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In this article, we merge celebrated results of Kesten and Spitzer [Z. Wahrsch. Verw. Gebiete 50 (1979)
5–25] and Kawazu and Kesten [J. Stat. Phys. 37 (1984) 561–575]. A random walk performs a motion in an
i.i.d. environment and observes an i.i.d. scenery along its path. We assume that the scenery is in the domain
of attraction of a stable distribution and prove that the resulting observations satisfy a limit theorem. The
resulting limit process is a self-similar stochastic process with non-trivial dependencies.
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1. Introduction

The following model for a random walk in a random environment can be found in the physics
literature; see Anshelevic and Vologodskii (1981), Alexander et al. (1981), Kawazu and Kesten
(1984). Let {λj ; j ∈ Z} be a family of positive i.i.d. random variables and A the σ -algebra gener-
ated by those random variables. Let {X(t); t ≥ 0} be a continuous-time random walk on Z having
the following asymptotic transition rates for h → 0:

P
(
X(t + h) = j + 1|X(t) = j, A

) = λjh + o(h), (1)

P
(
X(t + h) = j − 1|X(t) = j, A

) = λj−1h + o(h), (2)

P
(
X(t + h) = j |X(t) = j, A

) = 1 − (λj + λj−1)h + o(h). (3)

In other words, the process {X(t); t ≥ 0} is a birth–death process with possibly negative popula-
tion size, where, for a population with j individuals, birth occurs at rate λj and death at rate λj−1.
We will assume that the process {X(t); t ≥ 0} starts at zero at time zero. The resulting process
is symmetric, in the sense that the permeability of the edge connecting the vertices j and j + 1
does not depend on the direction of the motion. This physical background motivates the name
‘random environment’ for the sequence {λj ; j ∈ Z}. In what follows, we denote the distribution
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of the random environment on the sequence space by Pλ. The following convergence results are
described in Kawazu and Kesten (1984).

KK1. If c := E[λ−1
0 ] < ∞, then for Pλ-almost all environments, the distributions (after condi-

tioning on the environment) of the processes

Xn(t) := 1

n
X(n2t), t ≥ 0,

converge weakly with respect to the Skorohod topology toward the distribution of the process
{c−1/2B(t); t ≥ 0}, where {B(t); t ≥ 0} is standard Brownian motion on R.

(See also Papanicolaou and Varadhan (1981) for some related results.)

KK2. If there exists a slowly varying function L1 such that

1

nL1(n)

n∑
j=1

1

λj

−→ 1 in probability,

then the distributions of the processes

Xn(t) := 1

n
X(n2L1(n)t)

converge weakly with respect to the Skorohod topology toward the distribution of standard
Brownian motion.

KK3. If there exists a slowly varying function L2 such that the sequence of random variables

Rn := 1

n1/αL2(n)

n∑
j=1

1

λj

converges in distribution toward a one-sided stable distribution ϑα with index α ∈ (0,1), then
the distributions of the processes

Xn(t) := 1

n
X
(
n(1+α)/αL2(n)t

)
converge weakly with respect to the Skorohod topology toward the distribution of a continuous
self-similar process {X∗(t); t ≥ 0} with scaling exponent η = α

α+1 .

Remarks. (1) In the next section, we will give a representation for the process X∗ in terms of a
standard Brownian motion and a stable subordinator associated with the measure ϑα .

(2) We note that the results from Kawazu and Kesten (1984) are generalized in Kawazu (1989).
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He considered random walks in random environments defined by the following transition as-
ymptotics:

P
(
X(t + h) = j + 1|X(t) = j, A

) = (λj /ηj )h + o(h),

P
(
X(t + h) = j − 1|X(t) = j, A

) = (λj−1/ηj )h + o(h),

P
(
X(t + h) = j |X(t) = j, A

) = 1 − (
(λj + λj−1)/ηj

)
h + o(h),

where {ηj , j ∈ N} is an i.i.d. family of positive random variables satisfying suitable assumptions.
Similarly to the situation studied in Kawazu and Kesten (1984), the resulting random walks
converge toward appropriate continuous processes after scaling.

In Kesten and Spitzer (1979), new classes of continuous self-similar processes are described.
Moreover, it was proven therein that those processes are weak limits of random walks in random
scenery. Those random walks are defined as follows.

Let {ξ(x);x ∈ Z} and {Zi; i ∈ N} be two independent families of i.i.d. random variables, where
the random variables Zi are assumed to be Z-valued. One can think of the sequence {Zi; i ∈ N}
as increments of a classical Z-valued random walk Sk := ∑k

i=1 Zi . The stationary sequence
{ξ(Sk); k ∈ N} has some non-trivial long-range dependencies if the underlying random walk
{Sk; k ∈ N} is recurrent. This is the case, for example, if Z1 is in the domain of attraction of
an α-stable distribution with α ∈ (1,2]. The random sequence D(n) := ∑n

k=1 ξ(Sk) is called a
random walk in random scenery. In Kesten and Spitzer (1979), the following convergence result
was proven for those processes.

KS1. If ξ(0) is in the domain of attraction of a β-stable distribution with β ∈ (0,2] and if Z1 is
in the domain of attraction of an α-stable distribution with α ∈ (0,1), then the distributions of
the processes

Dn(t) := n−1/β

�nt�∑
k=1

ξ(Sk)

converge weakly with respect to the Skorohod topology toward β-stable Lévy motion.

(See also Spitzer (1976) for a special case.)

KS2. If ξ(0) is in the domain of attraction of a β-stable distribution with β ∈ (0,2] and if Z1 is
in the domain of attraction of an α-stable distribution with α ∈ (1,2], then the distributions of
the processes

Dn(t) := n−δ

�nt�∑
k=1

ξ(Sk)

converge weakly with respect to the Skorohod topology toward a continuous self-similar
process D∗ with scaling exponent δ = 1 − 1

α
+ 1

αβ
.
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Remark. The statement in KS1 corresponds to the transient case and is not difficult to prove
since, in that case, the sequence {ξ(Sk); k ∈ N} has only weak dependencies. This is the reason
why one obtains β-stable Lévy noise in the limit. We also mention that the case β = 1 is still
open.

Remark. There exist various generalizations of the results of Kesten and Spitzer (1979). We
will only mention Shieh (1995), where the limiting process is generalized to higher dimensions,
Lang and Nguyen (1983), which deals with multidimensional random walks and some special
random scenery, Maejima (1996), where the random scenery belongs to the domain of attraction
of an operator-stable distribution, Arai (2001), where the random scenery belongs to the domain
of partial attraction of a semi-stable distribution, and Saigo and Takahashi (2005), where the
random scenery and the random walk belong to the domain of partial attraction of semi-stable
and operator semi-stable distributions.

In this article, we investigate whether it is possible to substitute the classical random walk in
the result of Kesten and Spitzer (1979) by the random walk in random environment which was
introduced in Kawazu and Kesten (1984). We will restrict our attention to the result KK3 since
this is the case where a new type of self-similar process arises at the end. For simplicity and in
order to avoid complicating notation, we will assume that the slowly varying function L2 which
appears in KK3 is constant and equal to one. The general case involving non-constant L2 can be
treated in a similar way.

We now fix a probability space (
, F ,P) which is sufficiently large to support a family of i.i.d.
random variables {λj ; j ∈ Z}, a birth–death process {X(t); t ≥ 0} with asymptotic transition rates
given by equations (1)–(3) and a family of i.i.d. random variables {ξ(k), k ∈ Z}.

We assume that the families {ξ(k), k ∈ Z} and {X(t); t ≥ 0} are independent and that t 	→ X(t)

is cadlag P-almost surely.
Further, we assume that λ−1

1 is in the domain of normal attraction of a one-sided α-stable
distribution ϑα with α ∈ (0,1).

Moreover, we assume that ξ(0) is in the domain of normal attraction of a β-stable distribution
ϑβ with β ∈ (0,2]. Its characteristic function is given by

ψ(θ) = exp
(−|θ |β(A1 + iA2 sgn(θ)

))
,

where 0 < A1 < ∞ and |A−1
1 A2| ≤ tan(πβ/2). For β > 1, it follows from those assumptions

that E[ξ(0)] = 0.
For β = 1, we make the further assumption that there exists a K > 0 such that

∣∣E[ξ(0)1[−ρ,ρ](ξ(0))
]∣∣≤ K for all ρ > 0.

We can now define the following continuous-time version of the random walk in random scenery:

�(t) :=
∫ t

0
ξ(X(s))ds.
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In the following, we will use the space

D[0,∞) := {γ : [0,∞) → R :γ is cadlag}
with the Skorohod topology. We will prove the following theorem.

Theorem 1. For κ := 1
α

+ 1
β

and kn := n(1+α)/α , the distributions of the processes

�n(t) := n−κ

∫ knt

0
ξ(X(s))ds

converge weakly with respect to the Skorohod topology toward the distribution of a self-similar
stochastic process {�∗(t); t ≥ 0} with scaling exponent μ = 1 − α

α+1 + α
(α+1)β

.

Remark. The stochastic process {�∗(t); t ≥ 0} can be constructed as follows. Let Z+ and Z−
be two independent copies of the β-stable Lévy process which can be associated with the char-
acteristic function

ψ(θ) = exp
(−|θ |β(A1 + iA2 sgn(θ)

))
.

Further, let {L∗(τ, x); τ ≥ 0, x ∈ R} be the local time of the stochastic process {X∗(τ ); τ ≥ 0};
that is, the random variable L∗(τ, x) is the derivative with respect to x of the occupation time

�∗(τ, (−∞, x]) :=
∫ τ

0
1(−∞,x](X∗(σ ))dσ.

We will see in the next section that the local time exists for all but a countable number of points
x ∈ R. Moreover, for all τ ≥ 0, the processes

{L∗(τ, x−);x ≥ 0} and {L∗(τ,−(x−));x ≥ 0}
are predictable with respect to the natural filtrations of Z+ (resp., Z−). The following integral
representation of the process �∗ can be given:

�∗(τ ) :=
∫ ∞

0
L∗(τ, x−)dZ+(x) +

∫ ∞

0
L∗(τ,−(x−))dZ−(x).

2. The convergence of the birth–death process

The goal of this section is to prove Corollary 2, which is the main ingredient needed to show that
the finite-dimensional distributions of �n converge toward the finite-dimensional distributions
of �∗. This corollary contains a statement on the weak convergence of certain functionals of
the occupation times of the rescaled processes Xn. A result corresponding to Corollary 2 is also
proved in Kesten and Spitzer (1979); however, we have to adopt a totally different approach
since we do not have such precise information on the potential theory related to the random
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walk X. Instead, we will understand the occupation times of Xn and prove that they converge in
an appropriate sense toward the local time of the limit process X∗.

We describe some of the main arguments from the proof in Kawazu and Kesten (1984) for the
convergence of the processes

Xn(t) := 1

n
X
(
n(1+α)/αt

)
toward the self-similar process X∗ defined in Kawazu and Kesten (1984). We can enlarge our
underlying probability space (
, F ,P) in such a way that it contains a standard Brownian motion
{B(t); t ≥ 0} and a cadlag version of the stable Lévy subordinator {W(x);x ∈ R} which can be
associated with the one-sided α-stable distribution ϑα .

Furthermore, we assume that {B(t); t ≥ 0}, {W(x);x ∈ R}, {X(t); t ≥ 0} and {ξ(n);n ∈ Z}
are independent. Moreover, we assume that W(0) = 0 and B(0) = 0 hold P-almost surely.

In the future, we will denote by {L(t, x); t ≥ 0, x ∈ R} the local time of the Brownian motion
{B(t); t ≥ 0}. The process

V∗(t) :=
∫

R

L(t,W(x))dx

is non-decreasing P-almost surely. Therefore, we can define the following pseudo-inverse:

W−1(y) := inf{x ∈ R;W(x) > y} and V −1∗ (τ ) := inf{t ≥ 0;V∗(t) > τ }.
In Kawazu and Kesten (1984), the following representation for the self-similar process X∗ is
given:

X∗(τ ) := W−1(B(V −1∗ (τ ))).

We now sketch the main arguments from the proof in Kawazu and Kesten (1984). We will need
some of those ideas in our proof of the convergence of �n toward �∗. Their approach is based
on the natural scale of the birth–death process. One defines

S(j) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑
k=0

λ−1
k for j > 0,

0 for j = 0,

−
−1∑
k=j

λ−1
k for j < 0.

This implies that conditioned on A := {λj ; j ∈ Z}, the process S(X(t)) is on natural scale (see
Kawazu and Kesten (1984), page 565). This means that for all a, b, x ∈ R with a < x < b, one
has

P
(
S(X(t)) hits {a, b} first at a | S(X(0)) = x, A

)= b − x

b − a
.

It is then possible to represent the process S(X(t)) as the time change of standard Brownian
motion {B(t); t ≥ 0} as follows.
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One defines m(dx) :=∑
i∈Z

δS(i)(dx) and

V (t) :=
∫

R

L(t, x)m(dx) =
∑
i∈Z

L(t, S(i)),

where {L(t, x); t ≥ 0, x ∈ R} is again the local time of the standard Brownian motion B . One can
see that {B(V −1(t)); t ≥ 0} and {S(X(t)); t ≥ 0} are both cadlag and have the same distribution
(see Kawazu and Kesten (1984), page 566).

One then has to scale the above constructions.

Sn(x) := n−1/αS(�nx�), n ∈ N, x ∈ R,

where, for a positive real number x, we denote by �x� its integer part. It follows from the as-
sumptions on the environment {λj ; j ∈ Z} that for n → ∞, the processes {Sn(x);x ∈ R} con-
verge in distribution toward an α-stable Lévy process {W(x);x ∈ R}. Moreover, the process W

is strictly increasing P-almost surely since ϑα is a one-sided stable distribution and α ∈ (0,1).
By a method given in Skorohod (1956) and Dudley (1968), it is possible to construct a suitable
probability space (
̃, F̃ , P̃) with suitable D-valued random variables S̃n and W̃ having the prop-
erties that S̃n converges toward W̃ almost surely with respect to P̃ and that S̃n and W̃ have the
same distributions as Sn (resp., W ) (see Kawazu and Kesten (1984), page 567). One then defines

Ṽn(t) :=
∫

R

L(t, x)m̃n(dx) and Ṽ∗(t) :=
∫

R

L(t, x)m̃∗(dx)

with ∫
R

f (x)m̃n(dx) :=
∫

R

f (S̃n(x))dx and
∫

R

f (x)m̃∗(dx) :=
∫

R

f (W̃ (x))dx

for all measurable f ≥ 0. We then define S̃−1
n , W̃−1, Ṽ −1

n and Ṽ −1∗ in the same way as W−1

(resp., V −1∗ ) above.
In Kawazu and Kesten (1984) (see page 568) they prove that {B(Ṽ −1

n (t)); t ≥ 0} converges
P̃-almost surely toward {B(Ṽ −1∗ (t)); t ≥ 0} in the J1-topology. For convenience, we define

X̃n(t) := S̃−1
n (B(Ṽ −1

n (t))), X̃∗(t) := W̃−1(B(Ṽ −1∗ (t))).

We note that the process {X̃n(t); t ≥ 0} is defined on (
 × 
̃, F × F̃ ,P × P̃). It is proved in
Kawazu and Kesten (1984) that {X̃n(t); t ≥ 0} converges toward {X̃∗(t); t ≥ 0} with respect to
the J1-topology almost surely with respect to P × P̃ (see page 569).

Moreover, for Bn(t) := n−1/2B(nt) one has that (see Kawazu and Kesten (1984), page 572)

|Xn(t) − S−1
n (Bn(V

−1
n (t)))| ≤ 1/n

and

{S−1
n (Bn(V

−1
n (t))); t ≥ 0} D= {S̃−1

n (B(Ṽ −1
n (t))); t ≥ 0} = {X̃n(t); t ≥ 0}.
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If we define X̂n(t) := S−1
n (Bn(V

−1
n (t))), then the previous observations imply that both

processes {Xn(t); t ≥ 0} and {X̂n(t); t ≥ 0} converge in distribution toward {X̃∗(t); t ≥ 0}, which
has the same distribution as {X∗(t); t ≥ 0}.

In the rest of this section, we analyze the distributional behavior of the occupation times for the
process Xn (see Proposition 6). In order to obtain this result, we prove an analogous result for the
process X̃n (see Lemma 5), which can be reduced to Proposition 4. The advantage of this detour is
that we can prove almost sure convergence for the occupation times of the process X̃n toward the
local time of X̃∗ (see Proposition 3). This result is based on the fact that we have explicit formulas
for the occupation times of X̃n and the local time of X̃∗ (see Proposition 2 and Corollary 1). The
explicit expression of the occupation time of X̃n and the local time of X̃∗ reveals that in order to
prove Proposition 3, it is sufficient to prove the almost sure convergence of S̃n and Ṽ −1

n toward
W̃∗ (resp., Ṽ −1∗ ). The convergence of S̃n toward W̃∗ holds by construction. The convergence of
Ṽn toward Ṽ∗ is obtained in Lemma 1 and then used to obtain the convergence of Ṽ −1

n toward
Ṽ −1∗ in Lemma 2.

2.1. The local times of X∗ and X̃∗

We define the time that the processes X̃∗ and X∗ spend in the measurable set A until time τ as

�∗(τ,A) :=
∫ τ

0
1A(X∗(σ ))dσ

(
resp., �̃∗(τ,A) :=

∫ τ

0
1A(X̃∗(σ ))dσ

)
.

We denote by {L∗(τ, x); τ ≥ 0, x ∈ R} and {L̃∗(τ, x); τ ≥ 0, x ∈ R} the local times of X∗ (resp.,
X̃∗) if they exist. In this subsection, we prove that both local times exist almost surely and relate
them to the local time {L(t, x); t ≥ 0, x ∈ R} of the underlying Brownian motion {B(t); t ≥ 0}.

Proposition 1. One has P-almost surely that for τ ≥ 0 and all x ∈ R,

�∗(τ, (−∞, x)) =
∫ x

−∞
L(V −1∗ (τ ),W(y))dy.

Further, P × P̃-almost surely for all τ ≥ 0 and all x ∈ R,

�̃∗(τ, (−∞, x)) =
∫ x

−∞
L(Ṽ −1∗ (τ ), W̃ (y))dy.

Proof. We have P-almost surely that x 	→ W(x) is increasing. It follows that the set N1 of x ∈ R

where W is not continuous is countable. We define the set

N2 := {
x ∈ R :�

(
σ ;B(V −1∗ (σ )) = W(x)

)
> 0

}
,

where � denotes the Lebesgue measure on R. The set N2 is countable since for x1 �= x2, one
has that the sets {σ ;B(V −1∗ (σ )) = W(x1)} and {σ ;B(V −1∗ (σ )) = W(x2)} are disjoint. The
statement then follows since there cannot be an uncountable number of disjoint subsets of R
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with positive Lebesgue measure. Thus the set N := N1 ∪ N2 is countable. Since the function
x 	→ �∗(τ, (−∞, x)) is increasing and since

x 	→
∫ x

−∞
L(V −1∗ (τ ),W(y))dy

is continuous, it is sufficient to prove the statement of the proposition for x ∈ N c.
The fact that W is increasing and continuous in x implies the equivalence of the statement

W(x) > y with the statement ∃z0 < x :W(z0) > y.
The latter statement is then equivalent to the statement W−1(y) := inf{z :W(z) > y} < x.
This then implies that 1(−∞,x)(X∗(σ )) = 1(−∞,W(x))(B(V −1∗ (σ ))).
We also note that t 	→ V (t) is continuous and non-decreasing. This implies that V∗ ◦ V −1∗ =

idR.
In the following, we want to compute the derivative of the non-decreasing function

M :σ 	→
∫ x

−∞
L(V −1∗ (σ ),W(y))dy.

Since W is increasing and continuous in x, we have that B(V −1∗ (σ0)) < W(x) implies that

σ 	→
∫ ∞

x

L(V −1∗ (σ ),W(y))dy

is locally constant, say equal to c0, in a neighborhood of σ0.
Thus

σ 	→
∫ x

−∞
L(V −1∗ (σ ),W(y))dy = V∗(V −1∗ (σ )) − c0 = σ − c0

in a neighborhood of σ0.
Moreover, since W is increasing and continuous in x, we have that B(V −1∗ (σ0)) > W(x) im-

plies

σ 	→
∫ x

−∞
L(V −1∗ (σ ),W(y))dy

is locally constant in a neighborhood of σ0.
It therefore turns out that

M ′(σ ) =
{

1, if B(V −1∗ (σ )) < W(x),
0, if B(V −1∗ (σ )) > W(x).

Moreover, for all σ1, σ2 ∈ R
+ with σ1 ≤ σ2, we have that∫ x

−∞
L(V −1∗ (σ1),W(y))dy ≤

∫ x

−∞
L(V −1∗ (σ2),W(y))dy

and ∫ ∞

x

L(V −1∗ (σ1),W(y))dy ≤
∫ ∞

x

L(V −1∗ (σ2),W(y))dy.



834 B. Franke and T. Saigo

This implies that

∫ x

−∞
L(V −1∗ (σ2),W(y))dy −

∫ x

−∞
L(V −1∗ (σ1),W(y))dy

≤ V∗(V −1∗ (σ2)) − V∗(V −1∗ (σ1)) = σ2 − σ1.

It follows that

σ 	→
∫ x

−∞
L(V −1∗ (σ ),W(y))dy

is Lipschitz continuous with Lipschitz constant smaller than one.
Since the set {σ :B(V −1∗ (σ )) = W(x)} is a zero set with respect to the Lebesgue measure �

for all x ∈ N c, it follows that∫ τ

0
1(−∞,x)(X∗(σ ))dσ =

∫ τ

0
1(−∞,W(x))(B(V −1∗ (σ )))dσ =

∫ τ

0
M ′(σ )dσ = M(τ).

The second statement is proved in the same way. �

Corollary 1. One has P-almost surely that the local time L∗(τ, x) is defined for all τ ≥ 0 and
all x, where x 	→ W(x) is continuous. Further, one has P × P̃-almost surely that the local time
L̃∗(τ, x) is defined for all τ ≥ 0 and all x, where x 	→ W̃ (x) is continuous. In those points, one
has

L∗(τ, x) = L(V −1∗ (τ ),W(x))
(
resp., L̃∗(τ, x) = L(Ṽ −1∗ (τ ), W̃ (x))

)
.

Proof. Differentiation in Proposition 1 proves this corollary. �

2.2. The occupation time of X̃n

For a measurable set A ⊂ R, we define

�̂n(t,A) :=
∫ t

0
1A(X̂n(σ ))dσ, �̃n(t,A) :=

∫ t

0
1A(X̃n(σ ))dσ

and

�n(t,A) :=
∫ t

0
1A(Xn(σ ))dσ.

These are the respective times that the processes X̂n, X̃n and Xn spend in the set A until time t .
In this section, we give an explicit expression for the occupation time of X̃n in terms of the local
time {L(t, x); t ≥ 0, x ∈ R} of the underlying Brownian motion {B(t); t ≥ 0}.
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Proposition 2. One has P × P̃-almost surely for all τ ≥ 0 and all x ∈ R that

�̃n(τ, {x}) =
⎧⎨
⎩

1

n
L

(
Ṽ −1

n (τ ), S̃n

(
x − 1

n

))
, if nx ∈ Z,

0, if nx /∈ Z.

Proof. First, we note that

S−1
n (Sn(x)) = x + 1/n for all x satisfying nx ∈ Z.

If we use the fact that {Bn(V
−1
n (t)); t ≥ 0}} D= {Sn(Xn(t)); t ≥ 0}, then we can see that

{X̂n(t); t ≥ 0} D= {Xn(t) + 1/n; t ≥ 0}. Therefore, we see that X̂n only takes values in the lattice
1
n
Z. Moreover, we have that S̃n and Ṽn have the same joint distribution as Sn and Vn. Therefore,

X̂n = S−1
n (Bn(V

−1
n (·))) has the same distribution as X̃n = S̃−1

n (B(Ṽ −1
n (·))). From this, it also

follows that X̃n stays for all time in the countable state space {x ∈ R;nx ∈ Z}. This implies that
�̃n(τ, {x}) = 0 for nx /∈ Z. This proves one part of the statement.

For the proof of the other part of the statement, we will need the derivative of the function

M̃(σ ) := 1

n
L
(
Ṽ −1

n (σ ), S̃n(x − 1/n)
)
.

We first collect some useful facts which help to compute the derivative of M̃ .
Since S̃n is constant on the intervals [ k

n
, k+1

n
) for all k ∈ Z, we have

Ṽn(t) =
∫

R

L(t, S̃n(x))dx = 1

n

∑
i∈Z

L
(
t, S̃n(i/n)

)
. (4)

Since the (t, x) 	→ L(t, x) is jointly continuous and non-decreasing P-almost surely (see Boylan
(1964) or Getoor and Kesten (1972)), it follows that t 	→ Ṽn(t) is continuous and non-decreasing
P × P̃-almost surely. This then gives rise to

Ṽn ◦ Ṽ −1
n = idR+ P × P̃-almost surely. (5)

By construction, one has for all b ∈ {S̃n(x);x ∈ R} that S̃−1
n (b) = x is equivalent to b = S̃n(x −

1
n
). Moreover, one has that B(Ṽ −1

n (σ )) ∈ {S̃n(x);x ∈ R} for all σ ≥ 0 almost surely with respect

to P × P̃. Hence,

X̃n(σ ) = S̃−1
n (B(Ṽ −1

n (σ ))) = x is equivalent to B(Ṽ −1
n (σ )) = S̃n

(
x − 1

n

)
. (6)

Moreover, the random variables {λ−1
i ; i ∈ N} are positive P-almost surely and therefore

the restriction of x 	→ S̃n(x) to the set
1

n
Z is injective almost surely with respect to P̃. (7)
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Since, conditioned on A = σ {λj ; j ∈ N}, the process X is a Markov process, it follows that for
nx ∈ Z, there exist non-negative random variables a1 < b1 < a2 < b2 < · · · with the property

{σ ≥ 0; X̃n(σ ) = x} =
⋃
i∈N

[ai, bi) P × P̃-a.s.

This implies that for all σ0 /∈ {ai; i ∈ N}, there exists a neighborhood U (σ0) containing σ0 with
the property that σ 	→ X̃n(σ ) = S̃−1

n (B(Ṽ −1
n (σ ))) is constant on U (σ0). Equations (6) and (7)

then imply that σ 	→ B(Ṽ −1
n (σ )) must be constant on U (σ0).

Therefore, for σ0 /∈ {ai; i ∈ N} and B(Ṽ −1
n (σ0)) �= S̃n(x − 1

n
), we have B(Ṽ −1

n (σ )) �= S̃n(x −
1
n
) for all σ in a neighborhood of σ0. Hence

σ 	→ L
(
Ṽ −1

n (σ ), S̃n(x − 1/n)
)

is constant in a neighborhood of σ0. The previous argument and the fact that X̃n only jumps
to nearest neighbors in 1

n
Z leads to the fact that σ0 /∈ {ai; i ∈ N} and B(Ṽ −1

n (σ0)) = S̃n(x − 1
n
)

imply the existence of a suitable c0 > 0 with the property

σ 	→ 1

n

∑
z �=nx−1

L
(
Ṽ −1

n (σ ), S̃n(z/n)
)= c0

in a neighborhood of σ0. Therefore, we can use (5) to see that B(Ṽ −1
n (σ0)) = S̃n(x − 1

n
) implies

that

σ 	→ 1

n
L
(
Ṽ −1

n (σ ), S̃n(x − 1/n)
)= Ṽn(Ṽ

−1
n (σ )) − c0 = σ − c0

in a neighborhood of σ0. Consequently, the function

M̃(σ ) := 1

n
L
(
Ṽ −1

n (σ ), S̃n(x − 1/n)
)

is differentiable for all σ /∈ {ai; i ∈ N}, and for nx ∈ Z, we have

M̃ ′(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if B(Ṽ −1
n (σ )) = S̃n

(
x − 1

n

)
,

0, if B(Ṽ −1
n (σ )) �= S̃n

(
x − 1

n

)
.

Moreover, it is possible to prove that the function M̃ is Lipschitz continuous with Lipschitz
constant one. From those properties, it follows that

∫ τ

0
1{x}(X̃n(σ ))dσ =

∫ τ

0
1{S̃n(x−1/n)}(B(Ṽ −1

n (σ )))dσ =
∫ τ

0
M̃ ′(σ )dσ = M̃(τ ). �
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2.3. The convergence of the occupation times

In this section, we investigate whether the occupation times of X̃n converge toward the local time
of X̃∗ in an appropriate way as n → ∞. For this, we first need some auxiliary results.

Lemma 1. One has P × P̃-almost surely that Ṽn(t) converges toward Ṽ∗(t) for all t ∈ R.

Proof. We fix a T > 0 and define wo := sup{x :L(T ,x) > 0} and wu := inf{x :L(T ,x) > 0}.
Those two random variables are independent of P̃. We know that {S̃n(x);x ∈ R} converges to-
ward {W̃ (x);x ∈ R} with respect to the J1-topology F̃ -almost surely. We note that the local time
of Brownian motion (x, t) 	→ L(t, x) is jointly continuous P-almost surely (see Boylan (1964)
or Getoor and Kesten (1972)).

It follows that P× P̃-almost surely {L(t, S̃n(x));x ∈ R} converges toward {L(t, W̃ (x));x ∈ R}
with respect to the J1-topology for all t ∈ [0, T ].

We fix a pair (ω, ω̃) ∈ 
 × 
̃ with the property that {L(t, S̃n(x))(ω, ω̃);x ∈ R} converges
toward {L(t, W̃ (x))(ω, ω̃);x ∈ R} with respect to the J1-topology for all t ∈ [0, T ].

There then exist suitable xu, xo ∈ R with W̃ (xu) ≤ wu and W̃ (xo) ≥ wo, and there exists a
sequence of increasing, absolutely continuous, surjective Lipschitz maps λn : [xu, xo] → [xu, xo]
with the properties

sup
x∈[xu,xo]

|L(t, W̃ (x)) − L(t, S̃n(λn(x)))| −→ 0 as n → ∞

and

esssup
x∈[xu,xo]

|λ′
n(x) − 1| −→ 0 as n → ∞.

We should emphasize that the derivative of the function λn may not exist everywhere. However,
those points where it does not exist form a zero set since λn is an absolutely continuous Lipschitz
function.

By a change of variables for all t ∈ [0, T ], one then has∫ xo

xu

L(t, S̃n(x))dx −
∫ xo

xu

L(t, S̃n(λn(x)))dx

=
∫ xo

xu

L(t, S̃n(x))

(
1 − 1

λ′
n(λ

−1
n (x))

)
dx + O

(
sup

x∈[xu,xo]
|λn(x) − x|

)
.

It follows from the assumptions on the sequence λn that the above difference converges toward
zero. Further, for all t ∈ [0, T ], we have that∫

R

L(t, S̃n(λn(x)))dx −→
∫

R

L(t, W̃ (x))dx as n → ∞.

Hence, one has P × P̃-almost surely that Ṽn(t) converges toward Ṽ∗(t) for all t ∈ [0, T ]. Thus,
for every T > 0, we obtain an zero set NT in 
 × 
̃ where this convergence does not hold. The
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lemma now follows since the union

N∞ :=
⋃
T ∈N

UT

is also a zero set with respect to P × P̃. �

Let f : R → R be a function. We call τ ∈ f (R) a critical value for f if there exist at least two
distinct points t1, t2 ∈ R such that f (t1) = f (t2) = τ . Further, we call a point τ ∈ f (R) a regular
value for f if it is not a critical value. It is straightforward to see that the preimages of critical
values contain an open interval if the function f is non-decreasing. This implies that the set of
critical values of a non-decreasing function is at most countable.

Lemma 2. One has P × P̃-almost surely that Ṽ −1
n (τ ) converges toward Ṽ −1∗ (τ ) for all regular

values τ of Ṽ∗.

Proof. We note that P-almost surely the local time L(t, x) of the Brownian motion B is contin-
uous and non-decreasing in t for all x ∈ R (see Boylan (1964) or Getoor and Kesten (1972)) for
the continuity). It follows that P × P̃-almost surely the function

t 	→ Ṽ∗(t) :=
∫

R

L(t, x)m∗(dx)

is continuous and non-decreasing.
Therefore, P × P̃-almost surely the function Ṽ −1∗ (τ ) := inf{t; Ṽ (t) > τ } is strictly increasing

and right-continuous.
We use Lemma 1 to fix a pair (ω, ω̃) ∈ 
 × 
̃ with the properties that:

(i) τ 	→ Ṽ −1∗ (τ ) is strictly increasing and right-continuous;
(ii) Ṽn(t) converges toward Ṽ∗(t) for all t ≥ 0.

Since the set where Ṽ∗ is not continuous is countable, the set where Ṽ∗ is continuous is dense in
[0,∞).

We denote by K the set of critical values of Ṽ∗. As was pointed out before, K is at most
countable. For an arbitrary point τ ∈ [0,∞)∩Kc and for any ε > 0, one can find points tε,0, tε,1 ∈
(Ṽ −1∗ (τ ) − ε, Ṽ −1∗ (τ )) and tε,2, tε,3 ∈ (Ṽ −1∗ (τ ), Ṽ −1∗ (τ ) + ε) with the property

Ṽ∗(tε,0) < Ṽ∗(tε,1) < τ < Ṽ∗(tε,2) < Ṽ∗(tε,3).

We can now choose a δ > 0 such that

Ṽ∗(tε,0) + δ < Ṽ∗(tε,1) − δ < Ṽ∗(tε,1) + δ < τ < Ṽ∗(tε,2) − δ < Ṽ∗(tε,2) + δ < Ṽ∗(tε,3) − δ.

Since Ṽn converges toward Ṽ∗ in all points where Ṽ∗ is continuous, there exists an n0 ∈ N such
that for all n ≥ n0, we have

Ṽn(tε,0) < Ṽ∗(tε,0) + δ < Ṽ∗(tε,1) − δ < Ṽn(tε,1) < Ṽ∗(tε,1) + δ < τ
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and

τ < Ṽ∗(tε,2) − δ < Ṽn(tε,2) < Ṽ∗(tε,2) + δ < Ṽ∗(tε,3) − δ < Ṽn(tε,3).

By definition of tε,0, we have that z ≤ Ṽ −1∗ (τ ) − ε implies z ≤ tε,0. From monotonicity and the
first of both inequalities above, it follows that

Ṽn(z) ≤ Ṽn(tε,0) ≤ Ṽ∗(tε,0) + δ < Ṽ∗(tε,1).

We have thus seen that z ≤ Ṽ −1∗ (τ ) − ε implies Ṽn(z) < Ṽ∗(tε,1). If we reverse the implication,
then we obtain that Ṽn(z) ≥ Ṽ∗(tε,1) implies z > Ṽ −1∗ (τ ) − ε. From this implication, it follows
that

Ṽ −1
n (Ṽ∗(tε,1)) = inf{z : Ṽn(z) > Ṽ∗(tε,1)} > Ṽ −1∗ (τ ) − ε.

For z = tε,3, we have Ṽn(z) = Ṽn(tε,3) > Ṽ∗(tε,2). In other words, there exists a z < Ṽ −1∗ (τ ) + ε

with Ṽn(z) > Ṽ∗(tε,2). This proves that

Ṽ −1∗ (τ ) + ε > Ṽ −1
n (Ṽ∗(tε,2)).

Altogether, we have proven that for all n ≥ n0,

Ṽ −1∗ (τ ) − ε < Ṽ −1
n (Ṽ∗(tε,1)) < Ṽ −1

n (Ṽ∗(tε,2)) < Ṽ −1∗ (τ ) + ε.

By monotonicity, for all n ≥ n0 and all τ ′ ∈ [Ṽ∗(tε,1), Ṽ∗(tε,2)], one has

Ṽ −1∗ (τ ) − ε < Ṽ −1
n (τ ′) < Ṽ −1∗ (τ ) + ε.

Since τ ∈ [Ṽ∗(tε,1), Ṽ∗(tε,2)], the proof is complete. �

Lemma 3. For all τ ≥ 0, one has that τ is a regular value of Ṽ∗ almost surely with respect to
P × P̃.

Proof. By the invariance properties of Brownian motion, we have that for all γ > 0,

{L(t,w);w ∈ R, t ≥ 0} D= {γ −1L(γ 2t, γw);w ∈ R, t ≥ 0}.
By the invariance of the α-stable Lévy process, we have that

{L(t, W̃ (x));x ∈ R, t ≥ 0} D= {γ −1L(γ 2t, γ W̃ (x));x ∈ R, t ≥ 0}
D= {γ −1L(γ 2t, W̃ (γ αx));x ∈ R, t ≥ 0}.

Substitution then yields{∫
R

L(t, W̃ (x))dx; t ≥ 0

}
D=
{
γ −1

∫
R

L(γ 2t, W̃ (γ αx))dx; t ≥ 0

}

D=
{
γ −1−α

∫
R

L(γ 2t, W̃ (x))dx; t ≥ 0

}
.
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By definition, this means that

{Ṽ∗(t); t ≥ 0} D= {γ −1−αṼ∗(γ 2t); t ≥ 0}.

We define �∗ to be the image measure of the Lebesgue measure � with respect Ṽ∗. The previous
considerations imply that

�∗(dt)
D= γ 2�∗(γ −1−α dt).

This identity implies that no τ > 0 satisfies �∗({τ }) > 0 with a positive probability with respect
to P × P̃. To a critical value τ corresponds an interval where t 	→ Ṽ∗ is constant, which implies
that �∗({τ }) > 0. For a particular point τ > 0, this cannot happen with positive probability. This
finishes the proof of the statement. �

Proposition 3. For all τ ≥ 0, the sequence of functions x 	→ L(Ṽ −1
n (τ ), S̃n(x +1/n)) converges

toward the function x 	→ L(Ṽ −1∗ (τ ), W̃ (x)) in the J1-topology P × P̃-almost surely.

Proof. It is known that S̃n converges toward W̃ in the J1-topology almost surely with respect
to P̃. Moreover, by Lemmas 2 and 3, for all τ ≥ 0, the sequence Ṽ −1

n (τ ) converges toward
Ṽ −1∗ (τ ) almost surely with respect to P × P̃. The proposition follows since it is well known that
(t, x) 	→ L(t, x) is jointly continuous P-almost surely; see Boylan (1964) or Getoor and Kesten
(1972). �

Lemma 4. For all k ∈ N, θ1, . . . , θk ∈ R and all τ1, . . . , τk ≥ 0, the set

C :=
{

c > 0 :�

(
x ∈ R;

∣∣∣∣∣
k∑

i=1

θiL(Ṽ −1∗ (τi), W̃ (x))

∣∣∣∣∣= c

)
> 0

}

is countable P × P̃-almost surely, where � denotes the Lebesgue measure on R.

Proof. It is well known that x 	→ W̃ (x) is strictly increasing P̃-almost surely. For c > 0, we
define the level-sets

Nc :=
{

w ∈ R;
∣∣∣∣∣

k∑
i=1

θiL(Ṽ −1∗ (τi),w)

∣∣∣∣∣= c

}
.

Fix a strictly increasing path f :x 	→ W̃ (x) and assume that there exist an uncountable number
of c > 0 with the property that �(f −1(Nc)) > 0. For c �= c′, the sets f −1(Nc) and f −1(Nc′)
are disjoint. We would obtain an uncountable number of disjoint sets with positive Lebesgue
measure. This is, of course, not possible. �
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Proposition 4. For all k ∈ N, θ1, . . . , θk ∈ R and all τ1, . . . , τk ≥ 0, one has P× P̃-almost surely
that

1

n
card

{
x ∈ Z :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}

−→ �

(
x ∈ R :

∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣> c

)
as n → ∞

for all but a countable number of c > 0.

Proof. We can find a K > 0 such that {y ∈ R :L(τi, y) �= 0 for all i = 1, . . . , k} is a subset of the
interval (W̃ (−K), W̃ (K)). By Propositions 2, 3 and Corollary 1, the sequence

Ãn(x) := n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x})
∣∣∣∣∣

=
∣∣∣∣∣

k∑
i=1

θiL
(
Ṽ −1

n (τi), S̃n(x − 1/n)
)∣∣∣∣∣

converges P × P̃-almost surely in the J1-topology toward

Ã∗(x) :=
∣∣∣∣∣

k∑
i=1

θiL̃∗(τi, x)

∣∣∣∣∣=
∣∣∣∣∣

k∑
i=1

θiL(Ṽ −1∗ (τi), W̃ (x))

∣∣∣∣∣.
There then exists a sequence of continuous increasing maps λn : [−K,K] → [−K,K] such that

sup
x∈[−K,K]

|Ã∗(x) − Ãn ◦ λn(x)| −→ 0 as n → ∞

and such that each λn is Lipschitz continuous and satisfies

esssup
x∈[−K,K]

|λ′
n(x) − 1| −→ 0.

We should emphasize that the derivative of the function λn may not exist everywhere. How-
ever, those points where the derivative does not exist form a zero set since λn is an absolutely
continuous Lipschitz function. We note that for suitably large n ∈ N, one has

1

n
card

{
x ∈ R;

∣∣∣∣∣
k∑

i=1

θiL
(
Ṽ −1

n (τi), S̃n(x − 1/n)
)∣∣∣∣∣> c

}

= �
(
x ∈ [−K,K]; Ãn(x) > c

)=
∫ K

−K

1(c,∞)(Ãn(x))dx.
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It then follows that

1

n
card

{
x ∈ [−K,K];n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x})
∣∣∣∣∣> c

}
−
∫ K

−K

1(c,∞)(Ãn(λn(x)))dx

=
∫ K

−K

1(c,−∞)(Ãn(x))dx

(
1 − 1

λ′
n(λ

−1
n (x))

)
dx + O

(
sup

x∈[−K,K]
|λn(x) − x|

)
.

By the assumptions on the sequence {λn;n ∈ N}, the previous difference converges toward zero.
Furthermore,∫ K

−K

1(c,∞)(Ãn(λn(x)))dx −→
∫ K

−K

1(c,∞)(Ã∗(x))dx as n → ∞

whenever the set {x ∈ [−K,K]; Ã∗(s) = c} is a zero set with respect to the Lebesgue measure �

on R. Since this was proven in Lemma 4, the statement of the proposition follows. �

Subsequently, we will make use of the following notation:

A+
n :=

{
x ∈ Z :

k∑
i=1

θi�̃n(τi, {x/n}) > 0

}
, A−

n :=
{

x ∈ Z :
k∑

i=1

θi�̃n(τi, {x/n}) < 0

}

and

A+ :=
{

x ∈ R :
k∑

i=1

θiL̃∗(τi, x) > 0

}
, A− :=

{
x ∈ R :

k∑
i=1

θiL̃∗(τi, x) < 0

}
.

Later, we will need the following version of Proposition 4.

Proposition 5. For all k ∈ N, θ1, . . . , θk ∈ R and all τ1, . . . , τk ≥ 0, one has P× P̃-almost surely
that

1

n
card

{
x ∈ Z ∩ A±

n :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}
−→ �

(
x ∈ R ∩ A± :

∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣> c

)

for all but a countable number of c > 0.

Proof. The proof uses essentially the same arguments as the proof of Proposition 4. �

Remark. With the same proof as for Proposition 4, we can show that P × P̃-almost surely

1

n
card

{
x ∈ Z :n2�̃2

n(τi, {x/n}) > c
}−→ �

(
x ∈ R : L̃2∗(τi, x) > c

)
as n → ∞

for all but a countable number of c > 0.
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2.4. A useful lemma on integrated powers of local time

Lemma 5. For τ1, . . . , τk ≥ 0 and θ1, . . . , θk ∈ R, the two sequences of random variables

nβ−1
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣
β

and

nβ−1
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�̃n(τi, {x/n})
))

converge P × P̃-almost surely toward the respective random variables

∫ ∞

−∞

∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣
β

dx and
∫ ∞

−∞

(∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣
β

sgn

(
k∑

i=1

θiL̃∗(τi, x)

))
dx.

Proof. We use the layer cake representation of the integrals (see Lieb and Loss (2001)) to write

∑
x∈Z

∣∣∣∣∣
k∑

i=1

θin�̃n(τi, {x/n})
∣∣∣∣∣
β

= β

∫ ∞

0
cβ−1 card

{
x ∈ Z :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}
dc

and

∫ ∞

−∞

∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣
β

dx = β

∫ ∞

0
cβ−1�

(
x ∈ R :

∣∣∣∣∣
k∑

i=1

θiL̃∗(τi, x)

∣∣∣∣∣> c

)
dc.

We note that the convergence of Ṽ −1
n (τi) toward Ṽ −1∗ (τi) and the fact that t 	→ L(t, y) is increas-

ing for every y ∈ R imply that there exists an n0 ∈ N with

L(Ṽ −1
n (τi), y) ≤ L

(
Ṽ −1∗ (τi) + 1, y

)
for all y ∈ R,1 ≤ i ≤ k,n ≥ n0.

Moreover, for all i ∈ {1, . . . , k}, the functions y 	→ L(Ṽ −1∗ (τi) + 1, y) are continuous and their
supports are contained in [−K,K] for a suitable K > 0. Hence, there exists a C > 0 such that
for n ≥ n0, one has

n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣ ≤

∣∣∣∣∣
k∑

i=1

θiL
(
Ṽ −1

n (τi), S̃n

(
(x − 1)/n

))∣∣∣∣∣
≤

k∑
i=1

θi sup
y∈R

L
(
Ṽ −1∗ (τi) + 1, y

)≤ C.
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This implies that all of the functions

c 	→ card

{
x ∈ Z :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}

have support contained in [0,C]. Moreover, for all c > 0, we have

card

{
x ∈ Z :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}
≤ card

{
x ∈ Z :−K ≤ S̃n

(
(x − 1)/n

)≤ K
}
.

Since

�
(
x; W̃ (x) ∈ {−K,K})= 0

and since S̃n converges toward W̃ with respect to the Skorohod metric, we have that

1

n
card

{
x ∈ Z :−K ≤ S̃n

(
(x − 1)/n

)≤ K
}−→ �

(
x ∈ R :−K ≤ W̃ (x) ≤ K

)
.

This implies that there exists an R > 0 such that for all n ∈ N and all c > 0, we have

1

n
card

{
x ∈ Z :n

∣∣∣∣∣
k∑

i=1

θi�̃n(τi, {x/n})
∣∣∣∣∣> c

}
≤ R.

The first statement of the lemma then follows from dominated convergence and Proposition 4.
The second statement is proved in the same way by separating the positive and the negative parts
of the integrals and using the statements from Proposition 5 instead of Proposition 4. �

Proposition 6. For τ1, . . . , τk ≥ 0 and θ1, . . . , θk ∈ R, the two sequences of random variables

nβ−1
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�n(τi, {x/n})
∣∣∣∣∣
β

and

nβ−1
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�n(τi, {x/n})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�n(τi, {x/n})
))

converge jointly in distribution toward the respective random variables

∫ ∞

−∞

∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

dx and
∫ ∞

−∞

(∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

sgn

(
k∑

i=1

θiL∗(τi, x)

))
dx.

Proof. We know that

{L∗(t, x); t ≥ 0, x ∈ R} D= {L̃∗(t, x); t ≥ 0, x ∈ R}
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and

{S−1
n (Bn(V

−1
n (t))); t ≥ 0} D= {S̃−1

n (B(Ṽ −1
n (t))); t ≥ 0}.

Therefore, by Lemma 5, the sequences of random variables

nβ−1
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�̂n(τi, {x/n})
∣∣∣∣∣
β

and

nβ−1
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�̂n(τi, {x/n})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�̂n(τi, {x/n})
))

converge jointly in distribution toward the respective random variables

∫ ∞

−∞

∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

dx and
∫ ∞

−∞

(∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

sgn

(
k∑

i=1

θiL∗(τi, x)

))
dx.

Moreover, S−1
n (Sn(x/n)) = (x + 1)/n for all x ∈ Z. This implies that

X̂n(τ )
D= S−1

n (Sn(Xn(τ))) = Xn(τ) + 1/n.

Hence, we have �̂n(τ, {x/n}) D= �n(τ, {(x + 1)/n}) for all x ∈ Z. Therefore,

nβ−1
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�̂n(τi, {x/n})
∣∣∣∣∣
β

D= nβ−1
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�n(τi, {x/n})
∣∣∣∣∣
β

and

nβ−1
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�̂n(τi, {x/n})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�̂n(τi, {x/n})
))

D= nβ−1
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�n(τi, {x/n})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�n(τi, {x/n})
))

.

This proves the proposition. �

For the sequel, we define the occupation time

�(t,A) :=
∫ t

0
1A(X(s))ds

of the process X in the measurable set A ⊂ R. Consequently, we have

�(t) =
∑
x

�(t, {x})ξ(x).
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We will use this fact and the following corollary in the proofs of the next section.

Corollary 2. For τ1, . . . , τk ≥ 0 and θ1, . . . , θk ∈ R, the two sequences of random variables

n−1−β/α
∑
x∈Z

∣∣∣∣∣
k∑

i=1

θi�(knτi, {x})
∣∣∣∣∣
β

and

n−1−β/α
∑
x∈Z

(∣∣∣∣∣
k∑

i=1

θi�(knτi, {x})
∣∣∣∣∣
β

sgn

(
k∑

i=1

θi�(knτi, {x})
))

converge jointly in distribution toward the respective random variables

∫ ∞

−∞

∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

dx and

∫ ∞

−∞

(∣∣∣∣∣
k∑

i=1

θiL∗(τi, x)

∣∣∣∣∣
β

sgn

(
k∑

i=1

θiL∗(τi, x)

))
dx.

Proof. If we let kn := n(1+α)/α , then for all n ∈ N and x ∈ Z, we have that

�n(τ, x/n) =
∫ τ

0
1{x/n}(Xn(t))dt = k−1

n

∫ knτ

0
1{x}(X(t))dt = n−(α+1)/α�(knτ, {x}).

The result then follows from Proposition 6. �

3. The finite-dimensional distributions

In this section, we prove the convergence of the finite-dimensional distributions of �n toward the
finite-dimensional distributions of �∗. In order to do so, we first compute the exact expression
of the finite-dimensional distributions of �∗. The proofs in this section follow the ideas given in
Kesten and Spitzer (1979).

In the Introduction, we defined

�∗(τ ) :=
∫ ∞

0
L∗(τ, x−)dZ+(x) +

∫ ∞

0
L∗(τ,−(x−))dZ−(x),

where {Z+(t); t ≥ 0} and {Z−(t); t ≥ 0} are independent copies of the β-stable Lévy process,
which can be associated with the stable distribution ϑβ with characteristic function given by

ψ(θ) = exp
(−|θ |β(A1 + iA2 sgn(θ)

))
.
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Lemma 6. For t1, . . . , tk ≥ 0 and θ1, . . . , θk ∈ R, we have that

E

[
exp

(
i

k∑
j=1

θj�∗(tj )
)]

= E

[
exp

(
−A1

∫ ∞

−∞

∣∣∣∣∣
k∑

j=1

θjL∗(tj , x)

∣∣∣∣∣
β

dx

)

× exp

(
−iA2

∫ ∞

−∞

∣∣∣∣∣
k∑

j=1

θjL∗(tj , x)

∣∣∣∣∣
β

dx sgn

(
k∑

j=1

θjL∗(tj , x)

))]
.

Proof. The proof is similar to that given in Kesten and Spitzer (1979) (see page 16ff). Let ν be
the Lévy measure of Z+. One can truncate the Lévy measure as follows:

ν1(B) = ν(B ∩ {y ∈ R; |y| ≤ 1}) and ν2(B) = ν(B ∩ {y ∈ R; |y| > 1}).
Let M(t) and A(t) be independent Lévy processes, with respective characteristic functions

E
[
eiθM(t)

]= exp

(
t

∫
|y|≤1

(eiθy − 1 − iθy)ν1(dy)

)

and

E
[
eiθA(t)

]= exp

(
t

∫
|y|≤1

(eiθy − 1)ν2(dy)

)
,

such that

Z+(t) = M(t) + A(t) + Dt,

where D is a suitable real constant. This decomposition exists and is called the Lévy–Itô rep-
resentation of Z+. The advantage of this representation is that M(t) is a martingale and has all
moments and A(t) is a process with bounded variation. Since the process {L∗(t, x−);x ≥ 0}
is left-continuous and independent with respect to the filtration Ft generated by Z+(t), the
process {L∗(t, x−);x ≥ 0} is Ft -predictable. Moreover, {L∗(t, x−);x ≥ 0} has bounded sup-
port P-almost surely. Therefore, we can find a suitable sequence of partitions {x(n)

l ; l ∈ N}, n ∈ N,

with x
(n)
l < x

(n)
l+1 for all l, n ∈ N satisfying

lim
l→∞x

(n)
l = ∞ and lim

n→∞ max
l∈N

(
x

(n)
l+1 − x

(n)
l

)= 0

such that

∫ ∞

0
L∗(t, x−)dM(x) = lim

n→∞

∞∑
l=1

L∗
(
t, x

(n)
l −)(

M
(
x

(n)
l+1

)− M
(
x

(n)
l

))



848 B. Franke and T. Saigo

with probability 1 (see Meyer (1976), Chapter II, Section 23). Moreover, we can also assume
that ∫ ∞

0
L∗(t, x−)dA(x) = lim

n→∞

∞∑
l=1

L∗
(
t, x

(n)
l −)(

A
(
x

(n)
l+1

)− A
(
x

(n)
l

))
with probability 1.

From those considerations, it follows that there exists a sequence of partitions (x
(n)
l )l∈N such

that ∫ ∞

0
L∗(t, x−)dZ+(x) = lim

n→∞

∞∑
l=1

L∗
(
t, x

(n)
l −)(

Z+
(
x

(n)
l+1

)− Z+
(
x

(n)
l

))

with probability 1. Since the increments D
(n)
l := Z+(x

(n)
l+1) − Z+(x

(n)
l ), l ∈ N, are independent

and have characteristic function

E
[
eiθD

(n)
l
]= exp

(−(
x

(n)
l+1 − x

(n)
l

)|θ |β(A1 + iA2 · sgn(θ)
))

by dominated convergence, we have

E

[
exp

(
i

k∑
j=1

θj

∫ ∞

0
L∗(tj , x−)dZ+(x)

)]

= lim
n→∞ E

[
exp

( ∞∑
l=1

k∑
j=1

iθjL∗
(
tj , x

(n)
l −)(

Z+
(
x

(n)
l+1

)− Z+
(
x

(n)
l

)))]

= lim
n→∞ E

[
exp

(
−

∞∑
l=1

(
x

(n)
l+1 − x

(n)
l

)∣∣∣∣∣
k∑

j=1

θjL∗
(
tj , x

(n)
l −)∣∣∣∣∣

β

×
(

A1 + iA2 · sgn

(
k∑

j=1

θjL∗
(
tj , x

(n)
l −))))]

.

= E

[
exp

(
−A1

∫ ∞

0

∣∣∣∣∣
k∑

j=1

θjL∗
(
tj , x

(n)
l

)∣∣∣∣∣
β

dx

− iA2

∫ ∞

0

∣∣∣∣∣
k∑

j=1

θjL∗
(
tj , x

(n)
l

)∣∣∣∣∣
β

sgn

(
k∑

j=1

θjL∗
(
tj , x

(n)
l

))
dx

)]
.

For Z−, one can proceed with similar arguments. �

Proposition 7. The finite-dimensional distributions of the processes {�n(t); t ≥ 0} converge to-
ward the finite-dimensional distributions of the process {�∗(t); t ≥ 0}.
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Proof. As in the previous sections, we define kn := n(1+α)/α and κ := 1
α

+ 1
β

. We already saw
that we can use the occupation time {�(t, {x}); t ≥ 0, x ∈ R} of the process {X(t); t ≥ 0} to
represent the process {�(t); t ≥ 0} as follows:

�(t) =
∑
x∈Z

�(t, {x})ξ(x).

It follows that

�n(t) = n−κ�(knt) = n−κ
∑
x∈Z

�(knt, {x})ξ(x).

Let ϕ(θ) := E[exp(iθξ(1))] be the characteristic function of the scenery random variable ξ(1). It
then follows from the above representation that

k∑
j=1

θj�n(tj ) = n−κ
∑
x∈Z

k∑
j=1

θj�(kntj , {x})ξ(x)

and

Rn := E

[
exp

(
i

k∑
j=1

θj�n(tj )

)]
= E

[∏
x∈Z

ϕ

(
n−κ

k∑
j=1

θj�(kntj , {x})
)]

.

The random scenery {ξ(z); z ∈ Z} is in the domain of attraction of a β-stable distribution with
characteristic function given by

ψ(θ) = exp
(−|θ |β(A1 + iA2 · sgn(θ)

))
.

This implies that

1 − ϕ(θ) ∼ |θ |β(A1 + iA2 · sgn(θ)
)

as θ → 0.

Thus

log(ϕ(θ)) ∼ log(ψ(θ)) as θ → 0.

Therefore, for |θ | ≤ 1, we have that∣∣∣∣ log(ϕ(θ)) − log(ψ(θ))

log(ψ(θ))

∣∣∣∣= o(θ).

If we define

ϕx,n := ϕ

(
n−κ

k∑
j=1

θj�(kntj , {x})
)
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and

ψx,n := exp

(
−n−κβ

∣∣∣∣∣
k∑

j=1

θj�(kntj , {x})
∣∣∣∣∣
β(

A1 + iA2 · sgn

(
k∑

j=1

θj�(kntj , {x})
)))

for all x ∈ Z, one has

∣∣∣∣ log(ϕx,n) − log(ψx,n)

log(ψx,n)

∣∣∣∣= o

(
n−κ

k∑
j=1

θj�(kntj , {x})
)

.

This implies that∣∣∣∣log

(∏
x∈Z

ϕx,n

)
− log

(∏
x∈Z

ψx,n

)∣∣∣∣ =
∣∣∣∣∑
x∈Z

log(ϕx,n) −
∑
x∈Z

log(ψx,n)

∣∣∣∣
≤
∑
x∈Z

log(ψx,n)o

(
n−κ

k∑
j=1

θj�(kntj , {x})
)

.

By Corollary 2, the right-hand side of the previous inequality converges toward zero in probabil-
ity. The continuity of the logarithm then implies that∣∣∣∣∏

x∈Z

ϕx,n −
∏
x∈Z

ψx,n

∣∣∣∣−→ 0 in probability as n → ∞.

We use this and dominated convergence to prove that the limit of the sequence {Rn;n ∈ N} exists
and is equal to the limit of the sequence

Qn := E

[
exp

(
−
∑
x∈Z

n−κβ

∣∣∣∣∣
k∑

j=1

θj�(kntj , {x})
∣∣∣∣∣
β(

A1 + iA2 · sgn

(
k∑

j=1

θj�(kntj , {x})
)))]

.

By Corollary 2 and Lemma 6, the sequence {Qn;n ∈ N} converges toward

Q∗ := E

[
exp

(
−
∫ ∞

−∞

∣∣∣∣∣
k∑

j=1

θjL∗(tj , x)

∣∣∣∣∣
β(

A1 + iA2 · sgn

(
k∑

j=1

θjL∗(tj , x)

))
dx

)]

= E

[
exp

(
i

k∑
j=1

θj�∗(tj )
)]

.

As we have seen in Lemma 6, Q∗ is the characteristic function for the finite-dimensional distri-
butions of {�∗(t); t ≥ 0}. This completes the proof of the proposition. �
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4. The tightness

In this section, we prove that the sequence {�n(t); t ≥ 0} is tight. The proof of Theorem 1 then
follows since we have already obtained the convergence of the finite-dimensional distributions
in the previous section. The main proof of tightness also follows the ideas given in Kesten and
Spitzer (1979). We first need some suitable inequalities for the occupation times of X∗. However,
the proofs of those inequalities differ from those given in Kesten and Spitzer (1979).

Lemma 7. There exists a function ε : R+ → R
+ with the properties ε(A) → 0 as A → ∞ and

P
(
�(s, {x}) > 0 for some x with |x| > Asα/(1+α)

)≤ ε(A) for all s ≥ 0.

Proof. For a positive real number x, we denote by �x� the smallest integer which is greater or
equal to x. Obviously, for all s ≥ 0, we have

P
(
�(s, {x}) > 0 for some x with |x| > Asα/(1+α)

)
≤ P

(|X(r)| > Asα/(1+α) for some r ≤ s
)

≤ P
(|X(r)| > A

(⌈
sα/(1+α)

⌉− 1
)

for some r ≤ ⌈
sα/(1+α)

⌉(1+α)/α)
= P

(∣∣X(⌈
sα/(1+α)

⌉(1+α)/α
u
)∣∣> A

⌈
sα/(1+α)

⌉− A for some u ≤ 1
)

≤ P

(
sup
r≤1

∣∣Xn(s)(r)
∣∣> A/2

)
for s > 1,

with n(s) := �sα/(1+α)� → ∞ as s → ∞. Since

P

(
sup
r≤1

|Xn(r)| > A/2
)

−→ P

(
sup
r≤1

|X∗(r)| > A/2
)

as n → ∞,

we can define

ε(A) := sup
s≥0

P

(
sup
r≤1

∣∣Xn(s)(r)
∣∣> A/2

)
for all A > 0.

This proves the statement of the lemma. �

Lemma 8. There exists a C > 0 such that for all s ≥ 0, one has∑
x∈Z

E[�2(s, {x})] ∼ Cs2−α/(1+α).

Proof. For a positive real number x, we denote by �x� its integer part. We know that for w(s) :=
�sα/(α+1)�, one has

(w(s))2(α+1)/α

s2

∑
x∈Z

�2
w(s)

(
1, {x/w(s)})= s−2

∑
x∈Z

�2((w(s))(α+1)/α, {x})≤ s−2
∑
x∈Z

�2(s, {x})
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and

s−2
∑
x∈Z

�2(s, {x}) ≤ s−2
∑
x∈Z

�2((w(s) + 1
)(α+1)/α

, {x})

= (w(s) + 1)2(α+1)/α

s2

∑
x∈Z

�2
w(s)+1

(
1,
{
x/
(
w(s) + 1

)})
.

Consequently, one has

s−2
∑
x∈Z

E[�2(s, {x})] ∼
∑
x∈Z

E
[
�2

w(s)

(
1, {x/w(s)})]=

∑
x∈Z

E
[
�̃2

w(s)

(
1, {x/w(s)})].

It follows from the layer cake representation and the remark after the proof of Proposition 5 that

w(s)
∑
x∈Z

�̃2
w(s)

(
1, {x/w(s)})= 1

w(s)

∫ ∞

0
card

{
x ∈ Z :w2(s)�̃2

w(s)

(
1, {x/w(s)})> c

}
dc

converges P × P̃-almost surely toward∫ ∞

0
�
(
x ∈ R : L̃2(1, x) > c

)
dc =

∫
R

L̃2∗(1, x)dx.

Dominated convergence and Fubini’s theorem imply that

w(s)
∑
x∈Z

E
[
�̃2

w(s)

(
1, {x/w(s)})]−→

∫
R

E[L̃2∗(1, x)]dx as s → ∞.

Therefore,

w(s)s−2
∑
x∈Z

E[�2(s, {x})] −→
∫

R

E[L̃2∗(1, x)]dx as s → ∞.

This proves the statement of the lemma. �

Lemma 9. (1) For all β ∈ (0,2] and ρ > 0, there exists a C1 > 0 such that as n → ∞, we have∣∣E[ξ(0)1[−ρ,ρ](n−1/βξ(0))
]∣∣∼ C1n

(1−β)/β .

(2) For all β ∈ (0,2) and ρ > 0, there exists a C2 > 0 such that as n → ∞, we have∣∣E[ξ2(0)1[−ρ,ρ]
(
n−1/βξ(0)

)]∣∣∼ C2n
(2−β)/β .

Proof. The random variable ξ(0) is in the domain of attraction of a β-stable random variable
with characteristic function given by

ψ(θ) = exp
(−|θ |β(A1 + iA2 sgn(θ)

))
,
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with 0 < A1 < ∞ and |A−1
1 A2| ≤ tan(πβ/2). A consequence of this setting is that for β > 1, we

have E[ξ(0)] = 0. Further, if β ∈ (0,2], then there exist B1,B2 ≥ 0 such that

lim
ρ→∞ρβ

P
(
ξ(0) ≥ ρ

)= B1 and lim
ρ→∞ρβ

P
(
ξ(0) ≤ −ρ

)= B2.

For β = 2, we have B1 = B2 = 0 since the decay of the tail probabilities is exponential in that
case. For β �= 1, we then have that

∣∣E[ξ(0)1[−ρ,ρ](n−1/βξ(0))
]∣∣ =

∫ ρn1/β

0
P
(|ξ(0)| ≥ c

)
dc

∼ (B1 + B2)

∫ ρn1/β

0
c−β dc

= (B1 + B2)(1 − β)−1ρ1−βn(1/β)(1−β).

This proves the first statement for β �= 1. For β = 1, the statement is just our assumption from
the Introduction.

Moreover, by similar arguments for β �= 2, we have that

∣∣E[ξ2(0)1[−ρ,ρ](n−1/βξ(0))
]∣∣ ∼ (B1 + B2)

∫ ρn1/β

0
c1−β dc

= (B1 + B2)(2 − β)−1ρ2−βn(1/β)(2−β).

This completes the proof of the second statement. �

Proposition 8. The distributions of the sequence {�n;n ∈ N} are tight with respect to the Sko-
rohod topology.

Proof. We follow the method given in Kesten and Spitzer (1979). Let ε > 0 be given. By
Lemma 7, there exists an A > 0 such that ε(AT −α/(1+α)) ≤ ε/4. This implies that

P

(
�n(t) �= n−κ

∑
|x|≤An

�(knt, {x})ξ(x) for some t ≤ T

)

≤ P
(
�(knT , {x}) > 0 for some x with |x| > Ak

α/(1+α)
n

)
≤ ε

(
AT −α/(1+α)

)
≤ ε/4.

There exists a ρ0 > 0 with the property that for all ρ > ρ0 and all n ∈ N, we have

3An
(
1 − P

(−ρn1/β ≤ ξ(0) ≤ ρn1/β
))≤ ε/4.



854 B. Franke and T. Saigo

This is valid since for suitable B1,B2 ≥ 0, we have

lim
ρ→∞ρβ

P
(
ξ(0) ≥ ρ

)= B1 and lim
ρ→∞ρβ

P
(
ξ(0) ≤ −ρ

)= B2.

For all x ∈ Z, we have the random variables

ξ̄n(x) := ξ(x)1[−ρ,ρ](n−1/βξ(x)),

En := n−κ 1

T
E

[∑
x∈Z

�(knt, {x})ξ̄n(x)

]
= n−κ 1

T
E

[∑
x∈Z

�(knt, {x})E[ξ̄n(x)]
]

and

�̄n(t) := n−κ
∑
x∈Z

�(knt, {x})(ξ̄n(x) − E[ξ̄n(x)]).
Claim 1. The family of random variables {En(t);n ∈ N} is bounded. This is true since, by

Lemma 9, we have∣∣∣∣∑
x∈Z

�(knt, {x})E[ξ̄n(x)]
∣∣∣∣ = |E[ξ̄n(0)]|

∑
x∈Z

�(knt, {x})

= knt |E[ξ̄n(0)]| ≤ Ctn(α+1)/αn(1/β)(1−β)

and α+1
α

+ 1
β
(1 − β) − κ = 0.

Claim 2. For all η > 0, there exists an n0 ∈ N such that for all n ≥ n0, we have

P

(
sup
t≤T

|�n(t) − �̄n(t) − Ent | > η

2

)
≤ ε

2
.

To see this, we first note that

�n(t) − �̄n(t) − Ent = n−κ
∑
x∈Z

�(knt, {x})(ξ(x) − ξ̄n(x)
)

since

�n(t) − �̄n(t) − Ent − n−κ
∑
x∈Z

�(knt, {x})(ξ(x) − ξ̄n(x)
)

= n−κ

(∑
x∈Z

�(knt, {x})E[ξ̄ (x)] − t

T
E

[∑
x∈Z

�(knt, {x})E[ξ̄ (x)]
])

= n−κ
E[ξ̄ (0)]

(∑
x∈Z

�(knt, {x}) − t

T
E

[∑
x∈Z

�(knt, {x})
])

= n−κ
E[ξ̄ (0)]

(
knt − t

T
knT

)
= 0.
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Lemma 9 implies that

P

(
n−κ

∑
x∈Z

�(knt, {x})(ξ(x) − ξ̄n(x)
) �= 0 for some t ≤ T

)

≤ P
(
�(knT , {x}) > 0 for some x with |x| > Ak

α/(1+α)
n

)
+ P

(
ξ(x) �= ξ̄n(x) for some |x| ≤ Ak

α/(1+α)
n

)
≤ ε

(
AT −α/(1+α)

)+ 3Ak
α/(1+α)
n P

(
ξ(0) �= ξ̄n(0)

)
≤ ε

4
+ 3An

(
1 − P

(−ρn1/β ≤ ξ(0) ≤ ρn1/β
))

≤ ε

2
.

Claim 3. There exists a K0 > 0 such that for all n ∈ N, we have

E[|�̄n(t2) − �̄n(t1)|2] ≤ C0(t2 − t1)
2−(1+α)/α.

We define the σ -field X = {X(t); t ≥ 0}. It then follows from the independence of {X(t); t ≥ 0}
and {ξ(x);x ∈ Z} that

E

[(∑
x∈Z

(
�(knt2, {x}) − �(knt1, {x}))ξ̄n(x)

)2]

= E

[
E

[(∑
x∈Z

(
�(knt2, {x}) − �(knt1, {x}))ξ̄n(x)

)2∣∣∣∣X
]]

= E

[∑
x∈Z

(
�(knt2, {x}) − �(knt1, {x}))2

E[ξ̄2
n (x)|X ]

]

=
∑
x∈Z

E
[(

�(knt2, {x}) − �(knt1, {x}))2]
E[ξ̄2

n (x)].

This implies that

E[|�̄n(t2) − �̄n(t1)|2] ≤ n−2κ
∑
x∈Z

E
[(

�(knt2, {x}) − �(knt1, {x}))2]
E[ξ̄2

n (x)]

= n−2κ
E

[∑
x∈Z

(
�(knt2, {x}) − �(knt1, {x}))2

]
E[ξ̄2

n (0)].

Conditioned on A := {λi; i ∈ Z}, the process X has the strong Markov property. Using this,
we can prove that for t1 ≤ t2, the conditional distribution of

∑
x(�(t2, {x}) − �(t1, {x}))2 with
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respect to A equals the conditional distribution of
∑

x �2(t2 − t1, {x}) with respect to A. Hence,

E

[∑
x∈Z

(
�(t2, {x}) − �(t1, {x}))2

]
= E

[
E

[∑
x∈Z

(
�(t2, {x}) − �(t1, {x}))2∣∣A

]]

= E

[
E

[∑
x∈Z

�2(t2 − t1, {x})∣∣A
]]

= E

[∑
x∈Z

�2(t2 − t1, {x})
]
.

By Lemma 8, it follows that

E

[∑
x∈Z

(
�(knt2, {x}) − �(knt1, {x}))2

]
≤ Ck

2−α/(1+α)
n (t2 − t1)

2−α/(1+α)

= Cn2(1+α)/α−1(t2 − t1)
2−α/(1+α).

Moreover, we know that

E[ξ̄2
n (0)] ≤ C̃n(2−β)(1/β).

Putting this all together, we obtain

E[|�̄n(t2) − �̄n(t1)|2] ≤ C0n
(2−β)(1/β)n−2κn2(1+α)/α−1(t2 − t1)

2−α/(1+α).

Since (2 − β) 1
β

− 2κ + 2 1+α
α

− 1 = 0, Claim 3 follows.
Since 2 − α

1+α
> 1, the tightness in the Skorohod topology of the family {�n;n ∈ N} now

follows from Claims 1–3 and a theorem of Billingsley (1968) (see page 95). �
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