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Some covariance models based on normal
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Modelling spatio-temporal processes has become an important issue in current research. Since Gaussian
processes are essentially determined by their second order structure, broad classes of covariance functions
are of interest. Here, a new class is described that merges and generalizes various models presented in the
literature, in particular models in Gneiting (J. Amer. Statist. Assoc. 97 (2002) 590–600) and Stein (Non-
stationary spatial covariance functions (2005) Univ. Chicago). Furthermore, new models and a multivariate
extension are introduced.
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1. Introduction

Spatio-temporal modelling is an important task in many disciplines of the natural sciences, geo-
sciences, and engineering. Hence, the development of models for spatio-temporal correlation
structure is of particular interest. The lively activity in this field of research has become ap-
parent through various recent reviews of known classes of spatio-temporal covariance functions
(Gneiting et al. (2007), Mateu et al. (2008), Ma (2008)). To categorise these classes, different
aspects have been considered. Gneiting et al. (2007) distinguish between the properties of co-
variance functions, such as motion invariance, separability, full symmetry, or conformity with
Taylor’s hypothesis. Another classification is based on the construction principles (Ma (2008)),
such as spectral methods (Stein (2005a)), multiplicative mixture models (Ma (2002)), additive
models (Ma (2005c)), turning bands upgrade (Kolovos et al. (2004)), derivatives and integrals
(Ma (2005b)), and Gneiting’s (2002) approach, see also Stein (2005c) and Ma (2003).

Surprisingly, some rather different approaches to the construction of spatial and spatio-
temporal covariance models can be subsumed in a unique class of normal scale mixtures, which
is a generalization of Gneiting’s (2002) class. As its construction is based on cross covariance
functions, Section 2 illustrates some of the properties of cross covariance functions and cross var-
iograms. In Section 3, Gneiting’s class itself is generalized. Section 4 introduces two new classes
of spatio-temporal models. Section 5 presents an extension to multivariate models. In addition
to the two-dimensional realisations illustrated below, three-dimensional realisations are avail-
able in the form of films at the following website: www.stochastik.math.uni-goettingen.de/data/
bernoulli10/.
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2. Background: Cross covariance functions

Here we introduce some basic notions and properties of cross covariance functions and cross
variograms. See Wackernagel (2003) for a geostatistical overview and Reisert and Burkhardt
(2007) for some of the construction principles of multivariate cross covariance functions in a
general framework.

Let Z(x) = (Z1(x), . . . ,Zm(x)), x ∈ R
d , be a zero mean, second order m-variate, complex

valued random field in R
d , that is, VarZj (x) exists and EZj (x) = 0 for all x ∈ R

d and j =
1, . . . ,m. Then, the cross covariance function C : R2d → C

m×m is defined by

Cjk(x, y) = Cov(Zj (x),Zk(y)), x, y ∈ R
d , j, k = 1, . . . ,m.

Clearly C(x, y) = C�(y, x), but C(x, y) = C�(x, y) is not valid in general. A function
C : R2d → Cm×m with C(x, y) = C�(y, x), x, y ∈ Rd , is called positive definite if for all n ∈ N,
x1, . . . , xn ∈ R

d and a1, . . . , an ∈ C
m,

n∑
p=1

n∑
q=1

a�
p C(xp, xq)āq ≥ 0. (1)

It is called strictly positive definite if strict inequality holds in (1) for (a1, . . . , an) �= 0 and pair-
wise distinct x1, . . . , xn. Accordingly, we name a Hermitian matrix M ∈ C

m×m positive definite,
if v�Mv̄ ≥ 0 for all v ∈ C

m, and strictly positive definite if strict inequality holds for v �= 0.
As in the univariate case, we derive from Kolmogorov’s existence theorem that a func-

tion C : R2d → Cm×m with C(x, y) = C�(y, x) is a positive definite function if and only
if a (Gaussian) random field exists with C as cross covariance function. Further, a function
C : R2d → R

m×m is a positive definite function if and only if Equation (1) holds for any
a1, . . . , an ∈ R

m.
The cross variogram γ : R2d → C

m×m, γ = (γjk)j,k=1,...,m is defined by

γjk(x, y) = 1
2E

(
Zj (x) − Zj (y)

)(
Zk(x) − Zk(y)

)
, x, y ∈ R

d, j, k = 1, . . . ,m.

If Z has second order stationary increments, then γ (x, y) depends only on the distance vector
h = x − y, that is, γ (x, y) = γ̃ (h) for some function γ̃ : Rd → C

m×m. If in addition Z is uni-
variate, then γ̃ is called a (semi-)variogram. Schoenberg’s (1938b) theorem states that a function
γ̃ : Rd → R with γ̃ (0) = 0 is a variogram if and only if exp(−rγ̃ ) is a covariance function for
all r > 0, see also Gneiting et al. (2001). Let us now discuss multivariate and non-stationary
versions of this statement. To this end, we denote the componentwise multiplication of matrices
by “∗”, in particular,

A∗n = (An
jk)jk for A = (Ajk)jk.

Further, f ∗(A) denotes the componentwise function evaluation, for example,

exp∗(A) = (exp(Ajk))jk.
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Theorem 1. Let C : R2d → C
m×m and Em×m be the m×m matrix whose components are all 1.

1. The following three assertions are equivalent: (i) C is a cross covariance function;
(ii) exp∗(rC) − Em×m is a cross covariance function for all r > 0; (iii) sinh∗(rC) is a
cross covariance function for all r > 0.

2. If exp∗(rC) is a cross covariance function for all r > 0 then

C(z)(x, y) = C(z, z) − C(x, z) − C(z, y) + C(x, y) (2)

is a cross covariance function for all z ∈ R
d . If m = 1 and (2) holds for one z ∈ R

d , then
exp(rC) is a covariance function for all r > 0.

Proof. Note that the componentwise product C1 ∗ C2 of two m-variate cross covariance func-
tions C1 and C2 is again a cross covariance function. To see this, consider the componentwise
product of two independent random fields with cross covariance functions C1 and C2. In particu-
lar, C(x, y)∗n and rC(x, y), r ≥ 0, are cross covariance functions. Furthermore, the sum and the
pointwise limit of m-variate cross covariance functions are cross covariance functions.

1. Both functions, exp(x) − 1 and sinh(x), have Taylor expansion on R with positive coef-
ficients only. Hence, exp∗(rC) − Em×m and sinh∗(rC) are cross covariance functions if C is
a cross covariance function. On the other hand, since the Taylor expansions equal x + o(x) as
x → 0, we have that (exp∗(rC) − Em×m)/r and sinh∗(rC)/r converge to C as r → 0 and C

must be a cross covariance function.
2. The proof follows the lines in Matheron (1972). Let a1, . . . , an ∈ C

m, x1, . . . , xn ∈ R
d ,

a0 = −∑n
p=1 ap and x0 = z for some z ∈ R

d . Then

0 ≤ lim
r→0

n∑
p=0

n∑
q=0

a�
p

exp∗(rC(xp, xq)) − Em×m

r
āq =

n∑
p=0

n∑
q=0

a�
p C(xp, xq)āq

=
n∑

p=1

n∑
q=1

a�
p [C(xp, xq) + C(z, z) − C(xp, z) − C(z, xq)]āq .

Conversely, assume that m = 1 and Equation (2) holds. Since C0(x, y) = f (x)f (y) is a covari-
ance function for any function f : Rd → C (Berlinet and Thomas-Agnan (2004), Lemma 1) part
1 of the theorem results in

exp(rC(x, y)) = f (x)f (y) exp
(
rC(x, y) + rC(z, z) − rC(x, z) − rC(z, y)

)
being a positive definite function for any r > 0 and f (x) = exp(rC(x, z) − rC(z, z)/2). �

Remark 2. If m = 1, C(x, y) = −γ̃ (x − y) and z = 0, then C(0) in Equation (2) equals the
covariance function of an intrinsically stationary random field Z with Z(0) = 0 almost surely,
that is, part 2 of Theorem 1 yields Schoenberg’s (1938b) theorem. If m > 1, the reverse statement
in part 2 of Theorem 1 does not hold in general, as the following example shows. Let M ∈
R

m×m, m ≥ 2, be a symmetric, strictly positive definite matrix with identical diagonal elements,
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γ̃ : Rd → R a variogram, and C(x, y) = −Mγ̃ (x − y). Then C(0)(x, y) given by (2) is a cross
covariance function, but exp∗(−Mγ̃ ) is a positive definite function if and only if γ̃ ≡ 0. To see
this, assume that exp∗(−Mγ̃ ) is a positive definite function and let m = 2, M = (Mjk)j,k=1,2,
and Z(x) = (Z1(x),Z2(x)) be a corresponding random field. Then with a = (1,−1,1,−1)� we
have

Var
(
Z1(0) − Z2(0) + Z1(y) − Z2(y)

) = a�
(

exp∗(−Mγ̃ (0)) exp∗(−Mγ̃ (y))

exp∗(−Mγ̃ (y)) exp∗(−Mγ̃ (0))

)
a

= 2(1,−1) exp∗(−Mγ̃ (y))(1,−1)�

= 4
(
e−M11γ̃ (y) − e−M12γ̃ (y)

)
.

Since M11 > M12, the latter is non-negative if and only if γ̃ (y) = 0.
So, for an arbitrary cross variograms γ : R2d → C

m×m the function exp∗(−γ (x, y)) is not a
positive definite, in general. However,

C1(x, y) = exp∗(γ (x,0) + γ (y,0) − γ (x, y)
)

and

C2(x, y) = exp∗(γ (x,0) + γ (y,0) − Dxy − γ (x, y)
)
,

(3)
(Dxy)jk = γjj (x,0) + γkk(y,0),

are always positive definite functions in R
d , cf. Theorem 2.2 in Berg et al. (1984) for the uni-

variate case. To see this, let γ be an m-variate cross variogram and Z a corresponding m-variate
random field. Let Y(x) = Z(x) − Z(0) and c(x, y) = EY(x)Y�(y). Then c and c� are positive
definite functions and

cjk(x, y) + ckj (x, y) = E
(
Yj (x)Yk(y) + Yk(x)Yj (y)

)
= E

[
Yj (x)Yk(x) + Yj (y)Yk(y) + (

Yj (x) − Yj (y)
)(

Yk(y) − Yk(x)
)]

= γjk(x,0) + γjk(y,0) − γjk(x, y).

Part 1 of Theorem 1 yields that C1 is a positive definite function. Let Z be a corresponding
random field. Then the random field (e−γ11(x,0)Z1(x), . . . , e−γmm(x,0)Zm(x)), x ∈ Rd , has cross
covariance function C2.

Remark 3. Let C(x1, x2) = V D(x1, x2)V̄
� ∈ C

m×m, x, y ∈ R
d , for some unitary matrix V ∈

C
m×m. The values of the mapping D : R2d → C

m×m are diagonal matrices,

D(x1, x2) = diag(D1(x1, x2), . . . ,Dm(x1, x2)), x1, x2 ∈ R
d,

and the Dj : R2d → C, j = 1, . . . ,m, are arbitrary functions. Then the n-fold matrix product
Cn : R2d → C

m×m is a cross covariance function in R
d for any n ∈ N if and only if the Dj are
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all covariance functions, and Theorem 1 remains true if exp∗(rC(x, y)) is replaced by

exp(rC(x, y)) =
∞∑

n=0

rnCn(x, y)

n! , x, y ∈ R
d .

The subsequent proposition generalizes the results in Cressie and Huang (1999) and Theo-
rem 1 in Gneiting (2002). Denote by Bd the ensemble of Borel sets of R

d .

Proposition 4. Let d and l be non-negative integers with d + l > 0 and C : Rl+2d → C
m×m a

continuous function in the first argument. Then the following two assertions are equivalent:

1. C is a cross covariance function that is translation invariant in the first argument, that is,
C(h,y1, y2) = Cov(Z(x +h,y1),Z(x, y2)) for some second order random field Z on R

l+d

and all x,h ∈ R
l and y1, y2 ∈ R

d .
2. C : Rl × R

2d → C
m×m is the Fourier transform of some finite measures Fy1,y2,j,k , y1, y2 ∈

R
d , j, k = 1, . . . ,m, that is,

Cjk(h, y1, y2) =
∫

e−i〈h,ω〉Fy1,y2,j,k(dω), h ∈ R
l , j, k = 1, . . . ,m, (4)

and

(CA
jk(y1, y2))jk = (Fy1,y2,j,k(A))jk, y1, y2 ∈ R

d, (5)

is an m-variate cross covariance function in R
d for any A ∈ Bl .

Proof. The proof follows the lines in Gneiting (2002). Let us first assume that Equations (4)
and (5) hold. Let n ∈ N, x1, . . . , xn ∈ R

l , y1, . . . , yn ∈ R
d and a1, . . . , an ∈ C

m be fixed. Then
a matrix-valued function f : Rl+2d → C

m×m and a non-negative finite measure F on R
d exists,

such that∫
A

fjk(ω, yp, yq)F (dω) = Fyp,yq ,j,k(A), p, q = 1, . . . , n, j, k = 1, . . . ,m, (6)

for any A ∈ Bl . For instance, let F(A) = ∑n
p=1

∑m
k=1 Fyp,yp,k,k(A). Then, Equation (5) implies

that the mn × mn matrix (fjk(ω, yp, yq))j,k;p,q is hermitian for F -almost all ω. Now,

n∑
p=1

n∑
q=1

a�
p C(xp − xq, yp, yq)aq =

∫ n∑
p=1

n∑
q=1

e−i〈xp,ω〉a�
p f (ω,yp, yq)e−i〈xq ,ω〉aqF (dω) ≥ 0.

Conversely, let C(h,y1, y2) : Rl+2d → C
m×m be a covariance function that is stationary in its

first argument. We have

Cjk(h, y, y′) =
∫

e−i〈ω,h〉Fy,y′,j,k(dω), h ∈ R
l;y, y′ ∈ R

d , j, k = 1, . . . ,m,
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for some finite, not necessarily positive measures Fy,y′,j,k (Yaglom (1987b), page 115). It now
remains to demonstrate that equality (5) holds. Fix n ∈ N, y1, . . . , yn ∈ R

d , and a1, . . . , an ∈ C
m.

Then a non-negative finite measure F and a function f : Rl+2d → C
m×m exist, such that Equa-

tion (6) holds. By assumption,
∑n

p=1
∑n

q=1 a�
p C(·, yp, yq)aq is a positive definite, continuous

function and its Fourier transform is non-negative. Following directly from the linearity of the
Fourier transform, we have that for F -almost all ω ∈ R

l

n∑
p=1

n∑
q=1

a�
p f (ω,yp, yq)aq ≥ 0,

which finally leads to Equation (5). �

If a covariance function is translation invariant, we will write only one argument for ease of
notation, for example, C(h), h = x − y ∈ R

d , instead of C(x, y), x, y ∈ R
d .

3. Generalized Gneiting’s class

A function C(x, y) = ϕ(‖h‖), h = x − y ∈ R
d , is a motion invariant, real-valued covariance

function in R
d for all d ∈ N if and only if ϕ is a normal scale mixture, that is,

ϕ(h) =
∫

[0,∞)

exp(−ah2)dF(a), h ≥ 0,

for some non-negative measure F (Schoenberg (1938a)). Examples are the stable model (Yaglom
(1987a)), the generalized Cauchy model (Gneiting and Schlather (2004)),

ϕ(h) = (1 + hα)−β/α, h ≥ 0,

α ∈ [0,2], β > 0, and the generalized hyperbolic model (Barndorff-Nielsen (1979), Gneiting
(1997)). The latter includes as special case the Whittle–Matérn model (Stein (1999)),

ϕ(h) = Wν(h) = 21−ν�(ν)−1hνKν(h), h > 0.

Here, ν > 0 and Kν is a modified Bessel function.

Theorem 5. Assume that m and d are positive integers and H : Rd → R
m. Suppose that ϕ is

a normal scale mixture and G : R2d → R
m×m is a cross variogram in R

d or −G is a cross
covariance function. Let M ∈ R

m×m be positive definite, such that M +G(x,y) is strictly positive
definite for all x, y ∈ R

d . Then

C(x, y) = ϕ([(H(x) − H(y))�(M + G(x,y))−1(H(x) − H(y))]1/2)√|M + G(x,y)| , x, y ∈ R
d, (7)

is a covariance function in R
d .
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Lemma 6. Let γ : R2d → C
m×m be a cross variogram (cross covariance function) in R

d and
A ∈ C

l×m. Then γ0 = AγA� is an l-variate, cross variogram (cross covariance function) in R
d .

Proof of Theorem 5. We follow the proof in Gneiting (2002) but assume first that ϕ(h) = e−h2
.

If G(x,y) is a cross variogram, then, according to Lemma 6,

g(x, y) = ω�G(x,y)ω

is a (univariate) variogram for any ω ∈ R
m. Equation (3) or Theorem 2.2 in Berg et al. (1984)

implies

Cω(x, y) = exp(−ω�G(x,y)ω), x, y ∈ R
d, (8)

and hence,

Ĉ(ω, x, y) = exp
(−ω�(

M + G(x,y)
)
ω

)
, x, y ∈ R

d , (9)

are both covariance functions for any fixed ω ∈ R
m. With dFx,y,1,1(ω) = Ĉ(ω, x, y)dω, Propo-

sition 4 yields that the univariate function

C(h,x, y) = c
exp(−h�(M + G(x,y))−1h)√|M + G(x,y)| , h ∈ R

m;x, y ∈ R
d

is a covariance function in R
m+d for all c ≥ 0, which is translation invariant in the first argument.

Now, consider a random field Z(ζ, x) on R
m+d corresponding to C(h,x, y) with c = 1. Define

the random field Y on R
d by

Y(x) = Z(H(x), x).

Then the covariance function of Y is equal to the covariance function given in the theorem. For
general ϕ, the assertion is obtained directly from the definition of normal scale mixtures. In case
−G is a cross covariance function, the proof runs exactly the same way. �

Example 7. A well known construction of a cross covariance function in R
d used in machine

learning is

G̃(x, y) = f (x)f (y)�, x, y ∈ R
d,

for some function f : Rd → R
m×l . Assume that M − f (x)f (y)� is strictly positive definite for

all x and y and some positive definite matrix M . Then, C in Equation (7) is a covariance function
with G = −G̃.

We denote by 1d×d ∈ R
d×d the identity matrix.

Example 8. Gneiting (2002) delivers a rather general construction of non-separable models
based on completely monotone functions, containing as particular case the models developed
by Cressie and Huang (1999). Let ϕ be a completely monotone function, that is, ϕ(t2), t ∈ R,
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is a normal scale mixture, and ψ be a positive function with a completely monotone derivative.
Then

C(h,u) = 1

ψ(|u|2)d/2
ϕ
(‖h‖2/ψ(|u|2)), h ∈ R

d, u ∈ R, (10)

is a translation invariant covariance function in R
d+1 (Gneiting (2002), Theorem 2). According

to Bernstein’s theorem, the function ψ(‖ · ‖2)− c is a variogram for some positive constant c, see
also Berg et al. (1984). The positive definite nature of C in (10) is also ensured by Theorem 5 for
m = d and G((x1, x2), (y1, y2)) = ψ(‖x2 − y2‖2)1d×d , x1, y1 ∈ R

d , x2, y2 ∈ R. Gneiting (2002)
provides examples for ψ and, along the way, introduces a new class of variograms,

γ (h) = (‖h‖a + 1)b − 1, a ∈ (0,2], b ∈ (0,1].
This class generalizes the class of variograms of fractal Brownian motion and that of multiquadric
kernels (Wendland (2005)).

Example 9. In the context of modelling rainfall, Cox and Isham (1988) proposed in R
d+1 the

translation invariant covariance function

C(h,u) = EV ϕ(‖h − V u‖), h ∈ R
d, u ∈ R.

Here, ϕ(‖ · ‖) is a motion invariant covariance function in Rd and V is a d-dimensional random
wind speed vector. Unfortunately, this appealing model has lacked explicit representations. Now
let us assume that V follows a d-variate normal distribution N (μ,D/2) and ϕ(x) = exp(−x2).
Then,

C(h,u) = 1√|1d×d + u2D|ϕ
([(h − uμ)�(1d×d + u2D)−1(h − uμ)]1/2), h ∈ R

d , u ∈ R,

please refer to the appendix for a proof. Hence, C(h,u) above is a covariance function for any
normal mixture ϕ. Figure 1 provides realizations of a random field with the above covariance

Figure 1. Realizations of the Cox–Isham covariance model in R
2 × R. Left time t = 0, right x2 = 0. See

Example 9 for details.
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function where ϕ = W1 is the Whittle–Matérn model, μ = (1,1) and

D =
(

1 0.5
0.5 1

)
.

Remark 10. Stein (2005b) proposes models in R
d of the form

C(x, y) = ϕ([(x − y)�(f (x) + f (y))−1(x − y)]1/2)√|f (x) + f (y)| , x, y ∈ R
d,

in which the values of f : R2d → R
m×m are strictly positive definite matrices, see also Paciorek

(2003) and Porcu et al. (2009). Here, f (x) + f (y) is not a variogram in general, but the proof of
Theorem 5 is still applicable if Ĉ in Equation (9) is replaced by

Ĉ(ω, x, y) = exp
(−ω�(

f (x) + f (y)
)
ω

)
,

which is a positive definite function for all ω ∈ R
m.

Remark 11. The covariance model (7), which is valid in R
d , does not allow for negative values,

hence its value is limited in some applications (Gregori et al. (2008)). To overcome this limita-
tion, Ma (2005a) considers differences of positive definite functions. Let B1,B2,M1,M2 ∈ R

d×d

be strictly positive definite matrices. Proposition 4 yields that

C(h,x, y) = exp(−[h�(M1 + (x − y)�B1(x − y)1d×d)−1h])√|M1 + (x − y)�B1(x − y)1d×d |

+ b
exp(−[h�(M2 + (x − y)�B2(x − y)1d×d)−1h])√|M2 + (x − y)�B2(x − y)1d×d | , h, x, y ∈ R

d,

is a positive definite function in R
2d that is translation invariant in its first argument if and only

if for all ω ∈ R
d ,

Ĉω(x, y) = exp
(−ω�M1ω − ‖ω‖2(x − y)�B1(x − y)

)
+ b exp

(−ω�M2ω − ‖ω‖2(x − y)�B2(x − y)
)
, x, y ∈ R

d ,

is a positive definite function, that is, if and only if for all ω, ξ ∈ R
d ,

|B1|−1/2 exp(−ω�M1ω − ‖ω‖2ξ�B−1
1 ξ) + b|B2|−1/2 exp(−ω�M2ω − ‖ω‖2ξ�B−1

2 ξ) ≥ 0.

This is true for some negative value of b if and only if both M2 −M1 and B−1
2 −B−1

1 are positive
definite matrices. In this case, C(h,x, y) : R3d → R is a positive definite function in R

2d if and
only if

b ≥ −√|B2|/|B1|.
Then, C0 given by C0(x, y) = C(x − y, x, y) is a stationary covariance function in R

d that may
take negative values.
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Remark 12. The condition that M + G(x,y) is strictly positive definite for all x, y ∈ R
d can

be relaxed. For example, let d = 2 and (h,u) = x − y ∈ R
2. Then, the function C(h,u) =

|u|−1/2 exp(−h2/|u|) is of the form (7) and defines a covariance function of a stationary, gen-
eralized random field on R

2, see Chapter 3 in Gel’fand and Vilenkin (1964) and Chapter 17 in
Koralov and Sinai (2007). Note that, here, limu→0 C(0, u) = ∞. Hence, C cannot be a translation
invariant covariance function in the usual sense.

4. Model constructions based on dependent processes

The idea of the subsequent two constructions is based on the following observation. Let
C(h,u) = C0(h)C1(u), h ∈ R

d , u ∈ R, be a translation invariant, real-valued covariance model
in R

d+1 and assume we are interested in the corresponding random field at some fixed locations
x1, . . . , xn ∈ R

d and for all t ∈ R. Let Yx , x ∈ R
d , be i.i.d. temporal processes with covariance

function C1. Then

Z(t) = (Zx1(t), . . . ,Zxn(t)) = (
C0(xp − xq)

)1/2
p,q=1,...,n

(Yx1(t), . . . , Yxn(t))
�, t ∈ R,

has the required covariance structure. Now, Z can be interpreted as a finite, weighted sum over
Yx , x ∈ R

d . The separability is caused by the fact that Y enters into the sum only through the
fixed instance t . Non-separable models can be obtained if the argument of Y also depends on the
location.

4.1. Moving averages based on fields of temporal processes

Assume that Y(A, t), A ∈ Bd and t ∈ R
l , is a stationary process such that Y(A1, ·), . . . , Y (An, ·)

are independent for any disjoint sets A1, . . . ,An ∈ Bd , n ∈ N. In the second argument, Y is a
stationary, zero mean Gaussian random field on R

l with covariance function |A|C1, C1 : Rl → R.
Then,

Cov(Y (A, t), Y (B, s)) = |A ∩ B|C1(t − s)

for any s, t ∈ R
l and A,B ∈ Bd . Let f : Rd → R

l be continuous, g : Rd → R be continuous and
square-integrable, and

Z(x, t) =
∫

Rd

g(v − x)Y
(

dv,f (v − x) − t
)
, x ∈ R

d, t ∈ R
l .

Then Z is weakly stationary on R
d+l with translation invariant covariance function

C(h,u) =
∫

Rd

g(v)g(v + h)C1
(
f (v) − f (v + h) − u

)
dv, h ∈ R

d, u ∈ R
l .

Example 13. Let g(v) = (2π−1)d/4 exp(−‖v‖2), v ∈ R
d , l = 1, C1(u) = exp(−u2), u ∈ R, and

f (v) = v�Av + z�v, v ∈ R
d , for a symmetric, not necessarily positive definite matrix A ∈ R

d×d
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Figure 2. Realizations of a moving average random field in R
2 × R. Left time t = 0, right x2 = 0. See

Example 13 for the definition of the covariance structure.

and z ∈ R
d . Let us further introduce a non-negative random scale V , that is,

Z(x, t) = V d/2
∫

Rd

g
(√

V (v − x)
)
Y

(
dv,

√
V

(
f (v − x) − t

))
, x ∈ R

d, t ∈ R.

Let B = Ahh�A. Then the covariance function of Z equals

C(h,u) = |1d×d + 2B|−1/2
EV e−V [‖h‖2/2+(z�h+u)2(1−2h�A(1d×d+2B)−1Ah)], (11)

please refer to the appendix for a proof. Equation (11) reveals that C is a potential covariance
model for rainfall with frozen wind direction. Figure 2 depicts realizations of a random field with
the above covariance function where EV exp(−V Q) is the Whittle–Matérn model W1(

√
Q),

Q ≥ 0, z = (2,0) and A =
(

0.5
0

0
1

)
.

4.2. Models based on a single temporal process

Another class of models may be obtained by considering only a single process Y . Although
the subsequent approach might be generalized, an explicit model has currently only been found
within the framework of normal scale mixtures. For x ∈ R

d let

Z(x) = (2V/π)d/4|Sx |1/4e−V (U−x)�Sx(U−x)Y
(√

V
(
ξ1(U − x) + ξ2(x)

))g(V,x)√
f (U)

. (12)

Here, V is a positive random variable and U is a d-dimensional random variable with strictly
positive density f . The one-dimensional random process Y is assumed to be stationary with
Gaussian covariance function C(t) = e−t2

. The matrix Sx is strictly positive definite for all x ∈
R

d , ξ2 : Rd → R is arbitrary, and g is a positive function such that EV g(V, x)2 is finite for all
x ∈ R

d . The function ξ1 is quadratic, that is,

ξ1(x) = x�Mx + z�x
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for a symmetric d × d matrix M and an arbitrary vector z ∈ R
d . Let

c = −z�(x − y) + ξ2(x) − ξ2(y),

A = Sx + Sy + 4M(x − y)(x − y)�M,

m = (x − y)�M(x − y),

and

Q(x,y) = c2 − m2 + (x − y)�
(
Sx + 2(m + c)M

)
A−1(Sy + 2(m − c)M

)
(x − y).

Then the covariance function of Z equals

C(x, y) = 2d/2|Sx |1/4|Sy |1/4

√|A| · EV g(V, x)g(V, y) exp(−V Q(x,y)), x, y ∈ R
d . (13)

The proof is given in the Appendix.

Example 14. Translation-invariant models in R
d are obtained if both Sx and g do not depend

on x. Assume Sx is twice the identity matrix, g(v) = (2
√

v)1−ν/
√

�(ν), v, ν > 0, and V follows
the Fréchet distribution F(v) = e−1/(4v), v > 0. Two particular models might be of special inter-
est, either because of their simplicity or their explicit spatio-temporal modelling. First, if c ≡ 0
then

C(h) = Wν(‖h‖)
|1d×d + Mhh�M|1/2

, h ∈ R
d,

according to formula 3.471.9 in Gradshteyn and Ryzhik (2000). Second, an explicit spatio-
temporal model in R

d+1 is obtained for

ξ2(x, t) = t, x ∈ R
d, t ∈ R, and M =

(
L 0
0 0

)
.

Then, with D = 1d×d + Lhh�L, we get

C(h,u) = |D|−1/2Wν

(√
Q(h,u)

)
, h ∈ R

d, u ∈ R,

where

Q(h,u) = (u − z�h)2 − (h�Lh)2 + h�(
D + (u − z�h)L

)
D−1(D + (u − z�h)L

)
h.

Example 15. Let ξ1 ≡ ξ2 ≡ 0. Then the random process Y(t) is considered only at instance t = 0
and the exponent Q(x,y) simplifies to

Q(x,y) = (x − y)�Sx(Sx + Sy)
−1Sy(x − y) = (x − y)�(S−1

x + S−1
y )−1(x − y).
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Let g(v, x) = (2
√

v)1−ν(x)/�(ν(x))1/2, ν a positive function on R
d , and V a Fréchet variable

with distribution function F(v) = e−1/(4v), v > 0. Then, the first model given in Stein (2005b) is
obtained,

C(x, y) = 2d/2|Sx |1/4|Sy |1/4�((ν(x) + ν(y))/2)

[|Sx + Sy |�(ν(x))�(ν(y))]1/2
W(ν(x)+ν(y))/2(Q(x, y)1/2), x, y ∈ R

d .

The second model given in Stein (2005b), a generalization of the Cauchy model, is obtained by
g(v, x) = v(δ(x)−1)/2 and a standard exponential random variable V , that is,

C(x, y) = 2d/2|Sx |1/4|Sy |1/4

|Sx + Sy |1/2(1 + Q(x,y))(δ(x)+δ(y))/2
, x, y ∈ R

d .

If ν and δ are constant, then the above models are special cases of Theorem 5.
See Theorem 1 in Porcu et al. (2009) for a class of models that generalizes Stein’s examples.

Example 16. A cyclone can be mimicked if rotation matrices are included in the model,

C(x, y) = 2d/2|Sx |1/4|Sy |1/4√|Sx + Sy |
Wν

((
h�Sx(Sx + Sy)

−1Syh
)1/2)

, x, y,∈ R
3,

where

Sx = diag(1,1,1) + R(x)�A�xx�AR(x), A ∈ R
3×3,

R(x) =
( cos(αx3) − sin(αx3) 0

sin(αx3) cos(αx3) 0
0 0 1

)
, x = (x1, x2, x3) ∈ R

3, α ∈ R,

and

h = x�R(x) − y�R(y).

The positive definiteness of the model is now ensured by both Theorem 5 and a generalized
version of Z in Equation (12), replacing x by x�R(x) there. Note that x �→ x�R(x) is a bijection.
Figure 3 depicts realizations of a random field with the above covariance function where α =
−2π, ν = 1, and

A =
(2 1 0

0 1 0
0 0 0

)
.

5. Multivariate spatio-temporal models

Here, we generalize Theorem 5 to construct multivariate cross covariance functions. Let M =
(M + M�)/2 for any real-valued square matrix M .
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Figure 3. Realizations of a random field in R
3 that mimics a cyclone. Left time x3 = 0, right x2 = 0. See

Example 16 for the definition of the covariance structure.

Theorem 17. Assume that l, m and d are positive integers, Aj ∈ R
l×d for j = 1, . . . ,m. Suppose

that ϕ is a normal scale mixture and G : R2d → R
l×l is a cross covariance function. Let M ∈

R
d×d be a positive definite matrix such that M −A�

j G(x, y)Ak is strictly positive definite for all

x, y ∈ R
d and j, k = 1, . . . , d . Then C = (Cjk)j,k=1,...,m is a cross covariance function in R

d for

Cjk(x, y) =
ϕ([(x − y)�(M − A�

j G(x, y)Ak)
−1(x − y)]1/2)√

|M − A�
j G(x, y)Ak|

,

(14)
x, y ∈ R

d, j, k = 1, . . . ,m.

Proof. Lemma 6 yields that

(ω�A�
j G(x, y)Akω)j,k=1,...,m = (ω�A�

j G(x, y)Akω)j,k=1,...,m

= (A1ω, . . . ,Amω)�G(x,y)(A1ω, . . . ,Amω)

is a cross covariance function for all ω ∈ R
d . Part 1 of Theorem 1 yields that Cω(x, y) =

(exp(ω�A�
j G(x, y)Akω))j,k=1,...,m is also a cross covariance function. By assumption, M −

A�
j G(x, y)Ak is strictly positive definite. Hence, as a result of Proposition 4, the Fourier trans-

form of the function ω �→ exp(−ω�Mω)Cω(x, y) is a cross covariance function, which is of the
form (14). �
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Appendix

A.1. Proof for the covariance function in Example 9

Let fμ,D/2(x) be the multivariate normal density with expectation μ and covariance matrix D/2.
Then we get

− log
(
ϕ(h − uv)fμ,D/2(v)

) + 1
2 log((2π)d |D|)

= h�h − 2uh�v + u2v�v + v�D−1v − 2μ�D−1v + μ�D−1μ

= h�h + μ�D−1μ + (v − ξ)�(u21d×d + D−1)(v − ξ) − ξ�(u21d×d + D−1)ξ

with ξ = (u21d×d + D−1)−1(uh + D−1μ). Hence,

− logC(h,u) + 1
2 log(|D|) + 1

2 log(|u21d×d + D−1|)
= h�h + μ�D−1μ − ξ�(u21d×d + D−1)ξ

= (h − uμ)�(1d×d + u2D)−1(h − uμ)

which yields the assertion.

A.2. Proof for the covariance function in Example 13

We proof the formula for the covariance function in Example 13, but also demonstrate that a
slightly more general function g does not give a more general model. To this end, let g(v) =
(|2π−1M|)1/4 exp(−v�Mv), v ∈ R

d , for a strictly positive definite matrix M ∈ R
d×d . For ease

of notation we assume that V ≡ 1. Then

− log
(
g(v)g(v + h)C1

(
f (v) − f (v + h) − u

)) − 1
2 log(|2π−1M|)

= v�Mv + (v + h)�M(v + h) + (2v�Ah + h�Ah + z�h + u)2

= 2v�Mv + 4v�Bv + 2v�(2B + M + 2uA + 2Ahz�)h + c

where B = Ahh�A and c = [h�Ah + z�h + u]2 + h�Mh. Hence, with D = 2B + M + 2[u +
z�h]A,

− log
(
g(v)g(v + h)C1

(
f (v) − f (v + h) + u

)) − 1
2 log(|2π−1M|)

= (
v − (2M + 4B)−1Dh

)�
(2M + 4B)

(
v − (2M + 4B)−1Dh

)
− h�D(2M + 4B)−1Dh + c.

Thus,

C(h,u) = |M|1/2

|M + 2B|1/2
exp

(−c + h�D(2M + 4B)−1Dh
)
, h ∈ R

d , u ∈ R.
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Let M−1/2 be a symmetric matrix with M−1/2MM−1/2 = 1d×d . Replacing on the right hand
side M−1/2AM−1/2 by Ã, M−1/2z by z̃ and M1/2h by h̃ shows that M causes nothing but a
geometrical anisotropy effect. Hence, we may assume that M is the identity matrix. Then

C(h,u) = |1d×d + 2B|−1/2 exp
(−[

c − 1
2h�D(1d×d + 2B)−1Dh

])
which yields Equation (11).

A.3. Proof of Equation (13)

Let h = x − y and w = U − x. Then we have

Cov(Z(x),Z(y)) = π−d/2|Sx |1/4|Sy |1/4
EV V d/2g(V,x)g(V, y)

×
∫

exp
(−V w�Sxw − V (w + h)�Sy(w + h)

− V
(
w�Mw − (w + h)�M(w + h) + c

)2)dw.

The value of the integral is at most
∫

exp(−V w�Sxw)dw. Hence Cov(Z(x),Z(y)) < ∞ if
EV g(V, x)g(V, y) < ∞. Now,

w�Sxw + (w + h)�Sy(w + h) + (
w�Mw − (w + h)�M(w + h) + c

)2

= w�(Sx + Sy + 4Mhh�M)w + 2w�(
Sy + 2(h�Mh − c)M

)
h + h�Syh + (h�Mh − c)2

= (w − μ)�A(w − μ) − μ�Aμ + h�Syh + (h�Mh − c)2

with μ = −A−1(Sy + 2(h�Mh − c)M)h. That is,

Cov(Z(x),Z(y)) = |A|−1/2|Sx |1/4|Sy |1/4
EV g(V, x)g(V, y)

(15)
× e−V [hSyh+(h�Mh−c)2−μ�Aμ].

On the other hand, using the transform w = U − y, we get

Cov(Z(x),Z(y))

= π−d/2|Sx |1/4|Sy |1/4
EV V d/2g(V,x)g(V, y)

×
∫

exp
(−V (w − h)�Sx(w − h) + −V hSyh (16)

− V
(
(w − h)�M(w − h) − w�Mw + c

)2)dw

= |A|−1/2|Sx |1/4|Sy |1/4
EV g(V, x)g(V, y)e−V [hSxh+(h�Mh+c)2−ν�Aν]

with ν = A−1(Sx + 2(h�Mh + c)M)h.
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Choosing V ≡ 1 and g a constant function we obtain that the exponents in (15) and (16) must
be equal, that is,

hSyh + (h�Mh − c)2 − μ�Aμ

= 1
2 [hSyh + (h�Mh − c)2 − μ�Aμ + hSxh + (h�Mh + c)2 − ν�Aν]

= 1
2 [h(Sy + Sx + 4Mhh�M)h − 2(h�Mh)2 + 2c2 − (μ − ν)A(μ − ν) − 2ν�A−1μ]

= c2 − (h�Mh)2 − ν�A−1μ.
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