.16) holds for the function g defined as g(u) = 1 if |u| ≤ 1 and g(u) =
e−K5,2|u|δ if |u| > 1. This completes the proof of Theorem 5.7. �

We mention that Benassi, Cohen and Istas (2004) have introduced another interesting class of
fractional Lévy fields, namely, the moving average fractional Lévy fields (MAFLF). Similarly to
the contrast between linear fractional stable motion and harmonizable fractional stable motion,
many properties of MAFLF’s are different from those of RHFLM’s. For example, the exponent
of the uniform modulus of continuity of an MAFLF is strictly smaller than its local Hölder
exponent. Nevertheless, we believe that the arguments in this paper are applicable to MAFLF’s.
This and some related problems will be dealt with elsewhere.

5.3. The Rosenblatt process

Given an integer m ≥ 2 and a constant κ ∈ (1/2 − 1/(2m),1/2), the Hermite process Ym,κ =
{Ym,κ(t), t ∈ R+} of order m is defined by

Ym,κ(t) = K5,3

∫ ′

Rm

{∫ t

0

m∏
j=1

(s − uj )
κ−1+ ds

}
dB(u1) · · · dB(um), (5.20)

where K5,3 > 0 is a normalizing constant depending on m and κ only and the integral
∫ ′

Rm is
the m-tuple Wiener–Itô integral with respect to the standard Brownian motion excluding the
diagonals {ui = uj }, i �= j . The integral (5.20) is also well defined if m = 1; the process is a
fractional Brownian motion for which the problem considered in this paper has been solved.

The Hermite process Ym,κ is H -SSSI and H = 1 + mκ − m
2 ∈ (0,1). It is a non-Gaussian

process and often appears in non-central limit theorems for processes defined as integrals or par-
tial sums of nonlinear functionals of stationary Gaussian sequences with long-range dependence;
see Taqqu (1975, 1979), Dobrushin and Major (1979) and Major (1981).

It follows from Theorem 6.3 of Taqqu (1979) that the Hermite process Ym,κ has the following
equivalent representation:

Ym,κ(t) = K5,4

∫ ′

Rm

eit (u1+···+um) − 1

i(u1 + · · · + um)

m∏
j=1

|uj |κ−1ZG(du1) · · ·ZG(dum), (5.21)

where K5,4 > 0 is a normalizing constant and ZG is a centered complex Gaussian random mea-
sure on R with Lebesgue measure as its control measure.

Mori and Oodaira (1986) studied the functional laws of the iterated logarithms for the Hermite
process Ym,κ . Lemma 5.8 follows from Lemma 6.3 in Mori and Oodaira (1986).
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Lemma 5.8. There exist positive constants K5,5 and K5,6, depending on m only, such that
P{maxt∈[0,1] |Ym,κ(t)| ≥ u} ≤ exp(−K5,6u

2/m) for all u ≥ K5,5.

Using Lemma 5.8, one can derive easily a uniform modulus of continuity for Ym,κ .

Lemma 5.9. There exists a finite constant K5,7 such that for all constants 0 ≤ a < b < ∞,

lim sup
h↓0

sup
a≤t≤b−h

sup
0≤s≤h

|Ym,κ(t + s) − Ym,κ(t)|
hH (log 1/h)m/2

≤ K5,7 a.s., (5.22)

where H = 1 + mκ − m
2 .

Proof. For every t ≥ 0 and h > 0, the self-similarity of Ym,κ and Lemma 5.8 together imply that

P{|Ym,κ(t + h) − Ym,κ(h)| > hH u} ≤ exp(−K5,6u
2/m). (5.23)

Hence, Ym,κ = {Ym,κ(t), t ≥ 0} satisfies the conditions of Lemmas 2.1 and 2.2 in Csáki and
Csörgő (1992) with σ(h) = hH and β = 2/m. Consequently, (5.22) follows directly from Theo-
rem 3.1 in Csáki and Csörgő (1992). �

The case m = 2 has recently received considerable attention. The process Y 2,κ is called the
Rosenblatt process by Taqqu (1975) (or fractional Rosenblatt motion by Pipiras (2004)). Its
self-similarity index is given by H = 2κ . This non-Gaussian process in many ways resembles
fractional Brownian motion. For example, since H > 1/2, fractional noise of Y 2,κ exhibits long-
range dependence. Besides its connections to non-central limit theorems, the Rosenblatt process
also appears in limit theorems for some quadratic forms of random variables with long-range
dependence. Albin (1998a, 1998b) has discussed distributional properties and the extreme value
theory of Y 2,κ . In particular, Albin (1998b), Section 16, obtained sharp asymptotics on the tail
probability of maxt∈[0,1] Y 2,κ (t). Pipiras (2004) established a wavelet-type expansion for the
Rosenblatt process. Tudor (2008) has recently developed a stochastic calculus for Y 2,κ based on
both pathwise type calculus and Malliavin calculus.

We now consider the Rosenblatt process X2,κ with values in R
d by letting its component

processes be independent copies of Y 2,κ . The following result determines the Hausdorff and
packing dimensions of the image sets of X2,κ .

Corollary 5.10. Let X2,κ = {X2,κ (t), t ∈ R+} be a Rosenblatt process in R
d as defined above.

Then, for every analytic set E ⊂ R+, we have

dimH X2,κ (E) = min

{
d,

1

2κ
dimH E

}
and dimP X2,κ (E) = 1

2κ
Dim2κd E a.s. (5.24)

Proof. By Lemma 5.9, for any ε > 0, X2,κ satisfies a uniform Hölder condition of order H − ε

(where H = 2κ) on all compact intervals in R+. On the other hand, it is known that the random
variable Y 2,κ (1) has a bounded and continuous density (see Davydov (1990) or Albin (1998a)).
Thus, X2,κ also satisfies condition (C2) with H2 = 2κ . Therefore, the two equalities in (5.24)
follow from Theorem 4.5. �



950 N.-R. Shieh and Y. Xiao

Acknowledgements

The authors thank Professor Davar Khoshnevisan for stimulating discussions on packing dimen-
sion profiles, Professors Patrik Albin, David Nualart and Frederi Viens for very helpful sugges-
tions on the Rosenblatt process and the anonymous referee for comments and suggestions which
have led to significant improvement of the manuscript. Research of N.-R. Shieh was partially
supported by Taiwan NSC Grant 962115M002005MY3. Research of Y. Xiao was partially sup-
ported by the NSF Grant DMS-0706728 and the National Natural Science Foundation of China
(No. 70871050).

References

Adler, R.J. (1981). The Geometry of Random Fields. New York: Wiley. MR0611857
Albin, J.M.P. (1998a). A note on the Rosenblatt distributions. Statist. Probab. Lett. 40 83–91. MR1650532
Albin, J.M.P. (1998b). On extremal theory for self-similar processes. Ann. Probab. 26 743–793.

MR1626515
Benassi, A., Cohen, S. and Istas, J. (2002). Identification and properties of real harmonizable fractional

Lévy motions. Bernoulli 8 97–115. MR1884160
Benassi, A., Cohen, S. and Istas, J. (2003). Local self-similarity and the Hausdorff dimension. C. R. Math.

Acad. Sci. Paris 336 267–272. MR1968271
Benassi, A., Cohen, S. and Istas, J. (2004). On roughness indices for fractional fields. Bernoulli 10 357–373.

MR2046778
Biermé, H. and Lacaux, C. (2009). Hölder regularity for operator scaling stable random fields. Stochastic

Process. Appl. 119 2222–2248. MR2531090
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