
Bernoulli 15(4), 2009, 1305–1334
DOI: 10.3150/09-BEJ212

Small deviations of stable processes and
entropy of the associated random operators
FRANK AURZADA1, MIKHAIL LIFSHITS2 and WERNER LINDE3

1Technische Universität Berlin, Institut für Mathematik, Sekr. MA7-5, Str. des 17, Juni 136, 10623 Berlin,
Germany. E-mail: aurzada@math.tu-berlin.de
2St. Petersburg State University, 198504 Stary Peterhof, Department of Mathematics and Mechanics,
Bibliotechnaya pl. 2, Russia. E-mail: lifts@mail.rcom.ru
3Friedrich-Schiller-Universität Jena, Institut für Stochastik, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
E-mail: lindew@minet.uni-jena.de

We investigate the relation between the small deviation problem for a symmetric α-stable random vector
in a Banach space and the metric entropy properties of the operator generating it. This generalizes former
results due to Li and Linde and to Aurzada. It is shown that this problem is related to the study of the
entropy numbers of a certain random operator. In some cases, an interesting gap appears between the en-
tropy of the original operator and that of the random operator generated by it. This phenomenon is studied
thoroughly for diagonal operators. Basic ingredients here are techniques related to random partitions of the
integers. The main result concerning metric entropy and small deviations allows us to determine or pro-
vide new estimates for the small deviation rate for several symmetric α-stable random processes, including
unbounded Riemann–Liouville processes, weighted Riemann–Liouville processes and the (d-dimensional)
α-stable sheet.
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1. Introduction

Let [E,‖ · ‖E] be a (real) Banach space with (topological) dual space E′. We endow E′ with the
weak-∗-topology and denote by Bσ (E′) the corresponding σ -field. Now, an E′-valued random
vector on (�,P) is always understood to be measurable with respect to this σ -field. Such a
vector X is said to be symmetric α-stable (as usual, we write SαS for short) for some α ∈ (0,2]
if there exist a measure space (S, σ ) and a (linear, bounded) operator u :E→ Lα(S,σ ) such that

Eei〈z,X〉 = e−‖u(z)‖αα , z ∈E. (1.1)

In this case, we say that X is generated by the operator u. This approach is very useful for
investigating symmetric α-stable random processes with paths in E′. We refer to Section 5 of
Li and Linde (2004) or Section 7.1.1 below for a discussion of how all natural examples of
SαS processes fit into this framework. For example, if u from Lp[0,1] to Lα[0,1] is defined by

(uf )(t) := ∫ 1
t

f (s)ds, f ∈ Lp[0,1], then the random vector Zα generated via (1.1) is nothing
but the symmetric α-stable Lévy motion (see Samorodnitsky and Taqqu (1994) for the definition)
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with paths regarded in Lp′ [0,1] (as usual, we use p′ to denote the conjugate of p, that is, 1/p+
1/p′ = 1). In particular, for α = 2, we consider the Wiener process in Lp′ [0,1].

A symmetric 2-stable vector is centered Gaussian. In this case, there exist tight relations be-
tween the degree of compactness of u :E→ L2 and small deviation properties of the generated
random vector X.

To make this more precise, let us introduce the small deviation function

φ(X,ε) := − logP(‖X‖E′ < ε) (1.2)

of an E′-valued random vector X. To measure the degree of compactness of the corresponding
operator u, we use the dyadic entropy numbers defined as follows: if u is a bounded linear
operator between the Banach spaces (or more general quasi-normed spaces) E and F , then we
let

en(u) := inf{ε > 0 | ∃y1, . . . , y2n−1 ∈ F,∀z ∈E,‖z‖ ≤ 1,∃i ≤ 2n−1,‖u(z)− yi‖ ≤ ε}.
As can be easily seen, an operator u is compact if and only if the corresponding entropy numbers
tend to zero. Thus, their behavior as n→∞ describes the degree of compactness of u.

Before we state the results, let us establish some more notation. We write f 
 g or g � f

if lim supf/g <∞, while the equivalence f ≈ g means that we have both f 
 g and g 
 f .
Moreover, f � g or g � f indicate that lim supf/g ≤ 1. Finally, the strong equivalence f ∼ g

means that limf/g = 1.
Using this notation, we can now state the aforementioned relation between properties of X

and the generating operator u in the Gaussian case.

Proposition 1.1 (Kuelbs and Li (1993), Li and Linde (1999)). Assume that X is an E′-valued
Gaussian vector that is generated by the operator u : E → �2. Let τ > 0 and let L be a slowly
varying function at infinity such that L(t)≈ L(tp) for all p > 0. The following implications then
hold:

(a) we have

en(u)� n−1/2−1/τL(n) ⇔ φ(X,ε)� ε−τL(1/ε)τ ,

where, for “⇐”, the additional assumption φ(X,ε)≈ φ(X,2ε) is required;
(b) we have

en(u)
 n−1/2−1/τL(n) ⇔ φ(X,ε)
 ε−τL(1/ε)τ .

It is natural to ask whether or not these implications can be transferred to the non-Gaussian
setup of symmetric α-stable vectors. In this case, the following is known.

Proposition 1.2 (Li and Linde (2004), Aurzada (2007b)). Let X be an E′-valued symmetric α-
stable vector generated by an operator u :E→ Lα(S,σ ). Let τ > 0 and θ ∈R be given, where,
additionally, τ < α/(1− α) for 0 < α < 1. Then,

(a) en(u)� n1/α−1/τ−1(logn)θ/τ implies φ(X,ε)� ε−τ (− log ε)θ ,
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(b) φ(X,ε)
 ε−τ (− log ε)θ implies en(u)
 n1/α−1/τ−1(logn)θ/τ and
(c) the respective converse in the above implications does not hold in general.

This result shows that, unfortunately, only two of the four implications from Proposition 1.1
can be transferred to the non-Gaussian case. In particular, probably the most interesting and
useful implication (upper estimates for en(u) yield those for φ(X,ε)) is not valid in general. The
basic goal of this article is to investigate this implication more thoroughly. It turns out that if
we take the entropy numbers of u :E→ Lα(S,σ ) regarded as operator into L∞(S, σ ), then this
implication is also valid. Let us mention (see Section 2 below) that we may always assume that
an operator generating an SαS vector can be factorized over L∞(S, σ ). Therefore, in all cases of
interest, the operator u∞, which is simply u acting from E to L∞(S, σ ), is well defined. We fix
this notation for u and u∞ throughout the article.

The main result of this paper is the following.

Theorem 1.3. Let a symmetric α-stable E′-valued vector X be generated by an operator
u :E→Lα(S,σ ), where σ(S) <∞. Suppose that u maps E even into L∞(S, σ ) and that

en(u∞)= en(u :E→L∞)
 n1/α−1/τ−1L(n)

for some τ > 0 and some slowly varying function L such that L(t)≈ L(tp) for all p > 0. Then,

φ(X,ε)
 ε−τL(1/ε)τ .

The proof is postponed to Section 4.2.
Note that en(u) ≤ σ(S)1/αen(u∞). Thus, Theorem 1.3 is weaker than the corresponding re-

sult in the Gaussian case. Nevertheless, there are many examples of interest where the entropy
numbers of u and u∞ have the same asymptotic order. Consequently, for those operators, the
implication “⇒” in (b) of Proposition 1.2 is also valid. Below, we shall give several examples of
this situation.

This article is structured as follows. In Section 2, we analyze decomposed operators from a
Banach space E into Lα(S,σ ), 0 < α < 2. It is shown that such operators are associated with
random operators v mapping E into �2. As a consequence, we get the well-known fact that each
E′-valued symmetric stable vector is a mixture of suitable Gaussian ones. This fact is the basic
ingredient of the proof of Theorem 1.3. In Section 3, we investigate compactness properties of
the random operator v. In particular, we show that the entropy numbers of u∞ and those of the
associated random operator v are closely related. In Section 4, we state and prove a zero–one
law for the entropy behavior of the random operator v. As a consequence, the entropy numbers
of v possess a.s. the same degree of compactness. Furthermore, in that section, Theorem 1.3 is
proved.

Although we could shed some light on the relation between the small deviations of SαS vec-
tors and the entropy behavior of the generating operator, several interesting questions remain
open. The most important ones are presented in Section 5. Besides, an interesting phenomenon
is considered: in some cases, a surprising gap appears between the entropy of the original opera-
tor and that of its associated random one. In Section 6, this gap is investigated thoroughly in the
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case of diagonal operators. This problem finally leads to the investigation of diagonal operators
with random diagonal. In the authors’ opinion, the results of that section could be of independent
interest.

Theorem 1.3 gives new bounds or clarifies the small deviation rate for several examples of
symmetric stable processes. These examples are considered in Section 7, including unbounded
Riemann–Liouville processes, weighted Riemann–Liouville processes and the (d-dimensional)
α-stable sheet. Finally, we give a short and direct proof of a result of M. Ryznar concerning
α-stable vectors with 0 < α < 1.

2. Representation of decomposed operators

The aim of this section is to analyze the structure of the operator u in (1.1). In particular, it can
be decomposed (see below) and is thus associated with a random operator v corresponding to
a random Gaussian vector. As a consequence, the stable distribution of the vector X may be
represented as a suitable mixture of Gaussian ones.

As before, let [E,‖ · ‖E] be some (real) Banach space and let (S, σ ) be a measure space. An
operator u from E into Lα(S,σ ) for some α > 0 is said to be order bounded provided there is
some function f ∈Lα(S,σ ) such that

|(uz)(s)| ≤ f (s), σ -a.s. for z ∈E,‖z‖ ≤ 1.

A useful equivalent formulation (see Vakhania et al. (1985)) is as follows: there exists a Bσ (E′)-
measurable function ϕ from S into E′, the topological dual of E, such that∫

S

‖ϕ(s)‖αE′ dσ(s) <∞ and u(z)= 〈z,ϕ〉, z ∈E. (2.1)

Let us say that ϕ decomposes the operator u. In particular, whenever s ∈ S is fixed, for those u,
the mapping z �→ (uz)(s) is a well-defined linear functional on E.

We note that the operator u :E → Lα(S,σ ) generating an E′-valued vector as in (1.1) may
always be chosen to be order bounded. This follows from Tortrat’s theorem concerning the spec-
tral representation of symmetric stable measures (see Tortrat (1976)). In Section 5.2, we come
back to the spectral representation as a natural choice for the generating operator.

Let us also prove that one can always use a bounded decomposing function ϕ and a finite
measure space (S, σ ).

Proposition 2.1. Let u :E → Lα(S,σ ) be a decomposed operator. There then exists a finite
measure σ̃ on S and an operator ũ :E → Lα(S, σ̃ ) such that ũ is decomposed by a function ϕ̃

such that ‖ϕ̃(s)‖ ≤ 1, s ∈ S, and ‖u(z)‖α = ‖ũ(z)‖α for all z ∈E.

Proof. Suppose that ϕ decomposes an operator u as in (2.1). Set ϕ̃(s) := ϕ(s)/‖ϕ(s)‖E′ for
s ∈ S and define σ̃ on S by dσ̃ (s) := ‖ϕ(s)‖α

E′ dσ(s). By the properties of ϕ, this measure is
finite. Finally, the operator ũ :E→ Lα(S, σ̃ ) is given by

ũ(z) := 〈z, ϕ̃〉, z ∈E.
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Of course, we have ‖u(z)‖Lα(S,σ ) = ‖ũ(z)‖Lα(S,σ̃ ) and this completes the proof. �

Remark. Note that u and ũ possess the same compactness properties. Hence, we may (and will)
assume that the decomposing function ϕ of u has the additional property

‖ϕ(s)‖E′ ≤ 1, s ∈ S, (2.2)

and that the underlying measure σ is finite.

The following result from Li and Linde (2004) (Proposition 2.1 there) is crucial for our further
investigation. In contrast to Li and Linde (2004), we formulate it directly for operators on E (our
vδ correspond to v∗δ in Li and Linde (2004)).

Proposition 2.2. Suppose that 0 < α < 2 and let u :E → Lα(S,σ ) be order bounded. There
then exists a probability space (�,Q) and, for δ ∈�, an operator vδ :E→ �2 such that

e−‖u(z)‖αα =
∫

�

e−‖vδ(z)‖2
2 dQ(δ)= EQe−‖v(z)‖2

2 for all z ∈E. (2.3)

In the last expression of (2.3), we omitted the δ as it is common for random variables. Here,
and in the following, we often write v instead of vδ . We stress, however, that v denotes a random
operator. In the same way, we shall also often replace the integral with respect to Q by EQ.

For our further investigation, it is important to have more information about the random op-
erator v = vδ . For this purpose, choose an i.i.d. sequence (Vj )j≥1 of S-valued random variables
with common distribution σ/σ(S). Furthermore, let (ζj )j≥1 be an i.i.d. sequence of standard
exponential random variables. Define �j by

�j := ζ1 + · · · + ζj

and suppose that the Vj , as well as the ζj , are defined on (�,Q) and that these two sequences
are independent. Finally, set

cα :=
√

2

(∫ ∞

0
x−α sinx dx

)−1/α

(E|ξ |α)−1/α,

where ξ is standard normal. Then, v :E→ �2 admits the following representation:

v(z)= cασ (S)1/α((uz)(Vj )�
−1/α
j )∞j=1, z ∈E. (2.4)

Recall that (uz)(Vj ) has to be understood as 〈z,ϕ(Vj )〉, where ϕ is the function decomposing u.
Let us now define the (random) operators w :E→ �∞ and D :�∞→ �2 by

w(z) := ((uz)(Vj ))
∞
j=1, z ∈E, (2.5)

and

D(y) := cασ (S)1/α(�
−1/α
j yj )

∞
j=1, y = (yj )j≥1 ∈ �∞. (2.6)
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Note that both operators are well defined Q-almost surely. Indeed, if ϕ is the decomposing func-
tion of u, by (2.2), it follows that

|(uz)(Vj )| = |〈z,ϕ(Vj )〉| ≤ ‖z‖.
On the other hand, the strong law of large numbers implies that limj→∞�j/j = 1. Thus, if

y = (yj )j≥1 is in �∞, then the sequence (�
−1/α
j yj )j≥1 is almost surely square summable since

0 < α < 2.
Summarizing the previous remarks, we get the following.

Proposition 2.3. Suppose that 0 < α < 2 and let u :E→ Lα(S,σ ) be a decomposed operator.
We then have

e−‖u(z)‖αα = EQe−‖v(z)‖2
2 , z ∈E, (2.7)

where v =D ◦w, with D and w defined by (2.6) and (2.5), respectively.

Let v :E→ �2 be the operator representing ‖u(z)‖α as in Propositions 2.2 and 2.3. As shown
by Sztencel (1984), there exist E′-valued (centered Gaussian) random vectors Y = Yδ , δ ∈ �,
such that, Q-almost surely,

Eei〈z,Y 〉 = e−‖v(z)‖2
2 , z ∈E.

It follows from this and Proposition 2.2 that

P(X ∈ B)= EQP(Y ∈ B)

for every set B ∈ Bσ (E′). In particular, if ε > 0, then

P(‖X‖E′ < ε)= EQP(‖Y‖E′ < ε). (2.8)

With the definition of the small deviation function (1.2), equation (2.8) may be rewritten as

φ(X,ε)=− log(EQ exp(−φ(Y, ε))). (2.9)

3. Entropy numbers of random operators

Let u :E → Lα(S,σ ) be a decomposed operator represented by a certain random operator
v :E→ �2 as in Proposition 2.2. Our goal is to compare compactness properties of u with those
of v and vice versa. We recall Proposition 3.1 from Li and Linde (2004), which is based on an
idea from Marcus and Pisier (1984).

Proposition 3.1. There exist universal constants ρ,κ > 0 such that, for every m ∈N,

Q

{
n1/α−1/2 en(v)

en(u)
≥ ρ :n≥m

}
≥ 1− κe−m. (3.1)
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The proof of Proposition 3.1 rests on the fact that, for each fixed z ∈ E, the non-negative
random variable ‖v(z)‖2

2/‖u(z)‖2
α is totally skewed α/2-stable (in particular, positive). Conse-

quently,

Q

{ ‖v(z)‖2

‖u(z)‖α < ε

}
≤ exp

(−cε−1/(1/α−1/2)
)

for some c > 0. In order to verify that, similarly to (3.1), an opposite inequality between en(v)

and en(u) holds, this approach does not work. Note that, by the well-known tail behavior of
stable random variables, we only get

Q

{ ‖v(z)‖2

‖u(z)‖α > t

}
≈ t−α

as t →∞. Yet this is far too weak for proving en(v) ≤ cn−1/α+1/2en(u) on a set of large Q-
measure.

Therefore, another approach is needed. In fact, we will prove that the opposite inequality
in (3.1) holds (actually, on a set of full Q-measure) if u is replaced by u∞. Recall that u is
assumed to be decomposed by an E′-valued function ϕ with ‖ϕ(s)‖ ≤ 1 for s ∈ S and thus u∞
is well defined.

Before stating and proving this, let us formulate a lemma which is based on the strong law of
large numbers. It enables us to replace the random variables �j by j in all occurrences where
the metric entropy is concerned.

Lemma 3.2. Let p ∈ [1,∞]. The random diagonal operator G :�p → �p given by

G : (zj ) �→
((

�j

j

)−1/α

zj

)

and its inverse are a.s. bounded.

Theorem 3.3. Let u and u∞ be as before. We have

Q

{
lim sup
n→∞

n1/α−1/2 e2n−1(v)

en(u∞)
<∞

}
= 1.

Proof. We write v as D ◦ w, where w :E → �∞ is as in (2.5) and D :�∞ → �2 is a diagonal
operator as in (2.6). First, note that

‖w(z)‖∞ = sup
j≥1
|(uz)(Vj )| ≤ ‖u∞(z)‖∞

for all z ∈E. Consequently, by Lemma 4.2 in Lifshits and Linde (2002), we get en(w)≤ en(u∞).
On the other hand, by Lemma 3.2 above and Theorem 2.2 in Kühn (2005), we obtain, for some
random constant c= cδ ,

en(D :�∞→ �2)≤ cn−1/α+1/2.
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Thus, we arrive at

e2n−1(v)≤ en(u∞) · en(D)≤ cn−1/α+1/2en(u∞)

for some random constant c= cδ > 0. This completes the proof of Theorem 3.3. �

4. A zero-one law and proof of the main result

4.1. A zero-one law for the random operator

In order to proceed in using Theorem 3.3 in the same way as Proposition 3.1 is used in Li and
Linde (2004), we have to overcome one essential difficulty. Namely, note that the constant ρ in
Proposition 3.1 is not random. Contrary to this, the limit in Theorem 3.3 is a random variable.
Our next objective is to show that this random variable is, in fact, almost surely constant.

Proposition 4.1. Let u and v be as in (2.3). For any sequence (an) that is regularly varying at
infinity, there exists a C ∈ [0,∞] such that, Q-almost surely,

lim sup
n→∞

anen(v)= C.

The same holds for the limit inferior.

The main idea is to show that lim supn→∞ anen(v) is measurable with respect to the terminal
σ -field and thus a.s. constant. For this purpose, it is sufficient to show that the asymptotic behav-
ior of the entropy of an arbitrary operator w mapping from �2 (and thus of the dual w′ by Artstein
et al. (2004)) does not depend on the first components. Due to the special structure of the random
operator v, the proof of Proposition 4.1 is a direct consequence of the following lemma.

Lemma 4.2. Let w : l2 →E be some operator and let P : l2 → l2 be an orthogonal projection of
finite rank. Then, for any sequence (an) that is regularly varying at infinity,

lim sup
n→∞

anen(w)= lim sup
n→∞

anen(w ◦ P⊥).

The same holds for the limit inferior.

Proof. Let 0 < ε < 1 and choose a sequence (kn) of integers such that kn ≤ n and kn/n→ ε as
n→∞. It follows that

en(w)≤ ekn(w ◦ P)+ en−kn+1(w ◦ P⊥). (4.1)

Let us define m := rank(P ). Then, by estimate 1.3.36 in Carl and Stephani (1990),

ekn(w ◦ P)≤ c‖w‖2−(kn−1)/m,

hence limn→∞ anekn(w ◦ P)= 0, for any regularly varying sequence (an).
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Write an = nβL(n) for some β ∈R and a slowly varying function L. By (4.1), we obtain

lim sup
n→∞

anen(w) ≤ lim sup
n→∞

anen−kn+1(w ◦ P⊥)

= lim sup
n→∞

(
n

n− kn + 1

)β
L(n)

L(n− kn + 1)
an−kn+1en−kn+1(w ◦ P⊥)

≤
(

1

1− ε

)β

· 1 · lim sup
n→∞

an−kn+1en−kn+1(w ◦ P⊥)

=
(

1

1− ε

)β

lim sup
n→∞

anen(w ◦ P⊥).

Letting ε tend to zero, it follows that

lim sup
n→∞

anen(w)≤ lim sup
n→∞

anen(w ◦ P⊥).

In order to see the opposite estimate, start with

en(w ◦ P⊥)≤ ekn(w ◦ P)+ en−kn+1(w),

hence,

en−kn+1(w)≥ en(w ◦ P⊥)− ekn(w ◦ P)

and proceed exactly as before. �

4.2. Proof of the main result

Proof of Theorem 1.3. The assumption is that en(u∞) 
 n1/α−1/τ−1L(n). Consequently, by
Theorem 3.3 and Proposition 4.1, there is a finite constant C ≥ 0 such that, Q-a.s.,

lim sup
n→∞

n1/τ+1/2L(n)−1en(v)= C,

which, by Proposition 1.1, implies that, Q-a.s.,

lim sup
ε→0

ετL(1/ε)−τ φ(Y, ε)≤ C′

for some C′ <∞. Consequently, there exists a constant C′′ ≥ 0 such that, Q-almost surely,

φ(Y, ε)≤ C′′ε−τL(1/ε)τ (4.2)

whenever ε < ε0 for some random ε0 > 0. Thus, we find a non-random ε1 > 0 such that (4.2)
holds for ε < ε1 on a set of Q-measure larger than 1/2. Doing so, it follows that

e−φ(X,ε) = EQe−φ(Y,ε) ≥ 1
2 e−C′′ε−τ L(1/ε)τ
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whenever ε < ε1. Hence,

φ(X,ε)
 ε−τL(1/ε)τ ,

as asserted. �

Remark. The relation between u and X in (1.1) is homogeneous. Thus, Theorem 1.3 can be
slightly improved as follows. There exists a constant c0 > 0 depending only on α, τ and L such
that, whenever u and X are related via (1.1), it follows that

lim sup
n→∞

n−1/α+1/τ+1L(n)−1en(u∞)=: C

implies

lim sup
ε→0

ετL(1/ε)−τ φ(X, ε)≤ c0C
τ .

5. Open questions

In this paper, we mainly deal with four different objects. The first object is a decomposed op-
erator u from E to Lα(S,σ ), the second is an E′-valued SαS random vector X generated by u

via (1.1), the third object is the random operator v = vδ from E into �2 constructed by (2.4) and,
finally, we consider the E′-valued centered random Gaussian vector Y = Yδ associated with vδ .
Several important questions about the relations between these objects remain open.

5.1. Question 1

Probably the most interesting set of open questions is whether or not the random operator v = vδ

(resp., the associated Gaussian vectors Yδ) determine the small deviation behavior of X. In view
of (2.8) or (2.9), this is very likely, so we formulate the following conjecture.

Conjecture 5.1. Let X be an E′-valued symmetric α-stable vector generated by an operator
u :E → Lα(S,σ ) and denote by v = vδ the random operator associated with u via (2.4). Let
Y = Yδ be the corresponding Gaussian vector generated by v. Let τ > 0 and let L be a function
that is slowly varying at infinity such that L(t)≈ L(tp) for all p > 0. The following equivalences
then hold:

(a) we have

φ(Yδ, ε)� ε−τL(1/ε)τ , Q-a.s. ⇔ φ(X,ε)� ε−τL(1/ε)τ ; (5.1)

(b) we have

φ(Yδ, ε)
 ε−τL(1/ε)τ , Q-a.s. ⇔ φ(X,ε)
 ε−τL(1/ε)τ . (5.2)
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Remark. Note that, by Proposition 1.1, the left-hand estimate in (5.1) follows from en(vδ) �
n−1/2−1/τL(n) a.s. Furthermore, also by Proposition 1.1, observe that the left-hand estimate
in (5.2) is equivalent to en(vδ)
 n−1/2−1/τL(n) a.s.

Moreover, if we had the regularity of φ(Yδ, ε) in the sense of Proposition 1.1(a), we could
even conclude from the left-hand estimate in (5.1) that en(vδ) � n−1/2−1/τL(n). Also, it might
be that the additional regularity condition in Proposition 1.1(a) is not needed there.

Partial proof of Conjecture 5.1. We can only prove the implications “⇐” in assertion (a) and
“⇒” in assertion (b). The two other, more interesting, assertions remain open.

Proof of the implication “⇐” in (a). Suppose that

P(‖X‖E′ < ε)≤ exp
(−cε−τL(1/ε)τ

)
.

This means that

EQP(‖Yδ‖E′ < ε)≤ exp
(−cε−τL(1/ε)τ

)
.

Hence, by the Chebyshev inequality for any c1 < c, it follows that

Q
{
δ ∈� : P(‖Yδ‖E′ < ε)≥ exp

(−c1ε
−τL(1/ε)τ

)} ≤ EQP(‖Yδ‖E′ < ε)

exp(−c1ε−τL(1/ε)τ )

≤ exp
(−(c− c1)ε

−τL(1/ε)τ
)
.

Applying the Borel–Cantelli lemma to the sequence εn = 2−n, we get that

P(‖Yδ‖E′ < εn)≤ exp
(−c1ε

−τ
n L(1/εn)

τ
)
,

Q-almost surely, for all n > n(δ). By properties of regular varying functions, it follows that

P(‖Yδ‖E′ < ε)≤ exp
(−c12−τ−1ε−τL(1/ε)τ

)
,

Q-almost surely, for all ε < ε(δ). Yet this is equivalent to the required estimate φ(Yδ, ε) �
ε−τL(1/ε)τ .

Proof of the implication “⇒” in (b). This has, in fact, already been done as a step in the proof
of Theorem 1.3; see (4.2) and the steps thereafter. �

5.2. Question 2

Another interesting question is how the small deviation results depend on the choice of the gener-
ating operator u. Recall that u is not unique at all. Therefore, the following question is very nat-
ural: let u and ũ be two operators generating the same SαS vector X, that is, ‖u(z)‖α = ‖ũ(z)‖α
for all z ∈E. Let v and ṽ be the corresponding random operators. Is it true that

en(v) 
 n−1/2−1/τL(n), Q-a.s. ⇔ en(ṽ)
 n−1/2−1/τL(n), Q-a.s.,

en(v) � n−1/2−1/τL(n), Q-a.s. ⇔ en(ṽ)� n−1/2−1/τL(n), Q-a.s.?
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If Conjecture 5.1 holds, then the answer to both questions is affirmative.
When comparing the possible choice of the generating operator u, it is worthwhile to note

that their variety can be reduced to the following standard family. Let ∂U be the unit sphere
in E′. Recall that for every SαS vector X in E′, there exists a unique finite symmetric measure ν

concentrated on ∂U such that

Eei〈z,X〉 = exp

{
−

∫
E′
|〈z, x〉|α dν(x)

}
, z ∈E. (5.3)

The measure ν is usually called the spectral measure of X (see Linde (1986) for further details).
Now, let ν̃ be any measure on E′ satisfying the following condition: for any measurable A⊆ ∂U ,
we have

ν(A)= 1

2

∫
{x : x/‖x‖∈A}

‖x‖α dν̃(x)+ 1

2

∫
{x : x/‖x‖∈−A}

‖x‖α dν̃(x). (5.4)

Take (S, σ )= (E′, ν̃) and let u :E→Lα(E′, ν̃) be defined by (uz)(x)= 〈z, x〉. We then have

‖uz‖αα =
∫

E′
|〈z, x〉|αν̃(dx)=

∫
∂U

|〈z, x〉|α dν(x)

and the representation condition (1.1) is verified in view of (5.3). We call such representations
standard ones.

Obviously, the spectral measure itself satisfies condition (5.4) and provides one possible stan-
dard representation. Actually, ν is the only symmetric measure concentrated on ∂U satisfy-
ing (5.3).

Any operator representation can be reduced to a standard one. Indeed, take any representing
operator u :E→ Lα(S,σ ). Let ϕ :S → E′ be a function decomposing u, such that (2.1) holds.
We then let ν̃ be the distribution of ϕ, namely,

ν̃(A)= σ {s ∈ S :ϕ(s) ∈A}, A⊆E′.

We claim that the random operators coming from u and from the standard representation associ-
ated with ν̃ have the same distribution and thus possess identical probabilistic properties. Indeed,
in the first case, we have

vδ(z)= ((uz)(Vj )�
−1/α
j )∞j=1 = (〈z,ϕ(Vj )〉�−1/α

j )∞j=1,

where the Vj are S-valued and i.i.d. distributed according to the normalized measure σ . In the
second case, we have

ṽδ(z)= (〈z, Ṽj 〉�−1/α
j )∞j=1,

where Ṽj are E′-valued and i.i.d. distributed according to the normalized measure ν̃. Clearly,
these two sequences are equidistributed.
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5.3. Question 3

A third question of importance is how compactness properties of u :E→ Lα(S,σ ) carry over to
those of the random operator v. To make this more precise, the following definition is useful.

Let (S, σ ) be a finite measure space and let 0 < α < 2. If u :E→ Lα(S,σ ) is decomposed, its
n-th entropy gap is defined by

Gn(u) := en(v)

n−1/α+1/2en(u)
. (5.5)

Here, v :E → �2 is the random operator constructed from u via (2.4). Note that this gap is
random.

In view of (3.1), we know that there exists a constant ρ > 0 depending only on α such that

Q

(
lim inf
n→∞ Gn(u)≥ ρ

)
= 1.

The next result shows that the behavior of the entropy gap is important for our investigations.
The assertion follows easily by the methods used to prove Theorem 1.3.

Proposition 5.2. Let u :E→ Lα(S,σ ) be such that

Q

(
lim sup
n→∞

Gn(u) <∞
)
= 1. (5.6)

Under this assumption, the following implication is valid:

en(u)
 n1/α−1/τ−1L(n) ⇒ φ(X,ε)
 ε−τL(1/ε)τ .

Combining Proposition 5.2 with the results from Aurzada (2007a, 2007b), it follows that con-
dition (5.6) cannot be true for arbitrary operators u. Thus, the following questions naturally arise:

1. Under what conditions on u is (5.6) satisfied?
2. Given an increasing sequence (an) of positive numbers, we say that Gn(u) has order at most

an provided that

Q

(
lim sup
n→∞

Gn(u)

an

<∞
)
= 1.

One may then ask how large the order of the entropy gap may be. In the next section, we
will answer this question for a special class of operators.

6. The entropy gap for diagonal operators

6.1. Introduction

Recall from Aurzada (2007b) that diagonal operators were used in order to construct the coun-
terexamples mentioned in Proposition 1.2(c). Therefore, special attention should be paid to the
investigation of the entropy gap for this type of operators.
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First, let us describe which random vector corresponds to a diagonal operator D. Namely,
let (ξn) be a sequence of independent standard SαS random variables and let (ϑn) be positive,
decreasing coefficients such that ϑn→ 0. The random sequence X = (ϑnξn) ∈ �p′ is then gener-
ated by the diagonal operator D :�p → �α given by (zn) �→ (ϑnzn). In order to apply our former
results to random vectors of this type, we have to generate them by operators u mapping �p

into Lα(S,σ ) with finite measure σ . This can be done in many different ways. Depending on
the special representation, we shall get upper and lower estimates for the entropy gap for certain
operators generating vectors X as above. As a consequence, we will see that for these special
operators u, the entropy gap Gn(u) defined in (5.5) is (a) not necessarily bounded, but (b) cannot
be arbitrarily large. Point (a) will be addressed in Section 6.2 and point (b) in Section 6.3. Ac-
tually, we find an integral test exactly describing the possible behavior of Gn(u) for u related to
diagonal operators.

6.2. Upper bound for the entropy gap

In this subsection, we work with the following representation of random vectors with values
in �p′ with independent components. Let S = [0,1] and let σ = | · | be the Lebesgue measure.
We can then define u : lp → Lα[0,1] by

(zn) �→
∞∑

n=1

ϑnzn

1An

|An|1/α
, (6.1)

where the An are disjoint sets in [0,1]. It is easy to calculate that this operator generates X =
(ϑnξn).

By Theorem 2.2 in Kühn (2005), assuming that ϑn ≈ ϑ2n, |An| ≈ |A2n|,

sup
n≥k

(
n

k

)a
ϑn

ϑk

<∞ for some a > [1/α − 1/p]+ and (6.2)

sup
n≥k

(
n

k

)b
ϑn|An|−1/α

ϑk|Ak|−1/α
<∞ for some b > 0, (6.3)

we have

en(u)≈ ϑnn
1/α−1/p and en(u∞)≈ ϑn|An|−1/αn−1/p.

This yields, by Theorem 3.3, that

Gn(u)= en(v)

n−1/α+1/2en(u)

 en(u∞)

en(u)
≈ |An|−1/α

n1/α
.

Note that we are free in the choice of the sets An as long as they are small enough to fit into
[0,1]. We express this by means of the following integral test.
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Proposition 6.1. Let (dn) and (ϑn) be monotone sequences such that dn ≈ d2n, ϑn ≈ ϑ2n and
let the regularity conditions (6.2) and (6.3) be valid with |An| := cd−α

n n−1. Moreover, let

∞∑
n=1

d−α
n

n
<∞. (6.4)

Then, for the operator u :�p →Lα[0,1] defined by (6.1), the entropy gap is of order at most dn.

Conditions (6.2) and (6.3) and the doubling condition are to ensure a certain regularity of the
sequence. They are merely technical and due to the application of the results from Kühn (2005).
Note that essentially all sequences of interest satisfy these conditions.

Let us illustrate with an example how Proposition 6.1 works.

Example. Choose dn := (logn)γ/α for some γ > 1. Clearly, (6.3) and (6.4) hold in this case, as
well as the doubling condition. Consequently, for all sequences ϑn satisfying (6.2) and ϑn ≈ ϑ2n,
we have

Gn(u)
 (logn)γ/α,

where u is defined by (6.1). Note that this is valid for any γ > 1. Of course, we may also take
dn := (logn)1/α(log logn)γ/α for some γ > 1 or another regular sequence (dn) satisfying con-
dition (6.4). Any such summable sequence that is sufficiently regular yields an upper bound for

Gn(u).

6.3. The entropy gap of embedding operators

In this subsection, we give examples in which the entropy gap is unbounded. More precisely, we
show that it can increase as at least (logn)1/α and even slightly faster for operators generating
stable vectors in �p′ with independent components.

Here, we use another representation for the generating operator of X. Namely, we will use
S =N and the measure σ is given by the weights σn =: σ({n}), where σn = ϑα

n in the notation of
Section 6.2. We then consider the embedding operator u :�p → Lα(N, σ ). It is straightforward

to check that u generates the �p′ -valued random vector X = (σ
1/α
n ξn).

Let us first look at the representation (2.7) and the random operator v occurring there. For this
purpose, consider the random operator w :�p → �∞ defined as follows. Let (ek) be the standard
basis in �p and let (Vj ) be i.i.d. N-valued random variables distributed according to σ . We set

w(ek)=
∑

j : Vj=k

ej , that is, w(z)=
∑

k

∑
j : Vj=k

zkej .

One can interpret this object as a random partitioning of N into sets Bk = {j :Vj = k}. Every
point is put into Bk independently of other points and with the same probability σk for all points.
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We combine this operator w with the diagonal operator D :�∞→ �2 possessing the diagonal
j−1/α . The result of the combination is the operator D ◦w :�p → �2 acting as

(D ◦w)(z)=
∑

k

∑
j : Vj=k

zkj
−1/αej .

Since

‖(D ◦w)(z)‖2
2 =

∑
k

z2
k

∑
j : Vj=k

j−2/α,

the operator D ◦w is clearly isomorphic (as regards its image and hence its compactness prop-
erties) to a diagonal operator with the random diagonal

λk =
( ∑

j : Vj=k

j−2/α

)1/2

. (6.5)

Once it comes to the entropy numbers, by Lemma 3.2, we can replace the operator D̃ :�∞→
�2 with diagonal �

−1/α
j , where the �j are as above, by the operator D.

Finally, we note that D̃ ◦ w = v with v from the mixture (2.7). Recall that we are interested
in the relation between en(v) and en(u). From the above arguments, it is clear that we can also
consider en(D ◦w) instead of en(v).

For this purpose, we are interested in the decreasing rearrangement λ∗k of the sequence in (6.5).
Before giving a sharp and precise result, let us illustrate the situation by means of two basic
cases:

(a) σk = ck−1(logk)−ν with ν > 1;
(b) σk = ck−a(logk)−ν with a > 1, ν ∈R.

Proposition 6.2. For the above cases, we obtain the following results.

• In case (a), we have λ∗k ≈ k−1/α(logk)−(ν−1)/α almost surely. Hence, it follows that en(D ◦
w)≈ n−(1/α−1/2+1/p)(logn)−(ν−1)/α .

• In case (b), we have λ∗k ≈ k−a/α(logk)−ν/α almost surely. Hence, it follows that en(D◦w)≈
n−(a/α−1/2+1/p)(logn)−ν/α .

We will give the proof of this result after that of Proposition 6.4.
Note that Proposition 6.2 has the following consequence for the entropy gap.

Corollary 6.3. We have

Gn(u)≈ en(D ◦w)

n−1/α+1/2en(u)
≈

{
(logn)1/α, in case (a),
1, in case (b).

This is why one can call case (b) “regular” and case (a) “exceptional”.
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Our main result concerning possible entropy gaps for embedding operators from �p into
Lα(N, σ ) is as follows.

Proposition 6.4. Let (dk) be an increasing positive sequence such that dn ≈ d2n,

∞∑
k=1

d−α
k

k
=∞ (6.6)

and

dk � (logk)1/2α. (6.7)

Then, for any p ∈ [1,∞), there exists a probability measure σ on N such that for the embedding
u :�p → Lα(N, σ ), we have

Gn(u)� dn.

The technical assumption (6.7) could probably be avoided, but it is not an obstacle for consid-
ering interesting examples of gaps which are of order (logn)1/α and larger.

Note that the integral test in (6.6) is the same as in (6.4) of the previous subsection. Therefore,
both results are sharp.

Proof of Proposition 6.4. Suppose that some probability measure σ on N is given and let the
Vj be independent, σ -distributed integers. As before, σk := σ({k}). For any integer m, consider
the set {Vj , j ≤m}. The key question we address now is how many different values there are in
this set for large m. Consider the random events Gk = {∃j ≤m :Vj = k}. Let Ik = 1Gk

. Clearly,

P(Gk)= 1− P(Ḡk)= 1− (1− σk)
m ∼mσk (6.8)

whenever mσk → 0.
We are interested in the behavior of the number of different values

Nm :=
∞∑

k=1

Ik. (6.9)

Let us look at the variance of Nm. Note that the Gk are negatively dependent: for k1 �= k2, we
have P(Gk1 |Gk2) ≤ P(Gk1). In other words, P(Gk1 ∩Gk2) ≤ P(Gk1)P(Gk1). The latter relation
can be also written as cov(Ik1 , Ik2)≤ 0. It follows that

Var(Nm)≤
∞∑

k=1

cov(Ik, Ik)≤
∞∑

k=1

P(Gk)= ENm.

If we define ak := d−α
k

k
, then An :=∑n

k=1 ak ↗∞. We set σk = cak+1 exp(−Ak), where c is
a normalizing constant such that

∑∞
k=1 σk = 1. Note that since ak → 0,

ak+1 exp(−Ak)∼
(
1− exp(−ak+1)

)
exp(−Ak)= exp(−Ak)− exp(−Ak+1)
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really forms a convergent series, thus the choice of the normalizer c is possible.
By construction, σk is a decreasing sequence and, as before, the operator u is defined as em-

bedding from �p into Lα(N, σ ). It corresponds to the diagonal operator from �p to �α with

diagonal (ϑn), where ϑn = σ
1/α
n , as usual.

Now, define the tails

Tn :=
∞∑

k=n

σk ∼ c

∞∑
k=n

(
exp(−Ak)− exp(−Ak+1)

)= c exp(−An). (6.10)

Hence,

σn

Tn

∼ an+1. (6.11)

We will now use the numbers Nm, as defined in (6.9). Since ak = O(1/k) and Ak →∞, our
construction yields

max
k≥m

σk = σm = o(1/m).

It follows from (6.8) that

ENm ≥
∞∑

k=m

P(Gk)∼m

∞∑
k=m

σk =mTm

and we obtain ENm ≥ (1− ε)mTm for any ε > 0 and all large m. Also, recall that Var(Nm) ≤
ENm, hence, by the Chebyshev inequality,

P
(
Nm ≤ (1− 2ε)mTm

)≤ P
(
Nm ≤ (1− ε)ENm

)≤ 1

ε2(1− ε)mTm

.

We now show that Tm decreases rather slowly, leading to a convergent series in the Borel–Cantelli
lemma. Indeed, since ak = o(1/k), we have An = o(logn). Hence, for large n, by (6.10),

Tn ∼ c exp(−An)� exp(− logn/2)= n−1/2.

By the Borel–Cantelli lemma, it follows that Nm ≥ (1− 2ε)mTm for large m along exponential
sequences. Using the fact that Nm and Tm are monotone, we easily obtain that

Nm ≥ (1− 3ε)mTm (6.12)

for all large m.
Recall that if j, k,m are such positive integers such that j ≤m and Vj = k, then λk ≥ j−1/α ≥

m−1/α . Therefore, (6.12) can be written as

λ∗�(1−2ε)mTm� ≥m−1/α. (6.13)
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Let m=m(n)= �n/Tn� and observe that for some η > 0,

lim inf
n→∞

Tm

Tn

> η. (6.14)

There then exists a small ε > 0 such that for all large n,

ηn≤ (1− 2ε)
Tm

Tn

n≤ (1− 2ε)mTm.

By applying (6.13), we get

λ∗�ηn� ≥ λ∗�(1−2ε)mTm� � (n/Tn)
−1/α.

Next, note that by (6.10),

1≤ T�ηn�
Tn

∼ exp

( n∑
k=�ηn�+1

ak

)
≤ exp

(
d−α
�ηn�

n∑
k=�ηn�+1

1

k

)
→ 1. (6.15)

It follows that

λ∗�ηn� �
(�ηn�/T�ηn�

)−1/α
.

By changing the notation and using (6.11), we obtain

λ∗n � (Tn/n)1/α ≈
(

σn

nan

)1/α

= σ
1/α
n dn. (6.16)

We continue by proving (6.14), which, by (6.10), is equivalent to

lim sup
n→∞

m∑
k=n+1

ak <∞.

However, assumption (6.7) yields that

m∑
k=n+1

ak 

m∑

n+1

1

(logk)1/2k

 (logm)1/2 − (logn)1/2 | logTn|

(logn)1/2
∼ An

(logn)1/2

 1.

We can now complete our evaluation of the entropy gap by using information about our diag-
onal operators. First, consider the non-random operator u. Recall that u is a diagonal operator
with diagonal (ϑn) defined by

ϑn = σ
1/α
n = a

1/α

n+1 exp(−An/α)= (n+ 1)−1/αd−1
n+1 exp(−An/α).

Note that the second and third factors are decreasing sequences. We see that the standard regu-
larity condition that is necessary to get the entropy behavior is verified, namely, for a = 1/α, we
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have

sup
n≥k

(
n

k

)a
ϑn

ϑk

<∞.

Recall that (dn) satisfies the doubling condition dn ≈ d2n. Moreover, the sequence exp(−An/α)

is slowly varying; see (6.15). Hence, ϑn satisfies the doubling condition ϑn ≈ ϑ2n. By the afore-
mentioned Theorem 2.2 in Kühn (2005), it follows that

en(u)≈ ϑnn
1/α−1/p′ = σ

1/α
n n1/α−1/p′ .

The same arguments apply to the lower bound (6.16) which we obtained for λ∗n. Hence,

en(v)� σ
1/α
n dnn

1/2−1/p′ .

It follows that Gn(u)� dn, as required. �

Proof of Proposition 6.2. Lower bound. Setting dk = (logk)1/α in the previous construction
yields the lower bounds for λ∗n in case (a). In case (b), the calculation is quite similar: by direct
calculation of the mean, followed by a Borel–Cantelli argument, we get

Nm ≈ ENm ≥ c
m1/a

(logm)ν/a
.

Since

{Nm > k} ⊆ {m−1/α ≤ λ∗k+1},
we get λ∗k ≥ ck−a/α(logk)−ν/α , as required.

Upper bound. We first treat case (a). Let us introduce some notation. Let r be a small number.
Let k∗ = r−α/2

| log r|ν−1 ,

F1(r)= #

{
k :

∑
j : Vj=k

j−2/α ≥ r

}

and

F2(r)= #

{
k ≥ k∗ :

∑
j : j≥r−α/2,Vj=k

j−2/α ≥ r

}
.

Clearly,

F1(r)≤ F2(r)+ k∗ +N(r−α/2), (6.17)

where N(m)=Nm was defined in (6.9).
To evaluate F2(r), we need

Tk(r)=
∑

j : j≥r−α/2,Vj=k

j−2/α
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and

S(r)=
∑
k≥k∗

Tk(r)=
∑

j : j≥r−α/2,Vj≥k∗

j−2/α.

Note that the latter expression is a weighted sum of independent Bernoulli variables whose para-
meters are

P(Vj ≥ k∗)=
∑
k≥k∗

σk ≈ | log r|−(ν−1).

We now evaluate the expectation and variance of S(r). Indeed,

ES(r) =
∑

j≥r−α/2

j−2/αP(Vj ≥ k∗)≈ r1−α/2| log r|−(ν−1),

Var S(r) =
∑

j≥r−α/2

j−4/α Var1{Vj≥k∗} 
 r2−α/2| log r|−(ν−1).

By the Chebyshev inequality,

P
(

S(r)≥ 2ES(r)
)≤ crα/2| log r|ν−1.

Again using the asymptotics of ES(r) and the trivial inequality F2(r)r ≤ S(r), we get

P
(
F2(r)≥ c1r

−α/2| log r|−(ν−1)
)≤ c2r

α/2| log r|ν−1.

By the Borel–Cantelli lemma, we conclude that

F2(r)=O
(
r−α/2| log r|−(ν−1)

)
almost surely, at least along the subsequence r = 2−i , i = 1,2, . . . . Next, we pass from F2 to F1.
To this end, the quantity N(·) in (6.17) should be evaluated. By using (6.8), one easily finds that
ENm ∼ cm(logm)−(ν−1) in case (a). Moreover, since VarNm ≤ ENm, a Borel–Cantelli argument
shows that Nm ≤ 2cm(logm)−(ν−1) for all sufficiently large m. In particular,

N(r−α/2)=O
(
r−α/2| log r|−(ν−1)

)
.

It now follows from the definition of k∗ and (6.17) that

F1(r)=O
(
r−α/2| log r|−(ν−1)

)
almost surely along the aforementioned subsequence. However, since F1(·) is a decreasing func-
tion, the statement is also true along r → 0. This means that

#{k :λk ≥ r} =O
(
r−α| log r|−(ν−1)

)
, r → 0,

which is equivalent to the required estimate

λ∗k ≤ ck−1/α| logk|−(ν−1)/α.
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Therefore, we are finished with the upper estimate in case (a). For case (b), set k∗ = r−α/2a

| log r|ν/a . By
repeating the previous calculations, we subsequently get

ES(r)≈ r1−α/2a | log r|−ν/a, F2(r)=O(r−α/2a | log r|−ν/a)

and

Nm =O(m1/a | logm|−ν/a), F1(r)=O(r−α/2a | log r|−ν/a),

which gives

#{k :λk ≥ r} =O(r−α/a | log r|−ν/a), r → 0,

or λ∗k ≤ ck−a/α(logk)−ν/α , as required. �

7. Examples and applications

7.1. Application to symmetric α-stable processes

7.1.1. Symmetric α-stable processes

A stochastic process X = (X(t))t∈T indexed by a non-empty set T is said to be SαS for some
α ∈ (0,2] if, for all t1, . . . , tn ∈ T and all real numbers λ1, . . . , λn, the real random variable∑n

j=1 λjX(tj ) is SαS-distributed.
We shall restrict ourselves to SαS processes possessing an integral representation in the sense

of Chapter 13 of Samorodnitsky and Taqqu (1994). We note that all natural examples of SαS
processes fit into this framework.

In other words, we investigate SαS processes X for which there exist a measure space (S, σ )

and a kernel K :T × S → R such that for each t ∈ T , the function s �→ K(t, s) is measurable
with ∫

S

|K(t, s)|α dσ(s) <∞
and for all λ1, . . . , λn ∈R and all t1, . . . , tn ∈ T , we have

E exp

(
i

n∑
j=1

λjX(tj )

)
= exp

(
−

∫
S

∣∣∣∣∣
n∑

j=1

λjK(tj , s)

∣∣∣∣∣
α

dσ(s)

)
. (7.1)

Usually, one writes

X(t)=
∫

S

K(t, s)dM(s), t ∈ T , (7.2)

where M denotes an independently scattered SαS random measure with control measure σ . If
S ⊆R and σ is the Lebesgue measure on S, then

X(t)=
∫

S

K(t, s)dZα(s), t ∈ T .
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We refer to Samorodnitsky and Taqqu (1994) for more information about integral representations
of SαS processes.

Now, suppose that (T , d) is a separable metric space endowed with the Borel σ -field. If the
kernel K on T × S is measurable with respect to the product σ -field, then X possesses a mea-
surable version. Let μ be some finite Borel measure on T and suppose that

P
(‖X‖Lq(T ,μ) <∞)= 1 (7.3)

for a certain q ∈ [1,∞]. Recall from Section 11.3 in Samorodnitsky and Taqqu (1994) that, if
q <∞, there is a simple condition in terms of the kernel K to verify (7.3). We now regard X as
an SαS random vector in Lq(T ,μ) and define p ∈ [1,∞] by p′ = q . Then, as proven in Li and
Linde (2004), Proposition 5.1, the operator u :Lp(T ,μ)→ Lα(S,σ ) with

(uf )(s) :=
∫

T

K(t, s)f (t)dμ(t), s ∈ S, (7.4)

generates X in the sense of (1.1). Consequently, by Theorem 1.3, any upper entropy estimate for
u :Lp(T ,μ)→ L∞(S, σ ) implies an upper estimate for

φ(X,ε)=− logP
(‖X‖Lq(T ,μ) < ε

)
,

with q = p′. We summarize these observations as follows.

Proposition 7.1. Let p ∈ [1,∞], K be as above and u be as in (7.4). Fix τ > 0 and a slowly
varying function L as in Theorem 1.3. Assume that

en

(
u :Lp(T ,μ)→L∞(S, σ )

)
 n1/α−1/τ−1L(n).

Set q = p′. Then,

− logP
(‖X‖Lq(T ,μ) < ε

)
 ε−τL(1/ε)τ .

Let us illustrate this by means of several concrete examples.

7.1.2. Hölder operators

We begin our investigation of the small deviations of SαS processes with a quite general ap-
proach. To this end, suppose that (S, d) is a compact metric space and let C(S) be the Banach
space of (real-valued) continuous functions on S. An operator u :E → C(S) is said to be β-
Hölder for some β ∈ (0,1] provided there exists a constant c > 0 such that for all z ∈ E and all
s1, s2 ∈ S, it follows that

|(uz)(s1)− (uz)(s2)| ≤ c‖z‖Ed(s1, s2)
β .

Furthermore, let εn(S) be the sequence of covering numbers of S (with respect to the metric d).
The basic result about compactness properties of Hölder operators is as follows (see Carl and
Stephani (1990)).
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Proposition 7.2. Let H be a Hilbert space and let u : H → C(S) be a β-Hölder operator. If
εn(S)≤ h(n) for some regularly varying decreasing function h, then we have

en(u)≤ cn−1/2h(n)β.

We apply this result in our setup. To this end, let (S, d) be as before and suppose that σ is a
finite Borel measure on S.

Proposition 7.3. Let X be an SαS vector with values in a Hilbert space H and let u : H →
Lα(S,σ ) be an operator generating X. Suppose that u is β-Hölder for some β ∈ (0,1] and that
εn(S) 
 n−γ L(n) for some γ > 0 and some slowly varying function L, as before. Set 1/τ =
1/α − 1/2+ γβ . We then have

φ(X,ε)
 ε−τL(1/ε)βτ .

Proof. Due to the assumptions, the operator u∞ maps H into C(S) and, moreover, it is β-Hölder.
Consequently, Proposition 7.2 applies to u∞ and yields

en(u∞)
 n−1/2−γβL(n)β

since εn(S)
 n−γ L(n). From this, the assertion follows immediately from Theorem 1.3. �

Let us apply the preceding result to SαS processes with integral representations, as in Sec-
tion 7.1.1. To this end, suppose that T is a separable metric space with finite Borel measure μ.
Assume that an SαS process X = (X(t))t∈T has a.s. paths in L2(T ,μ). If X admits the represen-
tation (7.2) with respect to the control measure σ on the compact space (S, d), then the process is
generated by u :L2(T ,μ)→ Lα(S,σ ) defined in (7.4). Note that this u is β-Hölder if and only
if there exists some c > 0 such that, for all s1, s2 ∈ S, it follows that(∫

T

|K(t, s1)−K(t, s2)|2 dμ(t)

)1/2

≤ cd(s1, s2)
β . (7.5)

Rewriting Proposition 7.3 in this framework, we obtain the following result.

Corollary 7.4. Let

X(t)=
∫

S

K(t, s)dM(s), t ∈ T ,

where M has control measure σ and T and S are as before. Suppose that (7.5) holds for some
β ∈ (0,1]. If εn(S)
 n−γ L(n), then this implies that

− logP
(‖X‖L2(T ,μ) < ε

)
 ε−τL(1/ε)βγ ,

where 1/τ = 1/α− 1/2+ γβ as in Proposition 7.3.

We will show in the next subsection that this leads to sharp estimates in several examples.
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7.1.3. Riemann–Liouville processes

The symmetric α-stable Riemann–Liouville process on [0,1] with Hurst index H > 0 is usually
defined by

Rα
H (t) :=

∫ t

0
(t − s)H−1/α dZα(s), 0≤ t ≤ 1,

where Zα is, as above, the symmetric α-stable Lévy motion. In other words, Rα
H is the process

satisfying (7.1) with K(t, s)= (t− s)H−1/α1[0,t](s). The underlying measure space is T = [0,1]
endowed with the Lebesgue measure.

The small deviation behavior of (Rα
H (t))0≤t≤1 was investigated thoroughly in Lifshits and

Simon (2005). It was shown that for H ≥ 1/α, that is, when the process Rα
H is a.s. bounded, for

any q ∈ [1,∞], it is true that

− logP
(‖Rα

H‖Lq [0,1] < ε
)∼ cε−1/H (7.6)

for some finite, positive c = c(H,α). One should also mention that for the case H = 1/α, the
process Rα

H is just a symmetric α-stable Lévy motion and its small deviations were studied some
time ago in works by Borovkov and Mogul’skiı̆ (1991) and Mogul’skiı̆ (1974).

In the case [1/α−1/q]+ < H ≤ 1/α, the paths are no longer bounded, yet belong to Lq [0,1].
For these H , the behavior of (7.6) was stated as an open question (see Lifshits and Simon (2005),
Section 6.4). Using Theorem 1.3, we can answer this question as follows.

Proposition 7.5. Suppose that H > [1/α − 1/q]+. It then follows that

− logP
(‖Rα

H‖Lq [0,1] < ε
)∼ cε−1/H

for some finite positive c= c(H,α).

Proof. The existence of the positive (but possibly infinite) limit

c= lim
ε→0

[−ε1/H logP
(‖Rα

H‖Lq [0,1] < ε
)]

follows from Theorem 4 in Lifshits and Simon (2005). It thus remains to verify the upper es-
timate. To this end, we set p := q ′ and consider the integral operator u :Lp[0,1] → Lα[0,1]
generating Rα

H . This is given by

(uf )(s) :=
∫ 1

s

(t − s)H−1/αf (t)dt, 0≤ s ≤ 1.

Since H > 1/α−1/q = 1/α−1/p′, the operator u even maps Lp[0,1] into L∞[0,1]. Moreover,
introducing the changes of variables t �→ 1− t and s �→ 1− s, it follows that en(u∞)= en(R

H ),
where RH :Lp[0,1] → L∞[0,1] is (up to a constant) the usual Riemann–Liouville integration
operator defined by

(RH f )(s) :=
∫ s

0
(s − t)H−1/αf (t)dt. (7.7)
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As shown in Aurzada and Simon (2007), proof of Lemma 3.9, or in Li and Linde (1999), we
have

en(u∞)= en(R
H :Lp[0,1]→L∞[0,1])≈ n−H−1+1/α.

Thus, the finiteness of c follows from Theorem 1.3. �

Remark. The same result holds for linear stable fractional motion

Xα
H (t) :=

∫ t

−∞
[(t − s)H−1/α − (−s)

H−1/α
+ ]dZα(s), 0≤ t ≤ 1,0 < H < 1,

since it was shown in Lifshits and Simon (2005) that the difference between Rα
H and Xα

H is
irrelevant as far as small deviations are concerned.

Remark. The results of Aurzada and Simon (2007) can also be improved to a larger range of H

when considering Lq -norms, q <∞, by the use of Proposition 7.5.

Finally, let us look at the Riemann–Liouville processes from the point of view of Hölder oper-
ators. If 1/α − 1/2 < H ≤ 1/α + 1/2, then, as can be easily seen, the corresponding operator u

given in (7.7) satisfies (7.5) with β = H − 1/α + 1/2. Since S = [0,1], we have εn(S) ≈ n−1.
Hence, in that case,

1/τ = 1/α − 1/2+ β =H,

giving τ = 1/H . This leads to the sharp estimate (compare with Proposition 7.5)

− logP

(∫ 1

0
|Rα

H (t)|2 dt < ε2
)

 ε−1/H , (7.8)

at least if 1/α − 1/2 < H ≤ 1/α + 1/2.

7.1.4. Weighted α-stable Lévy motion

Let ρ : [0,1]→ [0,∞) be some (measurable) weight function. The weighted symmetric α-stable
Lévy motion is defined by

Xρ(t) := ρ(t)Zα(t), 0≤ t ≤ 1.

If 1 ≤ q <∞, then there exists a complete characterization of weights such that Xρ ∈ Lq [0,1]
a.s. (see Example 2 in Li and Linde (2004)).

Using Theorem 1.3, we get the following result.

Proposition 7.6. Let q ∈ [1,∞) and assume that ρ ∈ Lq [0,1]. Let r > 0 be defined by 1/r :=
1/q + 1/α. There then exist c1, c2 > 0 such that

c1‖ρ‖r ≤ lim inf
ε→0

εα[− logP(‖Xρ‖q < ε)]
(7.9)

≤ lim sup
ε→0

εα[− logP(‖Xρ‖q < ε)] ≤ c2‖ρ‖q .
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Proof. The left-hand estimate was proven in Li and Linde (2004). To verify the right-hand one,
as before, we set p := q ′ and note that p > 1. The operator u :Lp[0,1] → Lα[0,1] generating
Xρ is given by

(uf )(s)=
∫ 1

s

f (t)ρ(t)dt, 0≤ s ≤ 1.

Because ρ ∈ Lp′ [0,1], the corresponding operator u∞ is well defined from Lp[0,1] into
L∞[0,1]. Upper estimates for the entropy of the operator u∞ were given in Section 4.6 in Lif-
shits and Linde (2002). From (4.60) in Lifshits and Linde (2002) (note that χ ≡ 1 and η = ρ in
the notation of Lifshits and Linde (2002)), we derive

lim sup
n→∞

nen(u∞)≤ c‖ρ‖p′ . (7.10)

Observe that the right-hand side in (4.58) in Lifshits and Linde (2002) is finite since r = p′
and χ ≡ 1. Thus, (4.60) in Lifshits and Linde (2002) applies in our situation and the right-hand
estimate in (7.9) follows from Theorem 1.3 using (7.10) and q = p′. �

Remark. The example of the weighted α-stable Lévy motion shows that the application of The-
orem 1.3 is limited in some cases. For example, as seen above, it does not apply in the most
interesting case q =∞. Here, we have p = 1 and then the operator u∞ is, in general, not com-
pact. Moreover, even if p > 1, there remains a gap in the dependence on ρ between the left- and
right-hand estimate in Proposition 7.6. Note that r < q .

7.1.5. The α-stable sheet

Finally, we investigate an SαS process indexed by [0,1]d for some d ≥ 1. If u from Lp[0,1]d to
Lα[0,1]d is defined by

(uf )(s) :=
∫ 1

s1

· · ·
∫ 1

sd

f (t)dtd · · · dt1, s = (s1, . . . , sd),

then the generated SαS process Zd
α is usually called a (d-dimensional) α-stable sheet. Note that

for α = 2, we obtain the ordinary d-dimensional Brownian sheet. An easy transformation gives
en(u)= en(ū), where ū from Lp[0,1]d to Lα[0,1]d is defined by

(ūf )(t) :=
∫ t1

0
· · ·

∫ td

0
f (s)dsd · · · ds1, t = (t1, . . . , td).

It is known (see Belinsky (1998) and Dunker et al. (1999)) that

en(ū :Lp[0,1]d → L∞[0,1]d)
 n−1(logn)d−1/2

whenever 1 < p ≤∞. Hence, Theorem 1.3 applies in this case and leads to

− logP
(‖Zd

α‖Lq [0,1]d < ε
)
 ε−α log(1/ε)α(d−1/2) for q ∈ [1,∞). (7.11)
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Remark. Estimate (7.11) is weaker than the best known lower one. Namely, as shown in Li and
Linde (2004), we have

ε−α log(1/ε)α(d−1) 
− logP
(‖Zd

α‖Lq [0,1]d < ε
)

for all q ∈ [1,∞]. Also, the Gaussian case suggests that the exponent of the log-term in (7.11)
should be α(d − 1), at least for q <∞. Nevertheless, to the authors’ knowledge, (7.11) is the
first upper estimate for φ(Zd

α, ε).

7.2. Sum of maxima-type processes

Let us consider the following random vector. Let ξn,l be i.i.d. standard SαS random variables,
n, l = 1,2, . . . . Let (ϑn) be some decreasing sequence. Consider the random array

X := (ϑnξn,l)n=1,2,...;l=1,...,2n .

We consider X as a random variable in the space E′ := �1(�
2n

∞), where we use the notation

�p(�k
q) := {

z= (zn,l) | n= 1,2, . . . ; l = 1, . . . , k,‖z‖�p(lkq ) <∞}
with the norm given by

‖z‖�p(�k
q ) :=

[ ∞∑
n=1

(
k∑

l=1

|zn,l |q
)p/q]1/p

,

with the obvious modification for p =∞ or q =∞.
In our case, we set E := �∞(�2n

1 ). Now, let u be the diagonal operator from E = �∞(�2n

1 )

to �α(�2n

α ) with diagonal (ϑn), that is, u : (zn,l) �→ (ϑnzn,l). This operator generates the random
vector X ∈E′ with the small deviations

P(‖X‖E′ ≤ ε)= P

( ∞∑
n=1

ϑn max
1≤l≤2n

|ξn,l | ≤ ε

)
,

which explains the example’s name. It was shown in Aurzada and Lifshits (2008) that such
probabilities exhibit a critical behavior when the weights are defined by ϑn = 2−n/γ n−β/γ with
γ ≤ α. Namely, for ϑn = 2−n/γ n−β/γ with γ < α, we have

− logP(‖X‖E′ ≤ ε)≈ ε−γ | log ε|−β. (7.12)

For the ‘critical’ case γ = α, that is, ϑn = 2−n/αn−β/α , however, we have

− logP(‖X‖E′ ≤ ε)

⎧⎪⎨
⎪⎩
=∞, β ≤max(1, α),
≈ ε−1/(β/α−1), max(1, α) < β < 1+ α,
≈ ε−α| log ε|1+α, β = 1+ α,
≈ ε−α| log ε|−β+1+α, β > 1+ α.

(7.13)
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The entropy numbers of the generating operator u, as calculated by T. Kühn (private communi-
cation), are

en(u)≈ n1/α−1/γ−1(logn)−β/γ ,

which agrees with (7.12) from the point of view of Theorem 1.3. However, the connection be-
tween the entropy and small deviations completely breaks down in the critical case (7.13).

This example shows that the connection between small deviations and the entropy of the re-
lated operator can deviate quite drastically from what would be expected from the valid implica-
tions in Proposition 1.2. It is an open problem to calculate a corresponding operator u∞ in this
case and to see to which bounds this leads to by the use of Theorem 1.3.

7.3. Small deviation of SαS-vectors with 0 < α < 1

Finally, let us indicate a relation of our result to a general lower bound due to Ryznar (1986).
Namely, note that, trivially,

en(u∞)= en

(
u :E→L∞(S)

)≤ ‖u :E→ L∞(S)‖<∞.

Therefore, we can set τ := α/(1−α) (which is positive for 0 < α < 1) and L= 1 in Theorem 1.3
and obtain that, for any SαS random vector with 0 < α < 1,

φ(X,ε)
 ε−α/(1−α).

This result was shown in Ryznar (1986) for strictly stable (not necessarily symmetric) vectors
with 0 < α < 1, using completely different methods.
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