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We study Markov bases of decomposable graphical models consisting of primitive moves (i.e., square-free
moves of degree two) by determining the structure of fibers of sample size two. We show that the number
of elements of fibers of sample size two are powers of two and we characterize primitive moves in Markov
bases in terms of connected components of induced subgraphs of the independence graph of a hierarchical
model. This allows us to derive a complete description of minimal Markov bases and minimal invariant
Markov bases for decomposable models.
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1. Introduction

Since Sturmfels (1996) and Diaconis and Sturmfels (1998) introduced the Markov chain Monte
Carlo approach based on a Markov basis for testing the goodness of fit of statistical models of
multiway contingency tables, many researchers have showed the usefulness of the approach and
studied Markov bases for various kinds of statistical models in computational algebraic statis-
tics (e.g., Hoşten and Sullivant (2002); Dobra (2003); Dobra and Sullivant (2004); Geiger et al.
(2006)). Hierarchical models are of basic importance for statistical analysis of multiway con-
tingency tables (e.g., Lauritzen (1996); Agresti (2002)). As illustrated in Aoki and Takemura
(2003), however, the structure of Markov bases for hierarchical models is very complicated in
general. Decomposable models defined in terms of chordal graphs are particularly useful sub-
models of hierarchical models. They are known to possess Markov bases consisting of primitive
moves, that is, square-free moves of degree two (Dobra (2003); Hoşten and Sullivant (2002);
Geiger et al. (2006)). Dobra (2003) provided an algorithm to generate moves in such Markov
bases based on a clique tree of the chordal graph defining the model.

The main purpose of this paper is to clarify structures of Markov bases consisting of primitive
moves for decomposable models. As shown in Takemura and Aoki (2004), Markov bases for
general models can be constructed by combining moves of increasing degrees. This fact indicates
the importance of studying the structure of primitive moves in order to clarify the structure of
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Markov bases for more general hierarchical models. Some practical models such as subtable sum
models (Hara et al. (2009)) and quasi-independence models for incomplete contingency tables
that contain some structural zeros (Aoki and Takemura (2005); Rapallo (2006)) are obtained
by imposing some constraints on a decomposable model. Rasch models (e.g., Chen and Small
(2005)) and many-facet Rasch models (e.g., Zhu et al. (1998); Basturk (2008)) that are commonly
used in psychometrics and behaviormetrics are considered as decomposable models restricted
to contingency tables in which cell frequencies are zeros or ones. From a practical viewpoint,
detailed properties of Markov bases for decomposable models may also give insights into Markov
bases for such models.

The present authors have been studying Markov bases from the viewpoint of minimality (Aoki
and Takemura (2003); Takemura and Aoki (2004)) and invariance (Aoki and Takemura (2008a,
2008b)) for some specific hierarchical models. The notions of minimality and invariance of
Markov bases are important because they give concise expressions of the Markov basis. In this
paper we extend the results to decomposable models.

The set of contingency tables sharing the same marginal frequencies corresponding to the
generating set of the model is called a fiber. The structure of primitive moves is equivalent to
that of fibers of sample size two. We study the structure of fibers of sample size two in detail and
give a complete description of minimal Markov bases and minimal invariant Markov bases for
decomposable models. We also show that construction of a minimal invariant Markov basis is
directly related to a basis of a vector space over the finite field GF(2). We describe under what
conditions Dobra’s Markov basis is minimal or minimal invariant. We also give a necessary and
sufficient condition for the uniqueness of the minimal Markov basis for decomposable models.

The organization of the paper is as follows. In Section 2 we set up notation for this paper and
summarize preliminary results. In Section 3 we clarify structures of fibers of sample size two.
Using this characterization, in Section 4 we give a complete description of minimal Markov bases
and minimal invariant Markov bases for decomposable models. In Section 5 we briefly discuss
reduced Gröbner bases for decomposable models and we end the paper with some concluding
remarks in Section 6.

2. Preliminaries

We mostly follow the notation in Lauritzen (1996); Hoşten and Sullivant (2002); Dobra (2003)
for multiway contingency tables. Let � = {1, . . . ,m} denote the set of variables of an m-way
contingency table. Let Iδ , δ ∈ �, denote the number of levels of the variable δ. For convenience
we take the set of levels of the variable δ as Iδ = {0,1, . . . , Iδ − 1} starting from 0 as in Hoşten
and Sullivant (2002). The cells of the contingency table are indexed by

i = (i1, . . . , im) ∈ I =
∏
δ∈�

Iδ.

n(i) denotes the frequency of the cell i and n = {n(i)}i∈I denotes an m-way contingency table.
The set of positive cells supp(n) = {i ∈ I | n(i) > 0} is the support of n.

For a subset D ⊂ � of the variables, the D-marginal nD of n is the contingency table with
marginal cells iD ∈ ID = ∏

δ∈D Iδ and entries given by nD(iD) = ∑
i
DC ∈I

DC
n(iD, iDC ). Here
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we are denoting i = (iD, iDC ) by appropriately reordering indices. In this paper for notational
simplicity, appropriate reordering of indices is performed as needed.

Now we consider the existence of a table n with the marginal tables nD1, . . . ,nDr . Dobra
(2003) defined that the marginal tables nD1, . . . ,nDr are consistent if, for any r1, r2, the (Dr1 ∩
Dr2)-marginal of nDr1

is equal to the (Dr1 ∩ Dr2)-marginal of nDr2
. The consistency of the

marginal tables is obviously a necessary condition for the existence of n. However we note that
it does not necessarily guarantee the existence of n in general (e.g., Irving and Jerrum (1994);
Vlach (1986)).

Let D = {D1, . . . ,Dr} be the set of facets of a simplicial complex such that � = ⋃r
j=1 Dj .

Then D is called a generating class. Let p(i) denote the cell probability for i. Then the hierar-
chical model for a generating class D is written as

logp(i) =
∑
D∈D

μD(i),

where μD depends only on iD .
Let G D be a graph with the vertex set � and an edge between δ, δ′ ∈ � if and only if there

exists D ∈ D such that δ, δ′ ∈ D. G D is called an independence graph of D (Dobra and Sullivant
(2004)). A hierarchical model for D is called graphical if D = {D1, . . . ,Dr} is the set of (max-
imal) cliques of G D . By a clique we mean the set of vertices of a maximal complete induced
subgraph. A graphical model is called decomposable if G D is chordal, that is, every cycle of G D

with length greater than three has a chord. A clique tree (or a junction tree) T of a chordal graph
G D is a tree, such that the vertices of T are cliques of G D and it satisfies the following property:

Ds ∩ Dt ⊂ Du for all Du on the path between Ds and Dt in T .

An intersection S of neighboring cliques in a clique tree is called a minimal vertex separator. In
the following S denotes the set of minimal vertex separators of a chordal graph. When G D is not
connected, we regard the empty set ∅ as a minimal vertex separator of G D .

For a clique D ∈ D of a decomposable model, let Simp(D) denote the set of simplicial vertices
in D and let Sep(D) denote the set of non-simplicial vertices in D (Hara and Takemura (2006)). If
Simp(D) �= ∅, D is called a simplicial clique. A simplicial clique D is called a boundary clique
if there exists another clique D′ ∈ D such that Sep(D) = D ∩ D′ (Shibata (1988)). Simplicial
vertices in boundary cliques are called simply separated vertices (Hara and Takemura (2006)).
Hara and Takemura (2006) showed that a clique D is a boundary clique if and only if there exists
a clique tree such that D is its endpoint. Hence there exist at least two boundary cliques in any
chordal graph.

Finally we summarize some relevant facts on fibers and Markov bases (Takemura and Aoki
(2004, 2005)). Given the generating class D = {D1, . . . ,Dr} of a hierarchical model, we denote
the set of marginal frequencies as

b = {nDj
(iDj

), iDj
∈ IDj

, j = 1, . . . , r}.
We consider b as a column vector with dimension d = ∑r

j=1
∏

δ∈Dj
Iδ , where the elements

are ordered according to an appropriate lexicographical order. We also order the elements of n
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appropriately and consider n as a column vector. Then the relation between the joint frequencies
n and the marginal frequencies b is written simply as

b = An,

where A is a d × |I| matrix consisting of 0’s and 1’s. A is the “incidence matrix” of cells and
marginals with 1 indicating that the corresponding cell (column) is included in the corresponding
marginal (row).

Given b, the set

Fb = {n ≥ 0 | b = An}
of contingency tables sharing the same marginal frequencies, b, is called a fiber or b-fiber, where
n ≥ 0 denotes n(i) ≥ 0 for all i ∈ I . All contingency tables n in the same fiber Fb have the same
total frequency n = ∑

i∈I n(i). We call this common total frequency the sample size or the degree
of b and denote it by deg b. We call Fb with deg b = 2 a “degree two fiber” in the following.

An integer array z = {z(i)}i∈I of the same dimension as n is called a move if Az = 0, that
is, zD(iD) := ∑

i
DC ∈I

DC
z(iD, iDC ) = 0 for all D ∈ D. A move z is written as the difference

of its positive part and negative part as z = z+ − z−. Then Az+ = Az−. Therefore z+ and z−
belong to the same fiber. In this case we simply say that a move z belongs to the fiber FAz+ .
We call degAz+ the degree of a move z. Clearly degAz+ ≥ 2. Especially when z is a primitive
move, that is, a square-free move of degree two, degAz+ = 2 and z+ and z− belong to the
same degree two fiber. Therefore the structure of primitive move is equivalent to the structure of
corresponding degree two fiber. If we add a move or subtract a move z to n ∈ Fb, we can move
to another state n + z (or n − z) in the same fiber Fb as long as there is no negative element in
n + z (or n − z). A finite set M of moves is called a Markov basis if for every fiber the states
become mutually accessible by the moves from M. By using the Metropolis–Hastings procedure
to control transition probabilities by moves of a Markov basis, we can construct a Markov chain
on every fiber (Diaconis and Sturmfels (1998)).

A Markov basis M is minimal if every proper subset of M is no longer a Markov basis.
Minimal Markov bases may not be unique in general. However, in view of the definition of the
minimum fiber Markov basis (the set of moves that cannot be replaced by a sequence of moves
of lower degree, see Section 2.2 of Takemura and Aoki (2005)), the fibers of the moves of all
minimal Markov bases are common. We refer to the set of fibers common to all minimal Markov
bases as the fibers of the minimum fiber Markov basis.

Suppose that a degree two fiber Fb contains more than one element, that is, |Fb| ≥ 2. Then no
two elements n,n′ of the fiber share a support:

deg b = 2, n �= n′ ∈ Fb �⇒ supp(n) ∩ supp(n′) = ∅.

It follows that each element of a degree two fiber with more than one element is an indispensable
monomial (Aoki et al. (2008)), that is, each contingency table of sample size two is isolated and
has to be connected to some other table in the same fiber by a degree two move of a Markov
basis. Hence each degree two fiber with more than one element has to be a fiber of the minimum
fiber Markov basis. This fact holds for any hierarchical model. Note however that for some



212 H. Hara, S. Aoki and A. Takemura

hierarchical models, such as no three-factor interaction models (Aoki and Takemura (2003)),
every degree two fiber has only one element.

On the other hand, for decomposable models, Dobra (2003) has shown that there exists a
Markov basis consisting of primitive moves. It implies that for decomposable models it suffices
to study degree two fibers. In particular the fibers of the minimum fiber Markov bases are exactly
the degree two fibers with more than one element. Furthermore, by the characterization of the
uniqueness of minimal Markov bases in Takemura and Aoki (2004), it follows that the minimal
Markov basis for a decomposable model is unique if and only if all degree two fibers contain at
most two elements. Based on this result we will give a necessary and sufficient condition for the
uniqueness of minimal Markov bases for decomposable models (Theorem 2 below) in terms of
the properties of their chordal graphs.

3. Structure of degree two fibers

In this section we study the structure of degree two fibers to clarify the structure of primi-
tive moves. Let D = {D1, . . . ,Dr} be the generating class of a hierarchical model. Let b be
a set of marginal frequencies of a contingency table with sample size two. We are interested
in the structure of a degree two fiber Fb. Because the sample size is two, for each D ∈ D,
there exist at most two marginal cells iD with positive marginal frequency nD(iD) > 0. The
same reasoning holds for each variable δ ∈ �; namely in the one-dimensional marginal table
{n{δ}(iδ), iδ ∈ {0,1, . . . , Iδ − 1}}, there exist at most two levels iδ such that n{δ}(iδ) > 0. For
a given b we say that the variable δ is degenerate if there exists a unique level iδ such that
n{δ}(iδ) = 2. Otherwise, if there exist two levels iδ �= i′δ such that n{δ}(iδ) = n{δ}(i′δ) = 1, then we
say that the variable δ is non-degenerate.

If a variable δ is degenerate for a given marginal b, then the level of the variable δ is uniquely
determined from b and it is common for all contingency tables n ∈ Fb. In particular, if all the
variables δ ∈ � are degenerate, then Fb = {n} is a one-element fiber with frequency n(i) = 2
at a particular cell i. Since this case is trivial, below we consider the case wherein at least one
variable is non-degenerate. For convenience we denote

n = (i)(j)

when n(i) = n(j) = 1, i �= j . From the fact that there exist at most two levels with positive one-
dimensional marginals for each variable, it follows that we only need to consider 2 × · · · × 2
tables for studying degree two fibers. Therefore, for our purposes in this section, we let I1 =
· · · = Im = 2, I = {0,1}m without loss of generality.

For a given b of degree two let �̄b denote the set of non-degenerate variables. As noted above
we assume that �̄b �= ∅. Each n ∈ Fb is of the form n = (i)(i′) = (i1, . . . , im)(i′1, . . . , i′m), i �= i′.
Furthermore, for non-degenerate δ ∈ �̄b the levels of the variable δ in i and i′ are different:

{iδ, i′δ} = {0,1} ∀δ ∈ �̄b,

or equivalently i′δ = 1 − iδ , ∀δ ∈ �̄b. In the following we use the notation i∗δ = 1 − iδ . More
generally for a subset D = {δ1, . . . , δk} of the variables and a marginal cell iD = (iδ1 , . . . , iδk

) we
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write

i∗D ≡ (i∗δ1
, . . . , i∗δk

) = (1 − iδ1 , . . . ,1 − iδk
).

Let us identify n ∈ Fb with the set {i, i′} of its two cells of frequency one. Then we see that
the number of elements |Fb| of the fiber is at most 2|�̄b|−1. However some choice of {i, i′} with

iδ, i
∗
δ ∈ {0,1} ∀δ ∈ �̄b,

may not be in the fiber Fb. This is because if δ and δ′ belong to a common D ∈ D, then the values
of iδ and iδ′ are tied together. For example, let D = {1,2} ∈ D and consider the {1,2}-marginal
specified as

n{1,2}(0,0) = n{1,2}(1,1) = 1, n{1,2}(0,1) = n{1,2}(1,0) = 0.

Then if we choose i1 = 0, we have to choose i2 = 0. In Takemura and Hara (2007) we consid-
ered a very similar problem in the framework of swapping observations among two records in a
microdata set for the purpose of statistical disclosure control. As in Takemura and Hara (2007)
we make the following definition.

Let G(�̄b) be a graph with the set of vertices �̄b and an edge between δ ∈ �̄b and δ′ ∈ �̄b if
and only if there exists some D ∈ D such that δ, δ′ ∈ D. Namely there exists an edge between
two non-degenerate variables if and only if these two variables appear together in some marginal
tables of D. Note that G(�̄b) is the induced subgraph of G D with the vertices restricted to �̄b.
As discussed above in this case the values of iδ and iδ′ are tied together and once the value of iδ is
chosen, for example, iδ = 0, then the value of iδ′ becomes fixed depending on the specifications
of the marginals nD .

We summarize the above argument in the following lemma.

Lemma 1. Suppose that b is a set of consistent marginal frequencies of a contingency table with
sample size two. Let � be any subset of a connected component in G(�̄b). Then the marginal
table n� = {n�(i�) | i� ∈ I�} is uniquely determined.

Proof. Let r(�) be the number of generating sets D ∈ D satisfying � ∩ D �= ∅. We prove this
lemma by induction on r(�). When r(�) = 1, the lemma obviously holds. Suppose that the
lemma holds for all r(�) < r ′ and we now assume that r(�) = r ′. Let �1 ⊂ � and �2 ⊂ � satisfy

�1 ∪ �2 = �, �1 ∩ �2 �= ∅, r(�1) < r ′, r(�2) < r ′.

Since r(�1) < r ′ and r(�2) < r ′ both n�1 and n�2 are uniquely determined. Suppose that

n�1(i�1\�2 , i�1∩�2) = 1, n�1(i
∗
�1\�2

, i∗�1∩�2
) = 1. (3.1)

Then from the consistency of b there uniquely exists i�2\�1 ∈ I�2\�1 such that

n�2(i�2\�1 , i�1∩�2) = 1, n�2(i
∗
�2\�1

, i∗�1∩�2
) = 1. (3.2)
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Hence the table n� = {n(j�) | j� ∈ I�} such that

n(j�) =
{

1, if j� = (i�1\�2 , i�1∩�2, i�2\�1) or j� = (i∗�1\�2
, i∗�1∩�2

, i∗�2\�1
),

0, otherwise

is consistent with the marginal b.
Suppose that there exists another marginal table n′

� that is consistent with b such that n�(j�) =
n�(j∗

�) = 1 and j� �= (i�1\�2, i�1∩�2 , i�2\�1). Then we have at least

n�1(i�1) = 0 or n�2(i�2) = 0.

This contradicts (3.1) and (3.2). �

By using the result of Lemma 1, we obtain the following theorem on the number of elements
in degree two fibers.

Theorem 1. Let Fb be a degree two fiber such that �̄b �= ∅ and let c(b) be the number of
connected components of G(�̄b). Then

|Fb| = 2c(b)−1.

Proof. Denote by �1, . . . ,�c , c = c(b), the connected components of G(�̄b). Define �c+1 by
�c+1 = � \ �̄b. Then there exists i�c+1 such that

i�c+1 = {
iδ | δ ∈ �c+1, n{δ}(iδ) = 2

}
.

From Lemma 1 the marginal cells i�k
such that n�k

(i�k
) = n�k

(i∗�k
) = 1 uniquely exist for k =

1, . . . , c. Now define Ib by

Ib = {i�1, i
∗
�1

} × {i�2 , i
∗
�2

} × · · · × {i�c , i
∗
�c

} × {i�c+1},
where × denotes the direct product of sets. Suppose that j ∈ Ib. Define nj = {nj (i) | i ∈ I} by

nj (i) =
{

1, if i = j or i = j∗,
0, otherwise.

Then we have F (Ib) = {nj | j ∈ Ib} ⊂ Fb and |F (Ib)| = 2c−1.
If there exists n′ = {n′(i) | i ∈ I} such that n′ ∈ Fb and n′ /∈ F (Ib), then there exists a cell

j ∈ I and 1 ≤ k ≤ c + 1 such that n(j) = 1 and j�k
�= i�k

. This implies that there exists Dl ∈ D
such that n′(iDl

) �= n(iDl
). Hence we have |Fb| = 2c(b)−1. �

As mentioned in Section 2, for a consistent b such that deg b > 2, it is known that Fb may
be empty (e.g., Irving and Jerrum (1994); Vlach (1986)) in general. However Theorem 1 shows
that, in the case deg b = 2, if a consistent b such that �̄b �= ∅ is given, then Fb �= ∅ for any
hierarchical model.
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It is helpful to consider permuting the levels 0 ↔ 1 for each variable and understand Theo-
rem 1 in a canonical form. This amounts to considering invariance of hierarchical models with
respect to permutation of levels of each variable as studied in Aoki and Takemura (2008a). Al-
though we have reduced our consideration to 2m tables in treating degree two fibers, we are really
considering general hierarchical models of I1 × · · · × Im tables. Note that hierarchical models
possess the symmetry with respect to relabeling the levels of each variable, that is, it is invariant
under the action of the direct product of symmetric groups SI1 × · · · × SIm acting on the set of
cells. If we again restrict our consideration to degree two fibers, we only need to consider the
action of Sm

2 = S2 × · · · × S2. It is clear that structures of degree two fibers are invariant under
the action of Sm

2 .
In particular as a “representative fiber”, we can consider b such that the levels of all degenerate

variables are determined as 0. Also for such a b, let � ⊂ �̄b be the set of vertices of a connected
component of G(�̄b). Then we can without loss of generality assume that two �-marginal cells
of frequency 1 are specified as

1 = n�(0,0, . . . ,0) = n�(1,1, . . . ,1). (3.3)

This can be achieved by interchanging the levels of each variable in �̄b. Under this standardiza-
tion the proof of Theorem 1 is easier to understand, because for each connected component of
G(�̄b) we either choose all 0’s or all 1’s for the component.

This standardization is also useful in determining the setwise stabilizer of Fb in Sm
2 (Sec-

tion 3.1 of Aoki and Takemura (2008b)). If we standardize the levels as (3.3), then the setwise
stabilizer of Fb is isomorphic to c(b)-fold direct product of S2’s:

S
c(b)
2 = S2 × · · · × S2.

In other words the structure of Fb is equivalent to the structure of the fiber Fb′ with � = �̄b′ =
{1, . . . , c(b′)} and totally disconnected G(�̄b′). In the next section we use this fact in determining
the minimal invariant Markov bases for decomposable models.

Finally we prove the following theorem on a sufficient condition for non-uniqueness of mini-
mal Markov bases.

Theorem 2. Let D = {D1, . . . ,Dr} be the generating class of a hierarchical model. Suppose that
m ≥ 3 and there exist three variables δ1, δ2, δ3 that are not connected to each other in G D . Then
minimal Markov bases for the hierarchical model with the generating class D are not unique.

Proof. It suffices to find a degree two fiber with more than two elements. Consider b such that
�̄b = {δ1, δ2, δ3}. From the condition of the theorem G(�̄b) has an induced subgraph with three
connected components. Therefore |Fb| = 4. This completes the proof. �
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4. Markov bases for decomposable models

4.1. Minimal and unique minimal Markov bases

In this section we discuss Markov bases of decomposable models in detail from the viewpoint
of minimality based on the results obtained in the previous section. Since there exists a Markov
basis consisting of primitive moves for decomposable models, the set of fibers of the minimum
fiber Markov basis coincides with the set of degree two fibers with more than one element.
Theorem 1 of the previous section enables a complete description of minimal Markov bases of
decomposable models.

Let deg b = 2. Let Tb be any tree whose nodes are elements of Fb. Denote the set of edges
in Tb by M Tb . We note that we can identify each edge (n,n′) ∈ M Tb with a move z = n − n′.
So we identity M Tb with a set of moves for Fb. In considering Markov bases, we ignore the
sign of z and identify z = n − n′ with −z = n′ − n and consider the edges in Tb as undirected.
In contrast when we consider Gröbner bases, we distinguish z from −z and correspondingly
consider directed edges.

Let Bnd be

Bnd = {b | deg b = 2, |Fb| ≥ 2}. (4.1)

Then we define M0 as follows,

M0 =
⋃

b∈Bnd

M Tb . (4.2)

By following Dobra (2003) and Takemura and Aoki (2004), we easily obtain the following
theorem.

Theorem 3. M0 is a minimal Markov basis and (4.2) is a disjoint union. Conversely every
minimal Markov basis can be written as in (4.2).

Example 1 (The complete independence model of three-way contingency tables). Consider the
model D = {{1}, {2}, {3}} for the 2 × 2 × 2 contingency tables. Bnd for the model has seven
elements. Denote them by b1, . . . ,b7. Figure 1 shows an example of M Tbt

for t = 1, . . . ,7.
b1, . . . ,b7 satisfy

�̄b1 = {1,2,3}, �̄b2 = �̄b3 = {1,2},
(4.3)

�̄b4 = �̄b5 = {2,3}, �̄b6 = �̄b7 = {1,3}.
The union of all these moves is a minimal Markov basis for the model. Since Fb1 is a four
elements fiber, Tb1 is not uniquely determined. Hence minimal Markov bases are not unique for
this model.

As seen from this example, minimal Markov bases are not necessarily uniquely determined.
Based on Theorems 1 and 3, we can derive a necessary and sufficient condition on decomposable
models to have the unique minimal Markov basis.
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Figure 1. MTbt
in the complete independence model of three-way contingency tables.

Corollary 1. There exists the unique minimal Markov basis for a decomposable model if and
only if the number of connected components in any induced subgraphs of G D is less than three.

Proof. Suppose that G(�̄b) has more than two connected components. Then since |Fb| ≥ 4 from
Theorem 1, Tb is not uniquely determined. For a different tree T ′

b , M Tb �= M T ′
b
. Hence minimal

Markov bases are not unique either.
Conversely, assume that the number of connected components of G(�̄b) for all b ∈ Bnd is two.

Then Tb for all b ∈ Bnd is uniquely determined. Hence the minimal Markov basis is unique. �

For decomposable models G D is chordal. From the graph theoretical viewpoint the above
corollary can be rewritten as follows.

Corollary 2. For a decomposable model, there exists the unique minimal Markov basis if and
only if G D has only two boundary cliques D and D′ such that D′′ ⊂ D ∪ D′ for all D′′ ∈ D.

Proof. Suppose that G D has two boundary cliques D and D′ such that D′′ ⊂ D ∪ D′ for all
D′′ ∈ D. Then any vertex in D′′ is adjacent to D or D′. Hence the number of connected compo-
nents for any induced subgraph of G D is at most two.

Conversely suppose that there exists D′′ ∈ D such that D′′ �⊂ D ∪ D′. Then the subgraph
induced by the union of D′′ \ (D ∪ D′), Simp(D) and Simp(D′) has three connected compo-
nents. �



218 H. Hara, S. Aoki and A. Takemura

Figure 2. Examples of the graphs satisfying the condition of Theorem 2.

The graphs with r = 2 always satisfy the conditions of the theorem. For r ≥ 3 the graph with

D = {{1, . . . , r − 1}, {2, . . . , r}, . . . , {r, . . . ,2r − 2}} (4.4)

satisfies the conditions of the theorem. Figure 2 represents the graphs satisfying (4.4) for r = 3,4.
We can easily see that any induced subgraph of the graphs in the figure has at most two connected
components.

Let T = (D, E ) be a clique tree for G D . Denote by Te = (De, Ee) and T ′
e = (D′

e, E ′
e) the two

induced subtrees of T obtained by removing an edge e ∈ E . Define Ve and V ′
e by

Ve =
⋃

D∈De

D, V ′
e =

⋃
D∈D′

e

D.

Let M T (Ve,V
′
e) be the set of all primitive moves for the decomposable model determined by

the chordal graph whose set of cliques is {Ve,V
′
e}. Dobra (2003) showed that

M T =
⋃
e∈E

M T (Ve,V
′
e) (4.5)

is a Markov basis. We call M T a Dobra’s Markov basis. From the viewpoint of minimality of
Markov bases, we have the following theorem.

Theorem 4. A decomposable model has a clique tree T such that M T is a minimal Markov
basis if and only if the model has the unique minimal Markov basis.

Proof. When a decomposable model has unique minimal Markov basis, M T coincides with the
minimal Markov basis.

Suppose that there exist three vertices in G D that are not adjacent to each other. Let 1,2
and 3 be such three vertices and assume that l ∈ Dl , Dl ∈ D, for l = 1,2,3. Define {1,2,3}c =
� \ {1,2,3}. Consider a degree two fiber Fb such that �̄b = {1,2,3} and n{1,2,3}c(i{1,2,3}c) = 2
for some i{1,2,3}c . Then |Fb| = 4 from Theorem 1 and we can denote these four elements by

n1 = (
000i{1,2,3}c

)(
111i{1,2,3}c

)
,

n2 = (
001i{1,2,3}c

)(
110i{1,2,3}c

)
, (4.6)
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Figure 3. T in Example 2.

n3 = (
010i{1,2,3}c

)(
101i{1,2,3}c

)
,

n4 = (
011i{1,2,3}c

)(
100i{1,2,3}c

)
.

A minimal Markov basis connects these four elements by three moves. Let T = (D, E ) be any
clique tree for G D and T ′ = (D′, E ′) be the smallest subtree of T satisfying Dl ∈ D′ for l = 1,2
and 3. Then we can assume that T ′ satisfies either of the following two conditions,

(i) D2 is an interior point and D1 and D3 are endpoints on the path;
(ii) all of D1, D2 and D3 are endpoints of T ′.

In both cases there exists e ∈ E such that D1,D2 ⊂ Ve and D3 ⊂ V ′
e . Then M T (Ve,V

′
e) includes

the following two moves,

z1 = n1 − n2, z2 = n3 − n4.

On the other hand, there also exists e′ ∈ E such that D1 ⊂ Ve′ and D2,D3 ⊂ Ve′ . In this case
M T (Ve′ ,V ′

e′) includes the following two moves,

z3 = n1 − n4, z4 = n2 − n3.

Thus M T includes at least four moves for the fiber Fb, which implies that M T is not minimal
for the model that does not have the unique minimal Markov basis. �

Example 2 (The complete independence model of four-way contingency tables). Consider the
2 × 2 × 2 × 2 complete independence model D = {{1}, {2}, {3}, {4}}. Let Fb be the fiber with
�̄b = {1,2,3,4}, that is, c(b) = 4 and |Fb| = 8. Consider M T for T in Figure 3. Denote the set
of moves for Fb belonging to M T by M T

b . Figure 4 shows M T
b . As seen from Figure 4, MT

b
includes 12 moves. Since |Fb| = 8, 7 moves are sufficient to connect Fb.

4.2. Minimal invariant Markov bases

In this section we consider Markov bases from the viewpoint of invariance under the action of the
product of symmetric groups G = GI1,...,Im = SI1 × · · · × SIm on the levels of the variables. The
organization of this section is as follows. We first express a minimal invariant Markov basis as
a union of orbits of GI1,...,Im , which minimally connects representative fibers (see (4.7) below).
Then we show that the minimal set of orbits connecting a non-degenerate fiber is in one-to-one
correspondence to a basis of a vector space over the finite field GF(2) (Lemma 2 and Theorem 5
below). Then the structure of minimal invariant Markov bases is given in Theorem 6.
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Figure 4. MT
b for b such that �̄b = {1,2,3,4}.

According to Aoki and Takemura (2008a), a set of moves M is called G-invariant if

g ∈ G, z ∈ M ⇒ g(z) ∈ M or −g(z) ∈ M.

M is called a G-invariant Markov basis for D if it is a Markov basis and also G-invariant.
A G-invariant Markov basis M is minimal if no proper G-invariant subset of M is a Markov
basis.

As discussed at the end of Section 3, by appropriate reordering of the indices we can consider
a representative fiber

F 0
b � nb

0 ≡ (0 · · ·0)(1 · · ·1

|�\�̄b|︷ ︸︸ ︷
0 · · ·0).

Then any n ∈ F 0
b is expressed as follows,

n = ( |�1|︷ ︸︸ ︷
0 · · ·0 i�2 · · · i�c(b)

|�\�̄b|︷ ︸︸ ︷
0 · · ·0

)( |�1|︷ ︸︸ ︷
1 · · ·1 i∗�2

· · · i∗�c(b)

|�\�̄b|︷ ︸︸ ︷
0 · · ·0

)
,

i�l
=

|�l |︷ ︸︸ ︷
0 · · ·0 or i�l

=
|�l |︷ ︸︸ ︷

1 · · ·1, l = 2, . . . , c(b),

where �l are the connected components of G(�̄b). Let G�l , l = 2, . . . , c(b), be the diagonal
subgroup of S

|�l |
2 defined by

G�l = {ḡ = (g, . . . , g) | g ∈ S2} ⊂ S
|�l |
2 .

Define

Gb = G�2 × · · · × G�c(b)
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and let g ∈ Gb act on n ∈ F 0
b by

g(n) = ( |�1|︷ ︸︸ ︷
0 · · ·0 ḡ2(i�2) · · · ḡc(b)

(
i�c(b)

) |�\�̄b|︷ ︸︸ ︷
0 · · ·0

)( |�1|︷ ︸︸ ︷
1 · · ·1 ḡ2(i

∗
�2

) · · · ḡc(b)

(
i∗�c(b)

) |�\�̄b|︷ ︸︸ ︷
0 · · ·0

)
.

Clearly g(n) ∈ F 0
b for n ∈ F 0

b and furthermore for any n ∈ F 0
b there exists g ∈ Gb such that

n = g(nb
0). This shows that Gb ⊂ GI1,...,Im is the setwise stabilizer of F 0

b acting transitively on
F 0

b .
Let MGb be a minimal Gb-invariant set of moves that connects F 0

b . Let κ(b) be the number
of Gb-orbits included in MGb . As representative moves of Gb-orbits in MGb we can consider

zb
k = nb

0 − nb
k ∈ Mb, nb

k ∈ F 0
b , k = 1, . . . , κ(b).

This is because we can always send n in z = n − n′ to nb
0 by the transitivity of Gb. Denote

M0
Gb

= {zb
1, . . . , zb

κ(b)
}. Define the set of representative fibers by

B0
nd = {b | nb

0 ∈ F 0
b} ⊂ Bnd.

From Aoki and Takemura (2008a) a minimal GI1,...,Im -invariant Markov basis can be expressed
by

MG =
⋃

b∈B0
nd

κ(b)⋃
k=1

GI1,...,Im(zb
k ), (4.7)

where GI1,...,Im(zb
k ) denotes the GI1,...,Im -orbit through zb

k . Hence in order to clarify the structure
of MG, it suffices to consider 2 × · · · × 2 tables and investigate κ(b) and M0

Gb
for each F 0

b .

As mentioned in Section 3, the structure of F 0
b is equivalent to the structure of the fiber with

�̄b = � = {1, . . . , c(b)} and G(�̄b) is totally disconnected. We first consider the structure of
such a fiber. F 0

b satisfies

F 0
b = {(

0i2 · · · ic(b)

)(
1i∗2 · · · i∗c(b)

) ∣∣ (
i2 · · · ic(b)

) = i�\{1} ∈ I�\{1}
}

(4.8)

and (0 · · ·0)(1 · · ·1) ∈ F 0
b . Then we note that we can identify Gb with S

c(b)−1
2 . For g ∈ S

c(b)−1
2 ,

we write g = (g2, . . . , gc(b)), where gl ∈ S2 for l = 2, . . . , c(b). A representative move of

S
c(b)−1
2 -orbit is expressed by

zb = (0 · · ·0)(1 · · ·1) − (
0i�\{1}

)(
1i∗�\{1}

)
for some i�\{1} ∈ I�\{1}. We first derive κ(b) and MGb . Let V c(b)−1 = {0,1}c(b)−1 denote the
(c(b)−1)-dimensional vector space over the finite field GF(2), where the addition of two vectors
is defined as the “exclusive or” (XOR) of the elements. Let ⊕ denote the XOR operation. Let ◦
denote the group operation of S

c(b)−1
2 . Then we obtain the following lemma.
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Lemma 2. S
c(b)−1
2 is isomorphic to V c(b)−1.

Proof. Consider the map φ :Sc(b)−1
2 → V c(b)−1 such that φ(g) = v = (v2, . . . , vc(b)) ∈ V c(b)−1,

where

vl =
{

0, if gl(il) = il ,
1, if gl(il) = i∗l

for l = 2, . . . , c(b) and {il , i∗l } = {0,1}. For g′ = (g′
2, . . . , g

′
c(b)

) ∈ S
c(b)−1
2 , g′

l ∈ S2, and v′ ∈
V c(b)−1, define φ(g′) = v′ = (v′

2, . . . , v
′
c(b)

). Then we have φ(g ◦ g′) = ṽ = (ṽ2, . . . , ṽc(b)), ṽ ∈
V c(b)−1, where

ṽl =
{

0, if gl ◦ g′
l(il) = il ,

1, if gl ◦ g′
l(il) = i∗l

for l = 2, . . . , c(b). Hence we have

ṽl = vl ⊕ v′
l , l = 2, . . . , c(b).

Therefore φ is a homomorphism. It is obvious that φ is a bijection. Therefore S
c(b)−1
2 is isomor-

phic to V c(b)−1. �

Based on this lemma, we can show the equivalence between S
c(b)−1
2 -orbits in a minimal

S
c(b)−1
2 -invariant set of moves that connects F 0

b and a (vector space) basis of V c(b)−1.

Theorem 5. Let V 0 = {vk = (vk2, . . . , vkc(b)), k = 2, . . . , c(b)} be any basis of V c(b)−1. Define
nb

0 , nb
vk

∈ F 0
b by

nb
0 = (00 · · ·0)(11 · · ·1), nb

vk
= (

0vk2 · · ·vkc(b)

)(
1v∗

k2 · · ·v∗
kc(b)

)
,

where v∗
kl = 1 ⊕ vkl . Let MGb be an S

c(b)−1
2 -invariant set of moves in F 0

b . Then MGb is a

minimal S
c(b)−1
2 -invariant set of moves that connects F 0

b if and only if the representative moves

of the S
c(b)−1
2 -orbits in MGb are expressed by zb

vk
= nb

0 − nb
vk

, k = 2, . . . , c(b). Hence κ(b) =
c(b) − 1.

Proof. Suppose that MGb is a minimal S
c(b)−1
2 -invariant set of moves that connects Fb and that

MGb includes κ(b) orbits as S
c(b)−1
2 (zb

1), . . . , S
c(b)−1
2 (zb

κ(b)
), where

zb
k = nb

0 − nb
k , nb

k = (
0ik2 · · · ikc(b)

)(
1i∗k2 · · · i∗kc(b)

)

for ikl ∈ Il , k = 1, . . . , κ(b), l = 2, . . . , c(b). Let gk ∈ S
c(b)−1
2 satisfy gk(nb

0) = nb
k for

k = 1, . . . , κ(b). We write gk = (gk2, . . . , gkc(b)), gkl ∈ S2 for l = 2, . . . , c(b). Let Hb =
{g1, . . . , gκ(b)} ⊂ S

c(b)−1
2 be a subset of S

c(b)−1
2 . As mentioned above, F 0

b can be expressed
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as in (4.8). Hence for any n ∈ F 0
b there exists g ∈ S

c(b)−1
2 satisfying n = g(nb

0). MGb connects
F 0

b if and only if there exists p ≤ κ(b) such that

n = nb
0 − zb

k1
− gk1(zb

k2
) − · · · − gkp−1 ◦ · · · ◦ gk1(zb

kp
)

and g = gkp ◦ · · · ◦ gk1 . Hence MGb is a minimal S
c(b)−1
2 -invariant set of moves that connects

Fb if and only if Hb satisfies

∀g ∈ S
c(b)−1
2 ,∃p ≤ κ(b),∃gk1 ∈ Hb, . . . ,∃gkp ∈ Hb s.t. g = gkp ◦ · · · ◦ gk1 (4.9)

and no proper subset of Hb satisfies (4.9).
Denote V 0 = φ(Hb) ⊂ V c(b)−1. Then from Lemma 2, (4.9) is equivalent to

∀v ∈ V ,∃v2 ∈ V 0, . . . ,∃vp+1 ∈ V 0 s.t. v = v2 ⊕ · · · ⊕ vp+1. (4.10)

From the minimality of MGb no proper subset of V 0 satisfies (4.10). This implies that V 0 is a
basis of V c(b)−1 and hence κ(b) = c(b)−1. If we define gk = φ−1(vk+1) for k = 1, . . . , c(b)−1,
we have gkl(0) = vk+1,l and hence gk(nb

0) = nb
k = nb

vk+1
. Therefore zb

vk
, k = 2, . . . , c(b), are the

representative moves of the S
c(b)−1
2 -orbits in MGb .

Conversely suppose that the representative moves of MGb are zb
vk

, k = 2, . . . , c(b). V 0 satis-
fies (4.10) and no proper subset of V 0 satisfies (4.10). Hence if we define gk = φ−1(vk+1) and
Hb = {g1, . . . , gc(b)−1}, Hb satisfies (4.9) and no proper subset of Hb satisfies (4.9). Hence MGb

is a minimal S
c(b)−1
2 -invariant set of moves that connects Fb. �

For example, we can set V 0 = {v2, . . . ,vc(b)} as

v2 = (11 · · ·11), v3 = (01 · · ·11), . . . ,

vc(b)−1 = (00 · · ·011), vc(b) = (00 · · ·01),

and then the representative moves in a minimal G-invariant Markov basis are

z0
2 = (00 · · ·0)(11 · · ·1) − (011 · · ·11)(100 · · ·00),

z0
3 = (00 · · ·0)(11 · · ·1) − (001 · · ·11)(110 · · ·00),

(4.11)
...

...
...

z0
c(b) = (00 · · ·0)(11 · · ·1) − (000 · · ·01)(111 · · ·10).

So far we have focused on Fb such that �̄b = � = {1, . . . , c(b)} and G(�̄b) is totally dis-
connected. Now we consider a fiber for a general b of a general decomposable model. Define
ḡkl ∈ G�l by

ḡkl(

|�l |︷ ︸︸ ︷
0 · · ·0) =

{
0 · · ·0, if vk+1 = 0,
1 · · ·1, if vk+1 = 1

(4.12)
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for k = 1, . . . , c(b) − 1 and l = 2, . . . , c(b) and define gk ∈ Gb by

gk(n) = ( |�1|︷ ︸︸ ︷
0 · · ·0 ḡk2(i�2) · · · ḡkc(b)

(
i�c(b)

) |�\�̄b|︷ ︸︸ ︷
0 · · ·0

)
(4.13)

× ( |�1|︷ ︸︸ ︷
1 · · ·1 ḡk2(i

∗
�2

) · · · ḡkc(b)

(
i∗�c(b)

) |�\�̄b|︷ ︸︸ ︷
0 · · ·0

)
.

Denote nb
vk+1

= gk(nb
0) and zb

vk+1
= nb

0 − nb
vk+1

. Based on (4.7) and Theorem 5, we can easily
obtain the following result.

Theorem 6. MGb is a minimal S
c(b)−1
2 -invariant set of moves that connects F 0

b if and only if the

representative moves of the S
c(b)−1
2 -orbits in MGb are expressed as zb

vk
, k = 2, . . . , c(b). Hence

κ(b) = c(b) − 1. Then

MG =
⋃

b∈B0
nd

c(b)⋃
k=2

GI1,...,Im(zb
k )

is a minimal GI1,...,Im -invariant Markov basis. Conversely, every minimal GI1,...,Im -invariant
Markov basis can be written in this form.

Example 3 (The complete independence model of three-way contingency tables). Define bt as
in Figure 1 of Example 1. Then B0

nd = {b1,b2,b4,b6}. Figure 5 shows a structure of MG for the
complete independence model of 2 × 2 × 2 contingency tables. The left half of the figure shows
the structure of MGbt

, bt ∈ B0
nd.

c(b1) = 3 and hence κ(b1) = 2. If we set vb
1 = (10) and vb

2 = (01), we have

zb1
1 = (000)(111) − (010)(101), zb1

2 = (000)(111) − (001)(110).

The orbits S2
2(zb1

1 ) and S2
2(zb1

2 ) are expressed in dotted lines and solid lines, respectively, in the
figure.

c(bt ) = 2 and κ(bt ) = 1 for t = 2,4,6. There exists one orbit in MGbt
for t = 2,4,6. Then

from Theorem 6 a minimal G2,2,2-invariant Markov basis is expressed by

MG = G(zb1
1 ) ∪ G(zb1

2 ) ∪ G(zb2
1 ) ∪ G(zb4

1 ) ∪ G(zb6
1 ).

Next we consider a Dobra’s Markov basis M T from the viewpoint of invariance. Since M T

does not depend on the levels of the variables, M T is GI1,...,Im -invariant. Based on the result of
Theorem 5, we can show that M T is not always a minimal invariant Markov basis.

Theorem 7. M T is minimal invariant if and only if T has only two endpoints.

Proof. It suffices to show that the theorem holds for 2 × · · ·× 2 tables. Suppose that T = (D, E )

has more than two endpoints. Let D1, D2 and D3 be three of them. Then they are boundary



Minimal Markov bases of decomposable models 225

Figure 5. The structure of minimal G2,2,2-invariant Markov bases for the complete independence model
of three-way contingency tables.

cliques. Suppose 1,2,3 ∈ � are simply separated vertices in D1, D2 and D3, respectively. In the
same way as the argument in the proof of Theorem 4, there exist e, e′, e′′ ∈ E such that

D1,D2 ∈ Ve, D3 ∈ V ′
e,

D2,D3 ∈ Ve′ , D1 ∈ V ′
e′ ,

D3,D1 ∈ Ve′′ , D2 ∈ V ′
e′′ .

Consider the moves for the fiber F 0
b for b such that �̄b = {1,2,3}. Define z5 and z6 by

z5 = n1 − n3, z6 = n2 − n4,

where n1, . . . ,n4 are defined in (4.6). Then we have

z1, z2 ∈ M T (Ve,V
′
e), z3, z4 ∈ M T (Ve′ ,V ′

e′), z5, z6 ∈ M T (Ve′′ ,V ′
e′′).

We note that {z1, z2}, {z3, z4} and {z5, z6} are S2
2 -orbits in M T

b . Since κ(b) = 2, M T is not
minimal invariant.
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Figure 6. The clique tree with two endpoints.

Suppose that T has only two endpoints. Then T is expressed as in Figure 6. Let �1(b), . . . ,

�c(b)(b) be the c(b) connected components of G(�̄b). Suppose that δl ∈ �l(b). The structure of
F 0

b is equivalent to the structure of F 0
b′ such that �̄b′ = {δ1, . . . , δc(b)−1} and G(�̄b′) is totally

disconnected. So we restrict our consideration to such a fiber. Denote by F 0
b′ the representative

fiber for b′. Let

Mb′ = {n − n′ | n,n′ ∈ F 0
b′ ,n �= n′}

denote the set of all moves in F 0
b′ . Without loss of generality we can assume that δl ∈ Dπ(l),

where π(1) < · · · < π(c(b′)). Define el = (Dl−1,Dl) ∈ E , Sl = Dl−1 ∩ Dl , Vl = Vel
\ Sl and

V ′
l = V ′

el
\ Sl for l = 2, . . . , c(b′). Then the moves in M T (Vl,V

′
l ) are expressed by

z = (iVl
, iV ′

l
, iSl

)(jVl
, jV ′

l
, iSl

) − (iVl
, jV ′

l
, iSl

)(jVl
, iV ′

l
, iSl

),

iVl
, jVl

∈ IVl
, iV ′

l
, jV ′

l
∈ IV ′

l
, iSl

∈ ISl
.

If Vel
∩ �̄b′ = ∅ or V ′

el
∩ �̄b′ = ∅, then we have M T (Vel

, V ′
el
) ∩ Mb′ = ∅. If Vel

∩ �̄b′ �= ∅

and V ′
el

∩ �̄b′ �= ∅, then there exists 2 ≤ k(el) ≤ c(b′) satisfying δk ∈ Vl for all k < k(el) and
δk ∈ V ′

l for all k ≥ k(el). Then

M T (Vel
, V ′

el
) ∩ Mb′ = S

c(b)−1
2

(
z0
k(el)

)
,

where z0
k(el)

is defined as in (4.11). Hence we have

M T
b′ =

⋃
el∈E

M T (Vel
, V ′

el
) ∩ Mb′ =

c(b′)⋃
k=2

S
c(b)−1
2 (z0

k),

which includes c(b′) − 1 orbits for all b′ ∈ B0
nd. Hence M T is minimal GI1,...,Im -invariant. �

Example 4 (The complete independence model of four-way contingency tables). As an exam-
ple we consider the 2 × 2 × 2 × 2 complete independence model D = {Dl = {l}, l = 1, . . . ,4}.
Both T 1 and T 2 in Figure 7 are clique trees for D. From Theorem 7, M T 1

is a minimal
S3

2 -invariant Markov basis. Consider the representative fiber F 0
b such that �̄b = {1,2,3}. For

j = 1,2, denote the two induced subtrees of T j obtained by removing the edge el by T j
el

and

T j
el

′
. Figure 8 shows T 1

el
, T 1

el

′
and M T 1

(Vel
, V ′

el
)∩ Mb. If we remove e3 from T 1, 1, 2 and 3 are

still connected and hence M T 1
(Ve3 ,V

′
e3

) ∩ Mb = ∅. Therefore M T 1

b includes κ(b) = 2 orbits.
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Figure 7. Clique trees for the 4-way complete independence model.

On the other hand, since T 2 has three endpoints, M T 2
is not a minimal S3

2 -invariant Markov

basis. Figure 9 shows T 2
el

, T 2
el

′
and M T 2

(Vel
, V ′

el
) ∩ Mb. We can see that M T 2

b includes three

orbits. As seen from this example, in general the minimality of M T depends on clique trees T .

Example 5. We consider the model defined by the chordal graph in Figure 10. The clique tree
of this graph is uniquely determined by T 2 in Figure 7. As seen from this example, there exist
decomposable models such that M T for every clique tree T is not minimal GI1,...,Im -invariant.

Figure 8. The structure of MT 1

b .
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Figure 9. The structure of MT 2

b .

Figure 10. A chordal graph whose clique tree is uniquely determined.
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4.3. The relation between minimal and minimal invariant Markov bases

From a practical point of view a GI1,...,Im -invariant Markov basis is useful because its represen-
tative moves give the most concise expression of a Markov basis. On the other hand, a mini-
mal Markov basis is also important because the number of moves contained in it is minimum
among Markov bases. Here we consider the relation between a minimal and a minimal GI1,...,Im -
invariant Markov basis and give an algorithm to obtain a minimal Markov basis from represen-
tative moves of a minimal GI1,...,Im -invariant Markov basis.

As mentioned in the previous section, the set of Gb-orbits in a minimal Gb-invariant set, MGb ,

of moves that connects F 0
b has one-to-one correspondence to a basis V 0 of V c(b)−1. Define ḡkl ∈

G�l
and gk ∈ Gb as in (4.12) and (4.13). Let Hb = {g1, . . . , gc(b)−1} ⊂ Gb. Now we generate a

set of moves M∗
b in Fb by the following algorithm.

Algorithm 1.
Input: Fb, Hb = {g1, . . . , gc(b)−1}
Output: M∗

b

begin
M∗

b ← ∅;
Choose any element n1 in Fb;
for k = 2 to c(b) do
begin

for l = 1 to 2k−2 do
begin

nl+2k−2 := gk−1(nl );
zl+2k−2 := nl − nl+2k−2 ;
M∗

b ← M∗
b ∪ {zl+2k−2};

end
end
return M∗

b;
end.

Theorem 8. M∗
b generated by Algorithm 1 is a minimal set of moves that connects Fb.

Proof. Since |M∗
b| = 20 + 21 + · · · + 2c(b)−1 = 2c(b)−1 − 1, it suffices to show that nl �= nl′ for

l �= l′. Suppose that there exist l and l′, l �= l′, such that nl = nl′ and nl , nl′ are expressed by

nl = gkp ◦ · · · ◦ gk1(n1), nl′ = g
k′
p′ ◦ · · · ◦ gk′

1(n1),

where k1 < k2 < · · · < kp ≤ c(b) − 1 and k′
1 < k′

2 < · · · < k′
p′ ≤ c(b) − 1. Without loss of gener-

ality we can assume p < p′. Then we have

gkp ◦ · · · ◦ gk1 = g
k′
p′ ◦ · · · ◦ gk′

1 (4.14)
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Figure 11. MGb and M∗
b generated by Algorithm 1.

and there exists l ≤ p such that kl �= k′
l . From Lemma 2 (4.14) is equivalent to

vk1 ⊕ · · · ⊕ vkp = vk′
1
⊕ · · · ⊕ vk′

p′ ,

which contradicts that V 0 is a basis of V c(b)−1. Hence we have nl �= nl′ for l �= l′. �

From (4.2) we obtain the following result.

Corollary 3. M∗ = ⋃
b∈Bnd

M∗
b is a minimal Markov basis.

Example 6 (The complete independence model of a four-way contingency table). We consider
the same fiber as in Example 2. Define V 0 = {v2,v3,v4} by v2 = (100), v3 = (010) and v4 =
(001). Figure 11 shows MGb and M∗

b generated by Algorithm 1 with n1 = (0000)(1111).

5. Gröbner bases for decomposable models

So far we have been discussing Markov bases. In this section we briefly discuss Gröbner bases.
For decomposable models, Theorem 4.17 of Hoşten and Sullivant (2002) gives a recursive
method for determining the term order and the corresponding Gröbner basis consisting of primi-
tive moves only. It gives a Gröbner basis version of Dobra’s Markov basis in (4.5). In Theorem 4
we saw that Dobra’s construction gives a minimal Markov basis only in a special case. The same
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phenomenon can be observed with respect to the reducedness of the Gröbner basis if we simply
apply Theorem 4.17 of Hoşten and Sullivant recursively, that is, the operation of Theorem 4.17
of Hoşten and Sullivant does not preserve reducedness in general. Here we are interested in an
explicit description of appropriate term order and the reduced Gröbner basis for decomposable
models. We prove that for decomposable models, there exists a term order such that the reduced
Gröbner basis is explicitly described and, furthermore, it is minimal as a Markov basis.

In obtaining a nice Gröbner basis, the term order has to be carefully chosen. For example,
consider the simple case of 3 × 3 two-way contingency tables with fixed row sums and column
sums. Proposition 5.4 of Sturmfels (1996) shows that the set of nine primitive moves of the form

± +1 −1
−1 +1

constitute a reduced Gröbner basis when the cells are lexicographically ordered and the term
order is chosen to be the reverse lexicographic term order. However, if we order the nine cells as

1 8 6

4 2 9

7 5 3

and use the lexicographic order, then the reduced Gröbner contains the following degree three
move

0 −1 +1

+1 0 −1

−1 +1 0

in addition to the nine primitive moves. This example shows that the existence of a reduced
Gröbner basis consisting of primitive moves depends on the choice of a term order.

We need several steps in constructing a nice term order for a decomposable model of an m-way
contingency table. First, we order m variables. Choose a boundary clique of the chordal graph
corresponding to the decomposable model and order the variables in the boundary cliques as the
lowest variables. Then remove the boundary clique from the chordal graph, choose a boundary
clique from the smaller graph and order the variables from the boundary clique as the next lowest
variables. By recursively removing boundary cliques we obtain an ordering of variables. The re-
sulting order is a perfect elimination scheme but has a stronger property. Second, given the order
of the variables, we order the cells of an m-way contingency table lexicographically. Finally, as
the term order � we use the reverse lexicographic term order.

Let Bnd as in (4.1). In each fiber Fb, b ∈ Bnd, there exists the lowest element n∗
b with respect

to the above term order �. Define

MGB =
⋃

b∈Bnd

⋃
n∈Fb
n�=n∗

b

{n − n∗
b}.
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Then we have the following theorem.

Theorem 9. MGB is the reduced Gröbner basis and it is minimal as a Markov basis.

We omit the details of the proof. By generalizing the proof of Proposition 5.4 of Sturmfels
(1996) we can show that MGB is indeed a Gröbner basis. Reducedness is obvious. Minimality
is also obvious from Theorem 3.

6. Concluding remarks

In this paper we investigated the structure of degree two fibers of a decomposable model and
clarified the structure of minimal Markov bases and minimal invariant Markov bases. We have
also shown that decomposable models possess a Gröbner basis that is at the same time a minimal
Markov basis.

For future research it is important to investigate structures of degree three fibers, degree four
fibers, etc. In Takemura and Aoki (2004) we gave a characterization of minimal Markov bases.
It shows that minimal Markov bases can be constructed “from below”, that is, combining moves
from fibers of degree 1,2,3, . . . . Although at the moment the construction cannot be imple-
mented as an algorithm, it is important to study fibers of low degrees. We see that the study of
degree two fibers in this paper led to some interesting results. As another example, in Aoki and
Takemura (2009) we found some interesting degree three fibers in connection to experimental
design with three-level factors.

As mentioned in the Introduction, the results obtained in this paper will provide insights to
some practical models such as subtable sum models (Hara et al. (2009)), models for contin-
gency tables with structural zeros (Aoki and Takemura (2005); Rapallo (2006)) and Rasch mod-
els (e.g., Chen and Small (2005); Zhu et al. (1998); Basturk (2008)) obtained by imposing some
constraints on decomposable models. We will present results along this line in a forthcoming
manuscript (Hara and Takemura (2009)).

It is of interest to study effects of structural zeros and observational zeros to Markov bases. In
this respect in Hara et al. (2009) we have shown that a Markov basis for two-way contingency
tables with structural zeros can be obtained as a subset of a Markov basis for subtable sum
models, where the subtable sum happens to be an observational zero.
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